Unfinity Categories

Andrew Pitts

26 March 2021

Motivation

Models of homotopy type theory (HoTT) *from* higher-dimensional category theory (HDCT)

 $\mathsf{Hofmann}\text{-}\mathsf{Streicher}{\rightarrow}\mathsf{Awodey}\text{-}\mathsf{Warren}{\rightarrow}\cdots$

Universes are what make dependent type theory tick and for HoTT we'd like (more, and simpler, examples of) *univalent* universes

Motivation

Models of homotopy type theory (HoTT) *from* higher-dimensional category theory (HDCT)

 $\mathsf{Hofmann}\text{-}\mathsf{Streicher}{\rightarrow}\mathsf{Awodey}\text{-}\mathsf{Warren}{\rightarrow}\cdots$

Universes are what make dependent type theory tick and for HoTT we'd like (more, and simpler, examples of) *univalent* universes but their study in HDCT seems under-developed

when constructing universes, size considerations are less of an issue than "microcosmic" ones

Higher-dimensional category theory

"2-category theory sucks"

A famous logician

(who uses category theory)

So where does that leave ∞ -category theory?

Higher-dimensional category theory

"2-category theory sucks"

A famous logician

(who uses category theory)

So where does that leave ∞ -category theory?

Observation from [AMP, Proc. TYPES 2014]: one can use nominal techniques to make dimensionality implicit

> Does it help? The jury is still out

Road map

(André Joyal was probably joking when he coined the word, but I quite like it.)

A [constructive] set v is unfinite if it has

decidable non-equality (#) $\forall x, y \in v. x \# y \lor x = y$ $\forall x, y \in v. \neg (x \# y \land x = y)$

and it is finitely inexhaustible $\forall \overline{\mathbf{x}} \in \operatorname{Fin} v, \exists \mathbf{x} \in v. \mathbf{x} \notin \overline{\mathbf{x}}$

A [constructive] set v is unfinite if it has

decidable non-equality (#) $\forall x, y \in v. x \# y \lor x = y$ $\forall x, y \in v. \neg (x \# y \land x = y)$

and it is finitely inexhaustible $\forall \overline{\mathbf{x}} \in \operatorname{Fin} v, \exists \mathbf{x} \in v. \mathbf{x} \notin \overline{\mathbf{x}}$

least collection of subsets of v containing \emptyset and closed under taking union with singletons

 $\mathbf{x} \notin \overline{\mathbf{y}}$

 $\mathbf{x} \notin \overline{\mathbf{y}} \cup \{\mathbf{y}\}$

 $\mathbf{x} \notin \emptyset$

x # y

A [constructive] set v is unfinite if it has

decidable non-equality (#) $\forall x, y \in v. x \# y \lor x = y$ $\forall x, y \in v. \neg(x \# y \land x = y)$

and it is finitely inexhaustible $\forall \overline{\mathbf{x}} \in \operatorname{Fin} v, \exists \mathbf{x} \in v. \mathbf{x} \notin \overline{\mathbf{x}}$

"mere" existence

A [constructive] set v is unfinite if it has

decidable non-equality (#) $\forall x, y \in v. x \# y \lor x = y$ $\forall x, y \in v. \neg (x \# y \land x = y)$

and it is finitely inexhaustible $\forall \overline{\mathbf{x}} \in \operatorname{Fin} v, \exists \mathbf{x} \in v. \mathbf{x} \notin \overline{\mathbf{x}}$

From now on v is a fixed, unfinite set (e.g. \mathbb{N}) whose elements are called *dimensions* and are written x, y, z, ...

