
Axiomatizing Cubical Sets Models
of Univalent Foundations

Andrew Pitts

Computer Science & Technology

Joint work with Ian Orton, Dan Licata & Bas Spitters

HoTTEST Sept 2018 1/18
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Why do I study models of univalent type theory?
(instead of just developing univalent foundations)
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HoTT from the outside in

Why do I study models of univalent type theory?
(instead of just developing univalent foundations)

◮ univalence
as a concept, as opposed to a particular formal axiom, and its relation to
other foundational concepts & axioms

◮ theorem-provers with user-defined
higher inductive types
from models to new type theories

This talk concentrates on the first point, but the second one is probably of more
importance in the long term.

Neither point is directly motivated by applications to algebraic topology.
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HoTT from the outside in

Why do I study models of univalent type theory?
(instead of just developing univalent foundations)

◮ univalence

◮ theorem-provers with user-defined
higher inductive types

Wanted:

◮ simpler proofs of univalence for existing models

◮ new models

◮ [better understanding of HITs]
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HoTT from the outside in

Some possible approaches to existing models:

◮ Direct calculations in set/type theory with
presheaves
[wood from the trees]

◮ Categorical algebra (theory of model categories)
[strictness issues]
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HoTT from the outside in

Some possible approaches to existing models:

◮ Direct calculations in set/type theory with
presheaves.

◮ Categorical algebra (theory of model categories).

◮ Here: categorical logic
In a version of type theory interpretable in any elementary topos with
countably many universes Ω : S0 : S1 : S2 : · · · , there are

elementary axioms for

{

interval object O, 1 : 1 ⇒ I

cofibrant propositions Cof  Ω

that suffice for a version of the model of univalence of Coquand et al.
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CCHM Univalent Universe
C. Cohen, T. Coquand, S. Huber and A. Mörtberg,
Cubical type theory: a constructive interpretation of the

univalence axiom [arXiv:1611.02108]

Uses categories-with-families (CwF) semantics of type
theory for the CwF associated with presheaf topos

E = Set�
op

where � is the Lawvere theory of De Morgan algebras.
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HoTT from the outside in

Some possible approaches to existing models:

◮ Direct calculations in set/type theory with
presheaves.

◮ Categorical algebra (theory of model categories).

◮ Here: categorical logic
In a version of type theory interpretable in any elementary topos with
countably many universes Ω : S0 : S1 : S2 : · · · , there are

elementary axioms for

{

interval object O, 1 : 1 ⇒ I

cofibrant propositions Cof  Ω

that suffice for a version of the model of univalence of Coquand et al.
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Topos theory background

Elementary topos E = cartesian closed category with subobject
classifier Ω (& natural number object)

Toposes are the category-theoretic version of theories in extensional
impredicative higher-order intuitionistic predicate calculus.
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Topos theory background

Elementary topos E = cartesian closed category with subobject
classifier Ω (& natural number object)
& universes Ω : S0 : S1 : S2 : · · ·
Can make a category-with-families (CwF) out of E and soundly
interpret [a form of] Extensional MLTT in it

Type Theory CwF E

context Γ object Γ

type (of size n) in context Γ ⊢n A morphism Γ
A

Sn

typed term in context Γ ⊢ a : A section S̃n

Γ
A

a

Sn

judgemental equality Γ ⊢ a = a′ : A equality of morphisms
extensional identity types cartesian diagonals
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Axiomatic CCHM

Starting with any topos E satisfying some

axioms for

{

interval object O, 1 : 1 ⇒ I

cofibrant propositions Cof  Ω

one gets a model of MLTT + univalence
by building a new CwF F out of E:

◮ objects of F are the objects of E

◮ families in F: Fn(Γ) , ∑A:Γ�Sn
Fibn A where

Fibn A = set of CCHM fibration structures on A : Γ � Sn

◮ elements of (A, α) ∈ Fn(Γ) are elements of A in E
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CCHM fibrations
Path functor: ℘ Γ , I � Γ (type of functions from I to Γ)

