Nominal Cubical model of type theory

Part 2

Andrew Pitts

Computer Science & Technology

Aarhus, October 2017 These slides are at www.cl.cam.ac.uk/~amp12/talks

Plan

- Motivation: the univalence axiom [HoTT]
- Overview of the Cohen-Coquand-Huber-Mörtberg presheaf model of univalent type theory [CCHM,OP]
- ► Toposes of M-sets
- CCHM cubical sets as finitely supported M-sets [Pit]
- Path objects
- Cofibrant propositions and fibrant families
- A univalent universe [CCHM]

De Morgan sets

Recall:

The category **Dms** of **De Morgan sets** is the full subcategory of **Set**^{\mathbb{M}} consisting of those \mathbb{M} -sets Γ such that every $x \in \Gamma$ possesses a finite support.

M= finitary endomorphisms of the free De Morgan algebra ${\rm I\!I}$ on countably many generators ${\rm J\!I}\subseteq {\rm I\!I}$

Every $d \in \mathbb{I}$ can be put in disjunctive normal form as a finite join of finite meets of finite subsets of $\mathcal{I} \cup \{1 - i \mid i \in \mathcal{I}\}$.

Elements of \mathbb{M} are finite substitutions $(d_1/i_1) \circ \cdots \circ (d_n/i_n)$ for some distinct $i_1, \ldots, i_n \in \mathfrak{I}$ and some $d_1, \ldots, d_n \in \mathbb{I}$.

An M-set Γ is in **Dms** if for each $x \in \Gamma$, there is some $I \subseteq_{\text{fin}} \mathfrak{I}$ with $i \notin I \Rightarrow (d/i) \cdot x = x$ (any $d \in \mathbb{I}$).

The interval **I** in **Dms**

 $\mathbb{I} \equiv$ countably infinitely generated free De Morgan algebra (generators $\mathfrak{I} \subseteq \mathbb{I}$). \mathbb{M} acts on \mathbb{I} via function application.

 $\mathbb{I} \in \mathbf{Dms}$, because each $d \in \mathbb{I}$ is supported by the finite set of directions occurring in its normal form.

The interval **I** in **Dms**

 $\mathbb{I} \equiv$ countably infinitely generated free De Morgan algebra (generators $\mathfrak{I} \subseteq \mathbb{I}$). \mathbb{M} acts on \mathbb{I} via function application.

Since each endomorphism $m \in \mathbb{M}$ preserves the De Morgan algebra structure of \mathbb{I} we get morphisms in **Dms**

 $0,1:1 \to \mathbb{I} \qquad \forall, \land: \mathbb{I} \times \mathbb{I} \to \mathbb{I} \qquad 1 - (\underline{}): \mathbb{I} \to \mathbb{I}$

making I an internal De Morgan algebra in the topos **Dms**.

0, 1 give source and target of I-paths

1 - (_) gives I-path reversal

 v, Λ give a "connection" structure, e.g. used to prove that singleton types w.r.t. $I\!\!I\text{-}paths$ are contractible

The interval **I** in **Dms**

 $\mathbb{I} \equiv$ countably infinitely generated free De Morgan algebra (generators $\mathfrak{I} \subseteq \mathbb{I}$). \mathbb{M} acts on \mathbb{I} via function application.

Since each endomorphism $m \in \mathbb{M}$ preserves the De Morgan algebra structure of \mathbb{I} we get morphisms in **Dms**

 $0,1:1 \to \mathbb{I} \qquad \forall, \land: \mathbb{I} \times \mathbb{I} \to \mathbb{I} \qquad 1 - (_): \mathbb{I} \to \mathbb{I}$

making I an internal De Morgan algebra in the topos **Dms**.

In the internal logic of the topos Dms, \mathbb{I} does not look much like the classical interval [0, 1], e.g. it is not totally ordered,

but it is (logically) connected $(2^{\mathbb{I}} \cong 2)$.

Paths

Given $\Gamma \in \mathbf{Dms}$, the object of \mathbb{I} -paths in Γ is just the exponential $\Gamma^{\mathbb{I}}$.

General exponentials Γ^{Δ} of (finitely supported) *M*-sets have a somewhat complicated description (compared with *G*-sets).

But when $\Delta = \mathbb{I}$, there is a simple characterisation of $\Gamma^{\mathbb{I}}$ in terms of the nominal sets notions of

name abstraction

and

freshness

Freshness

Given $\Gamma \in Dms$

we say direction $i \in \mathcal{I}$ is **fresh** for $x \in \Gamma$ and write i # xif $(0/i) \cdot x = x$

in which case $(d/i) \cdot x = x$ for any $d \in \mathbb{I}$.

