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Mathematics of syntax
How best to reconcile

syntactical issues to do with name-binding and
α-conversion

with a structural approach to semantics?

Specifically: improved forms of structural recursion
and structural induction for syntactical structures.

Lectures provide a taster of the nominal sets model
of names and name-binding. (Simplified version of
[Gabbay-Pitts, 2002].)
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Lecture 1

n Introduction: from structural to α-structural
recursion.

n Nominal sets—first look.

Lecture 2

n Nominal sets, continued.
n α-Structural recursion—proof sketch.
n Nominal signatures.

Lecture 3

n Extended example: NBE.
n Mechanization [extra].

Lecture materials available at:
www.cl.cam.ac.uk/users/amp12/talks/appsem2005
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Lecture 1
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Structural recursion and induction
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Structural recursion and induction

Compositionality
is crucial in [programming language] semantics

—it’s preferable to give meaning to
program constructions rather than just to
whole programs.
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Structural recursion and induction
In particular, as far as semantics is concerned,
concrete syntax

letrec f x = if x > 100 then x − 10

else f ( f ( x + 11 ) ) in f ( x + 100 )

is unimportant compared to abstract syntax (ASTs):

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101
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Structural recursion and induction
ASTs enable two fundamental (and inter-linked) tools
in programming language semantics:

n Definition of functions on syntax

by recursion on its structure.

n Proof of properties of syntax

by induction on its structure.
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Running example
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).
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letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101
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Structural recursion for Λ
[LN p 10]

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

A more complicated version (“primitive recursion” instead of “iteration”) is derivable:

ĝ a1 = gV a1

ĝ(t1 t2) = gA(t1, t2, ĝ t1, ĝ t2)

ĝ(λa1.t1) = gL(a1, t1, ĝ t1)

ĝ(letrec a1 a2 = t1 in t2) = gF(a1, a2, t1, t2, ĝ t1, ĝ t2)
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Finite set of free variables fv t of an AST t:

fv a1 , {a1}

fv(t1 t2) , (fv t1) ∪ (fv t2)

fv(λa1.t1) , (fv t1) − {a1}

fv(letreca1 a2 = t1 in t2) , (fv t1) − {a1, a2}

∪ (fv t2) − {a1}

defined by structural recursion using
n S , Pfin(V) (finite sets of variables),

n fV a1 , {a1},

n fA(A1, A2) , A1 ∪ A2,

n fL(a1, A1) , A1 − {a1},

n fF(a1, a2, A1, A2) , (A1 − {a1, a2}) ∪ (A2 − {a1}).
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Finite set of all variables var t of an AST t:
var a1 , {a1}

var(t1 t2) , (var t1) ∪ (var t2)

var(λa1.t1) , (var t1) ∪ {a1}

var(letreca1 a2 = t1 in t2) , {a1, a2} ∪ (var t1)

∪ (var t2)
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t{b/a} , replace all occurrences of a with b in an
AST t:
n a1{b/a} , if a1 = a then b else a1

n (t1 t2){b/a} , (t1{b/a}) (t2{b/a})

n (λa1. t1){b/a} , λa1{b/a}. t1{b/a}

n (letreca1 a2 = t1 in t2 ,

letrec (a1{b/a})(a2{b/a}) = t1{b/a} in t2{b/a}
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Structural recursion for Λ

Given a set S

and functions


















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letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec
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>

a 100

−

a 10

@

f @
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letrec f a = ifa > 100 thena − 10

else f(f(a + 11))

in f(a + 101)

letrec

f a if

>

a 100

−

a 10

@

f @

f +

a 11

@

f +

a 101

free
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α-Equivalence
[LN p 11]

Smallest binary relation =α on Λ closed under the
rules:

a ∈ V

a =α a

t1 =α t′
1

t2 =α t′
2

t1 t2 =α t′
1
t′
2

t1{a′′
1
/a1} =α t′

1
{a′′

1
/a′

1
} a′′

1
/∈ var(a1, t1, a′

1
, t′

1
)

λa1. t1 =α λa′
1
. t′

1

t1{a′′
1
, a′′

2
/a1, a2} =α t′

1
{a′′

1
, a′′

2
/a′

1
, a′

2
}

t2{a′′
1
/a1} =α t′

2
{a′′

1
/a′

1
}

a′′
1

6= a′′
2

a′′
1
, a′′

2
/∈ var(a1, a2, t1, t2, a′

1
, a′

2
, t′

1
, t′

2
)

letreca1 a2 = t1 in t2 =α letreca′
1
a′

2
= t′

1
in t′

2
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1
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2

Exercise: prove that =α is transitive (and reflexive
and symmetric).
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Abstract syntax / α

Dealing with issues to do with binders and
α-conversion is
n irritating (want to get on with more interesting
aspects of semantics!)

n pervasive (very many languages involve binding
operations; cf. POPLMark Challenge [TPHOLs ’05])

n difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to α-equivalence”. . .
. . . and then forget about it, referring to α-equi-
valence classes e = [t]α only via representatives, t.

