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First-class functions.
Types: higher-order, polymorphic, recursive.

+ local mutable state, modules, objects,
concurrency, proof search, . . .
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.
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Are these OCaml expressions contextually equivalent?

z : int ` H : int → int z : int ` K : int → int

H , K ,

let a = ref z in let b = ref(−z) in

fun x → a := !a + x ;

!a
fun y → b := !b − y ;

−(!b)
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an OCaml syntax tree with
some subtrees within the

scope of a binding for z,
replaced by the placeholder −
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Are these OCaml expressions contextually equivalent?

z : int ` H : int → int z : int ` K : int → int

H , K ,

let a = ref z in let b = ref(−z) in

fun x → a := !a + x ;

!a
fun y → b := !b − y ;

−(!b)

Yes, z : int ` H ∼=ctx K : int → int, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s, C[H]〉 →∗ 〈s′, true〉
⇔ ∃s′′. 〈s, C[K]〉 →∗ 〈s′′, true〉

OCaml structural operational semantics (mythical!):
transition relation between 〈state, expression〉-pairs.
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Contextual equivalences

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Different choices lead to possibly different
notions of contextual equivalence.
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

Gottfried Wilhelm Leibniz (1646–1716):
two mathematical objects are equal
if there is no test to distinguish them.

first known CS occurrence
of this notion in Jim Morris’
PhD thesis, Lambda

Calculus Models of

Programming Languages

(MIT, 1969)
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Contextual equivalence

Two phrases of a programming language are
(“Morris style”) contextually equivalent (∼=ctx) if
occurrences of the first phrase in any program can be
replaced by the second phrase without affecting the
observable results of executing the program.

We assume the programming language comes with a structural
operational semantics (SOS) as part of its definition!

Contextual equivalence is part of operationally-based
reasoning about programming languages. . .
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Wise words

“But once feasibility has been
checked by an operational model,
operational reasoning should be
immediately abandoned; it is
essential that all subsequent
reasoning, calculation and design
should be conducted in each case
at the highest possible level of
abstraction.”

Tony Hoare, Algebra and models. In Computing Tomorrow. Future

research directions in computer science, Chapter 9, pp 158–187.
(Cambridge University Press, 1996).
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abstraction.”

Tony Hoare, Algebra and models. In Computing Tomorrow. Future

research directions in computer science, Chapter 9, pp 158–187.
(Cambridge University Press, 1996).

IGNORE!
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Why contextual equivalence matters

I Philosophically important:
operational behaviour is a characteristic feature of
programming language theory that distinguishes it from
related areas of logic.
(Proof Theory, Model Theory, Recursion Theory)

I Pragmatically important:
Contextual equivalence is used in verification of many
programming language correctness properties.
(E.g. compiler optimisations, correctness of ADTs, information

hiding and security properties,. . . )
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Why contextual equivalence matters

What is special about HOT languages?

I type-directed “laws” for contextual equivalence
:-)

I higher-order types ⇒ programs can make use of
constituent phrases in dynamically complicated ways
:-(
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Why contextual equivalence matters

What is special about HOT languages?

I type-directed “laws” for contextual equivalence
:-)

I higher-order types ⇒ programs can make use of
constituent phrases in dynamically complicated ways
:-(

e.g. Extensionality property for function types. . .
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Are these OCaml expressions contextually equivalent?

F : unit ref → unit ref G : unit ref → unit ref

F , G ,

let a = ref()in let c = ref()in

let b = ref()in let d = ref()in

fun x → if x == a then b
else a

fun y → if y == d then d
else c

x

public

a

private

b y

public

c

private

d
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Are these OCaml expressions contextually equivalent?

F : unit ref → unit ref G : unit ref → unit ref

F , G ,

let a = ref()in let c = ref()in

let b = ref()in let d = ref()in

fun x → if x == a then b
else a

fun y → if y == d then d
else c

No

For T , fun f → let x = ref()in f ( f x) == f x,

T F has value false, whereas T G has value true,

so F 6∼=ctx G.
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Are these OCaml expressions contextually equivalent?

z : int ` H : int → int z : int ` K : int → int

H , K ,

let a = ref z in let b = ref(−z) in

fun x → a := !a + x ;

!a
fun y → b := !b − y ;

−(!b)

Yes, z : int ` H ∼=ctx K : int → int, in the sense that

for all states s and all well-typed, closing contexts C[−],
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⇔ ∃s′′. 〈s, C[K]〉 →∗ 〈s′′, true〉

How does one prove such statements?
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−(!b)