Extension relation: we identify each cofibrant proposition ϕ : Cof

with the corresponding subterminal ϕ  1. For each function
f : ϕ � Γ (partial element of Γ with domain ϕ) and each x : Γ,
define

f 1 x , ∀u : ϕ, f u = x
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CCHM fibrations
Path functor: ℘ Γ , I � Γ (type of functions from I to Γ)

Extension relation: we identify each cofibrant proposition ϕ : Cof

with the corresponding subterminal ϕ  1. For each function
f : ϕ � Γ (partial element of Γ with domain ϕ) and each x : Γ,
define

f 1 x , ∀u : ϕ, f u = x

Fix on one of the universes S = Sn in E

Type of composition structures for a path of types A : ℘ S

Comp A , (ϕ : Cof)( f : (i : I) � ϕ � A i) �

(∑ a : A O, f O 1 a) � (∑ a : A 1, f 1 1 a)
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CCHM fibrations
Path functor: ℘ Γ , I � Γ (type of functions from I to Γ)

Extension relation: we identify each cofibrant proposition ϕ : Cof

with the corresponding subterminal ϕ  1. For each function
f : ϕ � Γ (partial element of Γ with domain ϕ) and each x : Γ,
define

f 1 x , ∀u : ϕ, f u = x

Fix on one of the universes S = Sn in E

Type of composition structures for a path of types A : ℘ S

Comp A , (ϕ : Cof)( f : (i : I) � ϕ � A i) �

(∑ a : A O, f O 1 a) � (∑ a : A 1, f 1 1 a)

Type of fibration structures for a family of types A : Γ � S

Fib A , (p : ℘ Γ) � Comp(A ◦ p)

(Compare this with the direct, presheaf definition.)
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CCHM Fibration structure
Type of composition structures for a path of types A : ℘ S

Comp A , (ϕ : Cof)( f : (i : I) � ϕ � A i) �

(∑ a : A O, f O 1 a) � (∑ a : A 1, f 1 1 a)

Type of fibration structures for a family of types A : Γ � S

Fib A , (p : ℘ Γ) � Comp(A ◦ p)

Some simple properties of I and Cof enable one to prove
that the existence of fibration structure is preserved
under forming Σ-types, Π-types, (propositional) identity
types,. . .

What about universes of fibrations?

We get them via “tinyness” of the interval. . .

HoTTEST Sept 2018 8/18



Tiny interval

I ∈ E is tiny if (_)I has a right adjoint
√
(_)

Γ
I → ∆

Γ → √
∆

====== (natural bijection)

preserving universe levels: ∆ : Sn ⇒ √
∆ : Sn

(notion goes back to Lawvere’s work in synthetic differential geometry)
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Tiny interval

I ∈ E is tiny if (_)I has a right adjoint
√
(_)

Γ
I → ∆

Γ → √
∆

====== (natural bijection)

preserving universe levels: ∆ : Sn ⇒ √
∆ : Sn

When E = Set�
op

, the topos of cubical sets, the category � has
finite products and the interval in E is representable: I = �(_ , I).
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Tiny interval

I ∈ E is tiny if (_)I has a right adjoint
√
(_)

Γ
I → ∆

Γ → √
∆

====== (natural bijection)

preserving universe levels: ∆ : Sn ⇒ √
∆ : Sn

When E = Set�
op

, the topos of cubical sets, the category � has
finite products and the interval in E is representable: I = �(_ , I).

Hence the path functor (_)I : Set�
op

� Set�
op

is (_ × I)∗

and so (_)I not only has a left adjoint (_ × I), but also a right
adjoint, given by right Kan extension (and hence preserving universe
levels).
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Tiny interval

Recall Fn(Γ) , ∑A : Γ�Sn
Fibn A = set of CCHM fibrations over

an object Γ ∈ E. This is functorial in Γ.