Path objects in **Dms**

Given $\Gamma \in \mathbf{Dms}$, equivalence relation \sim on $\mathfrak{I} \times \Gamma$: $(i, x) \sim (i', x')$ holds iff

 $(\exists j \in \mathfrak{I}) \ j \ \# \ (i, x, i', x') \ \land \ (j/i) \cdot x = (j/i') \cdot x'$

Path objects in **Dms**

Given $\Gamma \in \mathbf{Dms}$, equivalence relation \sim on $\mathfrak{I} \times \Gamma$: $(i, x) \sim (i', x')$ holds iff

 $(\exists j \in \mathcal{I}) \ j \ \# \ (i, x, i', x') \ \land \ (j/i) \cdot x = (j/i') \cdot x'$

Path object $\mathcal{P} \Gamma \in \mathbf{Dms}$ is $(\mathcal{I} \times \Gamma)/\sim$ ~-equiv class of (i, x) written $\langle i \to x \rangle$ M-action: $m \cdot \langle i \to x \rangle \equiv \langle j \to m \cdot (j/i) \cdot x \rangle$ for some/any j # (m, i, x)

Path objects in **Dms**

Path object $\mathcal{P}\Gamma \in \mathbf{Dms}$ is $(\mathfrak{I} \times \Gamma)/\sim$ ~-equiv class of (i, x) written $\langle i \to x \rangle$ M-action: $m \cdot \langle i \to x \rangle \equiv \langle j \to m \cdot (j/i) \cdot x \rangle$ for some/any j # (m, i, x)Theorem. $\mathcal{P}\Gamma \cong \Gamma^{\mathbb{I}}$

Application @: $\mathcal{P}\Gamma \times \mathbb{I} \to \Gamma$ satisfies $\langle i \to x \rangle$ @ $d = (d/i) \cdot x$. Currying of $\gamma \in \mathbf{Dms}(\Delta \times \mathbb{I}, \Gamma)$ is $\mathbf{cur} \gamma \in \mathbf{Dms}(\Delta, \mathcal{P}\Gamma)$ where

 $\operatorname{cur} \gamma \, y \equiv \langle i \, extsf{--} \, \gamma(y,i)
angle$ for some/any i with $i \, \# \, y$

Operations on paths

Source/target: $\partial_0, \partial_1 \in \mathbf{Dms}(\mathcal{P}\Gamma, \Gamma)$ $\partial_0 \langle i \to x \rangle = (0/i) \cdot x \quad \partial_1 \langle i \to x \rangle = (1/i) \cdot x$ Degenerate paths: $\iota \in Dms(\Gamma, \mathcal{P}\Gamma)$ $\iota x \equiv \langle i \rightarrow x \rangle$ for some/any i # x**Reversal:** rev : Dms($\mathcal{P}\Gamma, \mathcal{P}\Gamma$) rev $\langle i \rightarrow x \rangle = \langle i \rightarrow ((1-i)/i) \cdot x \rangle$ Connection: $\operatorname{cnx}: \operatorname{Dms}(\mathfrak{P}\Gamma, \mathfrak{P}(\mathfrak{P}\Gamma))$ $\operatorname{cnx}\langle i \to x \rangle = \langle j \to \langle k \to ((j \land k)/i) \cdot x \rangle \rangle \text{ (some/any } j, k \# (i, x))$ $\iota(\partial_0 p)$ cnx p p $\partial_0 p - \iota(\partial_0 p) - \partial_0 p$

CwF of \mathbb{M} -sets, Set^{\mathbb{M}}

Recall:

Objects $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ are sets equipped with an \mathbb{M} -action **Morphisms** $\gamma \in \mathbf{Set}^{\mathbb{M}}(\Delta, \Gamma)$ are functions preserving the \mathbb{M} -action

Families $A \in \operatorname{Set}^{\mathbb{M}}(\Gamma)$ are families of sets $(A \ x \in \operatorname{Set} | \ x \in \Gamma)$ equipped with a dependently-typed M-action

Elements $\alpha \in \operatorname{Set}^{\mathbb{M}}(\Gamma \vdash A)$ are dependent functions $\alpha \in \prod_{x \in \Gamma} A x$ preserving the M-action

$$m \cdot (\alpha x) = \alpha (m \cdot x)$$

Dms as a CwF

Same as the CwF for Set^M except that for a De Morgan set $\Gamma \in \mathbf{Dms}$ the families in $\mathbf{Dms}(\Gamma)$ are all the families $A = (A x \mid x \in \Gamma) \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$ with a (dependent) finite support property:

for every $x \in \Gamma$ and $a \in A x$ there is a finite subset $I \subseteq_{\text{fin}} \mathfrak{I}$ that supports x in Γ and such that for all $i \in \mathfrak{I}$, if $i \notin I$ then

