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Lecture 3
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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Example: normalisation by evaluation
[LN p 35]

U. Berger and H. Schwichtenberg, “An inverse of
the evaluation functional for typed λ-calculus”
(Proc. LICS 1991)
[and subsequent works by several authors].

Produces
βη-long normal forms of simply-typed λ-terms (fast!)
by:
n taking denotation of terms in standard extensional
functions model over a ground type of ASTs

n and then reifying elements of the model as ASTs in
normal form.

Use the Freshness Theorem [LN p 19] for nominal
sets to make sense of the naive definition of reifying
an extensional function into a λ-abstraction (need to
choose a fresh λ-bound variable)
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Example: normalisation by evaluation
[LN p 35]

Produces βη-long normal forms of simply-typed
λ-terms (fast!) by:
n taking denotation of terms in standard extensional
functions model over a ground type of ASTs

n and then reifying elements of the model as ASTs in
normal form.

Use the Freshness Theorem [LN p 19] for nominal
sets to make sense of the naive definition of reifying
an extensional function into a λ-abstraction (need to
choose a fresh λ-bound variable)

“The problem is the “v fresh” condition; what exactly does it mean?

Unlike such conditions as “x does not occur free in E”, it is not

even locally checkable whether a variable is fresh; freshness is a

global property, defined with respect to a term that may not even

be fully constructed yet.” [8, p 157]
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Simply-typed λ-calculus
[LN p 35]

types τ ∈ Ty ::= ι | τ
.

→ τ

terms t ∈ Λ ::=

(

a

)τ

(a ∈ V

τ

)
|

(

t

τ
.

→τ ′

t

τ)τ ′

|

(

λa. t

τ ′

)τ
.

→τ ′

(a ∈ V

τ

)



















βη-long NFs n ∈ N ::= (λa. nτ ′

)τ
.

→τ ′

(a ∈ Vτ )
| (u)ι

neutrals u ∈ U ::= (a)τ (a ∈ Vτ )
| (uτ

.

→τ ′

nτ)τ ′

N.B. can (and will) regard N and U as subsets of Λ.
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(By gad! they’re GADTs)
Mutually inductively defined (nominal) sets Λτ of
simply typed ASTs of type τ ∈ Ty :

Λτ = Vτ +
∑

(τ1,τ2)| τ1=(τ2

.

→τ)

(Λτ1
× Λτ2

) +
∑

(τ1,τ2)| τ=(τ1

.

→τ2)

(Vτ1
× Λτ2

)

Mutually inductively defined (nominal) sets Nτ & Uτ ,
of βη-long NFs and neutrals of type τ ∈ Ty :

Nτ =
∑

(τ1,τ2)| τ=(τ1

.

→τ2)

(Vτ1
× Nτ2

) + Uι

Uτ = Vτ +
∑

(τ1,τ2)| τ1=(τ2

.

→τ)

(Uτ1
× Nτ2

)
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The nominal signatures
[LN p 36]

ΣSTL

atom-sorts data-sorts constructors
vτ tτ Vr τ : vτ → tτ

Apτ,τ ′ : tτ
.

→τ ′ ∗ tτ → tτ ′

(τ ∈ Ty ::= ι | τ
.

→ τ) Lmτ,τ ′ : «vτ »tτ ′ → tτ
.

→τ ′

ΣLNF

atom-sorts data-sorts constructors
vτ nτ Vτ : vτ → uτ

uτ Aτ,τ ′ : uτ
.

→τ ′ ∗ nτ → uτ ′

Lτ,τ ′ : «vτ »nτ ′ → nτ
.

→τ ′

(τ ∈ Ty ::= ι | τ
.

→ τ) I : uι → nι
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Terms / βη-long NFs / neutrals are identified up to
α-equivalence =α (definition as for any nominal
signature).