Yes, z : int ` H ∼=ctx K : int → int, in the sense that

for all states s and all well-typed, closing contexts C[−],

∃s′. 〈s, C[H]〉 →∗ 〈s′, true〉
⇔ ∃s′′. 〈s, C[K]〉 →∗ 〈s′′, true〉

How does one prove such statements?

these cause difficulty
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Formalizing ∼=ctx without contexts
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Contexts are too concrete

The semantics of programs only depends on their
abstract syntax (parse trees)





let a = ref 0 in

fun x →
a := !a + x ;

!a



 =





let

a = ref 0

in

fun x →
a := !a + x ;

!a




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Contexts are too concrete

The semantics of programs only depends on their
abstract syntax (parse trees) modulo renaming of bound
identifiers (α-equivalence, =α).





let a = ref 0 in

fun x →
a := !a + x ;

!a



 =α





let

b = ref 0

in

fun y →
b := !b + y ;

!b





E.g. definition & properties of OCaml typing relation
Γ ` M : τ are simpler if we identify M up to =α.
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Contexts are too concrete

The semantics of programs only depends on their
abstract syntax (parse trees) modulo renaming of bound
identifiers (α-equivalence, =α).

So it pays to formulate program equivalences using
mathematical notions that respect α-equivalence.

But filling holes in contexts does not respect =α:
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Contexts are too concrete

The semantics of programs only depends on their
abstract syntax (parse trees) modulo renaming of bound
identifiers (α-equivalence, =α).

So it pays to formulate program equivalences using
mathematical notions that respect α-equivalence.

But filling holes in contexts does not respect =α:

fun x → (−) =α fun y → (−)
and x =α x
but fun x → x 6=α fun y → x
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Expression relations

Language’s typing relation

Γ ` M : τtyping environment

expression

type

dictates the form of relations like contextual equivalence:
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Expression relations

Language’s typing relation

Γ ` M : τ

dictates the form of relations like contextual equivalence:

Define an expression relation to be any set E of tuples
(Γ, M, M′, τ) satisfying:

(Γ ` M E M′ : τ) ⇒ (Γ ` M : τ) & (Γ ` M′ : τ)
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Operations on expression relations

Composition E1, E2 7→ E1 ; E2:

Γ ` M E1 M′ : τ Γ ` M′ E2 M′′ : τ

Γ ` M (E1 ; E2) M′′ : τ

Reciprocation E 7→ E◦:

Γ ` M E M′ : τ

Γ ` M′ E◦ M : τ

Identity Id:

Γ ` M : τ

Γ ` M Id M : τ
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Operations on expression relations

Compatible refinement E 7→ Ê :

Γ ` M1 : τ → τ
′ M2 : τ

Γ ` M1 M2 : τ
′
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Γ ` M1 E M′
1 : τ → τ

′
Γ ` M2 E M′

2 : τ

Γ ` M1 M2 Ê M′
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Operations on expression relations

Compatible refinement E 7→ Ê :

Γ ` M1 E M′
1 : τ → τ

′
Γ ` M2 E M′

2 : τ

Γ ` M1 M2 Ê M′
1M′

2 : τ
′

Γ, x : τ ` M E M′ : τ
′

Γ ` (fun x → M) Ê (fun x → M′) : τ → τ
′

Γ ` M E M′ : τ

Γ ` ref M Ê ref M′ : τ ref

etc, etc (one rule for each typing rule)
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Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)]
∼=ctx (defined conventionally, using contexts) is the
greatest compatible & adequate expression relation.

where an expression relation E is

I compatible if Ê ⊆ E
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Contextual equiv. without contexts

Theorem [Gordon, Lassen (1998)]
∼=ctx (defined conventionally, using contexts) is the
greatest compatible & adequate expression relation.

where an expression relation E is

I compatible if Ê ⊆ E
I adequate if ∅ ` M E M′ : bool ⇒ ∀s.

(∃s′.〈s, M〉 →∗ 〈s′, true〉) ⇔
(∃s′′.〈s, M′〉 →∗ 〈s′′, true〉)

Precise definition varies according to the observational scenario.
E.g. use “bisimulation” rather than “trace” based adequacy in presence of

concurrency features.
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Contextual equiv. without contexts

Definition
∼=ctx is the union of all expression relations that are
compatible and adequate.

where an expression relation E is

I compatible if Ê ⊆ E
I adequate if ∅ ` M E M′ : bool ⇒ ∀s.

