
APPSEM 2005, 1 - p. 1

Nominal Syntax and Semantics

Andrew Pitts

University of Cambridge

Computer Laboratory

APPSEM 2005, 1 - p. 2

Mathematics of syntax
How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

Lectures provide a taster of the nominal sets model
of names and name-binding. (Simplified version of
[Gabbay-Pitts, 2002].)

APPSEM 2005, 1 - p. 2

Mathematics of syntax
How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

Lectures provide a taster of the nominal sets model
of names and name-binding. (Simplified version of
[Gabbay-Pitts, 2002].)

APPSEM 2005, 1 - p. 3

Lecture 1

n Introduction: from structural to α-structural
recursion.

n Nominal sets—first look.

Lecture 2

n Nominal sets, continued.
n α-Structural recursion—proof sketch.
n Nominal signatures.

Lecture 3

n Extended example: NBE.
n Mechanization [extra].

Lecture materials available at:
www.cl.cam.ac.uk/users/amp12/talks/appsem2005

APPSEM 2005, 1 - p. 4

Lecture 1

APPSEM 2005, 1 - p. 5

Structural recursion and induction

APPSEM 2005, 1 - p. 5

Structural recursion and induction

Com

position

ality
is crucial in [programming language] semantics

APPSEM 2005, 1 - p. 5

Structural recursion and induction

Com

positionality

is crucial in [programming language] semantics

APPSEM 2005, 1 - p. 5

Structural recursion and induction

Compositionality

is crucial in [programming language] semantics

APPSEM 2005, 1 - p. 5

Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.

APPSEM 2005, 1 - p. 5

Structural recursion and induction
In particular, as far as semantics is concerned,
concrete syntax

letrec f x = if x > 100 then x − 10

else f (f (x + 11)) in f (x + 100)

is unimportant compared to abstract syntax (ASTs):

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

APPSEM 2005, 1 - p. 5

Structural recursion and induction
ASTs enable two fundamental (and inter-linked) tools
in programming language semantics:

n Definition of functions on syntax

by recursion on its structure.

n Proof of properties of syntax

by induction on its structure.

APPSEM 2005, 1 - p. 6

Running example
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).

APPSEM 2005, 1 - p. 7

letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101

APPSEM 2005, 1 - p. 8

Structural recursion for Λ
[LN p 10]

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

A more complicated version (“primitive recursion” instead of “iteration”) is derivable:

ĝ a1 = gV a1

ĝ(t1 t2) = gA(t1, t2, ĝ t1, ĝ t2)

ĝ(λa1.t1) = gL(a1, t1, ĝ t1)

ĝ(letrec a1 a2 = t1 in t2) = gF(a1, a2, t1, t2, ĝ t1, ĝ t2)

APPSEM 2005, 1 - p. 8

Structural recursion for Λ
[LN p 10]

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

A more complicated version (“primitive recursion” instead of “iteration”) is derivable:

ĝ a1 = gV a1

ĝ(t1 t2) = gA(t1, t2, ĝ t1, ĝ t2)

ĝ(λa1.t1) = gL(a1, t1, ĝ t1)

ĝ(letrec a1 a2 = t1 in t2) = gF(a1, a2, t1, t2, ĝ t1, ĝ t2)

APPSEM 2005, 1 - p. 9

Finite set of free variables fv t of an AST t:

fv a1 , {a1}

fv(t1 t2) , (fv t1) ∪ (fv t2)

fv(λa1.t1) , (fv t1) − {a1}

fv(letreca1 a2 = t1 in t2) , (fv t1) − {a1, a2}

∪ (fv t2) − {a1}

defined by structural recursion using
n S , Pfin(V) (finite sets of variables),

n fV a1 , {a1},

n fA(A1, A2) , A1 ∪ A2,

n fL(a1, A1) , A1 − {a1},

n fF(a1, a2, A1, A2) , (A1 − {a1, a2}) ∪ (A2 − {a1}).