Λ(τ ) , Λτ/=α (typical element e)
N(τ ) , Nτ/=α (typical element n)
U(τ ) , Uτ/=α (typical element u)

There are injections

iτ : N(τ ) → Λ(τ )

jτ : U(τ ) → Λ(τ )

induced by the inclusions Nτ ⊆ Λτ , Uτ ⊆ Λτ .
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Normalisation
[LN p 37]

Wish to show the existence of

normalisation functions norm τ : Λ(τ ) → N(τ )

satisfying:
n e1 =βη e2 ⇒ normτ e1 = normτ e2

n normτ(iτ n) = n

n iτ(normτ e) =βη e
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Normalisation
[LN p 37]

Wish to show the existence of

normalisation functions norm τ : Λ(τ ) → N(τ )

satisfying:
n e1 =βη e2 ⇒ normτ e1 = normτ e2

n normτ(iτ n) = n

n iτ(normτ e) =βη

βη-conversion
= least congruence satisfying:

(λa. e1)e2 =βη (a := e2)e1

a # e ⇒ e =βη λa. e a

e
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Example: normalisation by evaluation
[LN p 35]

Produces βη-long normal forms of simply-typed
λ-terms (fast!) by:
n taking denotation of terms in standard extensional
functions model over a ground type of ASTs

n and then reifying elements of the model as ASTs in
normal form.
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Denotation
[LN p 39]

n Denotation of types as nominal sets:
D(ι) , N(ι)

D(τ
.

→ τ ′) , D(τ )→fsD(τ ′)

n Terms e ∈ Λ(τ ) in a given environment ρ ∈ Env

denote finitely supported elements JeKρ ∈ D(τ ),
satisfying:

JaKρ = ρ a

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jλaτ .eKρ = λd ∈ D(τ ). JeK(ρ{a 7→ d})
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Denotation
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n Denotation of types as nominal sets:
D(ι) , N(ι)

D(τ
.

→ τ ′) , D(τ )→fsD(τ ′)
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denote finitely supported elements JeKρ ∈ D(τ ),
satisfying:

JaKρ = ρ a

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jλaτ .eKρ = λd ∈ D(τ ). JeK(ρ{a 7→ d})

type-respecting,
finitely supported
function from
variables to
denotations
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Denotation
[LN p 39]

n Denotation of types as nominal sets:
D(ι) , N(ι)

D(τ
.

→ τ ′) , D(τ )→fsD(τ ′)

n Terms e ∈ Λ(τ ) in a given environment ρ ∈ Env

denote finitely supported elements JeKρ ∈ D(τ ),
satisfying:

JaKρ = ρ a

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jλaτ .eKρ = λd ∈ D(τ ). JeK(ρ{a 7→ d})

updated environment
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Denotation
[LN p 39]

n Denotation of types as nominal sets:
D(ι) , N(ι)

D(τ
.

→ τ ′) , D(τ )→fsD(τ ′)

n Terms e ∈ Λ(τ ) in a given environment ρ ∈ Env

denote finitely supported elements JeKρ ∈ D(τ ),
satisfying:

JaKρ = ρ a

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jλaτ .eKρ = λd ∈ D(τ ). JeK(ρ{a 7→ d})

Why is J−K well-defined?
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Denotation
[LN p 39]

n Denotation of types as nominal sets:
D(ι) , N(ι)

D(τ
.

→ τ ′) , D(τ )→fsD(τ ′)

n Terms e ∈ Λ(τ ) in a given environment ρ ∈ Env

denote finitely supported elements JeKρ ∈ D(τ ),
satisfying:

JaKρ = ρ a

Je1 e2Kρ = Je1Kρ (Je2Kρ)

Jλaτ .eKρ = λd ∈ D(τ ). JeK(ρ{a 7→ d})

Use α-structural recursion for ΣSTL to define J−K. . .
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First attempt
[LN p 40]

Xtτ
, Env→fsD(τ )

fVrτ
, λa ∈ Avτ

.

