Lecture 3



To be explained:

= Nominal sets, support and the freshness relation,
(=) # (—)-
= How is a-structural recursion proved?

= How to generalise a-structural recursion from the
example language A to general languages with
binders?

= What’s involved with applying a-structural recursion
in any particular case?

= Example: normalisation by evaluation.
= Machine-assisted support?




[LN p 35]
Example: normalisation by evaluation

U. Berger and H. Schwichtenberg, “An inverse of
the evaluation functional for typed A-calculus”
(Proc. LICS 1991)

[and subsequent works by several authors).



[LN p 35]
Example: normalisation by evaluation

Produces Bn-long normal forms of simply-typed
A-terms (fastl) by:

taking denotation of terms in standard extensional
functions model over a ground type of ASTs

and then reifying elements of the model as ASTs in
normal form.



[LN p 35]
Example: normalisation by evaluation

Produces Bn-long normal forms of simply-typed
A-terms (fast!) by:
taking denotation of terms in standard extensional
functions model over a ground type of ASTs

and then reifying elements of the model as ASTs In
normal form.

Use the Freshness Theorem [LN p 19] for nominal
sets to make sense of the naive definition of reifying
an extensional function into a A-abstraction (need to
choose a fresh \-bound variable)



[LN p 35]

Example: normalisation by evaluation

Produces Bn-long normal forms of simply-typed
A-terms (fastl) by:

f
c
r

tr

“The problem is the “v fresh” condition; what exactly does it mean? |
Unlike such conditions as “x does not occur free in E”, it is not
even locally checkable whether a variable is fresh; freshness is a
global property, defined with respect to a term that may not even

be fully constructed yet.” [8, p 157]

ional

STs In

Use the Freshness Theorem [LN p 19] for nominal

sets to make s

of the naive definition of reifying

an extensional function into a \-abstraction (need to
choose a fresh \-bound variable)

APPSEM 2005, 3 - p. 3



types 7 € Ty ::

terms

Simply-typed A-calculus

teA

LT — T

a
t t
Aa.t

(a € V)

(a €V )

[LN p 35]



types 7 € Ty ::

terms

Simply-typed A-calculus

teA

LT — T
(a)” (a € V)
(tT—'>T’tT)T’
Aa.t”)™™" (a € V,)

[LN p 35]



[LN p 35]

Simply-typed A-calculus

types T€e Ty = |7 > T
terms t € A (a)7 (a € V,)

| (tT—.VT,tT)T.,
| Xa.t”)™" (a €V,)

Bndong NFs n € N == (Aa.n” )" (a € V,)

(u)*
(a)” (a € V)

7 T\T'
(™" n")

neutrals v € U ::

N.B. can (and will) regard N and U as subsets of A.

APPSEM 2005, 3 4



(By gad! they’re GADTS)

Mutually inductively defined (nominal) sets A, of
simply typed ASTs of type © € Tvy:

Ar = Vr + Z(Aﬁ X Ar,) + Z(Vn X Ar,)

(T1,72)| T1=(72—>7T) (T1,72)| T=(T1—72)

Mutually inductively defined (nominal) sets N, & U,
of Bn-long NFs and neutrals of type r ¢ Ty:

NT — Z(Vﬁ X NT2) + UL

(7'1,7'2)| T=(T1—'>7'2)

U.=V,;+>» (Uy, X N;,)

(T1,72)| T1=(T2—T)



ESTL

[LN p 36])

The nominal signatures

atom-sorts

data-sorts

constructors

Vr

t,

(treTyu=t|T7>T1)

Vr: . v, — t;
ApT T/ : tT—'>7" k tT — tT’

LmT’T/ : «VT »tT, — tT_'>T/

S LNF
atom-sorts | data-sorts constructors
V., n; Vi vy — u,
ur- Arzrt Ups,®Np — Ugp
Lis i «veong — np_,
(re€ETyn=1t|T>7) I: u —n,

APPSEM 2005, 3 - p. 6



Terms / Bn-long NFs / neutrals are identified up to
a-equivalence =, (definition as for any nominal
signature).

