Generative Unbinding of Names

Andrew Pitts and University of Cambridge

Mark Shinwell CodeSourcery, Ltd

2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model of names, binding and freshness — based on properties that are invariant under permuting names

2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model of names, binding and freshness — based on properties that are invariant under permuting names

inspired by Fraenkel & Mostowski's 1930s permutation model of set theory

2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model of names, binding and freshness — based on properties that are invariant under permuting names

 $\implies FreshML = ML + features for manipulating syntax mod <math>\alpha$ -equiv.

Implementations: Shinwell's Fresh patch for Ocaml, Pottier's Caml tool, Cheney's FreshLib library for ghc.

2001–2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model of names, binding and freshness — based on properties that are invariant under permuting names

 $\implies FreshML = ML + features for manipulating syntax mod <math>\alpha$ -equiv.

→ Implementations: Shinwell's Fresh patch for Ocaml, Pottier's Caml tool, Cheney's FreshLib library for ghc.

all use generative unbinding of names

- type atm
- type α bnd
- val fresh: unit \rightarrow atm
- val bind: atm $* \alpha \rightarrow \alpha$ bnd
- val unbind: α bnd \rightarrow atm * α
- val $(=): \operatorname{atm} \to \operatorname{atm} \to \operatorname{bool}$

type atm type α bnd val fresh:unit \rightarrow atm val bind:atm * $\alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm * α val (=):atm \rightarrow atm \rightarrow bool

Closed values a: atm come from a fixed, infinite set of "atoms".

type atm type α bnd val fresh: unit \rightarrow atm val bind: atm * $\alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm * α val (=): atm \rightarrow atm \rightarrow bool

fresh() creates a fresh atom:

 $\langle \vec{a}, \texttt{fresh}() \rangle \longrightarrow \langle a' :: \vec{a}, a' \rangle$ where $a' \notin \vec{a}$

type atm type α bnd val fresh: unit \rightarrow atm val bind: atm * $\alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm * α val (=): atm \rightarrow atm \rightarrow bool

fresh() creates a fresh atom:

 $\langle \vec{a}, \text{fresh}() \rangle \longrightarrow \langle a' :: \vec{a}, a' \rangle$ where $a' \notin \vec{a}$ current state = finite list of distinct atoms created so far

type atm type α bnd val fresh:unit \rightarrow atm val bind:atm $\ast \alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm $\ast \alpha$ val (=):atm \rightarrow atm \rightarrow bool

Closed values (a)v of type τ bnd are represented by pairs consisting of an atom a and a closed value $v:\tau$, created by evaluating bind(a, v).

type atm type α bnd val fresh: unit \rightarrow atm val bind: atm * $\alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm * α val (=): atm \rightarrow atm \rightarrow bool

unbind carries out generative unbinding:

 $\langle \vec{a}, \text{unbind}(\langle a \rangle v) \rangle \longrightarrow \langle a' :: \vec{a}, (a', v\{a'/a\}) \rangle$

where $a' \notin \vec{a}$.

type atm type α bnd val fresh:unit \rightarrow atm val bind:atm * $\alpha \rightarrow \alpha$ bnd val unbind: α bnd \rightarrow atm * α val (=):atm \rightarrow atm \rightarrow bool

unbind carries out generative unbinding:

 $\langle \vec{a}, \text{unbind}(\langle a \rangle v) \rangle \longrightarrow \langle a' :: \vec{a}, (a', v \{a'/a\}) \rangle$ where $a' \notin \vec{a}$.
rename all occurrences of a in v to be a'

Representing object-level languages

For example

$$t ::= a \mid \lambda a.t \mid t t$$

terms of the $\lambda\text{-calculus}$ (all terms, open or closed, with variables given by atoms)

can be represented in FreshML by

closed values of the recursive data type

$$\tau = V \text{ of atm} \\ \mid L \text{ of } \tau \text{ bnd} \\ \mid A \text{ of } \tau * \tau$$

(More generally, the representation works the same way for terms over any nominal signature [Urban-Gabbay-AMP].)