λρ ∈ Env . ρ a

fAp
τ,τ ′

, λ(ξ1, ξ2) ∈ Xt
τ

.
→τ ′

× Xtτ
.

λρ ∈ Env . ξ1 ρ (ξ2 ρ)

fLm
τ,τ ′

, λ(a, ξ) ∈ Avτ
× Xt

τ ′
.

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

A , ∅
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, λa ∈ Avτ

.

λρ ∈ Env . ρ a
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τ,τ ′

, λ(ξ1, ξ2) ∈ Xt
τ
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× Xtτ
.

λρ ∈ Env . ξ1 ρ (ξ2 ρ)

fLm
τ,τ ′

, λ(a, ξ) ∈ Avτ
× Xt

τ ′
.

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

A , ∅

FCB for this function is

a # λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

and is not true of every ξ ∈ (Env→fsD(τ ′)!

Have to strengthen the “recursion hypothesis” by
suitably restricting the class of functions ξ used for
the α-structural recursion.
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Strengthen the “recursion hypothesis” by restricting
ξ ∈ (Env→fsD(τ )) to functions having the following
two expected properties of J−K.

1. JeKρ only depends on the value of ρ at the free
variables of e.

2. Jπ · eKρ = JeK(ρ ◦ π)
(special case of substitution property of
denotations).
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Second attempt
[LN pp 40, 41]

Xtτ
, {ξ ∈ Env→fsD(τ ) | Φ1(ξ) & Φ2(ξ)}

fVrτ
, λa ∈ Avτ

.

λρ ∈ Env . ρ a

fAp
τ,τ ′

, λ(ξ1, ξ2) ∈ Xt
τ

.
→τ ′

× Xtτ
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λρ ∈ Env . ξ1 ρ (ξ2 ρ)

fLm
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Second attempt
[LN pp 40, 41]

Xtτ
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λρ ∈ Env . ρ a

fAp
τ,τ ′

, λ(ξ1, ξ2) ∈ Xt
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λρ ∈ Env . ξ1 ρ (ξ2 ρ)
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τ,τ ′

, λ(a, ξ) ∈ Avτ
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τ ′
.

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

A , ∅

Φ1(ξ) , (∃A ∈ Pfin(A))

(∀τ ∈ Ty , a ∈ Avτ
, d ∈ D(τ ), ρ ∈ Env)

a /∈ A ⇒ ξ(ρ{a 7→ d}) = ξ ρ

Φ2(ξ) , (∀π ∈ Perm , ρ ∈ Env)

(π · ξ) ρ = ξ(ρ ◦ π)
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Second attempt
[LN pp 40, 41]

Xtτ
, {ξ ∈ Env→fsD(τ ) | Φ1(ξ) & Φ2(ξ)}

fVrτ
, λa ∈ Avτ

.

λρ ∈ Env . ρ a

fAp
τ,τ ′

, λ(ξ1, ξ2) ∈ Xt
τ

.
→τ ′

× Xtτ
.

λρ ∈ Env . ξ1 ρ (ξ2 ρ)

fLm
τ,τ ′

, λ(a, ξ) ∈ Avτ
× Xt

τ ′
.

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

Have to prove the f(−) map into Xtτ
and prove FCB

for fLm
τ,τ ′
: (∀a ∈ Avτ

, ξ ∈ Xt
τ ′
) a # fLm

τ,τ ′
(a, ξ).
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[LN p 41]

Given a & ξ, choosing any sufficiently fresh a′, then
a =
(a a′) · a′

#
(a a′) · λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})
=
λρ ∈ Env .λd ∈ D(τ ). ((a a′) · ξ)(ρ{a′

7→ d})

= {since Φ2(ξ)}

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a′
7→ d} ◦ (a a′))

= {since a′ 6= a}

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d}{a′
7→ ρ a})

= {since Φ1(ξ)}

λρ ∈ Env .λd ∈ D(τ ). ξ(ρ{a 7→ d})

, fLm
τ,τ ′

(a, ξ)
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Example: normalisation by evaluation
[LN p 35]

Produces βη-long normal forms of simply-typed
λ-terms (fast!) by:
n taking denotation of terms in standard extensional
functions model over a ground type of ASTs

n and then reifying elements of the model as ASTs in
normal form.
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Reification (↓τ ) & reflection (↑τ )
[LN p 43]

τ ∈ Ty , d ∈ D(τ ) 7→ ↓τ d ∈ N(τ ):

↓ι n , n

↓τ
.