A(T) = A./=, (typical element e)
N(t) = N,/=, (typical element n)
U(t) = U,/=, (typical element u)

There are injections

tr ¢ N(T) — A(T)
Jr = U(T) — A(7)

induced by the inclusions N, C A, U, C A



. . [LN p 37]
Normalisation

Wish to show the existence of

normalisation functions |norm. : A(t) — N (1)

satisfying:

€1 =gp €2 = NOTM; €1 = NOTM €
norm, (i, n) =n

ir(norm,e) =g, €



. . [LN p 37]
Normalisation

Wish to show the existence of

normalisation functions |norm. : A(t) — N (1)

satisfying:
€1 =gp €2 = NOTM; €1 = NOTM €
norm, (i, n) =n

ir(normre) =g, e

—

' 3n-conversion
= least congruence satisfying:

(Aa.eij)ex =g, (a:=e2)e;
a#e => e =g, Aa.ea




. . . [LN p 35]
Example: normalisation by evaluation

Produces (n-long normal forms of simply-typed
A-terms (fastl) by:

= taking denotation of terms in standard extensional
functions model over a ground type of ASTs

= and then reifying elements of the model as ASTs In
normal form.



. [LN p 39]
Denotation

Denotation of types as nominal sets:
D(t) = N()
D(tr = 1) & D(7)—D(7)



. [LN p 39]
Denotation

Denotation of types as nominal sets:
D(t) = N(¢)
D(tr = 1) & D(7)—D(7)
Terms e € A(7) In a given environment p € Env
denote finitely supported elements [e|p € D(7),
satisfying:
l[alp = pa
lerex]p = [ea]p ([e2]p)
[Aa™.e|p Ad € D(1).|e]|(p{a— d})




LN p 39]

Denota (type-respecting,

finitely supported

- Denotation of types as nomil| TUnction from
vanables to

.D(’;) : denotations
D(T—>T) = D\l }—rtsu\l, )

= Terms e € A(7) In a given environment p € Env
denote finitely supported elements [e|p € D(7),
satisfying:
l[alp = pa
lerez]p = [e]p ([ez]p)
[Aa”.e]p Ad € D(1).|e]|(p{a— d})




. [LN p 39]
Denotation

Denotation of types as nominal sets:
D(t) = N(v)
D(tr = 1) & D(7)—D(7)
Terms e € A(7) in a given environment p € Env
denote finitely supported elements |e|p € D(7),
satisfying:
l[alp = pa
lerex]p = [ea]p ([e2]p)
[Aa”.e]p Ad € D(1).|e]|(p{a — d})

updated environment

APPSEM 2005, 3 10



. [LN p 39]
Denotation

Denotation of types as nominal sets:
D(t) = N(¢)
D(tr = 1) & D(7)—D(7)
Terms e € A(7) In a given environment p € Env
denote finitely supported elements [e|p € D(7),
satisfying:
l[alp = pa
lerex]p = [ea]p ([e2]p)
[Aa™.e|p Ad € D(1).|e]|(p{a— d})

Why is [—]| well-defined?



. [LN p 39]
Denotation

Denotation of types as nominal sets:
D(t) = N()
D(tr = 1) & D(7)—D(7)
Terms e € A(7) In a given environment p € Env

denote finitely supported elements [e]p € D(7),
satisfying:

l[alp = pa
lerex]p = [ei]p ([ez]p)
[Aa".e]p = Ad € D(1).[e](p{a — d})

Use a-structural recursion for X°1L to define [—]...



[LN p 40]

First attempt

X:. £ Env—D(T)
fve. 2 Xa € A,._.
Ap € Env.pa

prT,,,./ >‘(€17 52) ~ XtT_-m_/ X XtT°
Ap € Env. & p (&2 p)

Aa,&) € A, X X¢,.
Ap € Env.\d € D(71).&(p{a — d})

A =20

[I>

[I>

fLmT,,_/



[LN p 40]

First attempt
FCB for this function is

a # Ap € Env.\d € D(71).&(p{a — d})
and is not true of every £ € (Env—gD(7')!

\

Ap € Envt p (& p)

fLm.,.,T/ é A(av g) 6 AVT X Xt.,.r‘
Ap € Env.\d € D(1).&(p{a — d})



[LN p 40]

First attempt
FCB for this function is

a # Ap € Env.\d € D(1).&(p{a ~ d})
and is not true of every £ € (Env—gD(7")!