 $(\mathbf{0}/i) \cdot a = a \in A \, x = A((\mathbf{0}/i) \cdot x)$

For each family $A \in Dms(\Gamma)$, dependently-typed choice gives:

$$(\sum_{x\in\Gamma}Ax)^{\mathbb{I}} \cong \sum_{f\in\Gamma^{\mathbb{I}}}\prod_{d\in\mathbb{I}}A(fd)$$

For each family $A \in Dms(\Gamma)$, dependently-typed choice gives:

For each family $A \in Dms(\Gamma)$, dependently-typed choice gives:

 $\mathcal{P}A \in \mathbf{Dms}(\mathcal{P}\Gamma)$ is the family of dependently-typed paths over paths in Γ .

For each $p \in \mathcal{P}\Gamma$, $(\mathcal{P}A)(p)$ consists of \sim -equiv. classes $\langle i \rightarrow a \rangle$ where $i \in \mathfrak{I}$ and $a \in A(p@i)$

 $(i, a) \sim (i', a') \equiv (\exists j \ \# \ p, i, a, i', a') \ (j/i) \cdot a = (j/i') \cdot a' \in A(p @ j)$

For each family $A \in Dms(\Gamma)$, dependently-typed choice gives:

 $\mathcal{P}A \in \mathrm{Dms}(\mathcal{P}\Gamma)$ is the family of dependently-typed paths over paths in Γ .

From this we get families $\operatorname{path}_A \in \operatorname{Dms}(\Gamma.A.(A \circ \operatorname{fst}))$ $\operatorname{path}_A((x, a_0), a_1) \equiv \{ p \in (\mathcal{P}A)(\iota x) \mid \partial_0 p = a_0 \land \partial_1 p = a_1 \}$

Do these give identification types in the CwF Dms?

For each family $A \in Dms(\Gamma)$, dependently-typed choice gives:

 $\mathcal{P}A \in \mathrm{Dms}(\mathcal{P}\Gamma)$ is the family of dependently-typed paths over paths in Γ .

From this we get families $path_A \in Dms(\Gamma.A.(A \circ fst))$

 $\mathsf{path}_A((x,a_0),a_1) \equiv \{ p \in (\mathcal{P}A)(\iota x) \mid \partial_0 p = a_0 \land \partial_1 p = a_1 \} \mid$

Do these give identification types in the CwF Dms?

Not quite...

Coquand's axioms for propositional identification types $A: \mathcal{U}, a, a': A \vdash a = a': \mathcal{U}$

 $A: \mathfrak{U}, a: A \vdash \mathbf{refl}: a = a$

 $A: \mathcal{U}, a, a': A, p: a = a' \vdash \text{contr}: (a, \text{refl}) = (a', p)$ $A: \mathcal{U}, B: A \to \mathcal{U}, a, a': A \vdash \text{subst}: (a = a') \to B a \to B a'$ $A: \mathcal{U}, B: A \to \mathcal{U}, a: A, B; B a \vdash \text{scomp}: \text{subst refl} b = b$

Coquand's axioms for propositional identification types $A: \mathfrak{U}, a, a': A \vdash a = a': \mathfrak{U}$

$$A: \mathcal{U}, a: A \vdash \text{refl} : a = a$$

$$A: \mathcal{U}, a, a': A, p: a = a' \vdash \text{contr} : (a, \text{refl}) = (a', p)$$

$$A: \mathcal{U}, B: A \to \mathcal{U}, a, a': A \vdash \text{subst} : (a = a') \to B a \to B a'$$

$$A: \mathcal{U}, B: A \to \mathcal{U}, a: A, B; B a \vdash \text{scomp} : \text{subst refl} b = b$$

$$\text{Lumsdaine [unpublished]: given}$$

$$\text{subst without scomp, can always}$$

$$\text{find a new subst' with a scomp'}$$

Coquand's axioms for propositional identification types $A: \mathcal{U}, a, a': A \vdash a = a': \mathcal{U}$

 $A: \mathcal{U}, a: A \vdash \text{refl}: a = a$ $A: \mathcal{U}, a, a': A, p: a = a' \vdash \text{contr}: (a, \text{refl}) = (a', p)$ $A: \mathcal{U}, B: A \to \mathcal{U}, a, a': A \vdash \text{subst}: (a = a') \to B a \to B a'$ $A: \mathcal{U}, B: A \to \mathcal{U}, a: A, B; B a \vdash \text{scomp}: \text{subst} \text{ refl} b = b$

Can use $\iota \in Dms(\Gamma, \mathcal{P}\Gamma)$ and $cnx : Dms(\mathcal{P}\Gamma, \mathcal{P}(\mathcal{P}\Gamma))$ to get refl and contr for I-paths in Dms.