Theorem. If interval I is tiny, then Fn(_) : Eop � Set
is representable:

Un

object

(E, ν) ∈

generic fibration

Fn(Un)
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Recall Fn(Γ) , ∑A : Γ�Sn
Fibn A = set of CCHM fibrations over

an object Γ ∈ E. This is functorial in Γ.

Theorem. If interval I is tiny, then Fn(_) : Eop � Set
is representable:

Γ (A, α) ∈ Fn(Γ)

Un

object

(E, ν) ∈

generic fibration

Fn(Un)
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Tiny interval

Recall Fn(Γ) , ∑A : Γ�Sn
Fibn A = set of CCHM fibrations over

an object Γ ∈ E. This is functorial in Γ.

Theorem. If interval I is tiny, then Fn(_) : Eop � Set
is representable:

Γ

pA,αq∃!

(A, α) ∈ Fn(Γ)

Un

object

(E, ν) ∈

generic fibration

Fn(Un)

Proof in Licata-Orton-AMP-Spitters FSCD 2018 [arXiv:1801.07664] general-
izes unpublished work of Coquand & Sattler for the case E is a presheaf topos.
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

℘ Γ

℘ A

〈Comp◦℘ A,α〉

S̃

fst

℘ S
Comp

S

∑X :S X
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

Γ

A

〈Comp ◦℘ A,α〉

√
S̃

√
fst

S
Comp

√
S
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

Γ

A

〈Comp ◦℘ A,α〉

U π2

π1

√
S̃

√
fst

S
Comp

√
S

U , pullback of Comp and
√

fst
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

Γ

A

〈Comp ◦℘ A,α〉

pΦq

U π2

π1

√
S̃

√
fst

S
Comp

√
S
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

℘ Γ

℘ A

〈Comp◦℘ A,α〉

℘(pΦq)

℘U π2

℘π1

S̃

fst

℘ S
Comp

S
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Φ = (A, α) ∈ F(Γ) ∼= E(1, ∑A:Γ�S ∏p:℘ Γ(Comp ◦℘ A)p)

℘ Γ

℘ A

〈Comp◦℘ A,α〉

℘(pΦq)

℘U 〈Comp◦℘π1,ε〉

℘π1

S̃

fst

℘ S
Comp

S

generic fibration E , (U π1−→ S, ε)

uniqueness of pΦq follows from
universal property of the pullback
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Tiny interval

Theorem. The universes (Un, E) of CCHM fibrations
are closed under Π-types, propositional identity types
and inductive types (e.g. Σ) if I has a weak form of
binary minimum (“connection” structure) and Cof

satisfies

false ∈ Cof

(∀i,ϕ) ϕ ∈ Cof ⇒ ϕ∨ i = O ∈ Cof

(∀i,ϕ) ϕ ∈ Cof ⇒ ϕ∨ i = 1 ∈ Cof

What about univalence of (Un, E)?
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

equivalent to the usual univalence axiom
(given suitable properties of Un)
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

isContr A , ∑x:A ∏x′ :A(x ∼ x′)
x ∼ x′ , ∑p : I�A(p O ≡ x ∧ p 1 ≡ x′)
Ext A , ∏ϕ : Cof ∏ f : ϕ�A ∑x:A( f 1 x)

A ∼= B , ∑ f :A�B ∑g:B�A(g ◦ f ≡ id ∧ f ◦ g ≡ id)

A ≃ B , ∑ f :A�B ∏y:B isContr(∑x:A( f x ∼ y))
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

∆
ϕ (cofibrant)

B

Γ
A

B ∼= A◦ϕ

Sn
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

∆
ϕ (cofibrant)

B

Γ
A

A′

∼=

B = A′◦ϕ

Sn
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

In a presheaf topos SetCop
, Cof has an iea if

for each X ∈ C and S ∈ Cof(X) ⊆ Ω(X),
the sieve S is a decidable subset of C/X.
(So with classical meta-theory, always have iea

for presheaf toposes.)
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Univalence
Theorem. For any topos E with tiny I & Cof satisfying
assumptions so far, there is a term of type

∏u:Un
isContr(∑v:Un

(Eu ≃ Ev))
if Cof is closed under ∀i : I and satisfies the
isomorphism extension axiom:

iea : ∏A:Sn
Ext(∑B:Sn

(A ∼= B))

In this case Un is a fibration (over 1) and (Un, E) is
univalent.