(∃s′.〈s, M〉 →∗ 〈s′, true〉) ⇔
(∃s′′.〈s, M′〉 →∗ 〈s′′, true〉)

So defined, ∼=ctx is also reflexive (Id ⊆ E), symmetric (E◦ ⊆ E)
and transitive (E ; E ⊆ E).
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Techniques
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sound complete useful general

Brute force
CIU
Domains
Games
Logical relns
Bisimulations
Program logics

sound: determines a compatible and adequate expression relation

complete: characterises ∼=ctx

useful: for proving programming “laws” & PL correctness properties

general: what PL features can be dealt with?
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sound complete useful general

Brute force + + − (+)
CIU
Domains
Games
Logical relns
Bisimulations
Program logics

Brute force: sometimes compatible closure of
{(M, M′)} is adequate, and hence M ∼=ctx M′.

(E.g. [AMP, POPL 2007].)
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains
Games
Logical relns
Bisimulations
Program logics

CIU: “Uses of Closed Instantiations” [Mason-Talcott et al].

Equates open expressions if their closures w.r.t. substitutions have
same reduction behaviour w.r.t. any frame stack.
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns
Bisimulations
Program logics

Domains: traditional denotational semantics.

Games: game semantics [Abramsky, Malacaria, Hyland, Ong,. . . ]
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations
Program logics

Logical relations: type-directed analysis of ∼=ctx. At
function types: relate functions if they send related
arguments to related results.

Initially denotational [Plotkin,. . . ], but now also operational [AMP,

Birkedal-Harper-Crary, Ahmed, Johann-Voigtlaender,. . . ].
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations + ± + +
Program logics

Bisimulations—the legacy of concurrency theory:

M1

T

∼ M2

M′
1
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Program logics

Bisimulations—the legacy of concurrency theory:

M1

T

∼ M2

T

M′
1

∼ M′
2

(and symmetrically)
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations + ± + +
Program logics

Bisimulations—the legacy of concurrency theory:

I applicative [Abramsky, Gordon, AMP]

I environmental [Pierce-Sumii-Koutavas-Wand]

I “up-to” techniques [Sangiorgi, Lassen]
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations + ± + +
Program logics + + ± −

Program logics—e.g. higher-order Hoare logic
[Berger-Honda-Yoshida]

Beyond universal identities.
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sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations + ± + +
Program logics + + ± −

Q: How do we make sense of all these techniques and
results?

17/1



sound complete useful general

Brute force + + − (+)
CIU + + − +
Domains + − ± +
Games + + ± −
Logical relns + ± + −
Bisimulations + ± + +
Program logics + + ± −

Q: How do we make sense of all these techniques and
results?

A: Category Theory can help!

For example. . .
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Example

Relational parametricity is a tool for proving contextual
equivalences between polymorphic programs:

∅ ` Λα.e1
∼=ctx Λα.e2 : ∀α.τ

if and only if

for all τ1, τ2 and all “good” relations τ1
r

↔ τ2,

e1[τ1/α] and e2[τ2/α] are related by τ[τ1/α]
τ[r/α]
↔ τ[τ2/α]

Category theory guides us to

I “free theorems” via natural transformations [Wadler];

I universal properties of recursive datatypes: initial
algebras / final coalgebras / Freyd’s free dialgebras
[Hasagawa et al].
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Wise words

“But once feasibility has been
checked by an operational model,
operational reasoning should be
immediately abandoned; it is
essential that all subsequent
reasoning, calculation and design
should be conducted in each case
at the highest possible level of
abstraction.”

Tony Hoare, Algebra and models. In Computing Tomorrow. Future

research directions in computer science, Chapter 9, pp 158–187.
(Cambridge University Press, 1996).
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Conclusions
I Operational models can support “reasoning,

calculation and design” at a high level of
abstraction—especially if we let Category Theory be
our guide.

I Calculus of expression relations provides a useful
setting for developing the properties of contextual
equivalence.
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Research opportunities

I The development of programming language theory
based on contextual equivalences lags far behind the
development of programming language design.

Type soundness results are two a penny, but correctness
properties up to ∼=ctx are scarce (because they are hard!).

E.g. FP community is enthusiastically designing languages
combining (higher rank) polymorphic types/kinds with
recursively defined functions, datatypes, local state,
subtyping,. . .
In many cases the relational parametricity properties of ∼=ctx

are unknown.

21/1



Research opportunities

I The development of programming language theory
based on contextual equivalences lags far behind the
development of programming language design.

I Operationally-based
work on programming
language theory badly
needs better tools for
computer-aided proof.
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