Have to strengthen the “recursion hypothesis” by
suitably restricting the class of functions £ used for
the a- structural recursion. )

Ao € Envts p (€2 p)

fLm.,.,,,./ é A(av £) E AVT X Xt.,./'
Ap € Env.\d € D(1).&(p{a — d})




Strengthen the “recursion hypothesis” by restricting
£ € (Env—gD(7)) to functions having the following
two expected properties of |—]|.

1. [e]p only depends on the value of p at the free
variables of e.

2. [m-e]p=[e](pom)
(special case of substitution property of
denotations).



[LN pp 40, 41]
Second attempt

X:, = {¢€ € Env—gD(7) | D1(€) & P2(€)}
fvr. & Xa € A,._.
Ap € Env.pa

prT,,,./ = >‘(€17 52) ~ Xt ., X XtT°

T—T

Ap € Env. & p (&2 p)

fLm.,.,.,./ é A(av g) 6 AVT X Xt.,.r‘
Ap € Env.\d € D(1).&(p{a — d})

A =20



[LN pp 40, 41]
Second attempt

X:, £ {€ € Env—D(7) | 1(€) & D2(€)}

-

®, (£)

®2(€)

(3A € Pan(h))
(Vr € Ty,a € A,_,d € D(1),p € Env)

at A = &pla—d})=Ep

(Vrr € Perm,p € Env)
(m-&)p=~&/pom)




[LN pp 40, 41]
Second attempt

X:, = {¢€ € Env—gD(7) | D1(€) & P2(€)}

T

fve. 2 Xa € A,._.
Ap € Env.pa

prTﬂ./ = A(‘El? 52) ~ Xt ., X XtT°

T—T

Ap € Env. & p (&2 p)
frm. ., 2 Xa,€) € A, X X,
Ap € Env.\d € D(1).&(p{a — d})

Have to prove the f_) map into X, and prove FCB
for fLm.,.,T/: (va’ E AVT? € E Xt.,./) a # fLm,,_,,,_/ (a’7 5)‘



[LN p 41]

Given a & &, choosing any sufficiently fresh a’, then
a =
(aad’) - a
7

(aa’) - Ap € Env.\d € D(1).&(p{a — d})

/

Ap € Env.Ad € D(7). ((aa) - £)(p{a’ v d})
= {since P,(&)}

Ap € Env.Ad € D(71).&(p{a’ — d} o (aa’))
— {since a’ # a}

Ap € Env.\d € D(7).&(p{a—d}{a' -~ pa})
= {since ®,(&)}

Ap € Env.\d € D(1).&(p{a— d})

= fLm,.,T/(afa €)




[LN p 35]
Example: normalisation by evaluation

Produces (n-long normal forms of simply-typed
A-terms (fastl) by:

s taking denotation of terms in standard extensional
functions model over a ground type of ASTs

= and then reifying elements of the model as ASTs In
normal form.



[LN p 43]

Reification (| ) & reflection (T )

T€ Ty, de D(t)— | . d e N(1):
lLm = n
\LT—°>T’ f é f'r‘esh()\a E Av.,ﬂ ACLT. J/T'(f(TT a’)))

TE€ Ty,u e U(T) — T,u € D(71):

Tu 2w
TT—'>T’ u é Ad S D(T)‘ TT’(U’ (J/T d))




T € Ty,d € D(t)— |.d € N(1):

Reification (| ) & reflection (T )

[LN p 43]

lbnén

Lrer [ = fresh(Xa € Ay,. Aa. | (f(1,a)))

‘ n

AST/a In
N(rt — 1)

Ad € D(7).T.(u(!,d))

finitely I 1T-u € D(
supported U
function
 D(7)—D(7')




[LN p 43]

Reification (| ) & reflection (T )

T€ Ty, de D(t)— | . d e N(1):

ln 2 n

\LT—°>T’ f é fTiSh()\& c Av.,ﬂ Aa’. J/T'(f(TT a’)))

T

Uses an easily proved application of the
Freshness theorem [.n p 19)
Given h € (A, —&N (7)) satisfying
(da € Ay ) a # h & a # h(a)
then 3! element fresh(h) € N(7’) satisfying
(Va € Ay ) a# h = h(a) = fresh(h)

\_ J




. . [LN p 43]
Normalisation

norm., : A(t) — IN(7) is given by

norm-(e) = | .([€]po)

where py, € Env is the environment mapping
a€chA,_r—acU(T)— T,.a¢€ D(7) (for all - € Ty).