A nominal set is a set C (elements called *cells*, written *a*, *b*, *c*, ...) with a function for swapping dimensions in cells

$$\begin{array}{rcl} \mathbb{C} \times \upsilon \times \upsilon & \to & \mathbb{C} \\ (a, \mathtt{x}, \mathtt{y}) & \mapsto & a[\mathtt{y}] \end{array}$$

satisfying

$$\forall a, \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}. \ a[\mathbf{x}] = a = a[\mathbf{y} \ \mathbf{y}] \land \cdots$$

A nominal set is a set C (elements called *cells*, written *a*, *b*, *c*, ...) with a function for swapping dimensions in cells

$$\begin{array}{rccc} \mathbb{C} \times \upsilon \times \upsilon & \to & \mathbb{C} \\ (a, \mathbf{x}, \mathbf{y}) & \mapsto & a[\mathbf{x}] \end{array}$$

satisfying

 $\forall a, \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}. \ a[\mathbf{x}] = a = a[\mathbf{y} \ \mathbf{y}] \land a[\mathbf{x} \ \mathbf{z}] = a \begin{bmatrix} \mathbf{z} \ \mathbf{x} \ \mathbf{w} \end{bmatrix} \land \cdots$ $if \mathbf{x} = \mathbf{z} \text{ then } \mathbf{w} \text{ else if } \mathbf{x} = \mathbf{w} \text{ then } \mathbf{z} \text{ else } \mathbf{x}$

A nominal set is a set C (elements called *cells*, written *a*, *b*, *c*, ...) with a function for swapping dimensions in cells

$$\begin{array}{rcl} \mathbb{C} \times \upsilon \times \upsilon & \to & \mathbb{C} \\ (a, \mathtt{x}, \mathtt{y}) & \mapsto & a[\mathtt{y}] \end{array}$$

satisfying

 $\forall a, \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}. \ a[\mathbf{x}] = a = a[\mathbf{y} \ \mathbf{y}] \land \ a[\mathbf{x}] = a \begin{bmatrix} \mathbf{z} \ \mathbf{x}[\mathbf{w}] \\ \mathbf{w} \ \mathbf{y}[\mathbf{w}] \end{bmatrix} \land$

 $\forall a, \exists \overline{\mathbf{x}}, \forall \mathbf{x}, \mathbf{y} \notin \overline{\mathbf{x}}. \ a[_{\mathbf{y}}^{\mathbf{x}}] = a$ (finite support property)

A nominal set is a set C (elements called *cells*, written *a*, *b*, *c*, ...) with a function for swapping dimensions in cells

$$\begin{array}{rccc} \mathbb{C} \times \upsilon \times \upsilon & \to & \mathbb{C} \\ (a, \mathtt{x}, \mathtt{y}) & \mapsto & a[\mathtt{y}] \end{array}$$

satisfying...

A morphism of nominal sets is a function $F : \mathbb{C} \to \mathcal{D}$ which is equivariant: $F(a[_y^x]) = (Fa)[_y^x]$

A nominal set is a set C (elements called *cells*, written *a*, *b*, *c*, ...) with a function for swapping dimensions in cells

 $\begin{array}{cccc} \mathbb{C} \times \upsilon \times \upsilon & \to & \mathbb{C} \\ (a, \mathtt{x}, \mathtt{y}) & \mapsto & a[\mathtt{y}] \end{array}$

satisfying...

A morphism of nominal sets is a function $F : \mathcal{C} \to \mathcal{D}$ which is equivariant: $F(a[_y^x]) = (Fa)[_y^x]$

The category \underbrace{Nom} of nominal sets & equivariant functions is so nice there are whole books about it:

AMP, *Nominal Sets* (CUP 2013) Mikołaj Bojańczyk, *Slightly Infinite Sets* (2019, on-line)

(but not written from a constructive point of view and not oriented towards HDCT)

Name abstraction

Given $\mathcal{C} \in \mathcal{N}om$, the nominal set $\wp \mathcal{C}$ of paths in \mathcal{C} consists of equivalence classes $\langle \mathbf{x} \rightarrow \boldsymbol{a} \rangle$ of pairs $(\mathbf{x}, a) \in v \times \mathcal{C}$ for the equivalence relating (x, a) and (y, b) when $\exists z \# x, y, a, b. a[x] = b[y]$ **Freshness** relation: x # a if $x \notin \overline{x}$, for some support \overline{x} of a where $\overline{\mathbf{x}} \in \operatorname{Fin} v$ supports $a \in \mathcal{C}$ if $\forall \mathbf{x}, \mathbf{y} \notin \overline{\mathbf{x}}, a[\mathbf{x}] = a$ (read "x # a" as "cell a is degenerate in dimension x")