For example. . .
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E.g. – capture-avoiding substitution
(a := e)e1 = substitute e ∈ Λ/=α for all free

occurrences of a in e1 ∈ Λ/=α, avoiding capture
of free variables in e by binders in e1.

n (a := e)a1 , if a1 = a then e else a1

n (a := e)(e1 e2) , ((a := e)e1)((a := e)e2)

n (a := e)(λa1.e1) ,

if a1 /∈ fv(a, e) then λa1.(a := e)e1

else don’t care!
n (a := e)(letreca1 a2 = e1 in e2) ,

if a1, a2 /∈ fv(a, e) & a2 /∈ fv(a1, e2)

then letreca1 a2 = (a := e)e1 in (a := e)e2

else don’t care!
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(a := e)(−) : Λ/α → Λ/α, but not via an obvious, structurally recursive definition

of a function f̂ : Λ → Λ respecting α-equivalence.
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E.g. – denotational semantics
of Λ/α in some suitable domain D:
n Ja1Kρ , ρ(a1)

n Je1 e2Kρ , app(Je1Kρ, Je2Kρ)

n Jλa1.e1Kρ , fun(λd ∈ D. Je1K(ρ[a1 7→ d]))

n Jletreca1 a2 = e1 in e2Kρ , · · ·

where

- ρ ranges over environments mapping variables to elements of D

- D comes equipped with continuous functions app : D × D → D and

fun : (D → D) → D.

In this case we can use ordinary structural recursion to first define denotations of

ASTs and then prove that they respect α-equivalence.

But is there a quicker way, working directly with ASTs/α?
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α-Structural recursion
Is there a recursion principle for Λ/α that legitimises
these “definitions” of (a := e)(−) : Λ/α → Λ/α and
J−K : Λ/α → D (and many other e.g.s)?

Yes! — α-structural recursion
(and induction too—see lecture notes).

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.
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Pause
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Running example (reminder)
Concrete syntax:

t ::= a | t t | λa.t | letreca a = t in t

ASTs:

Λ , µS.(V + (S × S) + (V × S) + (V × V × S × S))

where V is some fixed, countably infinite set (of
names a of variables).
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Structural recursion for Λ
[LN p 10]

Given a set S

and functions



















fV : V → S

fA : S × S → S

fL : V × S → S

fF : V × V × S × S → S,

there is a unique function f̂ : Λ → S satisfying

f̂ a1 = fV a1

f̂(t1 t2) = fA(f̂ t1, f̂ t2)

f̂(λa1.t1) = fL(a1, f̂ t1)

f̂(letreca1 a2 = t1 in t2) = fF(a1, a2, f̂ t1, f̂ t2)

for all a1, a2 ∈ V and t1, t2 ∈ Λ.

A more complicated version (“primitive recursion” instead of “iteration”) is derivable:

ĝ a1 = gV a1

ĝ(t1 t2) = gA(t1, t2, ĝ t1, ĝ t2)

ĝ(λa1.t1) = gL(a1, t1, ĝ t1)

ĝ(letrec a1 a2 = t1 in t2) = gF(a1, a2, t1, t2, ĝ t1, ĝ t2)
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α-Structural recursion for Λ/α
[LN p 31]

Given a nominal set X

and functions



















fV : V → X

fA : X × X → X

fL : V × X → X

fF : V × V × X × X → X,

all supported by a finite subset A ⊆ V,

there is a unique function f̂ : Λ/α → X

such that. . .

. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)
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f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

for all a1, a2 ∈ V & e1, e2 ∈ Λ/α,
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a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒
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. . . ∃! function f̂ : Λ/α → X such that:

f̂ a1 = fV a1

f̂(e1 e2) = fA(f̂ e1, f̂ e2)

a1 /∈ A ⇒ f̂(λa1.e1) = fL(a1, f̂ e1)

a1, a2 /∈ A & a1 6= a2 & a2 /∈ fv(e2) ⇒

f̂(letreca1 a2 = e1 in e2) = fF(a1, a2, f̂ e1, f̂ e2)

provided freshness condition for binders (FCB) holds
for fL: (∃a1 /∈ A)(∀x ∈ X) a1 # fL(a1, x)

for fF : (∃a1, a2 /∈ A) a1 6= a2 &

(∀x1, x2 ∈ X) a2 # x1 ⇒

a1, a2 # fF (a1, a2, x1, x2)

The freshness relation (−) # (−) between names
and elements of nominal sets generalises the
(−) /∈ fv(−) relation between variables and ASTs.

E.g. for the capture-avoiding substitution example,
fL(a1, e) , λa1.e and (FCB) holds trivially because
a1 /∈ fv(λa1.e) (and similarly for fF ).
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To be explained:
n Nominal sets, support
and the freshness relation, (−) # (−).

n How is α-structural recursion proved?
n How to generalise α-structural recursion from the
example language Λ to general languages with
binders?

n What’s involved with applying α-structural recursion
in any particular case?

n Example: normalisation by evaluation.
n Machine-assisted support?
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Atoms
[LN p 7]

From now on assume bindable names in ASTs are
drawn from a fixed, countably infinite set A

(elements called atoms)

Need different flavours of names (variables,
references, channels, nonces, . . . ), so assume
n A is partitioned into countably infinite number of
sorts.
Write sort(a) for the sort of a ∈ A.

n There are infinitely many atoms of each sort.
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Atoms
[LN p 7]

From now on assume bindable names in ASTs are
drawn from a fixed, countably infinite set A

(elements called atoms)

The mathematical model of bindable names we use
is very abstract: in the world of nominal sets, the
only attributes of an atom are identity and sort.