. . [LN p 43]
Normalisation

norm., : A(t) — IN(7) is given by

norm-(e) = | .([€]po)

where py, € Env is the environment mapping
a€chA,_r—acU(T)— T,.a¢€ D(7) (for all - € Ty).

Of the three required properties of norm
(1) e1 =3, €2 = norm,e; = norm; e;
(2) norm, (i, n) =n
(3) ir(norm,e) =g, e

(1) & (2) are proved using a-structural induction;
(3) is trickier, but can be proved using a logical
relations argument [LN pp 44,45].



Pause

APPSEM 2005, 3 - p. 18



To be explained:

= Nominal sets, support and the freshness relation,
(=) # (—)-
= How is a-structural recursion proved?

= How to generalise a-structural recursion from the
example language A to general languages with
binders?

= What’s involved with applying a-structural recursion
in any particular case?

s Example: normalisation by evaluation.
= Machine-assisted support?




Machine-assisted support

Norrish’s HOL4 development. [TPHOLs '04)

Urban & Tasson’s Isabelle/HOL theory of nominal
sets (“p-sets”) and «-structural induction for
A-calculus. [CADE-20, 200S].

Isabelle’s axiomatic type classes are helpful.

Wanted: full implementation of a-structural
recursion/induction theorems parameterised by a
user-declared nominal signature

(in either HOL4, or Isabelle/HOL, or both).



Machine-assisted support

Gabbay’s FM-HOL [3Syrs of Automath, 2002].

Wanted: a new machine-assisted higher-order logic
to support reasoning about ordinary sets and
nominal sets simultaneously.

Should incorporate a reflection principle to exploit

Fact The standard set-theoretic model of
HOL (without choice) restricts to finitely
supported elements; e.g. if we apply a
construction of HOL-¢ to finitely supported
functions we get another such.

Also needs some (lightweight!) treatment of
partial functions.



Nominal functional programming

Shinwell’s Fresn O’'Caml patch of Objective Caml
[ML Workshop 2005)

latest manifestation of AMP-Gabbay-Shinwell
FresnML design
[ICFP 2003] [TCS 342(2005) 28-55)

extends O’Caml datatypes with atoms,
atom-binding and atom-unbinding via
pattern-matching-with-freshening



Nominal signature:

atom-sorts | data-sorts constructors
Y t V.iv—ot
A txt—t
L. «wyt — t
F: «un((«vrt) xt) — t

Fresh O’Caml declarations:
bindable_type v

type t = V of v

A of t x ¢t

L of Kv>t

F of Kv>» ((Kv>t)*t)

APPSEM 2005, 3 - p. 22



(a
(a

Capture-avoiding substitution

= e)a; = if a; = a then e else a,
= e)(e1e2) = ((a :=e)ey)((a := e)es)
= e)(Aaj.e1) =
if ax € fv(a,e) then A\ai.(a := e)e;q
else don’t carel

:= e)(letreca;as; = e; in ey) =

if a1, a: # (a,e) & a2 # (a1, e3)
then letreca;a; = (a := e)e; in (a := e)es
else don’t carel



Declaration of capture-avoiding substitution function
in Fresh O’Caml:

let sub(a:v)(e:t) : t—t =
let rec s(e’:t) : t =
match e’ with
V al — if al = a then e else €’
A(el,e2) — A(sel, se2)
L(<al>»el) — L(kal>»(sel))
F(«kal>» («ka2>»el,e2)) —
F(kal>»(«<a2>»>(sel) ,se2))

in s

APPSEM 2005, 3 - p. 24



Declaration of capture-avoiding substitution function
in Fresh O’Caml:

let sub(a:v)(e:t) : t—t =
let rec s(e’:t) : t =
match e’ with
V al — if al = a then e else €’
A(el,e2) — A(sel, se2)
L(<al>»el) — L(kal>»(sel))
F(«kal>» («ka2>»el,e2)) —
F(kal>»(«<a2>»>(sel) ,se2))

in s
dynamics of unbinding guarantees freshness
preconditions

RHS of match clauses not checked for FCB...



Declaration of capture-avoiding substitution function
in Fresh O’Caml:

let sub(a:v)(e:t) : t—t =

‘Matching a value «<a>»v against a pattern «<z>»p

causes.

