
Generative Names
and Dependent Types

Andrew Pitts

Computer Laboratory

HOPE 2012 1/11

Generative Names
and Dependent Types:

from FreshML to ‘FreshAgda’

Andrew Pitts

Computer Laboratory

HOPE 2012 1/11

What did FreshML give the world?

Shinwell+AMP+Gabbay
ICFP 2003

HOPE 2012 2/11

What did FreshML give the world?

HOPE

HOPE 2012 2/11

What did FreshML give the world?

HOPE
higher-order functional programming

+
generative names that are permutable

νa. e swap a , b in e

HOPE 2012 2/11

What did FreshML give the world?

LOVE

HOPE 2012 3/11

What did FreshML give the world?

LOVE
lots of very elegant

binder-manipulating algorithms
expressed in a familiar ‘nameful’ way

HOPE 2012 3/11

Inductive types with α-abstraction

names Var --a type of permutable, generative names

data Term where --inductive type of λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction term

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x1) = if x = x1 then t else V x1

(t / x)(A(t1 , t2)) = A((t / x)t1 , (t / x)t2)

(t / x)(L(x1 . t1)) = L(x1 . (t / x)t1)

Can freely mix _ . _ and _ -> _ to get more subtle
examples (e.g. for NbE).

HOPE 2012 4/11

Inductive types with α-abstraction

Underlying calculus:

introduction: αa. e (α-abstraction)

elimination: e @ e
′ (concretion)

reduction: (αa. e) @ e′ → νa. (swap a , e′ in e) a # e′

HOPE 2012 5/11

What did FreshML give the world?

HOPE
higher-order functional programming

+
generative names that are permutable

νa. e swap a , b in e

ML & Haskell already have this, but not (??) this

& no future in re-engineering general-purpose HOFLs (Shinwell’s
Fresh OCaml is no longer supported)—be domain-specific instead

HOPE 2012 6/11

Aim

Constructive Type Theory + generative, permutable
names: combine (total) FreshML with Agda/Coq.

Application domain: formal proofs about operational
semantics.

HOPE 2012 7/11

Aim

Constructive Type Theory + generative, permutable
names: combine (total) FreshML with Agda/Coq.

Application domain: formal proofs about operational
semantics.

Design criteria:

◮ [ease-of-use] no monad syntax

‘do’ notation is unnecessarily
sequential for generative names

HOPE 2012 7/11

Aim

Constructive Type Theory + generative, permutable
names: combine (total) FreshML with Agda/Coq.

Application domain: formal proofs about operational
semantics.

Design criteria:

◮ [ease-of-use] no monad syntax

◮ [ease-of-use] no bunched contexts, just ν

cf. previous work on
nominal type theory

by Schöpp-Stark and Cheney

HOPE 2012 7/11

Aim

Constructive Type Theory + generative, permutable
names: combine (total) FreshML with Agda/Coq.

Application domain: formal proofs about operational
semantics.

Design criteria:

◮ [ease-of-use] no monad syntax

◮ [ease-of-use] no bunched contexts, just ν

◮ [technical] Curry-Howard for nominal logic’s
freshness quantifier: proofs of α-structural induction
= α-structurally recursive programs

cf. JACM 53(2006)459–506

HOPE 2012 7/11

Dependently typed α-abstraction

N-formation:
Γ, a : Name ⊢ A : Set

Γ ⊢ Na. A : Set

◮ For simplicity, assume just one type Name of names and write
Na. A instead of Na : Name. A.

◮ When a does not occur in A, then Na. A should be like
FreshML’s type Name . A of α-abstractions

(cf. (x : A)�B versus A�B).