Proof is non-trivial! It combines results from:

Cohen-Coquand-Huber-Mörtberg TYPES 2015 [arXiv:1611.02108]
Orton-AMP CSL 2016 [arXiv:1712.04864]
Sattler 2017 [arXiv:1704.06911]
Licata-Orton-AMP-Spitters FSCD 2018 [arXiv:1801.07664]
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Summary of axioms

◮ Elementary topos E with universes Ω : S0 : S1 : S2 : · · ·
◮ “Interval” object I (in S0) which has distinct end-points &

connection operation (& for convenience, a reversal operation)
and which is tiny.

◮ Universe of “cofibrant” propositions Cof  Ω containing
i ≡ O and i ≡ 1, is closed under _ ∨ _ and ∀(i : I)_,
and satisfies the isomorphism extension axiom.

Then CCHM fibrations in E give a model of MLTT with univalent
universes w.r.t. propositional identity types given by I-paths.

(Swan: can have true, judgemental identity types if Cof is also a dominance.)
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Summary of axioms

◮ Elementary topos E with universes Ω : S0 : S1 : S2 : · · ·
◮ “Interval” object I (in S0) which has distinct end-points &

connection operation (& for convenience, a reversal operation)
and which is tiny.

◮ Universe of “cofibrant” propositions Cof  Ω containing
i ≡ O and i ≡ 1, is closed under _ ∨ _ and ∀(i : I)_,
and satisfies the isomorphism extension axiom.

Then CCHM fibrations in E give a model of MLTT with univalent
universes w.r.t. propositional identity types given by I-paths.

Next: can remove the use of impredicativity (Ω) and formalize
within MLTT plus. . .
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Summary of axioms

◮ Elementary topos E with universes Ω : S0 : S1 : S2 : · · ·
◮ “Interval” object I (in S0) which has distinct end-points &

connection operation (& for convenience, a reversal operation)
and which is tiny.

◮ Universe of “cofibrant” propositions Cof  Ω containing
i ≡ O and i ≡ 1, is closed under _ ∨ _ and ∀(i : I)_,
and satisfies the isomorphism extension axiom.

Then CCHM fibrations in E give a model of MLTT with univalent
universes w.r.t. propositional identity types given by I-paths.

Next: can remove the use of impredicativity (Ω) and formalize
within MLTT plus. . .

Problem! Tinyness cannot be axiomatized in MLTT,
because it’s a global property of morphisms of E, not an
internal property of functions – there is an internal right
adjoint to (_)I only when I ∼= 1.
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Tinyness: natural bijection between hom sets
E(Γ

I, ∆) and E(Γ,
√

∆).
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Tinyness: natural bijection between hom sets
E(Γ

I, ∆) and E(Γ,
√

∆).

If one had a natural isomorphism of function types
(Γ

I � ∆) ∼= (Γ �
√

∆)

then
√

∆ ∼= (1 �
√

∆) ∼= (1I � ∆) ∼= (1 � ∆) ∼= ∆

naturally in ∆

HoTTEST Sept 2018 14/18



Tinyness: natural bijection between hom sets
E(Γ

I, ∆) and E(Γ,
√

∆).

