Generative Unbinding of Names

Andrew Pitts and Mark Shinwell
University of Cambridge CodeSourcery, Ltd

1/11

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

t inspired by Fraenkel & Mostowski's
1930s permutation model of set theory

2/11

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

— FreshML = ML +
features for manipulating
syntax mod a-equiv.
Implementations: Shinwell’s
Fresh patch for Ocaml,

Pottier's Caml tool, Cheney's
FreshLib library for ghc.

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

“nominal sets” model
of names, binding and
freshness — based on
properties that are
invariant under
permuting names

= FreshML = ML +
features for manipulating
syntax mod a-equiv.

Implementations: Shinwell's
Fresh patch for Ocaml,
Pottier's Caml tool, Cheney's
FreshLib library for ghc.

all use generative unbinding of names

FreshML sig for name-binding

type
type
val
val
val
val

atm

« bnd

fresh :unit — atm
bind : atm * &« — & bnd
unbind : « bnd — atm * «
(=) : atm — atm — bool

FreshML sig for name-binding

type
type
val
val
val
val

atm

« bnd

fresh :unit — atm
bind : atm * &« — & bnd
unbind : « bnd — atm * «
(=) : atm — atm — bool

Closed values a : atm come from a fixed, infinite set of

“atoms”.

FreshML sig for name-binding

type atm

type «bnd

val fresh:unit — atm

val bind: atm*x a« — « bnd
val unbind:abnd — atm*«
val (=) :atm— atm — bool

fresh() creates a fresh atom:

(d,fresh()) — (a’::d,a’)|where a’ & d

FreshML sig for name-binding

type
type
val
val
val
val

atm

« bnd

fresh :unit — atm
bind : atm * &« — & bnd
unbind : « bnd — atm * «
(=) : atm — atm — bool

fresh() creates a fresh atom:

d,fresh()) — {(a’::d,a’) | where a’ & d
A

K current state = finite list of

distinct atoms created so far

FreshML sig for name-binding

type
type
val
val
val
val

atm

« bnd

fresh :unit — atm

bind : atm * &« — & bnd
unbind : « bnd — atm * «
(=) : atm — atm — bool

Closed values «a»v of type T bnd are represented by
pairs consisting of an atom a and a closed value v : T,
created by evaluating bind(a, v).

FreshML sig for name-binding

type atm

type «bnd

val fresh:unit — atm

val bind: atm*x a« — « bnd
val unbind:abnd — atm*w«
val (=) :atm— atm — bool

unbind carries out generative unbinding:

(d,unbind(«a»v)) — (a’::d, (a’,v{a’la}))

where a’ & 4.

FreshML sig for name-binding

type atm

type «bnd

val fresh:unit — atm

val bind: atm*x a« — « bnd
val unbind:abnd — atm*«
val (=) :atm— atm— bool

unbind carries out generative unbinding:

(@, unbind(«a»v)) — (a’=:d,(a’,v{a’la}))

where a’ & 4. K_J

|rename all occurrences of a in v to be a’ I

3/11

Representing object-level languages

For example

tu=a|Aat|tt] terms of the A-calculus (all terms,
°* * open or closed, with variables given by atoms)

can be represented in FreshML by

T = Vof atm
closed values of the | L of Tbnd
recursive data type | AofTxT

(More generally, the representation works the same way for terms
over any nominal signature [Urban-Gabbay-AMP].)

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T

"al £ Va
"Aa.t? = L(«ar"t?)
'_i'1i'2_' A A('_tl—','_tz_')

11

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, #’'[t/a], is given by
suba ™t "t where

subxyy’ =match y’ with
Vx' — if x =x' thenyelsey’
| L(«x'nz) — L(bindx’(subxy z))
| A(z,2") = A(subxyz,subxyz’)

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, #’'[t/a], is given by
suba ™t "t where

subxyy’ =match y’ with
Vx' — if x =x' thenyelsey’
| L(«x'nz) — L(bindx’(subxy z))
| A(z,z’)FAA(subxyz,subxyz’)

This kind of pattern-match
desugars to a use of unbind

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, #’'[t/a], is given by
suba ™t "t where

subxyy’ =match y’ with
Vx' — if x =x' thenyelsey’
| Lz — let(x’,z’) =unbind z in
L(bindx’(subxyz’))
| A(z,2") > A(subxyz,subxyz’)

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T

and syntax-manipulating functions can be coded nicely.
E.g. capture-avoiding substitution, #’'[t/a], is given by
suba ™t "t where

subxyy’ =match y’ with
Vx' — if x =x' thenyelsey’
| Lz — let(x’,z’) =unbind z in
L(bindx’(subxyz’))
| A(z,2") > A(subxyz,subxyz’)

E.g. corresponding to (Ab.a)[bla] = Ac.b, have:
([a,b],suba (Vb) (L(«b»(Va)))) —* ([a,b,c],L(«e»(VD)))

5/11

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T
Want:

Correctness of Representation: two A-terms are
x-equivalent, t; =, t,, iff "#; Tand " £, ! are
contextually equivalent closed values of type .