Name abstraction

Given $\mathcal{C} \in \mathcal{N}om$, the nominal set $\mathcal{D} \subset \mathcal{C}$ of paths in \mathcal{C} consists of equivalence classes $\langle \mathbf{x} \rightarrow a \rangle$ of pairs $(\mathbf{x}, a) \in \upsilon \times \mathcal{C}$ for the equivalence relating (\mathbf{x}, a) and (\mathbf{y}, b) when $\exists \mathbf{z} \# \mathbf{x}, \mathbf{y}, a, b. a[\mathbf{x}] = b[\mathbf{y}]$

Swapping action in $\wp \mathcal{C}$ is well-defined by: $\langle \mathbf{x} \rightarrow a \rangle \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \triangleq \langle \mathbf{x} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \rightarrow a \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \rangle$

Hence the freshness relation for $\wp \mathcal{C}$ is: y # $\langle x \rightarrow a \rangle \iff y = x \lor y \# a$

Paths can be "concreted" at a fresh dimension: $\langle \mathbf{x} \rightarrow a \rangle \circ \mathbf{y} \triangleq a[\mathbf{x}]$ well-defined when $\mathbf{y} \# \langle \mathbf{x} \rightarrow a \rangle$

Name abstraction

Given $\mathcal{C} \in \mathcal{N}om$, the nominal set $\mathcal{D} \subset \mathcal{C}$ of paths in \mathcal{C} consists of equivalence classes $\langle \mathbf{x} \rightarrow a \rangle$ of pairs $(\mathbf{x}, a) \in \upsilon \times \mathcal{C}$ for the equivalence relating (\mathbf{x}, a) and (\mathbf{y}, b) when $\exists \mathbf{z} \# \mathbf{x}, \mathbf{y}, a, b. a[\mathbf{x}] = b[\mathbf{y}]$

Swapping action in $\wp \mathbb{C}$ is well-defined by: $\langle \mathbf{x} \rightarrow a \rangle \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \triangleq \langle \mathbf{x} \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \rightarrow a \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} \rangle$

Hence the freshness relation for $\wp \mathcal{C}$ is: y # $\langle x \rightarrow a \rangle \iff y = x \lor y \# a$

Paths can be "concreted" at a fresh dimension: $\langle \mathbf{x} \rightarrow a \rangle \, \circ \, \mathbf{y} \triangleq a \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$ well-defined when $\mathbf{y} \# \langle \mathbf{x} \rightarrow a \rangle$

But as yet, paths don't start or end anywhere.

We take cubical sets to be nominal sets \mathcal{C} equipped with some extra structure, namely face maps $a \in \mathcal{C} \mapsto a[{}^{i}_{x}] \in \mathcal{C}$, for i = 0, 1 and $x \in v$

We take cubical sets to be nominal sets C equipped with some extra structure, namely face maps

$$d^{i} : \wp \ \mathbb{C} \to \mathbb{C} \\ \langle \mathbf{x} \to a \rangle \mapsto a[{}^{i}_{\mathbf{x}}] \quad (i \in \{0, 1\})$$

morphisms in $\mathcal{N}om$ satisfying
(equivariance $a[{}^{i}_{\mathbf{x}} {}^{\mathbf{y}}_{\mathbf{z}}] = a[{}^{\mathbf{y}}_{\mathbf{z}} {}^{i}_{\mathbf{x}}] - \text{implied})$
(binding $\mathbf{x} \# a[{}^{i}_{\mathbf{x}}] - \text{implied})$
degeneracy $\mathbf{x} \# a \Rightarrow a[{}^{i}_{\mathbf{x}}] = a$
independence $\mathbf{x} \# \mathbf{y} \Rightarrow a[{}^{i}_{\mathbf{x}} {}^{j}_{\mathbf{y}}] = a[{}^{j}_{\mathbf{y}} {}^{i}_{\mathbf{x}}]$