HOPE 2012 8/11

Dependently typed α-abstraction

N-formation:
Γ, a : Name ⊢ A : Set

Γ ⊢ Na. A : Set

N-introduction:
Γ, a : Name ⊢ e : A

Γ ⊢ αa. e : Na. A

N-elimination:
Γ ⊢ e : Na. A Γ ⊢ e

′ : Name

Γ ⊢ e @ e
′ : νa. (swap a , e′ in A)

HOPE 2012 8/11

Dependently typed α-abstraction

N-formation:
Γ, a : Name ⊢ A : Set

Γ ⊢ Na. A : Set

N-introduction:
Γ, a : Name ⊢ e : A

Γ ⊢ αa. e : Na. A

N-elimination:
Γ ⊢ e : Na. A Γ ⊢ e

′ : Name

Γ ⊢ e @ e
′ : νa. (swap a , e′ in A)

permutative, not substitutive, dependency types on names

HOPE 2012 8/11

Dependently typed α-abstraction

N-formation:
Γ, a : Name ⊢ A : Set

Γ ⊢ Na. A : Set

N-introduction:
Γ, a : Name ⊢ e : A

Γ ⊢ αa. e : Na. A

N-elimination:
Γ ⊢ e : Na. A Γ ⊢ e

′ : Name

Γ ⊢ e @ e
′ : νa. (swap a , e′ in A)

generative names in types

HOPE 2012 8/11

Dependently typed α-abstraction

N-formation:
Γ, a : Name ⊢ A : Set

Γ ⊢ Na. A : Set

N-introduction:
Γ, a : Name ⊢ e : A

Γ ⊢ αa. e : Na. A

N-elimination:
Γ ⊢ e : Na. A Γ ⊢ e

′ : Name

Γ ⊢ e @ e
′ : νa. (swap a , e′ in A)

N-equality:
Γ, a : Name ⊢ e : A Γ ⊢ e

′ : Name

Γ ⊢ (αa. e) @ e
′ = νa. (swap a , e

′ in e)
: νa. (swap a , e

′ in A)

what does ‘=’ mean for expressions with generative names?

HOPE 2012 8/11

Decidable equality for
generative expressions

νa. e = e (a # e)
νa. νb. e = νb. νa. e

E[νa. e] = νa. E[e] (a # E)
(λx�e) v = e[v/x] [Plotkin’s βv]

...

evaluation contexts: E ::= • | E e | v E | νa. E | · · ·
expressions: e ::= x | a | λx�e | e e | νa. e | · · ·
canonical forms: v ::= a | λx�e | u | · · ·
neutral forms: u ::= x | u v | · · ·

HOPE 2012 9/11

Decidable equality for
generative expressions

νa. e = e (a # e)
νa. νb. e = νb. νa. e

E[νa. e] = νa. E[e] (a # E)
(λx�e) v = e[v/x] [Plotkin’s βv]

...

evaluation contexts: E ::= • | E e | v E | νa. E | · · ·
expressions: e ::= x | a | λx�e | e e | νa. e | · · ·
canonical forms: v ::= a | λx�e | u | · · ·
neutral forms: u ::= x | u v | · · ·

References? (N.B. open expressions; and definition of E/v/u in presence
of Π-, Σ- & N-types is subtle.)

HOPE 2012 9/11

Generative names creep into
the pure CTT fragment

Conventional Π-elimination:

Γ ⊢ e1 : (x : A)�B

Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B[e1/x]

Nu Π-elimination:

Γ ⊢ e1 : (x : A)�B

Γ ⊢ e2 = ν~a. v : A

Γ ⊢ e1 e2 : ν~a. B[v/x]

HOPE 2012 10/11

Done:

◮ Declarative type system with Σ/Π/Set + ν/swap/ N.

Semi-done:

◮ Model using nominal sets (specifically, a version of Moggi’s
dynamic allocation monad on the universe of ‘FM-sets’ of
Gabbay+AMP).

Not done:

◮ Decidability of type-checking (via algorithmic type system
equivalent to the declarative one).

◮ Inductive types + dependently typed pattern-matching.

◮ Implementation.
HOPE 2012 11/11