Probably interesting & pragmatically useful to consider more structured atoms (!),

e.g. linearly ordered ones, but we don’t do that here.
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Permutations
[LN p 12]

Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Perm is a group:
n multiplication π π′ = function composition π ◦ π′:

π ◦ π′(a) , π(π′(a))

n identity element ι = identity function on A

n inverse π−1 of π ∈ Perm is inverse qua function.
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Permutations
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Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Given a1, a2 ∈ A with sort(a1) = sort(a2),
transposition (a1 a2) is the π ∈ Perm given by

π(a) ,











a2 if a = a1

a1 if a = a2

a otherwise
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Permutations
[LN p 12]

Set Perm of atom-permutations consists of all

bijections π : A ↔ A such that
n {a ∈ A | π(a) 6= a} is finite
n sort(π(a)) = sort(a) (all a ∈ A).

Given a1, a2 ∈ A with sort(a1) = sort(a2),
transposition (a1 a2) is the π ∈ Perm given by

π(a) ,











a2 if a = a1

a1 if a = a2

a otherwise

Exercise: prove that every π ∈ Perm can be
expressed as a composition of (finitely many)
transpositions.
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Actions of permutations
An action of Perm on a set S is a function

Perm × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

A Perm-set is a set S equipped with an action of
Perm on S.
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Actions of permutations
An action of Perm on a set S is a function

Perm × S → S written (π, s) 7→ π · s

satisfying ι · s = s and π · (π′ · s) = (ππ′) · s

Three simple examples of Perm-sets:
n Natural numbers N with trivial action: π · n = n.
n A with action: π · a = π(a).
n Perm itself with conjugation action:

π · π′ = π ◦ π′ ◦ π−1.
More examples in a mo.
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Finite support
[LN p 12]

Definition. A finite subset A ⊆ A supports an
element s ∈ S of a Perm-set S if

(a a′) · s = s

holds for all a, a′ ∈ A (of same sort) not in A

A nominal set is a Perm-set all of whose elements
have a finite support.
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[LN p 12]

Lemma. If s ∈ S has a finite support, then it has a
smallest one, written supp(s) .

Proof Suffices to show that if the finite sets A1 and
A2 support s, so does A1 ∩ A2.
So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.
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So given a, a′ ∈ A − (A1 ∩ A2), have to show
(a a′) · s = s. W.l.o.g. a 6= a′.

Pick any a′′ (of same sort) in the infinite set
A − (A1 ∪ A2 ∪ {a, a′}). Then

(a a′) = (a a′′) ◦ (a′ a′′) ◦ (a a′′)

is a composition of transpositions each of which fixes
s.
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Freshness relation
[LN P 18]

Given nominal sets X and Y and elements x ∈ X
and y ∈ Y ,
write x # y to mean supp(x) ∩ supp(y) = ∅.

So if a ∈ A, then a # x means a /∈ supp(x).

Hence
Key fact for atoms a and a′ of the same sort:

(a, a′) # x ⇒ (a a′) · x = x
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[LN P 18]

Given nominal sets X and Y and elements x ∈ X
and y ∈ Y ,
write x # y to mean supp(x) ∩ supp(y) = ∅.

So if a ∈ A, then a # x means a /∈ supp(x).

Hence
Key fact for atoms a and a′ of the same sort:

(a, a′) # x ⇒ (a a′) · x = x
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Languages/α form nominal sets
[LN p 13]

For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

For this action, it is not hard to see (exercise) that

e ∈ Λ/α is supported by any finite set of variables
containing all those occurring free in e and hence

a # e iff a /∈ fv(e).
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For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

N.B. binding and non-binding constructs are treated just the same

For this action, it is not hard to see (exercise) that

e ∈ Λ/α is supported by any finite set of variables
containing all those occurring free in e and hence

a # e iff a /∈ fv(e).
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For example, there’s a Perm-action on Λ/α
satisfying:

π · a = π(a)

π · (e1 e2) = (π · e1)(π · e2)

π · (λa.e) = λπ(a).(π · e)

π · (letreca1 a2 = e1 in e2) =

letrecπ(a1) π(a2) = π · e1 in π · e2

Proof (exercise) First define π · (−) : Λ → Λ by

structural recursion, and then prove that
t =α t′ ⇒ (∀π ∈ Perm) π · t =α π · t′.

For this action,
it is not hard to see (exercise) that e ∈ Λ/α is

supported by any finite set of variables containing all
those occurring free in e and hence

a # e iff a /∈ fv(e).
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letrecπ(a1) π(a2) = π · e1 in π · e2

For this action, it is not hard to see (exercise) that
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containing all those occurring free in e and hence

a # e iff a /∈ fv(e).
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End of lecture 1
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