If one had a natural isomorphism of function types
(Γ

I � ∆) ∼= (Γ �
√

∆)

then
√

∆ ∼= (1 �
√

∆) ∼= (1I � ∆) ∼= (1 � ∆) ∼= ∆

naturally in ∆

so
√ ∼= id

so (taking left adjoints) (_)I ∼= id ( ∼= (_)1)

so 1 ∼= I
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Crisp Type Theory

Licata-Orton-AMP-Spitters [FSCD 2018]

intensional Martin-Löf Type Theory
+ uniqueness of identity proofs
+ Hofmann-style quotient types (⇒ function extensionality &

disjunction for mere propositions)

+ modality for expressing global/local distinctions,
inspired by

◮ Pfenning+Davis’s judgemental reconstruction of modal logic
[MSCS 2001]

◮ de Paiva+Ritter, Fibrational modal type theory [ENTCS 2016]

◮ Shulman’s spatial type theory for real cohesive HoTT [MSCS 2017]
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Crisp Type Theory

Dual context judgements:

∆|Γ ⊢ a : A

crisp/global/external
variables x :: A

cohesive/local/internal
variables x : A

types in the crisp context ∆ and terms substituted for
crisp variables x :: A depend only on crisp variables
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Crisp Type Theory

Dual context judgements:

∆|Γ ⊢ a : A

Interpretation in the CwF associated with E = Set�
op

:

∆ ∈ E, Γ ∈ E(♭∆), A ∈ E(∑(♭∆)Γ), a ∈ E(∑(♭∆)Γ ⊢ A),

where ♭ : E −→ E is the limit-preserving idempotent comonad

♭A = the constant presheaf on the set of global sections of A.
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Crisp Type Theory

Dual context judgements:

∆|Γ ⊢ a : A

Interpretation in the CwF associated with E = Set�
op

:

∆ ∈ E, Γ ∈ E(♭∆), A ∈ E(∑(♭∆)Γ), a ∈ E(∑(♭∆)Γ ⊢ A),

where ♭ : E −→ E is the limit-preserving idempotent comonad

♭A = the constant presheaf on the set of global sections of A.

This just follows from the fact that
� is a connected category

(since it has a terminal object)
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Crisp Type Theory

Dual context judgements:

∆|Γ ⊢ a : A

Some of the rules:

∆, x :: A, ∆
′|Γ ⊢ x : A

∆| ⊢ a : A ∆, x :: A, ∆
′|Γ ⊢ b : B

∆, ∆
′[a/x]|Γ[a/x] ⊢ b[a/x] : B[a/x]

∆| ⊢ A : Sm ∆, x :: A|Γ ⊢ B : Sn

∆|Γ ⊢ (x :: A) � B : Sm∨n

∆, x :: A|Γ ⊢ b : B

∆|Γ ⊢ λ(x :: A), b : (x :: A) � B

∆|Γ ⊢ f : (x :: A) � B ∆| ⊢ a : A

∆|Γ ⊢ f a : B[a/x]
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∆|Γ ⊢ a : A

Some of the rules:
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Crisp Type Theory

Dual context judgements:

∆|Γ ⊢ a : A

Some of the rules:

∆, x :: A, ∆
′|Γ ⊢ x : A

∆| ⊢ a : A ∆, x :: A, ∆
′|Γ ⊢ b : B

∆, ∆
′[a/x]|Γ[a/x] ⊢ b[a/x] : B[a/x]

∆| ⊢ A : Sm ∆, x :: A|Γ ⊢ B : Sn

∆|Γ ⊢ (x :: A) � B : Sm∨n

∆, x :: A|Γ ⊢ b : B

∆|Γ ⊢ λ(x :: A), b : (x :: A) � B

∆|Γ ⊢ f : (x :: A) � B ∆| ⊢ a : A

∆|Γ ⊢ f a : B[a/x]