To also get **subst**, we restrict attention to families equipped with a suitable Kan-style fibration structure...

(Maybe there are other ways to get **subst**?)

Plan

- Motivation: the univalence axiom [HoTT]
- Overview of the Cohen-Coquand-Huber-Mörtberg presheaf model of univalent type theory [CCHM,OP]
- ► Toposes of M-sets
- CCHM cubical sets as finitely supported M-sets [Pit]
- Path objects
- Cofibrant propositions and fibrant families
- ► A univalent universe [CCHM]

Topos structure of $\mathbf{Set}^{\mathbb{M}}$

Recall:

Subobjects of $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ correspond to subsets of $U \Gamma \in \mathbf{Set}$ that are closed under the \mathbb{M} -action.

Subobject classifier:

 $\Omega \equiv \{ \varphi \subseteq \mathbb{M} \mid (\forall m, m') \ m \in \varphi \Rightarrow m' \circ m \in \varphi \}$ $m \cdot \varphi \equiv \{ m' \in \mathbb{M} \mid m' \circ m \in \varphi \}$

Recall that in any topos, each object Γ has a partial map classifier, *viz.* a mono $\eta : \Gamma \rightarrow \tilde{\Gamma}$ with the universal property that

Recall that in any topos, each object Γ has a partial map classifier, *viz.* a mono $\eta : \Gamma \rightarrow \tilde{\Gamma}$ with the universal property that for any partial morphism $\cdot \xrightarrow{\gamma} \Gamma$

there is a unique morphism $\delta : \Delta \to \tilde{\Gamma}$ making the following square a pullback:

Topos structure of $\mathbf{Set}^{\mathbb{M}}$

Partial map classifier for $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ is

 $\widetilde{\Gamma} \equiv \{ (\varphi, f) \in \sum_{\varphi \in \Omega} \Gamma^{\varphi} \mid \\ (\forall m, m') \ m \in \varphi \Rightarrow m' \cdot (f \ m) = f(m' \circ m) \}$

with M-action

 $m \cdot (\varphi, f) \equiv (m \cdot \varphi, \lambda m' \to f(m' \circ m))$ and $\eta : \Gamma \rightarrowtail \tilde{\Gamma}$ given by $\eta x \equiv (\mathbb{M}, \lambda m \to m \cdot x)$

Topos structure of **Dms**

Limits are created by the forgetful functor $U: Dms \hookrightarrow Set^{\mathbb{M}^{op}} \to Set$.

Exponential of $\Gamma, \Delta \in Dms$ is coreflection $(\Delta^{\Gamma})_{fs}$ of exponential in Set^{M^{op}}.

Subobjects of $\Gamma \in Dms$ correspond to subsets of $U \Gamma \in Set$ that are closed under the M-action.

Subobject classifier is $(\Omega)_{fs}$.

Partial map classifier of $\Gamma \in Dms$ is $(\tilde{\Gamma})_{fs}$.

Cofibrant propositions

In **Dms**, the subobject $\mathbb{F} \rightarrow \Omega_{fs}$ of **cofibrant propositions** consists of those $\varphi \in \Omega_{fs}$ satisfying

 $(\forall m \in \mathbb{M}) \ m \in \varphi \lor m \notin \varphi$ $(\forall s \in \mathbb{M}_{s})(\forall m \in \mathbb{M}) \ s \circ m \in \varphi \implies m \in \varphi$ where $\mathbb{M}_{s} \subseteq \mathbb{M}$ consists of those $s \in \mathbb{M}$ satisfying $(\forall i \in \operatorname{dom}(s)) \ s(i) \notin \{0, 1\}$ ("strict" substitution)

E.g. the top element $\mathbb{M} \in \Omega_{\mathrm{fs}}$ is in \mathbb{F} .

We say that a subobject $\Delta \rightarrow \Gamma$ in **Dms** is cofibrant if its classifier $\Gamma \rightarrow \Omega_{fs}$ factors through $\mathbb{F} \rightarrow \Omega_{fs}$.

