
Generative Unbinding of Names

Andrew Pitts
University of Cambridge

and Mark Shinwell
CodeSourcery, Ltd

1/11

The FreshML project
2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

2/11

The FreshML project
2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

inspired by Fraenkel & Mostowski’s
1930s permutation model of set theory

2/11

The FreshML project
2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

=⇒ FreshML = ML +
features for manipulating
syntax mod α-equiv.

Implementations: Shinwell’s
Fresh patch for Ocaml,
Pottier’s Cαml tool, Cheney’s
FreshLib library for ghc.

2/11

The FreshML project
2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

=⇒ FreshML = ML +
features for manipulating
syntax mod α-equiv.

Implementations: Shinwell’s
Fresh patch for Ocaml,
Pottier’s Cαml tool, Cheney’s
FreshLib library for ghc.

all use generative unbinding of names

2/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

Closed values a : atm come from a fixed, infinite set of
“atoms”.

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

fresh() creates a fresh atom:

〈~a, fresh()〉 −→ 〈a′ ::~a, a′〉 where a′ /∈~a

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

fresh() creates a fresh atom:

〈~a, fresh()〉 −→ 〈a′ ::~a, a′〉 where a′ /∈~a

current state = finite list of
distinct atoms created so far

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

Closed values «a»v of type τ bnd are represented by
pairs consisting of an atom a and a closed value v : τ,
created by evaluating bind(a , v).

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

unbind carries out generative unbinding:

〈~a, unbind(«a»v)〉 −→ 〈a′ ::~a, (a′ , v{a′/a})〉

where a′ /∈~a.

3/11

FreshML sig for name-binding

type atm

type α bnd

val fresh : unit→ atm

val bind : atm ∗ α → α bnd

val unbind : α bnd→ atm ∗ α

val (=) : atm→ atm→ bool

unbind carries out generative unbinding:

〈~a, unbind(«a»v)〉 −→ 〈a′ ::~a, (a′ , v{a′/a})〉

where a′ /∈~a.

rename all occurrences of a in v to be a′

3/11

Representing object-level languages

For example

t ::= a | λa.t | t t terms of the λ-calculus (all terms,
open or closed, with variables given by atoms)

can be represented in FreshML by

closed values of the
recursive data type

τ = V of atm

| L of τ bnd

| A of τ ∗ τ

(More generally, the representation works the same way for terms
over any nominal signature [Urban-Gabbay-AMP].)

4/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

paq , V a

pλa.tq , L(«a»ptq)

pt1 t2q , A(pt1q , pt2q)

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, t′[t/a], is given by
sub a ptq pt′q, where

sub x y y′ = match y′ with

V x′ → if x = x′ then y else y′

| L(«x′»z) → L(bind x′(sub x y z))
| A(z , z′) → A(sub x y z , sub x y z′)

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, t′[t/a], is given by
sub a ptq pt′q, where

sub x y y′ = match y′ with

V x′ → if x = x′ then y else y′

| L(«x′»z) → L(bind x′(sub x y z))
| A(z , z′) → A(sub x y z , sub x y z′)

This kind of pattern-match
desugars to a use of unbind

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, t′[t/a], is given by
sub a ptq pt′q, where

sub x y y′ = match y′ with

V x′ → if x = x′ then y else y′

| L z → let(x′ , z′) = unbind z in

L(bind x′(sub x y z′))
| A(z , z′) → A(sub x y z , sub x y z′)

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, t′[t/a], is given by
sub a ptq pt′q, where

sub x y y′ = match y′ with

V x′ → if x = x′ then y else y′

| L z → let(x′ , z′) = unbind z in

L(bind x′(sub x y z′))
| A(z , z′) → A(sub x y z , sub x y z′)

E.g. corresponding to (λb. a)[b/a] = λc. b, have:
〈[a, b], sub a (V b) (L(«b»(V a)))〉 −→∗ 〈[a, b, c], L(«c»(V b))〉

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

Want:

Correctness of Representation: two λ-terms are
α-equivalent, t1 =α t2, iff pt1q and pt2q are
contextually equivalent closed values of type τ.