Experimental implementation: Vezzosi’s agda-flat
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Needed: congruence for functions f of a crisp variable x

crispwrong : {A :: Sm}{x y :: A}{B : Sn}( f : (x :: A) � B) �

(_ : x ≡ y) � f x ≡ f y
crispwrong f refl = refl

Agda-flat says: Wrong modality to solve y with x when

checking that the pattern refl has type x ≡ y

(Here I write “::” for what in agda-flat must be written “:{♭}”.)
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Needed: congruence for functions f of a crisp variable x

crispcong : {A :: Sm}{x y :: A}{B : Sn}( f : (x :: A) � B) �

(_ :: x ≡ y) � f x ≡ f y
crispcong f refl = refl

Agda-flat is happy with this (and so are we?).
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Needed: congruence for functions f of a crisp variable x

crispcong : {A :: Sm}{x y :: A}{B : Sn}( f : (x :: A) � B) �

(_ :: x ≡ y) � f x ≡ f y
crispwrong f refl = refl

Not needed (but definable): the crisp modality ♭ on types

data ♭ (A : Sn) : Sn where

in♭ : (_ :: A) � ♭A
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Axioms for tinyness in Agda-flat
√

: (A :: Sn) � Sn

R : {A, B :: Sn}( f :: ℘A � B) � A �
√

B

L : {A, B :: Sn}(g :: A �
√

B) � ℘A � B

LR : {A, B :: Sn}{ f :: ℘A � B} � L(R f) ≡ f

RL : {A, B :: Sn}{g :: A �
√

B} � R(L g) ≡ g

R℘ : {A, B, C :: Sn}(g :: A � B)( f :: ℘B � C) �

R( f ◦℘g) ≡ R f ◦ g

where ℘(_) , I � (_).

For more, see doi.org/10.17863/CAM.22369
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https://doi.org/10.17863/CAM.22369


Conclusion

◮ Topos models of univalence where path types are cartesian

exponentials make life easier compared with simplicial sets.
because the path functor is fibered over E and we can use
internal language to describe many of the constructions on the
way to a univalent universe. . .

. . . but not all of them: tinyness does not internalize! (so
neither does our universe construction).

Crisp Type Theory to the rescue.
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Conclusion

◮ Topos models of univalence where path types are cartesian

exponentials make life easier compared with simplicial sets.

◮ The axiomatic approach helps one see the wood from the trees
in existing models and to find new ones.
(E.g. recent work by Taichi Uemura.)
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Conclusion

◮ Topos models of univalence where path types are cartesian

exponentials make life easier compared with simplicial sets.

◮ The axiomatic approach helps one see the wood from the trees
in existing models and to find new ones.

◮ Nevertheless, some of the theorems on the way to
univalence/fibrancy are delicate and hard work!

We find the use of an interactive theorem proving system (Agda-flat)

invaluable for developing and checking the proof – e.g. see

[doi.org/10.17863/CAM.21675]
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https://doi.org/10.17863/CAM.21675


Conclusion

◮ Topos models of univalence where path types are cartesian

exponentials make life easier compared with simplicial sets.

◮ The axiomatic approach helps one see the wood from the trees
in existing models and to find new ones.

◮ Nevertheless, some of the theorems on the way to
univalence/fibrancy are delicate and hard work!

Are there simpler models of univalence? (must be
non-truncated to qualify for our attention)

E.g. can one avoid Kan-filling in favour of a (weak) notion of
path composition?

Why only presheaf toposes? (issues with universes in sheaf toposes)
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Conclusion

◮ Topos models of univalence where path types are cartesian

exponentials make life easier compared with simplicial sets.

◮ The axiomatic approach helps one see the wood from the trees
in existing models and to find new ones.

◮ Nevertheless, some of the theorems on the way to
univalence/fibrancy are delicate and hard work!

◮ Further reading:

D. R. Licata, I. Orton, A. M. Pitts and B. Spitters, Internal Universes in

Models of Homotopy Type Theory [FSCD 2018].

Questions?
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http://drops.dagstuhl.de/opus/volltexte/2018/9192/pdf/LIPIcs-FSCD-2018-22.pdf

