Generative Unbinding of Names

Andrew Pitts and
University of Cambridge

Mark Shinwell
CodeSourcery, Ltd

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model
of names, binding and
freshness - based on
properties that are
invariant under
permuting names

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model
of names, binding and
freshness - based on
properties that are
invariant under
permuting names

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model
of names, binding and
freshness - based on
properties that are invariant under
permuting names
\Longrightarrow FreshML $=M L+$
features for manipulating syntax mod α-equiv.

Implementations: Shinwell's
Fresh patch for Ocaml, Pottier's C $\alpha \mathrm{ml}$ tool, Cheney's FreshLib library for ghc.

The FreshML project

2001-2005: Jamie Gabbay + AMP + Mark Shinwell + Christian Urban

"nominal sets" model
of names, binding and
freshness - based on properties that are invariant under permuting names
\Longrightarrow FreshML $=M L+$
features for manipulating syntax mod α-equiv.

Implementations: Shinwell's
Fresh patch for Ocaml,
Pottier's C $\alpha \mathrm{ml}$ tool, Cheney's
FreshLib library for ghc.
all use generative unbinding of names

FreshML sig for name-binding

type atm
type α bnd
val fresh: unit \rightarrow atm
val bind: $\operatorname{atm} * \alpha \rightarrow \alpha$ bnd
val unbind: α bnd \rightarrow atm $* \alpha$
val $(=):$ atm \longrightarrow atm \longrightarrow bool

FreshML sig for name-binding

> type atm
> type α bnd
> val fresh : unit \rightarrow atm
> val bind: atm $* \alpha \rightarrow \alpha$ bnd
> val unbind $: \alpha$ bnd \rightarrow atm $* \alpha$
> val $(=):$ atm \longrightarrow atm \longrightarrow bool

Closed values \boldsymbol{a} : atm come from a fixed, infinite set of "atoms".

FreshML sig for name-binding

$$
\begin{array}{ll}
\text { type } & \text { atm } \\
\text { type } \alpha \text { bnd } \\
\text { val } & \text { fresh }: \text { unit } \rightarrow \text { atm } \\
\text { val bind }: \text { atm } * \alpha \rightarrow \alpha \text { bnd } \\
\text { val unbind }: \alpha \text { bnd } \rightarrow \text { atm } * \alpha \\
\text { val } & (=): \text { atm } \rightarrow \text { atm } \longrightarrow \text { bool }
\end{array}
$$

fresh() creates a fresh atom:
$\langle\vec{a}, \mathrm{fresh}()\rangle \longrightarrow\left\langle a^{\prime}:: \vec{a}, a^{\prime}\right\rangle$ where $a^{\prime} \notin \vec{a}$

FreshML sig for name-binding

type	atm
type α bnd	
val	fresh $:$ unit \rightarrow atm
val	bind $:$ atm $* \alpha \rightarrow \alpha$ bnd
val unbind $: \alpha$ bnd \rightarrow atm $* \alpha$	
val	$(=):$ atm \rightarrow atm \longrightarrow bool

fresh() creates a fresh atom:
$\langle\vec{a}, \mathrm{fresh}()\rangle \longrightarrow\left\langle a^{\prime}:: \vec{a}, a^{\prime}\right\rangle$ where $a^{\prime} \notin \vec{a}$
current state $=$ finite list of distinct atoms created so far

FreshML sig for name-binding

$$
\begin{aligned}
& \text { type atm } \\
& \text { type } \alpha \text { bnd } \\
& \text { val fresh: unit } \rightarrow \text { atm } \\
& \text { val bind: atm } * \alpha \longrightarrow \alpha \text { bnd } \\
& \text { val unbind }: \alpha \text { bnd } \rightarrow \text { atm } * \alpha \\
& \text { val }(=): \text { atm } \longrightarrow \text { atm } \longrightarrow \text { bool }
\end{aligned}
$$

Closed values «a\|v of type $\boldsymbol{\tau}$ bnd are represented by pairs consisting of an atom \boldsymbol{a} and a closed value $\boldsymbol{v}: \boldsymbol{\tau}$, created by evaluating bind (a, v).

FreshML sig for name-binding

type	atm
type α bnd	
val	fresh : unit \rightarrow atm
val	bind $:$ atm $* \alpha \rightarrow \alpha$ bnd
val unbind $: \alpha$ bnd \rightarrow atm $* \alpha$	
val	$(=):$ atm \rightarrow atm \longrightarrow bool

unbind carries out generative unbinding:
$\langle\vec{a}$, unbind $(« a » v)\rangle \longrightarrow\left\langle a^{\prime}:: \vec{a},\left(a^{\prime}, v\left\{a^{\prime} / a\right\}\right)\right\rangle$
where $a^{\prime} \notin \vec{a}$.