Cofibrant propositions

In **Dms**, the subobject $\mathbb{F} \rightarrow \Omega_{fs}$ of **cofibrant propositions** consists of those $\varphi \in \Omega_{fs}$ satisfying

 $(\forall m \in \mathbb{M}) \ m \in \varphi \lor m \notin \varphi$ $(\forall s \in \mathbb{M}_s)(\forall m \in \mathbb{M}) \ s \circ m \in \varphi \implies m \in \varphi$ where $\mathbb{M}_s \subseteq \mathbb{M}$ consists of those $s \in \mathbb{M}$ satisfying $(\forall i \in dom(s)) \ s(i) \notin \{0,1\}$ ("strict" substitution)

Every $m \in \mathbb{M}$ factors as $m = s \circ f$ where s is strict and f is a face substitution: $\mathbb{M}_{f} \equiv \{f \in \mathbb{M} \mid (\forall i \in \text{dom}(f)) \ f(i) \in \{0,1\}\}$

Lemma. $\varphi \in \mathbb{F}$ iff there are finitely many face substitutions f_1, \ldots, f_n such that

 $m \in \varphi \Leftrightarrow \bigvee_{k=1,\dots,n} \bigwedge_{i \in \operatorname{dom}(f_k)} m(i) = f_k(i)$

Cofibrant partial elements

Given $\Gamma \in \mathbf{Dms}$ and $A \in \mathbf{Dms}(\Gamma)$, we can consider the partial map classifier for $\mathbf{fst} : \Gamma A \to \Gamma$ in \mathbf{Dms}/Γ restricted to partial maps whose domains of definition are cofibrant subobjects.

Cofibrant partial elements

Given $\Gamma \in \mathbf{Dms}$ and $A \in \mathbf{Dms}(\Gamma)$, we can consider the partial map classifier for $\mathbf{fst} : \Gamma A \to \Gamma$ in \mathbf{Dms}/Γ restricted to partial maps whose domains of definition are cofibrant subobjects. Explicitly:

 $\Box A \in \mathbf{Dms}(\Gamma)$ $\Box A x \equiv \{(\varphi, \alpha) \in \sum_{\varphi \in \mathbb{F}} \prod_{m \in \varphi} A(m \cdot x) \mid (\forall m, m') \ m \in \varphi \Rightarrow m' \cdot (\alpha \ m) = \alpha(m' \circ m) \}_{\mathrm{fs}}$ $m \cdot (\varphi, \alpha) \equiv (m \cdot \varphi, \lambda m' \to \alpha(m' \circ m))$

Cofibrant partial elements

Given $\Gamma \in \mathbf{Dms}$ and $A \in \mathbf{Dms}(\Gamma)$, we can consider the partial map classifier for $\mathbf{fst} : \Gamma A \to \Gamma$ in \mathbf{Dms}/Γ restricted to partial maps whose domains of definition are cofibrant subobjects. Explicitly:

 $\Box A \in \mathbf{Dms}(\Gamma)$ $\Box A x \equiv \{(\varphi, \alpha) \in \sum_{\varphi \in \mathbb{F}} \prod_{m \in \varphi} A(m \cdot x) \mid (\forall m, m') \ m \in \varphi \Rightarrow m' \cdot (\alpha \ m) = \alpha(m' \circ m) \}_{\mathrm{fs}}$ $m \cdot (\varphi, \alpha) \equiv (m \cdot \varphi, \lambda m' \to \alpha(m' \circ m))$

Every $a \in A x$ gives $(\mathbb{M}, \lambda m \to m \cdot a) \in \Box A x$.

We say a cofibrant partial element $(\varphi, \alpha) \in \Box A x$ **extends** to a total element $a \in A x$ and write $(\varphi, \alpha) \nearrow a$ if $(\forall m \in \varphi) \alpha m = m \cdot a \in A(m \cdot x)$

CCHM fibrations

Given $\Gamma \in Dms$

a **fibration structure** for a family $A \in Dms(\Gamma)$ is a function $comp_A$ mapping every

- $-p \in \mathcal{P}\Gamma$ (path in Γ)
- $-(\varphi,\pi)\in\Box(\mathcal{P}A)\,p$ (cofibrant partial path over p)
- $-a_0 \in A(\partial_0 p)$ extending $(\varphi, \partial_0 \pi)$

to $\operatorname{comp}_A(p,\varphi,\pi,a_0) \in A(\partial_1 p)$ extending $(\varphi,\partial_1 \pi)$. Furthermore, comp_A must respect the M-action.

(A remarkably simple definition – honestly! In particular it implies a Kan-style path-lifting property.)

CCHM fibrations

There is a family $FibA \in Dms(\mathcal{P}\Gamma)$ whose elements are fibration structures for $A \in Dms(\Gamma)$.

Theorem. [CCHM] There are (re-indexing stable) functions

 $Fib(A) \rightarrow Fib(path_A)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(\Sigma A B)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(\Pi A B)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(W A B)$

etc.

Proof. [OP] Clearer to work in the internal language of Dms, since doing shows that one just needs some simple properties of $\mathbb I$ and $\mathbb F$

 $\begin{array}{ll} \mathbf{0} \neq \mathbf{1}, & 2^{\mathbb{I}} \cong \mathbf{2}, & \text{``connection algebra''} (\land, \lor), \\ (\forall i \in \mathbb{I}) \ (i = \mathbf{0}) \in \mathbb{F} \ \land \ (i = 1) \in \mathbb{F}, & (\forall p, q \in \mathbb{F}) \ p \lor q \in \mathbb{F}. \end{array}$

CCHM fibrations

There is a family $FibA \in Dms(\mathcal{P}\Gamma)$ whose elements are fibration structures for $A \in Dms(\Gamma)$.