1. value-environment to be updated to associate x
with a globally fresh atom a’

2. p to be matched against the value obtained from
v by [lazily?] renaming all occurrences of a in v
to be a’ )

.

dynamics of unbinding«gﬁarantees freshness
preconditions

RHS of match clauses not checked for FCB...



A mis-guided attempt to calculate the list of bound
variables of an a-equivalence class of an AST.

let rec bv(e:t) : vlist
match e with
V_ — []
A(el,e2) — (bvel)o(bve2)
L(kal>»el) — al::(bvel)
F(«kal>» («ka2>»el,e2)) —
al::a2::(bvel)@(bve2)

This results in a Fresh O’Caml function
bv : t — vlist

that, when applied to a value e:t, returns a list of
fresh atoms.




Nominal functional programming

Shinwell’s Fresn O’'Caml patch of Objective Caml
[ML Workshop 2005)

Cheney’s FreshlLib library for Haskell/ghc 6.4
[ICFP 200S5)]

exploits generic programming features of latest
ghc (“SYB”)

Pottier’s Caml code generation tool for O’Caml
[ML Workshop 2005)

supports patterns of binding more general than
those of nominal signatures

Neither FreshlLib nor Caml support unbinding via
(nested) patterns "



Nominal logic programming

Theoretical basis: Urban-AMP-Gabbay
nominal unification
[TCS 323(2004) 473-497)

best-kKnown algorithm quadratic in size of hominal
terms

unification variables only for data-sorts, not
atom-sorts

Experimental language: Cheney-Urban AlphaProlog
[ICLP 2004)



Nominal logic programming

Theoretical basis: Urban-AMP-Gabbay
nominal unification
[TCS 323(2004) 473-497]

best-kKnown algorithm quadratic in size of hominal
terms

unification variables only for data-sorts, not
atom-sorts

Experimental language: Cheney-Urban AlphaProlog
[ICLP 2004)

Is there a “nominal logical framework”?

(Cf. Schépp & Stark [CSL 2004)—category of nominal sets supports a rich model of
dependent types.)



Assessment

a-Structural recursion & induction principles apply
directly to standard notions of AST &
a-equivalence within ordinary HOL

—like Gordon & Melham’s “5 Axioms” work [TPHOLs ’96), except closer to

informal practice regarding freshness of bound names (more applicable).

Crucial finite support property is automatically
preserved by constructions in HOL

(if we avoid choice principles).

Mathematical treatment of “fresh names” afforded
by nominal sets is proving useful in other contexts
(e.g. Abramsky et al [LICS '04), Winskel & Turner [2007?)).

APPSEM 2005, 3 - p. 28



Conclusion

Claim: dealing with issues of bound names and
a-equivalence on ASTs is made easier through use
of permutations (rather than traditional use of
non-bijective renamings).

Is the use of name-permutations & support simple
enough to become part of standard practice?

(It’s now part of minel)




	Lecture 3
	Route map (V)
	Example: normalisation by evaluation (I)
	Example: normalisation by evaluation (I)
	Example: normalisation by evaluation (I)
	Example: normalisation by evaluation (I)

	Simply-typed lambda-calculus
	Simply-typed lambda-calculus
	Simply-typed lambda-calculus

	(By gad! they're GADTs)
	The nominal signatures
	alpha-Equivalence of simply-typed terms
	Normalisation
	Normalisation

	Example: normalisation by evaluation (II)
	Denotation
	Denotation
	Denotation
	Denotation
	Denotation
	Denotation

	First attempt
	First attempt
	First attempt

	Strengthen the recursion hypothesis
	Second attempt
	Second attempt
	Second attempt

	Proof of (FCB)
	Example: normalisation by evaluation (III)
	Reification and reflection
	Reification and reflection
	Reification and reflection

	Normalisation (II)
	Normalisation (II)

	Pause
	Route map (VI)
	Machine-assisted support
	Machine-assisted support

	Nominal functional programming
	Fresh O'Caml (I)
	Capture-avoiding substitution
	Fresh O'Caml (II)
	Fresh O'Caml (II)
	Fresh O'Caml (II)

	Fresh O'Caml (III)
	Nominal functional programming (II)
	Nominal logic programming
	Nominal logic programming

	Assessment
	Conclusion