APPSEM 2005, 1 - p. 9

Finite set of free variables fv t of an AST t:

fv a1 , {a1}

fv(t1 t2) , (fv t1) ∪ (fv t2)

fv(λa1.t1) , (fv t1) − {a1}

fv(letreca1 a2 = t1 in t2) , (fv t1) − {a1, a2}

∪ (fv t2) − {a1}

defined by structural recursion using
n S , Pfin(V) (finite sets of variables),

n fV a1 , {a1},

n fA(A1, A2) , A1 ∪ A2,

n fL(a1, A1) , A1 − {a1},

n fF(a1, a2, A1, A2) , (A1 − {a1, a2}) ∪ (A2 − {a1}).

APPSEM 2005, 1 - p. 10

Finite set of all variables var t of an AST t:
var a1 , {a1}

var(t1 t2) , (var t1) ∪ (var t2)

var(λa1.t1) , (var t1) ∪ {a1}

var(letreca1 a2 = t1 in t2) , {a1, a2} ∪ (var t1)

∪ (var t2)

APPSEM 2005, 1 - p. 11

t{b/a} , replace all occurrences of a with b in an
AST t:
n a1{b/a} , if a1 = a then b else a1

n (t1 t2){b/a} , (t1{b/a}) (t2{b/a})

n (λa1. t1){b/a} , λa1{b/a}. t1{b/a}

n (letreca1 a2 = t1 in t2 ,

letrec (a1{b/a})(a2{b/a}) = t1{b/a} in t2{b/a}

APPSEM 2005, 1 - p. 12

Structural recursion for Λ

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!

APPSEM 2005, 1 - p. 12

Structural recursion for Λ

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.Do
esn
’t t
ake
bin
din
g i
nto
acc
ou
nt!

APPSEM 2005, 1 - p. 13

letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101

APPSEM 2005, 1 - p. 13

letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101

APPSEM 2005, 1 - p. 13

letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101

free

APPSEM 2005, 1 - p. 14

α-Equivalence
[LN p 11]

Smallest binary relation =α on Λ closed under the
rules:

a ∈ V

a =α a

t1 =α t′
1

t2 =α t′
2

t1 t2 =α t′
1
t′
2

t1{a′′
1
/a1} =α t′

1
{a′′

1
/a′

1
} a′′

1
/∈ var(a1, t1, a′

1
, t′

1
)

λa1. t1 =α λa′
1
. t′

1

t1{a′′
1
, a′′

2
/a1, a2} =α t′

1
{a′′

1
, a′′

2
/a′

1
, a′

2
}

t2{a′′
1
/a1} =α t′

2
{a′′

1
/a′

1
}

a′′
1

6= a′′
2

a′′
1
, a′′

2
/∈ var(a1, a2, t1, t2, a′

1
, a′

2
, t′

1
, t′

2
)

letreca1 a2 = t1 in t2 =α letreca′
1
a′

2
= t′

1
in t′

2

APPSEM 2005, 1 - p. 14

α-Equivalence
[LN p 11]

Smallest binary relation =α on Λ closed under the
rules:

a ∈ V

a =α a

t1 =α t′
1

t2 =α t′
2

t1 t2 =α t′
1
t′
2

t1{a′′
1
/a1} =α t′

1
{a′′

1
/a′

1
} a′′

1
/∈ var(a1, t1, a′

1
, t′

1
)

λa1. t1 =α λa′
1
. t′

1

t1{a′′
1
, a′′

2
/a1, a2} =α t′

1
{a′′

1
, a′′

2
/a′

1
, a′

2
}

t2{a′′
1
/a1} =α t′

2
{a′′

1
/a′

1
}

a′′
1

6= a′′
2

a′′
1
, a′′

2
/∈ var(a1, a2, t1, t2, a′

1
, a′

2
, t′

1
, t′

2
)

letreca1 a2 = t1 in t2 =α letreca′
1
a′

2
= t′

1
in t′

2

Exercise: prove that =α is transitive (and reflexive
and symmetric).

APPSEM 2005, 1 - p. 15

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
n irritating (want to get on with more interesting
aspects of semantics!)

n pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

n difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .

APPSEM 2005, 1 - p. 15

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
n irritating (want to get on with more interesting
aspects of semantics!)

n pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

n difficult to formalise/mechanise without losing sight
of common informal practice:
“We identify expressions up to α-equivalence”. . .

. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .

APPSEM 2005, 1 - p. 15

Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
n irritating (want to get on with more interesting
aspects of semantics!)

n pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

n difficult to formalise/mechanise without losing sight
of common informal practice:
“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .

APPSEM 2005, 1 - p. 16

E.g. – capture-avoiding substitution
(a := e)e1 = substitute e ∈ Λ/=α for all free

occurrences of a in e1 ∈ Λ/=α, avoiding capture
of free variables in e by binders in e1.

n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!
n (a := e)(letreca1 a2 = e1 in e2) ,

if a1, a2 /∈ fv(a, e) & a2 /∈ fv(a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!

APPSEM 2005, 1 - p. 16

E.g. – capture-avoiding substitution
n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!
n (a := e)(letreca1 a2 = e1 in e2) , ?

if a1, a2 /∈ fv(a, e) & a2 /∈ fv(a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!

APPSEM 2005, 1 - p. 16

E.g. – capture-avoiding substitution
n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!
n (a := e)(letreca1 a2 = e1 in e2) ,

if a1, a2 /∈ fv(a, e) & a2 /∈ fv(a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!

APPSEM 2005, 1 - p. 16

E.g. – capture-avoiding substitution
n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!
n (a := e)(letreca1 a2 = e1 in e2) ,

if a1, a2 /∈ fv(a, e) & a2 /∈ fv(a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!
Does uniquely specify a well-defined function on α-equivalence classes,

(a := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.

APPSEM 2005, 1 - p. 17

E.g. – denotational semantics
of Λ/α in some suitable domain D:
n Ja1Kρ , ρ(a1)

n Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

n Jλa1.e1Kρ , fun(λd ∈ D. Je1K(ρ[a1 7→ d]))

n Jletreca1 a2 = e1 in e2Kρ , · · ·

where

- ρ ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D × D → D and

fun : (D → D) → D.

In this case we can use ordinary structural recursion to first define denotations of

ASTs and then prove that they respect α-equivalence.

But is there a quicker way, working directly with ASTs/α?

APPSEM 2005, 1 - p. 17

E.g. – denotational semantics
of Λ/α in some suitable domain D:
n Ja1Kρ , ρ(a1)

n Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

n Jλa1.e1Kρ , fun(λd ∈ D. Je1K(ρ[a1 7→ d]))

n Jletreca1 a2 = e1 in e2Kρ , · · ·

Why is this (very standard)
definition independent of the
choice of bound variable a1?

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?

APPSEM 2005, 1 - p. 17

E.g. – denotational semantics
of Λ/α in some suitable domain D:
n Ja1Kρ , ρ(a1)

n Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

n Jλa1.e1Kρ , fun(λd ∈ D. Je1K(ρ[a1 7→ d]))

n Jletreca1 a2 = e1 in e2Kρ , · · ·

In this case we can use ordinary structural recursion
to first define denotations of ASTs and then prove
that they respect α-equivalence.

But is there a quicker way, working directly with
ASTs/α?

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 18

α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

APPSEM 2005, 1 - p. 19

Pause

APPSEM 2005, 1 - p. 20

Running example (reminder)
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).

APPSEM 2005, 1 - p. 21

Structural recursion for Λ
[LN p 10]

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

A more complicated version (“primitive recursion” instead of “iteration”) is derivable:

ĝ a1 = gV a1

ĝ(t1 t2) = gA(t1, t2, ĝ t1, ĝ t2)

ĝ(λa1.t1) = gL(a1, t1, ĝ t1)

ĝ(letrec a1 a2 = t1 in t2) = gF(a1, a2, t1, t2, ĝ t1, ĝ t2)

APPSEM 2005, 1 - p. 22

α-Structural recursion for Λ/α
[LN p 31]

Given a nominal set X

and functions



















fV : V → X

fA : X × X → X

fL : V × X → X

fF : V × V × X × X → X,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → X

such that. . .