FreshML sig for name-binding

type	atm
type α bnd	
val	fresh $:$ unit \rightarrow atm
val	bind $:$ atm $* \alpha \rightarrow \alpha$ bnd
val unbind $: \alpha$ bnd \rightarrow atm $* \alpha$	
val	$(=):$ atm \rightarrow atm \longrightarrow bool

unbind carries out generative unbinding:
$\langle\vec{a}$, unbind $(« a » v)\rangle \longrightarrow\left\langle a^{\prime}:: \vec{a},\left(a^{\prime}, v\left\{a^{\prime} / a\right\}\right)\right\rangle$
where $a^{\prime} \notin \vec{a}$.
rename all occurrences of \boldsymbol{a} in \boldsymbol{v} to be \boldsymbol{a}^{\prime}

Representing object-level languages

For example

$t::=a|\lambda a . t| t t$ terms of the $\boldsymbol{\lambda}$-calculus (all terms, open or closed, with variables given by atoms)
can be represented in FreshML by
closed values of the recursive data type

$$
\begin{aligned}
& \boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \\
& \quad \mathrm{~L} \text { of } \boldsymbol{\tau} \text { bnd } \\
& \text { A of } \boldsymbol{\tau} * \boldsymbol{\tau}
\end{aligned}
$$

(More generally, the representation works the same way for terms over any nominal signature [Urban-Gabbay-AMP].)

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \text { A of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner t\urcorner: \tau$

$$
\begin{aligned}
\ulcorner a\urcorner & \triangleq \mathrm{V} a \\
\ulcorner\boldsymbol{\lambda} \boldsymbol{a} . \boldsymbol{t}\urcorner & \triangleq \mathrm{L}(« a \|\ulcorner t\urcorner) \\
\left\ulcorner t_{1} t_{2}\right\urcorner & \triangleq \mathrm{A}\left(\left\ulcorner t_{1}\right\urcorner,\left\ulcorner t_{2}\right\urcorner\right)
\end{aligned}
$$

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \boldsymbol{\tau}$ and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, $t^{\prime}[t / a]$, is given by sub $\boldsymbol{a}\ulcorner\boldsymbol{t}\urcorner\ulcorner\boldsymbol{t}$ ' \urcorner, where

$$
\begin{aligned}
\text { sub } x y y^{\prime}= & \text { match } y^{\prime} \text { with } \\
& \stackrel{\mathrm{V} x^{\prime} \rightarrow \text { if } x=x^{\prime} \text { then } y \text { else } y^{\prime}}{ } \\
& \mid \mathrm{L}\left(« x^{\prime} » z\right) \rightarrow \mathrm{L}\left(\text { bind } x^{\prime}(\operatorname{sub} x y z)\right) \\
& \mathrm{A}\left(z, z^{\prime}\right) \rightarrow \mathrm{A}\left(\operatorname{sub} x y z, \operatorname{sub} x y z^{\prime}\right)
\end{aligned}
$$

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \boldsymbol{\tau}$ and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, $t^{\prime}[t / a]$, is given by sub $\boldsymbol{a}\ulcorner\boldsymbol{t}\urcorner\ulcorner\boldsymbol{t}$ ' \urcorner, where

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \boldsymbol{\tau}$ and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, $t^{\prime}[t / a]$, is given by sub $\boldsymbol{a}\ulcorner\boldsymbol{t}\urcorner\ulcorner\boldsymbol{t}$ ' \urcorner, where

$$
\begin{aligned}
\text { sub } x y y^{\prime}= & \text { match } y^{\prime} \text { with } \\
& \mathrm{V} x^{\prime} \rightarrow \text { if } x=x^{\prime} \text { then } y \text { else } y^{\prime} \\
& \mid \mathrm{L} z \rightarrow \operatorname{let}\left(x^{\prime}, z^{\prime}\right)=\text { unbind } z \text { in } \\
& \mathrm{L}\left(\operatorname{bind} x^{\prime}\left(\operatorname{sub} x y z^{\prime}\right)\right) \\
& \mid \mathrm{A}\left(z, z^{\prime}\right) \rightarrow \mathrm{A}\left(\operatorname{sub} x y z, \operatorname{sub} x y z^{\prime}\right)
\end{aligned}
$$