 λ -terms t map onto closed values $\lceil t \rceil : \tau$

$$\begin{bmatrix}
 a & \neg & \triangleq & \lor a \\
 \gamma & \lambda a.t & \neg & \triangleq & L(\langle a \rangle b & \neg t \\
 t_1 t_2 & \neg & \triangleq & A([t_1], [t_2])
 \end{bmatrix}$$

 λ -terms t map onto closed values $\lceil t \rceil : \tau$

and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, t'[t/a], is given by sub $a \ t \ t' \ t'$, where

sub
$$x y y' = \text{match } y'$$
 with
 $\forall x' \rightarrow \text{if } x = x' \text{ then } y \text{ else } y'$
 $| L(\langle x' \rangle z) \rightarrow L(\text{bind } x'(\text{sub } x y z))$
 $| A(z, z') \rightarrow A(\text{sub } x y z, \text{sub } x y z')$

 λ -terms t map onto closed values $\lceil t \rceil : \tau$

and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, t'[t/a], is given by sub $a \ulcorner t \urcorner \ulcorner t' \urcorner$, where

sub
$$x y y' = \text{match } y'$$
 with
 $\forall x' \rightarrow \text{if } x = x' \text{ then } y \text{ else } y'$
 $| L(\ll x' \gg z) \rightarrow L(\text{bind } x'(\text{sub } x y z))$
 $| A(z, z') \rightarrow A(\text{sub } x y z, \text{sub } x y z')$
This kind of pattern-match
desugars to a use of unbind

 λ -terms t map onto closed values $\lceil t \rceil : \tau$

and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, t'[t/a], is given by sub $a \ulcorner t \urcorner \ulcorner t' \urcorner$, where

sub
$$x y y' = \text{match } y'$$
 with
 $\forall x' \rightarrow \text{if } x = x' \text{ then } y \text{ else } y'$
 $| L z \rightarrow \text{let}(x', z') = \text{unbind } z \text{ in}$
 $L(\text{bind } x'(\text{sub } x y z'))$
 $| A(z, z') \rightarrow A(\text{sub } x y z, \text{sub } x y z')$

 λ -terms t map onto closed values $\lceil t \rceil : \tau$

and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, t'[t/a], is given by sub $a \ulcorner t \urcorner \ulcorner t' \urcorner$, where

sub
$$x y y' = \text{match } y'$$
 with
 $\forall x' \rightarrow \text{if } x = x' \text{ then } y \text{ else } y'$
 $| L z \rightarrow \text{let}(x', z') = \text{unbind } z \text{ in}$
 $L(\text{bind } x'(\text{sub } x y z'))$
 $| A(z, z') \rightarrow A(\text{sub } x y z, \text{sub } x y z')$

E.g. corresponding to $(\lambda b. a)[b/a] = \lambda c. b$, have: $\langle [a,b], \operatorname{sub} a(\forall b)(L(\langle b \rangle (\forall a))) \rangle \longrightarrow^* \langle [a,b,c], L(\langle c \rangle (\forall b)) \rangle$

 λ -terms t map onto closed values $\lceil t \rceil$: τ Want:

Correctness of Representation: two λ -terms are α -equivalent, $t_1 =_{\alpha} t_2$, iff $\lceil t_1 \rceil$ and $\lceil t_2 \rceil$ are contextually equivalent closed values of type τ .

 λ -terms t map onto closed values $\lceil t \rceil : \tau$ Want:

Correctness of Representation: two λ -terms are α -equivalent, $t_1 =_{\alpha} t_2$, iff $\lceil t_1 \rceil$ and $\lceil t_2 \rceil$ are contextually equivalent closed values of type τ .

i.e. can be used interchangeably in any well-typed FreshML program without affecting the observable results of program execution

 λ -terms t map onto closed values $\lceil t \rceil : \tau$ Want:

Correctness of Representation: two λ -terms are α -equivalent, $t_1 =_{\alpha} t_2$, iff $\lceil t_1 \rceil$ and $\lceil t_2 \rceil$ are contextually equivalent closed values of type τ .

Proved for FreshML in Shinwell's thesis (with a denotational semantics based on Gabbay-AMP "FM-sets").

Algorithms involving atoms

FreshML only has $(=): atm \rightarrow atm \rightarrow bool.$

Do other relations on atoms mess up the Correctness Property?

E.g. is it possible to have linearly ordered atoms, (<): $atm \rightarrow atm \rightarrow bool$?

Apparent problem: proof of Correctness relies on equivariance = invariance under atom-permutations.

Algorithms involving atoms

FreshML only has $(=): atm \rightarrow atm \rightarrow bool.$

Do other relations on atoms mess up the Correctness Property?

E.g. is it possible to have linearly ordered atoms, (<): $atm \rightarrow atm \rightarrow bool$?

Apparent problem: proof of Correctness relies on equivariance = invariance under atom-permutations.