Theorem. [CCHM] There are (re-indexing stable) functions

 $Fib(A) \rightarrow Fib(path_A)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(\Sigma A B)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(\Pi A B)$ $Fib(A) \rightarrow Fib(B) \rightarrow Fib(W A B)$

etc.

Get a new CwF \mathcal{F} over **Dms** with $\mathcal{F}(\Gamma) \equiv \sum_{A \in Dms(\Gamma)} Dms(\mathcal{P}\Gamma \vdash FibA)$ and $\mathcal{F}(\Gamma \vdash (A, comp_A)) \equiv Dms(\Gamma \vdash A)$ with identification types, Σ -, Π -, W-types,... But what about universes?

Plan

- Motivation: the univalence axiom [HoTT]
- Overview of the Cohen-Coquand-Huber-Mörtberg presheaf model of univalent type theory [CCHM,OP]
- ► Toposes of M-sets
- CCHM cubical sets as finitely supported M-sets [Pit]
- Path objects
- Cofibrant propositions and fibrant families
- ► A univalent universe [CCHM]

Small sets

Let $set \in Set$ be a fixed Grothendieck universe.

 $\mathbb{N} \in \text{set}$ $x \in y \in \text{set} \Rightarrow x \in \text{set}$ $x, y \in \text{set} \Rightarrow \{x, y\} \in \text{set}$ $x \in \text{set} \Rightarrow \{y \mid y \subseteq x\} \in \text{set}$ $x \in \text{set} \land f \in \text{set}^x \Rightarrow \bigcup_{y \in x} f y \in \text{set}$

(More generally, can assume there is a countable sequence $set_0 \in set_1 \in set_2 \in \cdots \in Set$ of Grothendieck universes.)

Small sets

Let $set \in Set$ be a fixed Grothendieck universe.

Say that $x \in$ **Set** is small if $x \in$ **set** (and large otherwise).

We assume that the set \mathfrak{I} is small; and hence so are \mathbb{I} and \mathbb{M} .

 $S \in Dms$ consists of functions $A \in set^{\mathbb{M}}$ that come equipped with a dependently-typed M-action

 $m, m' \in \mathbb{M}, a \in A m \mapsto m' \cdot a \in A(m' \circ m)$

 $m'' \cdot (m' \cdot a) = (m'' \circ m') \cdot a \in A(m'' \circ m' \circ m)$ id \cdot a = a \epsilon A m

 $S \in Dms$ consists of functions $A \in set^{\mathbb{M}}$ that come equipped with a dependently-typed M-action

 $m, m' \in \mathbb{M}, a \in A \ m \mapsto m' \cdot a \in A(m' \circ m)$

Action of $m \in \mathbb{M}$ on $A \in S$ is

 $m \cdot A \equiv \lambda m' o A(m' \circ m)$

Furthermore, we require S to be finitely supported w.r.t. this action and that each $a \in A m$ is finitely supported, i.e. there is some $I \subseteq_{\text{fin}} \mathfrak{I}$ supporting A, containing $\operatorname{dir}(m)$ and satisfying that for all $i \notin I$

 $a = (\mathbf{0}/i) \cdot a \in A((\mathbf{0}/i) \circ m)$

 $\underline{S \in Dms}$ consists of functions $A \in set^{\mathbb{M}}$ that come equipped with a dependently-typed \mathbb{M} -action

 $m, m' \in \mathbb{M}, a \in A \ m \mapsto m' \cdot a \in A(m' \circ m)$

Action of $m \in \mathbb{M}$ on $A \in S$ is

 $m \cdot A \equiv \lambda m' o A(m' \circ m)$

Furthermore, we require S to be finitely supported w.r.t. this action and that each $a \in A m$ is finitely supported, i.e. there is some $I \subseteq_{\text{fin}} \mathfrak{I}$ supporting A, containing $\operatorname{dir}(m)$ and satisfying that for all $i \notin I$

 $a = (0/i) \cdot a \in A((0/i) \circ m)$ = $A(m \circ (0/i)) = ((0/i) \cdot A) m = A m$

There is a family $\mathcal{E}\ell \in \mathbf{Dms}(S)$ mapping each $A \in S$ to

$\mathcal{E}\ell A \equiv A \operatorname{id}$

which weakly classifies small families in Dms:

There is a family $\mathcal{E} \in \mathbf{Dms}(S)$ mapping each $A \in S$ to

$\mathcal{E}\ell A \equiv A \operatorname{id}$

which weakly classifies small families in Dms:

Theorem. For all $\Gamma \in \mathbf{Dms}$, if a family $A \in \mathbf{Dms}(\Gamma)$ satisfies $(\forall x \in \Gamma) A x \in \mathbf{set}$, then there is a morphism $\lceil A \rceil \in \mathbf{Dms}(\Gamma, S)$ with $A = \mathcal{E}\ell \circ \lceil A \rceil$.