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

Want:

Correctness of Representation: two λ-terms are
α-equivalent, t1 =α t2, iff pt1q and pt2q are
contextually equivalent closed values of type τ.

i.e. can be used interchangeably in
any well-typed FreshML program
without affecting the observable
results of program execution

5/11

τ = V of atm | L of τ bnd | A of τ ∗ τ

λ-terms t map onto closed values ptq : τ

Want:

Correctness of Representation: two λ-terms are
α-equivalent, t1 =α t2, iff pt1q and pt2q are
contextually equivalent closed values of type τ.

Proved for FreshML in Shinwell’s thesis
(with a denotational semantics based on Gabbay-AMP
“FM-sets”).

5/11

Algorithms involving atoms

FreshML only has (=) : atm→ atm→ bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) : atm→ atm→ bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

6/11

Algorithms involving atoms

FreshML only has (=) : atm→ atm→ bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) : atm→ atm→ bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

a = a′ is equivariant,
but a < a′ appears not to be

6/11

Algorithms involving atoms

FreshML only has (=) : atm→ atm→ bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) : atm→ atm→ bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

Solution: take into account the current state of
dynamically created atoms.

6/11

Observations on atoms

Extend FreshML with primitive functions

obs : atm ∗ · · · ∗ atm→ int

with state-dependent dynamics

〈~a, obs(a1, . . . , ak)〉 −→ 〈~a, JobsK~a(a1, . . . , ak)〉

7/11

Observations on atoms

Extend FreshML with primitive functions

obs : atm ∗ · · · ∗ atm→ int

with state-dependent dynamics

〈~a, obs(a1, . . . , ak)〉 −→ 〈~a, JobsK~a(a1, . . . , ak)〉

integer-valued function of ~a and a1, . . . , ak ∈~a
that is equivariant.
E.g. JobsK[a,b,c](a, c) = JobsK[b,c,a](b, a)

(We insist on equivariant functions in order to abstract
away from concrete implementations of generativity.)

7/11

Examples of observations on atoms

Equality JeqK~a(a, a′) ,

{

1 if a = a′,

0 otherwise.

Linear order JltK~a(a, a′) ,
{

1 if a occurs to the left of a′ in the list ~a,

0 otherwise.

Ordinal JordK~a(a) , n, if a is the nth element of the
list ~a.

Non-example: JbadK~a(a) = α−1(a), where α : N ∼= A

is some fixed enumeration of the set of atoms.

8/11

Main result of the paper

Theorem. The Correctness of Representation
property

for all λ-terms t1, t2, it is the case that
t1 =α t2 iff pt1q and pt2q are
contextually equivalent

holds no matter what (equivariant) observations on
atoms we add to FreshML.

[Stated for λ-terms, but true for terms over any nominal signature.]

9/11

Ingredients of the proof

I Direct from operational semantics, rather than via
denotational model.

I Uses equivariant versions of standard techniques
(such as Howe’s method for proving congruence of

Mason-Talcott style ciu-equivalence).

10/11

Ingredients of the proof

I “Extensionality” for contextual equivalence at
atom-binding types τ bnd, mirroring key property of
=α:

t{a′′/a} =α t′{a′′/a′}

λa. t =α λa′. t′ a′′ /∈ fv(a, t, a′, t′)

Bottom-up direction fails for higher types τ unless
observations on atoms are insensitive to adding
extra atoms at start. (lt OK, ord not OK.)

10/11

Conclusions, further directions

I The main result is only about data correctness.
What about program correctness?

E.g. want

sub x y y′ = match y′with

V x′ → if x = x′ then y else y′

| L(«x′»z) → L(bind x′(sub x y z))
| A(z , z′) → A(sub x y z , sub x y z′)

to satisfy that sub a ptq pt′q and pt′[t/a]q are always
contextually equivalent. Some obs on atoms will break this.

11/11

Conclusions, further directions

I The main result is only about data correctness.
What about program correctness?

I Instead of extra observations on atoms, add
abstract types of finite maps on atoms.

I What about pure FreshML (Pottier, 2006)?

11/11