→τ ′ f , fresh(λa ∈ Avτ
. λaτ . ↓τ ′(f(↑τ a)))

τ ∈ Ty , u ∈ U(τ ) 7→ ↑τ u ∈ D(τ ):

↑ι u , u

↑τ
.

→τ ′ u , λd ∈ D(τ ). ↑τ ′(u (↓τ d))
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Reification (↓τ ) & reflection (↑τ )
[LN p 43]

τ ∈ Ty , d ∈ D(τ ) 7→ ↓τ d ∈ N(τ ):

↓ι n , n

↓τ
.

→τ ′ f , fresh(λa ∈ Avτ
. λaτ . ↓τ ′(f(↑τ a)))

τ ∈ Ty , u ∈ U(τ ) 7→ ↑τ u ∈ D(τ ):

↑ι u , u

↑τ
.

→τ ′ u , λd ∈ D(τ ). ↑τ ′(u (↓τ d))

finitely
supported
function

D(τ )→fsD(τ ′)

AST/α in
N(τ

.
→ τ ′)
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Reification (↓τ ) & reflection (↑τ )
[LN p 43]

τ ∈ Ty , d ∈ D(τ ) 7→ ↓τ d ∈ N(τ ):

↓ι n , n

↓τ
.

→τ ′ f , fresh(λa ∈ Avτ
. λaτ . ↓τ ′(f(↑τ a)))

τ ∈ Ty , u ∈ U(τ ) 7→ ↑τ u ∈ D(τ ):

↑ι u , u

↑τ
.

→τ ′ u , λd ∈ D(τ ). ↑τ ′(u (↓τ d))

Uses an easily proved application of the
Freshness theorem [LN p 19]

Given h ∈ (Avτ
→fsN(τ ′)) satisfying

(∃a ∈ Avτ
) a # h & a # h(a)

then ∃! element fresh(h) ∈ N(τ ′) satisfying
(∀a ∈ Avτ

) a # h ⇒ h(a) = fresh(h)
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Normalisation
[LN p 43]

normτ : Λ(τ ) → N(τ ) is given by

normτ(e) , ↓τ(JeKρ0)

where ρ0 ∈ Env is the environment mapping
a ∈ Avτ

7→ a ∈ U(τ ) 7→ ↑τ a ∈ D(τ ) (for all τ ∈ Ty ).

Of the three required properties of norm

(1) e1 =βη e2 ⇒ normτ e1 = normτ e2

(2) normτ(iτ n) = n

(3) iτ(normτ e) =βη e

(1) & (2) are proved using α-structural induction;
(3) is trickier, but can be proved using a logical
relations argument [LN pp 44,45].
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Pause
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To be explained:
n Nominal sets, support and the freshness relation,
(−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Machine-assisted support
n Norrish’s HOL4 development. [TPHOLs ’04]
n Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and α-structural induction for
λ-calculus. [CADE-20, 2005].
Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of α-structural
recursion/induction theorems parameterised by a
user-declared nominal signature
(in either HOL4, or Isabelle/HOL, or both).
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Machine-assisted support
n Gabbay’s FM-HOL [35yrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.
u Should incorporate a reflection principle to exploit
Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-ε to finitely supported
functions we get another such.