Composition structure

There is an operation $Comp: Dms(\Gamma) \rightarrow Dms(\Gamma)$ which has the property that for each family $A \in Dms(\Gamma)$ there is a bijection

$Dms(\mathcal{P}\Gamma \vdash FibA) \cong Dms(\Gamma \vdash CompA)$

naturally in Γ and A.

Composition structure

There is an operation $Comp: Dms(\Gamma) \rightarrow Dms(\Gamma)$ which has the property that for each family $A \in Dms(\Gamma)$ there is a bijection

$Dms(\mathcal{P}\Gamma \vdash FibA) \cong Dms(\Gamma \vdash CompA)$

naturally in Γ and A.

Sattler [unpublished]: Comp can be constructed from Fib just using the fact that I is an atomic object...

"Copaths"

The interval $\mathbb{I} \in \mathbf{Dms}$ is **atomic** in Lawvere's sense, i.e. $(_)^{\mathbb{I}}$ has a right adjoint $(_)^{1/\mathbb{I}} : \mathbf{Dms} \to \mathbf{Dms}$

 $\frac{\Gamma^{\mathbb{I}} \to \Delta}{\Gamma \to \Delta^{1/\mathbb{I}}}$

"Copaths"

The interval $\mathbb{I} \in \mathbf{Dms}$ is **atomic** in Lawvere's sense, i.e. $(_)^{\mathbb{I}}$ has a right adjoint $(_)^{1/\mathbb{I}} : \mathbf{Dms} \to \mathbf{Dms}$

Explicit description of $\Gamma^{1/\mathbb{I}}$:

underlying set consists of those functions $f: \mathbb{M} \to \mathcal{I} \to \Gamma$ satisfying

$$i # m' \Rightarrow m' \cdot (f m i) = f(m' \circ m) i$$

for which there is some $I \subseteq_{\text{fin}} \mathfrak{I}$ supporting f w.r.t. the action

$$(m \cdot f) m' i \equiv f (m' \circ m) i$$

and satisfying

$$i' # I, m \Rightarrow f m i = f((i'/i) \circ m) i'$$

"Copaths"

The interval $\mathbb{I} \in \mathbf{Dms}$ is **atomic** in Lawvere's sense, i.e. $(_)^{\mathbb{I}}$ has a right adjoint $(_)^{1/\mathbb{I}} : \mathbf{Dms} \to \mathbf{Dms}$

- ► transpose of $\gamma \in \mathbf{Dms}(\mathcal{P}\Delta, \Gamma)$ is $\overline{\gamma} \in \mathbf{Dms}(\Delta, \Gamma^{1/\mathbb{I}})$ where $\overline{\gamma} y m i \equiv \gamma \langle i \to m \cdot y \rangle$ $(y \in \Delta, m \in \mathbb{M}, i \in \mathfrak{I})$
- ► counit of the adjunction $\mathcal{P} \dashv (_)^{1/\mathbb{I}}$ at Γ , is $\varepsilon_{\Gamma} \in \mathbf{Dms}(\mathcal{P}(\Gamma^{1/\mathbb{I}}), \Gamma)$ where $\varepsilon_{\Gamma} \langle i \rightarrow f \rangle \equiv f \text{ id } i \qquad (i \in \mathcal{I}, f \in \Gamma^{1/\mathbb{I}})$ (and the unit is $\eta_{\Gamma} \in \mathbf{Dms}(\Gamma, (\mathcal{P} \Gamma)^{1/\mathbb{I}})$ where
 - $\eta_{\Gamma} x m i \equiv \langle i \to m \cdot x \rangle \qquad (x \in \Gamma, m \in \mathbb{M}, i \in \mathfrak{I}))$

There is a dependently-typed version of $(_)^{1/\mathbb{I}}$: given any family $A \in \mathbf{Dms}(\Gamma)$, there is $A^{1/\mathbb{I}} \in \mathbf{Dms}(\Gamma^{1/\mathbb{I}})$ and an isomorphism

(For each $f \in \Gamma^{1/\mathbb{I}}$, the set $A^{1/\mathbb{I}} f$ consists of dependent functions $g \in \prod_{m \in \mathbb{M}} \prod_{i \in \mathcal{I}} A(f m i)$ satisfying...[definition omitted].)