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

APPSEM 2005, 1 - p. 22

α-Structural recursion for Λ/α
[LN p 31]

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

for all a1, a2 ∈ V & e1, e2 ∈ Λ/α,

APPSEM 2005, 1 - p. 22

α-Structural recursion for Λ/α
[LN p 31]

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)

APPSEM 2005, 1 - p. 22

α-Structural recursion for Λ/α
[LN p 31]

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(a1, e) , λa1.e and (FCB) holds trivially because
a1 /∈ fv(λa1.e) (and similarly for fF).

APPSEM 2005, 1 - p. 23

To be explained:
n Nominal sets, support
and the freshness relation, (−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?

APPSEM 2005, 1 - p. 24

Atoms
[LN p 7]

From now on assume bindable names in ASTs are
drawn from a fixed, countably infinite set A

(elements called atoms)

Need different flavours of names (variables,
references, channels, nonces, . . .), so assume
n A is partitioned into countably infinite number of
sorts.
Write sort(a) for the sort of a ∈ A.

n There are infinitely many atoms of each sort.

APPSEM 2005, 1 - p. 24

Atoms
[LN p 7]

From now on assume bindable names in ASTs are
drawn from a fixed, countably infinite set A

(elements called atoms)

The mathematical model of bindable names we use
is very abstract: in the world of nominal sets, the
only attributes of an atom are identity and sort.

Probably interesting & pragmatically useful to consider more structured atoms (!),

e.g. linearly ordered ones, but we don’t do that here.

APPSEM 2005, 1 - p. 25

Permutations
[LN p 12]

Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Perm is a group:
n multiplication π π′ = function composition π ◦ π′:

π ◦ π′(a) , π(π′(a))

n identity element ι = identity function on A

n inverse π−1 of π ∈ Perm is inverse qua function.

APPSEM 2005, 1 - p. 25

Permutations
[LN p 12]

Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Given a1, a2 ∈ A with sort(a1) = sort(a2),
transposition (a1 a2) is the π ∈ Perm given by

π(a) ,











a2 if a = a1

a1 if a = a2

a otherwise

APPSEM 2005, 1 - p. 25

Permutations
[LN p 12]

Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Given a1, a2 ∈ A with sort(a1) = sort(a2),
transposition (a1 a2) is the π ∈ Perm given by

π(a) ,











a2 if a = a1

a1 if a = a2

a otherwise

Exercise: prove that every π ∈ Perm can be
expressed as a composition of (finitely many)
transpositions.

APPSEM 2005, 1 - p. 26

Actions of permutations
An action of Perm on a set S is a function

Perm × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

A Perm-set is a set S equipped with an action of
Perm on S.

APPSEM 2005, 1 - p. 26

Actions of permutations
An action of Perm on a set S is a function

Perm × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

Three simple examples of Perm-sets:
n Natural numbers N with trivial action: π · n = n.
n A with action: π · a = π(a).
n Perm itself with conjugation action:

π · π′ = π ◦ π′ ◦ π−1.
More examples in a mo.

APPSEM 2005, 1 - p. 27

Finite support
[LN p 12]

Definition. A finite subset A ⊆ A supports an
element s ∈ S of a Perm-set S if

(a a′) · s = s

holds for all a, a′ ∈ A (of same sort) not in A

A nominal set is a Perm-set all of whose elements
have a finite support.

APPSEM 2005, 1 - p. 28

[LN p 12]

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Proof Suffices to show that if the finite sets A1 and
A2 support s, so does A1 ∩ A2.
So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.

APPSEM 2005, 1 - p. 28

[LN p 12]

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Proof Suffices to show that if the finite sets A1 and
A2 support s, so does A1 ∩ A2.

So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.

APPSEM 2005, 1 - p. 28

[LN p 12]

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Proof Suffices to show that if the finite sets A1 and
A2 support s, so does A1 ∩ A2.
So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.

APPSEM 2005, 1 - p. 28

[LN p 12]

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Proof Suffices to show that if the finite sets A1 and
A2 support s, so does A1 ∩ A2.
So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.