 $\begin{bmatrix} a = a' \text{ is equivariant,} \\ \text{but } a < a' \text{ appears not to be} \end{bmatrix}$

Algorithms involving atoms

FreshML only has $(=): atm \rightarrow atm \rightarrow bool.$

Do other relations on atoms mess up the Correctness Property?

E.g. is it possible to have linearly ordered atoms, (<): $atm \rightarrow atm \rightarrow bool$?

Apparent problem: proof of Correctness relies on equivariance = invariance under atom-permutations.

Solution: take into account the current state of dynamically created atoms.

Observations on atoms

Extend FreshML with primitive functions

obs: atm $* \cdots * atm \rightarrow int$

with *state-dependent* dynamics

 $\langle \vec{a}, \texttt{obs}(a_1, \ldots, a_k) \rangle \longrightarrow \langle \vec{a}, \llbracket \texttt{obs} \rrbracket_{\vec{a}}(a_1, \ldots, a_k) \rangle$

Observations on atoms

Extend FreshML with primitive functions

obs: atm $* \cdots * atm \rightarrow int$

with state-dependent dynamics

$$\langle \vec{a}, \text{obs}(a_1, \dots, a_k) \rangle \longrightarrow \langle \vec{a}, \llbracket \text{obs} \rrbracket_{\vec{a}}(a_1, \dots, a_k) \rangle$$
integer-valued function of \vec{a} and $a_1, \dots, a_k \in \vec{a}$
that is equivariant.
E.g. $\llbracket \text{obs} \rrbracket_{[a,b,c]}(a,c) = \llbracket \text{obs} \rrbracket_{[b,c,a]}(b,a)$

(We insist on equivariant functions in order to abstract away from concrete implementations of generativity.) Examples of observations on atoms

Equality $[eq]_{\vec{a}}(a, a') \triangleq \begin{cases} 1 & \text{if } a = a', \\ 0 & \text{otherwise.} \end{cases}$ Linear order $[lt]_{\vec{a}}(a, a') \triangleq$ $\begin{cases} 1 & \text{if } a \text{ occurs to the left of } a' \text{ in the list } \vec{a}, \\ 0 & \text{otherwise.} \end{cases}$ Ordinal $[ord]_{\vec{a}}(a) \triangleq n$, if *a* is the *n*th element of the

Non-example: $[bad]_{\vec{a}}(a) = \alpha^{-1}(a)$, where $\alpha : \mathbb{N} \cong \mathbb{A}$ is some fixed enumeration of the set of atoms.

list **a**.

Main result of the paper

```
Theorem. The Correctness of Representation property
```

```
for all \lambda-terms t_1, t_2, it is the case that t_1 =_{\alpha} t_2 iff \lceil t_1 \rceil and \lceil t_2 \rceil are contextually equivalent
```

holds no matter what (equivariant) observations on atoms we add to FreshML.

[Stated for λ -terms, but true for terms over any nominal signature.]

Ingredients of the proof

- Direct from operational semantics, rather than via denotational model.
- Uses equivariant versions of standard techniques (such as Howe's method for proving congruence of Mason-Talcott style ciu-equivalence).

Ingredients of the proof

 "Extensionality" for contextual equivalence at atom-binding types τ bnd, mirroring key property of =_α:

$$\frac{t\{a''/a\} =_{\alpha} t'\{a''/a'\}}{\lambda a.t =_{\alpha} \lambda a'.t'} a'' \notin fv(a, t, a', t')$$

Bottom-up direction fails for higher types τ unless observations on atoms are insensitive to adding extra atoms at start. (1t OK, ord not OK.)

Conclusions, further directions

The main result is only about data correctness. What about program correctness?

E.g. want

sub
$$x y y' =$$
match y' with
 $\forall x' \rightarrow \text{if } x = x' \text{ then } y \text{ else } y'$
 $| L(\langle x' \rangle z) \rightarrow L(\text{bind } x'(\text{sub } x y z))$
 $| A(z, z') \rightarrow A(\text{sub } x y z, \text{sub } x y z')$

to satisfy that $\sup a \ulcorner t \urcorner \ulcorner t' \urcorner$ and $\ulcorner t' [t/a] \urcorner$ are always contextually equivalent. Some obs on atoms will break this.

Conclusions, further directions

- The main result is only about data correctness. What about program correctness?
- Instead of extra observations on atoms, add abstract types of finite maps on atoms.
- What about pure FreshML (Pottier, 2006)?