(bi

We take cubical sets to be nominal sets C equipped with some extra structure, namely face maps

 $\begin{array}{cccc} \mathbf{d}^{i}:\wp\, \mathfrak{C} & \to & \mathfrak{C} \\ \langle \mathbf{x} \to \boldsymbol{a} \rangle & \mapsto & \boldsymbol{a}[\overset{i}{\downarrow}] \end{array} (i \in \{0, 1\}) \end{array}$ morphisms in *Nom* satisfying (equivariance $a\begin{bmatrix} i & y \\ x & z \end{bmatrix} = a\begin{bmatrix} y & i \\ z & x \begin{bmatrix} y \end{bmatrix} - \text{implied}$) (binding x # $a[\frac{i}{x}]$ – implied) degeneracy x # $a \Rightarrow a[\overset{i}{\downarrow}] = a_{\checkmark}$ cf. nominal restriction sets independence x # y $\Rightarrow a \begin{bmatrix} i & j \\ x & y \end{bmatrix} = a \begin{bmatrix} j & i \\ y & x \end{bmatrix} \checkmark$

Cub = category of nominal sets equipped with face maps + equivariant functions preserving face maps

Theorem. *Cub* is equivalent to the presheaf category $[\mathbb{C}, Set]$, where \mathbb{C} is the category whose objects are finite ordinals and whose morphisms are given by:

 $\mathbb{C}(m,n) = \{ f \in \mathcal{S}et(m+2, n+2) \mid f \mid 0 = 0 \land f \mid 1 = 1 \land \\ \forall i, j > 1. f \mid i = f \mid j > 1 \Rightarrow i = j \}$

Proof: see Theorem 2.13 of [AMP, Proc. TYPES 2014] (after a theorem of Sam Staton about nominal restriction sets)

(There are similar theorems for other varieties of cubical sets and also for simplicial sets [Eric Faber *Homogeneous models and their toposes of supported sets*, PhD 2020].)

Type Theory in *Cub*

Bezem, Coquand & Huber, Proc. TYPES 2013 show for families in $[\mathbb{C}, Set]$ satisfying a uniform Kan filling condition

that \wp does model (propositional) identity types and

there is a universe classifying such families which is univalent.

Constructively valid, but the details are complicated.

Type Theory in *Cub*

- Bezem, Coquand & Huber, Proc. TYPES 2013
- show for families in Cub satisfying a
- uniform Kan filling condition
- that \wp does model (propositional) identity types and
- there is a universe classifying such families which is univalent.

Constructively valid, but the details are complicated.

Is it possible to replace Kan filling by (weak) higher-dimensional category/groupoid structure and still get univalent universes?

Road map

Given $\mathfrak{C} \in \mathcal{C}ub$,

a path composition should be a morphism in Cub

 $_\circ_: \{(p,q) \in \wp \, {\mathfrak C} \times \wp \, {\mathfrak C} \mid \mathrm{d}^{\scriptscriptstyle 0} p = \mathrm{d}^{\scriptscriptstyle 1} q\} \to \wp \, {\mathfrak C} \quad \text{(compose paths)}$

satisfying...[to be determined].

Given $\mathfrak{C} \in \mathcal{C}ub$,

a path composition should be a morphism in Cub

 $_\circ_: \{(p,q) \in \wp \, {\mathfrak C} \times \wp \, {\mathfrak C} \mid {\mathrm d}^{\scriptscriptstyle 0} p = {\mathrm d}^{\scriptscriptstyle 1} q\} \to \wp \, {\mathfrak C} \quad \text{(compose paths)}$

satisfying...[to be determined]. From this we get, for each $\mathbf{x} \in v$

 $\begin{array}{l} _\circ_{\mathbf{x}}_: \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid a[^{0}_{\mathbf{x}}] = b[^{1}_{\mathbf{x}}] \} \to \mathbb{C} \quad \text{(compose cells in dimension } \mathbf{x}) \\ \text{by defining } a \circ_{\mathbf{x}} b = (\langle \mathbf{x} \to a \rangle \circ \langle \mathbf{x} \to b \rangle) \circ \mathbf{x} \end{array}$