$\boldsymbol{\tau}=\mathrm{V}$ of $\mathrm{atm} \mid \mathrm{L}$ of $\boldsymbol{\tau}$ bnd $\mid \mathrm{A}$ of $\boldsymbol{\tau} * \boldsymbol{\tau}$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \boldsymbol{\tau}$ and syntax-manipulating functions can be coded nicely. E.g. capture-avoiding substitution, $t^{\prime}[t / a]$, is given by sub $\boldsymbol{a}\ulcorner\boldsymbol{t}\urcorner\left\ulcorner\boldsymbol{t}^{\prime}\right\urcorner$, where

$$
\begin{aligned}
\text { sub } x y y^{\prime}= & \text { match } y^{\prime} \text { with } \\
& \mathrm{V} x^{\prime} \rightarrow \text { if } x=x^{\prime} \text { then } y \text { else } y^{\prime} \\
& \mid \mathrm{L} z \rightarrow \operatorname{let}\left(x^{\prime}, z^{\prime}\right)=\text { unbind } z \text { in } \\
& \mathrm{L}\left(\text { bind } x^{\prime}\left(\operatorname{sub} x y z^{\prime}\right)\right) \\
& \mid \mathrm{A}\left(z, z^{\prime}\right) \rightarrow \mathrm{A}\left(\operatorname{sub} x y z, \operatorname{sub} x y z^{\prime}\right)
\end{aligned}
$$

E.g. corresponding to $(\lambda b . a)[b / a]=\lambda c . b$, have: $\langle[\boldsymbol{a}, \boldsymbol{b}], \operatorname{sub} \boldsymbol{a}(\mathrm{V} \boldsymbol{b})(\mathrm{L}(« \boldsymbol{b} »(\mathrm{~V} \boldsymbol{a})))\rangle \longrightarrow^{*}\langle[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}], \mathrm{L}(« \boldsymbol{c} »(\mathrm{~V} \boldsymbol{b}))\rangle$

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \tau$
Want:

Correctness of Representation: two $\boldsymbol{\lambda}$-terms are α-equivalent, $t_{1}={ }_{\alpha} t_{2}$, iff $\left\ulcorner t_{1}\right\urcorner$ and $\left\ulcorner t_{2}\right\urcorner$ are contextually equivalent closed values of type $\boldsymbol{\tau}$.

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner\boldsymbol{t}\urcorner: \tau$ Want:

Correctness of Representation: two $\boldsymbol{\lambda}$-terms are α-equivalent, $t_{1}={ }_{\alpha} t_{2}$, iff $\left\ulcorner t_{1}\right\urcorner$ and $\left\ulcorner t_{2}\right\urcorner$ are contextually equivalent closed values of type $\boldsymbol{\tau}$.
i.e. can be used interchangeably in any well-typed FreshML program without affecting the observable results of program execution

$$
\boldsymbol{\tau}=\mathrm{V} \text { of } \mathrm{atm} \mid \mathrm{L} \text { of } \boldsymbol{\tau} \text { bnd } \mid \mathrm{A} \text { of } \boldsymbol{\tau} * \boldsymbol{\tau}
$$

λ-terms t map onto closed values $\ulcorner t\urcorner: \tau$
Want:

Correctness of Representation: two $\boldsymbol{\lambda}$-terms are α-equivalent, $t_{1}={ }_{\alpha} t_{2}$, iff $\left\ulcorner t_{1}\right\urcorner$ and $\left\ulcorner t_{2}\right\urcorner$ are contextually equivalent closed values of type τ.

Proved for FreshML in Shinwell's thesis
(with a denotational semantics based on Gabbay-AMP
"FM-sets").

Algorithms involving atoms

FreshML only has $(=):$ atm \longrightarrow atm \longrightarrow bool.
Do other relations on atoms mess up the Correctness Property?
E.g. is it possible to have linearly ordered atoms,
$(<):$ atm \longrightarrow atm \longrightarrow bool?
Apparent problem: proof of Correctness relies on equivariance $=$ invariance under atom-permutations.

Algorithms involving atoms

FreshML only has $(=):$ atm \longrightarrow atm \longrightarrow bool.
Do other relations on atoms mess up the Correctness Property?
E.g. is it possible to have linearly ordered atoms, $(<):$ atm \longrightarrow atm \longrightarrow bool?

Apparent problem: proof of Correctness relies on equivariance $=$ invariance under atom-permutations.

Algorithms involving atoms

FreshML only has $(=):$ atm \longrightarrow atm \longrightarrow bool.
Do other relations on atoms mess up the Correctness Property?
E.g. is it possible to have linearly ordered atoms, $(<):$ atm \longrightarrow atm \longrightarrow bool?

Apparent problem: proof of Correctness relies on equivariance $=$ invariance under atom-permutations.

Solution: take into account the current state of dynamically created atoms.