11

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T
Want:

Correctness of Representation: two A-terms are
x-equivalent, t; =, t,, iff "#; Tand " £, ! are
contextually equivalent closed values of type T.

R

i.e. can be used interchangeably in
any well-typed FreshML program
without affecting the observable
results of program execution

/11

T=Vofatm|Lof Tbnd |Aof T*T

A-terms t map onto closed values "t ': T
Want:

Correctness of Representation: two A-terms are
x-equivalent, t; =, t,, iff "#; Tand " £, ! are
contextually equivalent closed values of type .

Proved for FreshML in Shinwell's thesis

(with a denotational semantics based on Gabbay-AMP
“FM-sets").

5/11

Algorithms involving atoms

FreshML only has (=) : atm — atm — bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) :atm — atm — bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

Algorithms involving atoms

FreshML only has (=) : atm — atm — bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) :atm — atm — bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

L a = a’ is equivariant,

but @ < a’ appears not to be

Algorithms involving atoms

FreshML only has (=) : atm — atm — bool.

Do other relations on atoms mess up the Correctness
Property?

E.g. is it possible to have linearly ordered atoms,
(<) :atm — atm — bool?

Apparent problem: proof of Correctness relies on
equivariance = invariance under atom-permutations.

Solution: take into account the current state of
dynamically created atoms.

Observations on atoms

Extend FreshML with primitive functions
obs:atm* ..+ % atm— int
with state-dependent dynamics

(d,obs(ay,...,ax)) — (4, [obs]z(a,.

..,ak))

/11

Observations on atoms

Extend FreshML with primitive functions
obs:atm*--:+% atm— int
with state-dependent dynamics

(d,obs(ay,...,ax)) — (d,[obs]z(ay,..., ax))

integer-valued function of @ and aq,...,ax € d
that is equivariant.

E.g. [[obs]] [a,b,c] (ar C) = [[Obs]] [b,c,a] (br a)

(We insist on equivariant functions in order to abstract
away from concrete implementations of generativity.)

Examples of observations on atoms

| 1 ifa=ad,
Equality [eq)z(a,a’) = {0 otherwise

Linear order [1t];(a,a’) =
1 if a occurs to the left of a’ in the list 4,
0 otherwise.

Ordinal [ord]z(a) = n, if a is the nth element of the
list d.

Non-example: [bad]z(a) = a«~'(a), where & : N = A
is some fixed enumeration of the set of atoms.

Main result of the paper

Theorem. The Correctness of Representation
property
for all A-terms tq, 15, it is the case that
ti =, iff Tty Tand ", ' are
contextually equivalent

holds no matter what (equivariant) observations on
atoms we add to FreshML.

[Stated for A-terms, but true for terms over any nominal signature.]

11

Ingredients of the proof

» Direct from operational semantics, rather than via
denotational model.

» Uses equivariant versions of standard techniques
(such as Howe's method for proving congruence of
Mason-Talcott style ciu-equivalence).

10/11

Ingredients of the proof

“Extensionality” for contextual equivalence at
atom-binding types T bnd, mirroring key property of
:I'X:
t{a"la} =, t'{a"la’}
Aa.t =, Aa’.t

a’ & fo(a,t,a’,t)

Bottom-up direction fails for higher types T unless
observations on atoms are insensitive to adding
extra atoms at start. (1t OK, ord not OK.)

10/11

Conclusions, further directions

The main result is only about data correctness.
What about program correctness?

E.g. want
subxyy' =match y'with
Vx’ — if x =x" thenyelsey’
| L(«x’»z) — L(bind ¥’ (subxy z))
| A(z,z') —> A(subxyz,subxyz’)

to satisfy that suba "t "¢ and "#'[t/a] " are always
contextually equivalent. Some obs on atoms will break this.

11/11

Conclusions, further directions

» The main result is only about data correctness.
What about program correctness?

» Instead of extra observations on atoms, add
abstract types of finite maps on atoms.

» What about pure FreshML (Pottier, 2006)?

11/11