Given $\mathcal{C} \in \mathcal{C}ub$,

a path composition should be a morphism in Cub

 $_\circ_: \{(p,q) \in \wp \, {\mathfrak C} \times \wp \, {\mathfrak C} \mid {\mathrm d}^{\scriptscriptstyle 0} p = {\mathrm d}^{\scriptscriptstyle 1} q\} \to \wp \, {\mathfrak C} \quad \text{(compose paths)}$

satisfying...[to be determined]. From this we get, for each $\mathbf{x} \in \boldsymbol{\upsilon}$

 $_\circ_{\mathtt{x}}_: \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid a[^{\mathtt{O}}_{\mathtt{x}}] = b[^{\mathtt{I}}_{\mathtt{x}}] \} \to \mathbb{C} \quad \text{(compose cells in dimension \mathtt{x})}$

by defining $a \circ_{\mathbf{x}} b = (\langle \mathbf{x} \to a \rangle \circ \langle \mathbf{x} \to b \rangle) \circ \mathbf{x}$

Conversely, given $_\circ_x _$ satisfying...[to be determined], we can recover

 $p \circ q = \operatorname{fresh} x \text{ in } \langle x \to (p \circ x) \circ_x (q \circ x) \rangle$ $\langle x \to (p \circ x) \circ_x (q \circ x) \rangle \text{ for some/any } x \# (p, q)$

Given $\mathfrak{C} \in \mathcal{C}ub$,

a path composition should be a morphism in Cub

 $_\circ_: \{(p,q) \in \wp \, {\mathfrak C} \times \wp \, {\mathfrak C} \mid {\mathrm d}^{\scriptscriptstyle 0} p = {\mathrm d}^{\scriptscriptstyle 1} q\} \to \wp \, {\mathfrak C} \quad \text{(compose paths)}$

satisfying...[to be determined]. From this we get, for each $\mathbf{x} \in \boldsymbol{\upsilon}$

 $_\circ_{\mathtt{x}}_: \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid a[^{\mathtt{O}}_{\mathtt{x}}] = b[^{\mathtt{I}}_{\mathtt{x}}] \} \to \mathbb{C} \quad \text{(compose cells in dimension x)}$

by defining $a \circ_{\mathbf{x}} b = (\langle \mathbf{x} \to a \rangle \circ \langle \mathbf{x} \to b \rangle) \circ \mathbf{x}$

Conversely, given $_\circ_x _$ satisfying...[to be determined], we can recover

$$p \circ q = \operatorname{fresh} x \text{ in } \langle x \operatorname{\neg} (p \circ x) \circ_x (q \circ x) \rangle$$

Recall the uni-sorted definition of "category" in which objects are identified with their identity morphisms:

Sets and functions $C \xrightarrow{s} C \xleftarrow{\circ} \{(a, b) \mid s(a) = t(b)\}$ with s(s(a)) = s(a) = t(s(a))s(t(a)) = t(a) = t(t(a)) $s(a \circ b) = s(b)$ $t(a \circ b) = t(a)$ $a \circ s(a) = a = t(a) \circ a$ $a \circ (b \circ c) = (a \circ b) \circ c$

Strict v-fold categories are given by

$\mathcal{C} \in \mathcal{C}ub$ with for each $\mathbf{x} \in v$ an operation

 $\{(a,b)\in \mathbb{C} imes \mathbb{C}\mid a[^0_{\mathtt{x}}]=b[^1_{\mathtt{x}}]\}
ightarrow \mathbb{C}\ (a,b)\mapsto a\circ_{\mathtt{x}} b$

which is equivariant, respects face maps and satisfies $(a \circ_{x} b) \begin{bmatrix} 0 \\ x \end{bmatrix} = b \begin{bmatrix} 0 \\ x \end{bmatrix} \quad (a \circ_{x} b) \begin{bmatrix} 1 \\ x \end{bmatrix} = a \begin{bmatrix} 1 \\ x \end{bmatrix}$ $a \circ_{x} a \begin{bmatrix} 0 \\ x \end{bmatrix} = a = a \begin{bmatrix} 1 \\ x \end{bmatrix} \circ_{x} a$ $(a \circ_{x} b) \circ_{x} c = a \circ_{x} (b \circ_{x} c)$ $x \# y \Rightarrow (a \circ_{x} b) \circ_{y} (c \circ_{x} d) = (a \circ_{y} c) \circ_{x} (b \circ_{y} d)$ (interchange law)