u Also needs some (lightweight!) treatment of
partial functions.
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Nominal functional programming
n Shinwell’s Fresh O’Caml patch of Objective Caml
[ML Workshop 2005]
u latest manifestation of AMP-Gabbay-Shinwell
FreshML design
[ICFP 2003] [TCS 342(2005) 28-55]

u extends O’Caml datatypes with atoms,
atom-binding and atom-unbinding via
pattern-matching-with-freshening
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Nominal signature:
atom-sorts data-sorts constructors

v t V : v → t

A : t ∗ t → t

L : «v»t → t

F : «v»((«v»t) ∗ t) → t

Fresh O’Caml declarations:
bindable_type v

type t = V of v

| A of t * t

| L of <<v>>t

| F of <<v>>((<<v>>t)*t)
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Capture-avoiding substitution
n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!

n (a := e)(letreca1 a2 = e1 in e2) ,

if a1, a2 # (a, e) & a2 # (a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!
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Declaration of capture-avoiding substitution function
in Fresh O’Caml:

let sub(a:v)(e:t) : t → t =
let rec s(e′:t) : t =

match e′ with
V a1 → if a1 = a then e else e′

| A(e1,e2) → A(s e1 , s e2)
| L(<<a1>>e1) → L(<<a1>>(s e1))
| F(<<a1>>(<<a2>>e1 , e2)) →

F(<<a1>>(<<a2>>(s e1) , s e2))
in s

n dynamics of unbinding guarantees freshness
preconditions

n RHS of match clauses not checked for FCB. . .
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| A(e1,e2) → A(s e1 , s e2)
| L(<<a1>>e1) → L(<<a1>>(s e1))
| F(<<a1>>(<<a2>>e1 , e2)) →

F(<<a1>>(<<a2>>(s e1) , s e2))
in s

n dynamics of unbinding guarantees freshness
preconditions

n RHS of match clauses not checked for FCB. . .
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Matching a value <<a>>v against a pattern <<x>>p
causes:
1. value-environment to be updated to associate x
with a globally fresh atom a′

2. p to be matched against the value obtained from
v by [lazily?] renaming all occurrences of a in v
to be a′
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A mis-guided attempt to calculate the list of bound
variables of an α-equivalence class of an AST:

let rec bv(e:t) : v list
match e with

V _ → []
| A(e1,e2) → (bv e1)@(bv e2)
| L(<<a1>>e1) → a1::(bv e1)
| F(<<a1>>(<<a2>>e1 , e2)) →

a1::a2::(bv e1)@(bv e2)

This results in a Fresh O’Caml function
bv : t → v list

that, when applied to a value e:t, returns a list of
fresh atoms.
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Nominal functional programming
n Shinwell’s Fresh O’Caml patch of Objective Caml
[ML Workshop 2005]

n Cheney’s FreshLib library for Haskell/ghc 6.4
[ICFP 2005]
u exploits generic programming features of latest
ghc (“SYB”)

n Pottier’s Cαml code generation tool for O’Caml
[ML Workshop 2005]
u supports patterns of binding more general than
those of nominal signatures

Neither FreshLib nor Cαml support unbinding via
(nested) patterns

:-(
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Nominal logic programming
n Theoretical basis: Urban-AMP-Gabbay
nominal unification
[TCS 323(2004) 473-497.]
u best-known algorithm quadratic in size of nominal
terms

u unification variables only for data-sorts, not
atom-sorts

n Experimental language: Cheney-Urban AlphaProlog
[ICLP 2004]

Is there a “nominal logical framework”?
(Cf. Schöpp & Stark [CSL 2004]—category of nominal sets supports a rich model of

dependent types.)
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Assessment
n α-Structural recursion & induction principles apply
directly to standard notions of AST &
α-equivalence within ordinary HOL
—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96], except closer to

informal practice regarding freshness of bound names (more applicable).

n Crucial finite support property is automatically
preserved by constructions in HOL
(if we avoid choice principles).

n Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS ’04], Winskel & Turner [200?]).
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Conclusion
Claim: dealing with issues of bound names and
α-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?
(It’s now part of mine!)
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