APPSEM 2005, 1 - p. 29

Freshness relation
[LN P 18]

Given nominal sets X and Y and elements x ∈ X
and y ∈ Y ,
write x # y to mean supp(x) ∩ supp(y) = ∅.

So if a ∈ A, then a # x means a /∈ supp(x).

Hence
Key fact for atoms a and a′ of the same sort:

(a, a′) # x ⇒ (a a′) · x = x

APPSEM 2005, 1 - p. 29

Freshness relation
[LN P 18]

Given nominal sets X and Y and elements x ∈ X
and y ∈ Y ,
write x # y to mean supp(x) ∩ supp(y) = ∅.

So if a ∈ A, then a # x means a /∈ supp(x).

Hence
Key fact for atoms a and a′ of the same sort:

(a, a′) # x ⇒ (a a′) · x = x

APPSEM 2005, 1 - p. 29

Freshness relation
[LN P 18]

Given nominal sets X and Y and elements x ∈ X
and y ∈ Y ,
write x # y to mean supp(x) ∩ supp(y) = ∅.

So if a ∈ A, then a # x means a /∈ supp(x).

Hence
Key fact for atoms a and a′ of the same sort:

(a, a′) # x ⇒ (a a′) · x = x

APPSEM 2005, 1 - p. 30

Languages/α form nominal sets
[LN p 13]

For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

For this action, it is not hard to see (exercise) that

e ∈ Λ/α is supported by any finite set of variables
containing all those occurring free in e and hence

a # e iff a /∈ fv(e).

APPSEM 2005, 1 - p. 30

Languages/α form nominal sets
[LN p 13]

For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same

For this action, it is not hard to see (exercise) that

e ∈ Λ/α is supported by any finite set of variables
containing all those occurring free in e and hence

a # e iff a /∈ fv(e).

APPSEM 2005, 1 - p. 30

Languages/α form nominal sets
[LN p 13]

For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

Proof (exercise) First define π · (−) : Λ → Λ by

structural recursion, and then prove that
t =α t′ ⇒ (∀π ∈ Perm) π · t =α π · t′.

For this action,
it is not hard to see (exercise) that e ∈ Λ/α is

supported by any finite set of variables containing all
those occurring free in e and hence

a # e iff a /∈ fv(e).

APPSEM 2005, 1 - p. 30

Languages/α form nominal sets
[LN p 13]

For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

For this action, it is not hard to see (exercise) that

e ∈ Λ/α is supported by any finite set of variables
containing all those occurring free in e and hence

a # e iff a /∈ fv(e).

APPSEM 2005, 1 - p. 31

End of lecture 1

	Mathematics of syntax
	Mathematics of syntax

	Overview
	Lecture 1
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction
	Structural recursion and induction

	Running example
	
	Structural recursion for Lambda
	Structural recursion for Lambda

	fv(t)
	fv(t)

	var(t)
	Renaming
	Structural recursion for Lambda
	Structural recursion for Lambda

	Example AST
	Example AST
	Example AST

	Alpha-equivalence
	Alpha-equivalence

	Abstract syntax mod alpha
	Abstract syntax mod alpha
	Abstract syntax mod alpha

	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution
	E.g. -- capture-avoiding substitution

	E.g. -- denotational semantics
	E.g. -- denotational semantics
	E.g. -- denotational semantics

	Alpha-structural recursion
	Alpha-structural recursion
	Alpha-structural recursion
	Alpha-structural recursion
	Alpha-structural recursion
	Alpha-structural recursion

	Pause
	Running example (reminder)
	Structural recursion for Lambda
	Alpha-structural recursion for Lambda/alpha
	Alpha-structural recursion for Lambda/alpha
	Alpha-structural recursion for Lambda/alpha
	Alpha-structural recursion for Lambda/alpha

	To be explained
	Atoms
	Atoms

	Permutations
	Permutations
	Permutations

	Actions of permutations
	Actions of permutations

	Finite support
	Smallest support lemma
	Smallest support lemma
	Smallest support lemma
	Smallest support lemma

	Freshness relation
	Freshness relation
	Freshness relation

	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets
	Languages/alpha form nominal sets

	End of lecture 1