Strict v-fold categories are given by

$\mathcal{C} \in \mathcal{C}ub$ with for each $\mathbf{x} \in v$ an operation

 $egin{aligned} \{(a,b)\in \mathbb{C} imes \mathbb{C}\mid a[^0_{\mathrm{x}}]=b[^1_{\mathrm{x}}]\}
ightarrow \mathbb{C}\ (a,b)\mapsto a\circ_{\mathrm{x}} b \end{aligned}$

which is equivariant, respects face maps and satisfies... A functor of strict v-fold categories is a morphism in *Cub* that preserves composition.

Presumably the category of strict v-fold categories is equivalent to the category of strict, edge-symmetric ω -fold categories, but I have not checked this

(and maybe one gets strict ω -categories by adding connection structure to v-fold categories [Brown, Higgins, Mosa])

Strict v-fold categories

Is there a universe of v-fold categories?

$\upsilon\text{-}\mathsf{fold}\ \mathsf{category}\ \mathsf{of}\ \mathsf{paths}$

If \mathcal{C} is an v-fold category,

then $\wp C$ inherits not only cubical structure from C

 $P[_{\mathbf{x}}^{i}] \triangleq \operatorname{fresh} \mathbf{y} \text{ in } \langle \mathbf{y} \operatorname{\neg} (P \circ \mathbf{y})[_{\mathbf{x}}^{i}] \rangle$

v-fold category of paths

If \mathcal{C} is an v-fold category,

then $\wp C$ inherits not only cubical structure from C

$$P[_{\mathbf{x}}^{i}] \triangleq \text{fresh y in } \langle \mathbf{y} \to (P \circ \mathbf{y})[_{\mathbf{x}}^{i}] \rangle$$

but also path composition structure

 $P \circ_{\mathbf{x}} Q \triangleq \text{fresh y in } \langle \mathbf{y} \to (P \circ \mathbf{y}) \circ_{\mathbf{x}} (Q \circ \mathbf{y}) \rangle$

making $\wp \mathcal{C}$ an v-fold category.

Universes

Every strict v-fold category \mathcal{C} yields a category object in *Cub*

Universes

Every strict v-fold category \mathfrak{C} yields a category object in *Cub*

and hence, taking dimension-zero cells and paths, an underlying (small) category |C|.

Is there a strict v-fold category \mathcal{U} in \mathcal{CUB} (large cubical sets) with $|\mathcal{U}|$ equivalent to the category of all small v-fold categories and functors?

Note that, being equivalent to a presheaf topos, *Cub* has Hofmann-Streicher style universes, but that only deals with the size problem, not the "microcosm" problem.

Models of Type Theory?

To model type theory (rather than directed type theory) need to consider v-fold groupoids

Models of Type Theory?

To model type theory (rather than directed type theory) need to consider v-fold groupoids

Asking for *strict inverses* w.r.t path composition is probably too restrictive if we want to get univalent universes (?)

Recall:

Michael Warren, *The Strict* ω *-Groupoid Interpretation of Type Theory*, CRM Lecture Notes 53(2011)

(doesn't treat universes)

Models of Type Theory?

To model type theory (rather than directed type theory) need to consider v-fold groupoids

In view of

Norihiro Yamada, *Game Semantics of Homotopy Type Theory* (HOTTEST seminar, 11 Feb 2021)

perhaps one should consider v-fold categories in which all cells are equivalences (*bi-invertible*, say).

Is there a universe of such v-fold groupoids?

Road map