There is a dependently-typed version of $(_)^{1/\mathbb{I}}$: given any family $A \in \mathbf{Dms}(\Gamma)$, there is $A^{1/\mathbb{I}} \in \mathbf{Dms}(\Gamma^{1/\mathbb{I}})$

Comp $A \in Dms(\Gamma)$ is defined to be the re-indexing $(FibA)^{1/\mathbb{I}} \circ \eta_{\Gamma}$ of $(FibA)^{1/\mathbb{I}} \in Dms((\mathcal{P}\Gamma)^{1/\mathbb{I}})$ along the counit $\eta_{\Gamma} \in Dms(\Gamma, (\mathcal{P}\Gamma)^{1/\mathbb{I}})$ of the adjunction $\mathcal{P} \dashv (_)^{1/\mathbb{I}}$. There is a dependently-typed version of $(_)^{1/\mathbb{I}}$: given any family $A \in \mathbf{Dms}(\Gamma)$, there is $A^{1/\mathbb{I}} \in \mathbf{Dms}(\Gamma^{1/\mathbb{I}})$

Comp $A \in Dms(\Gamma)$ is defined to be the re-indexing $(FibA)^{1/\mathbb{I}} \circ \eta_{\Gamma}$ of $(FibA)^{1/\mathbb{I}} \in Dms((\mathcal{P}\Gamma)^{1/\mathbb{I}})$ along the counit $\eta_{\Gamma} \in Dms(\Gamma, (\mathcal{P}\Gamma)^{1/\mathbb{I}})$ of the adjunction $\mathcal{P} \dashv (_)^{1/\mathbb{I}}$.

So we have a pullback square in Dms:

Hence, sections of Γ . Comp *A* correspond to sections of $\mathcal{P}\Gamma$. Fib*A*

There is a dependently-typed version of $(_)^{1/\mathbb{I}}$: given any family $A \in \mathbf{Dms}(\Gamma)$, there is $A^{1/\mathbb{I}} \in \mathbf{Dms}(\Gamma^{1/\mathbb{I}})$

Comp $A \in Dms(\Gamma)$ is defined to be the re-indexing $(FibA)^{1/\mathbb{I}} \circ \eta_{\Gamma}$ of $(FibA)^{1/\mathbb{I}} \in Dms((\mathcal{P}\Gamma)^{1/\mathbb{I}})$ along the counit $\eta_{\Gamma} \in Dms(\Gamma, (\mathcal{P}\Gamma)^{1/\mathbb{I}})$ of the adjunction $\mathcal{P} \dashv (_)^{1/\mathbb{I}}$.

So we have a pullback square in Dms:

Hence, elements of $Dms(\Gamma \vdash Comp A)$ correspond to elements of $Dms(\mathcal{P}\Gamma \vdash FibA)$, i.e. fibration structures for *A*.

CwF of fibrations

Now we can (re)define \mathcal{F} to be the CwF over **Dms** with $-\mathcal{F}(\Gamma) \equiv \sum_{A \in Dms(\Gamma)} Dms(\Gamma \vdash Comp A)$ $-\mathcal{F}(\Gamma \vdash (A, \alpha)) \equiv Dms(\Gamma \vdash A)$

Theorem. [CCHM] \mathcal{F} is a model of UTT.

CwF of fibrations

Now we can (re)define \mathcal{F} to be the CwF over **Dms** with $-\mathcal{F}(\Gamma) \equiv \sum_{A \in Dms(\Gamma)} Dms(\Gamma \vdash Comp A)$ $-\mathcal{F}(\Gamma \vdash (A, \alpha)) \equiv Dms(\Gamma \vdash A)$

Theorem. [CCHM] \mathcal{F} is a model of UTT.

The univalent universe in \mathcal{F} has underlying De Morgan set $\mathcal{U} \equiv \mathcal{S}$. Comp $\mathcal{E}\ell$. There's a family in $\mathcal{F}(\mathcal{U})$ that weakly classifies small families in \mathcal{F} and this is univalent (and \mathcal{U} is itself a fibration over 1).

(Proof, via "glueing", uses closure of $\mathbb F$ under $\mathbb I\text{-indexed}\ \forall$, and a construction that allows one to strictify some isomorphisms into equalities in the ambient set theory.)

In conclusion

- I spent 4 hrs and still didn't manage to give you a convincingly detailed proof that the CCHM model is univalent :-(
- A proof entirely in a language of type theory would be better – to do that it seems one needs a modality to express global nature of the universe construction.
- Can the nominal/M-sets approach usefully be applied to (a constructive version of) the simplicial model of UTT?
- Do non-truncated models of UTT have to be this complicated? (and can we avoid Kan-filling in some way?)