Observations on atoms

Extend FreshML with primitive functions

obs $: \operatorname{atm} * \cdots * \operatorname{atm} \rightarrow$ int
with state-dependent dynamics

$$
\left\langle\vec{a}, \circ \mathrm{obs}\left(a_{1}, \ldots, a_{k}\right)\right\rangle \longrightarrow\left\langle\vec{a}, \llbracket \mathrm{obs} \rrbracket_{\vec{a}}\left(a_{1}, \ldots, a_{k}\right)\right\rangle
$$

Observations on atoms

Extend FreshML with primitive functions
obs $: \operatorname{atm} * \cdots * \operatorname{atm} \rightarrow$ int
with state-dependent dynamics

$$
\begin{aligned}
\langle\vec{a}, \text { obs } & \left.\left(a_{1}, \ldots, a_{k}\right)\right\rangle \longrightarrow\left\langle\vec{a}, \llbracket \text { obs } \rrbracket_{\vec{a}}\left(a_{1}, \ldots, a_{k}\right)\right\rangle \\
& \begin{array}{l}
\text { integer-valued function of } \vec{a} \text { and } a_{1}, \ldots, a_{k} \in \vec{a} \\
\text { that is equivariant. } \\
\text { E.g. } \llbracket \text { obs } \rrbracket_{[a, b, c]}(a, c)=\llbracket \text { obs } \rrbracket_{[b, c, a]}(b, a)
\end{array}
\end{aligned}
$$

(We insist on equivariant functions in order to abstract away from concrete implementations of generativity.)

Examples of observations on atoms

Equality \llbracket eq $\rrbracket_{\vec{a}}\left(a, a^{\prime}\right) \triangleq \begin{cases}1 & \text { if } a=a^{\prime}, \\ 0 & \text { otherwise. }\end{cases}$
Linear order $\llbracket 1 \mathrm{t} \rrbracket_{\vec{a}}\left(a, a^{\prime}\right) \triangleq$
$\begin{cases}\mathbf{1} & \text { if } a \text { occurs to the left of } a^{\prime} \text { in the list } \vec{a} \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Ordinal $\llbracket \operatorname{ord} \rrbracket_{\vec{a}}(a) \triangleq n$, if a is the nth element of the list \vec{a}.

Non-example: $\llbracket \operatorname{bad} \rrbracket \vec{a}(a)=\alpha^{-1}(a)$, where $\alpha: \mathbb{N} \cong \mathbb{A}$ is some fixed enumeration of the set of atoms.

Main result of the paper

Theorem. The Correctness of Representation property
for all λ-terms t_{1}, t_{2}, it is the case that $t_{1}={ }_{\alpha} t_{2}$ iff $\left\ulcorner t_{1}\right\urcorner$ and $\left\ulcorner t_{2}\right\urcorner$ are contextually equivalent
holds no matter what (equivariant) observations on atoms we add to FreshML.
[Stated for λ-terms, but true for terms over any nominal signature.]

Ingredients of the proof

- Direct from operational semantics, rather than via denotational model.
- Uses equivariant versions of standard techniques (such as Howe's method for proving congruence of Mason-Talcott style ciu-equivalence).

Ingredients of the proof

- "Extensionality" for contextual equivalence at atom-binding types τ bnd, mirroring key property of $={ }_{\alpha}$:

$$
\frac{t\left\{a^{\prime \prime} / a\right\}={ }_{\alpha} t^{\prime}\left\{a^{\prime \prime} / a^{\prime}\right\}}{\lambda a . t={ }_{\alpha} \lambda a^{\prime} \cdot t^{\prime}} a^{\prime \prime} \notin f v\left(a, t, a^{\prime}, t^{\prime}\right)
$$

Bottom-up direction fails for higher types $\boldsymbol{\tau}$ unless observations on atoms are insensitive to adding extra atoms at start. (lt OK, ord not OK.)

Conclusions, further directions

- The main result is only about data correctness. What about program correctness?
E.g. want

$$
\begin{aligned}
\operatorname{sub} x y y^{\prime}= & \operatorname{match} y^{\prime} \text { with } \\
& \vee x^{\prime} \rightarrow \text { if } x=x^{\prime} \text { then } y \text { else } y^{\prime} \\
& \mid \mathrm{L}\left(« x^{\prime} » z\right) \rightarrow \mathrm{L}\left(\text { bind } x^{\prime}(\text { sub } x y z)\right) \\
& \mid \mathrm{A}\left(z, z^{\prime}\right) \rightarrow \mathrm{A}\left(\operatorname{sub} x y z, \operatorname{sub} x y z^{\prime}\right)
\end{aligned}
$$

to satisfy that sub $a\ulcorner t\urcorner\left\ulcorner t^{\prime}\right\urcorner$ and $\left\ulcorner t^{\prime}[t / a]\right\urcorner$ are always contextually equivalent. Some obs on atoms will break this.

Conclusions, further directions

- The main result is only about data correctness. What about program correctness?
- Instead of extra observations on atoms, add abstract types of finite maps on atoms.
- What about pure FreshML (Pottier, 2006)?

