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Heyting Day 2025:
Models of intuitionism and computability

celebrating Jaap van Oosten

Category Theory is crucial

e.g.: J v O, Realizability: An Introduction to its Categorical Side (Elsevier, 2008)
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Aims

◮ Some observations about the role of category theory in logic.

◮ Recall a long-standing open problem connecting intuitionistic
higher-order logic and category theory, in the hope that someone
will se�le it.

◮ (Try not to be too technical!)
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Category Theory

Set Theory describes mathematical structures in terms of their elements
(and functions on, and relations between, elements).

In contrast,

Category Theory describes mathematical structures entirely in terms of
structure-preserving transformations: at base, the only way to give a
kind of structure is to specify its transformations and how they
compose.
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Category Theory

Set Theory describes mathematical structures in terms of their elements
(and functions on, and relations between, elements).

In contrast,

Category Theory describes mathematical structures entirely in terms of
structure-preserving transformations: at base, the only way to give a
kind of structure is to specify its transformations and how they
compose.

Here:

◮ Adjunctions in proof theory

◮ Topos models of intuitionistic higher-order logic
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Adjointness in proof theory

The notion of adjunction [D. Kan, Trans AMS 1958] is the key concept of category theory.
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Adjointness in proof theory

The notion of adjunction [D. Kan, Trans AMS 1958] is the key concept of category theory.
Simple special case for monotone function f : (P,≤P) → (Q,≤Q) between posets:

Given y ∈ Q, the right adjoint of f at y ∈ Q, if it exists, is the unique gy ∈ P with

for all x ∈ P, f (x) ≤Q y iff x ≤P gy

If gy exists for all y we get g : Q → P , the right adjoint of f .
It is uniquely determined by f and monotone.

[Le� adjoints dually.]
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Adjointness in proof theory

The notion of adjunction [D. Kan, Trans AMS 1958] is the key concept of category theory.
Simple special case for monotone function f : (P,≤P) → (Q,≤Q) between posets:

Given y ∈ Q, the right adjoint of f at y ∈ Q, if it exists, is the unique gy ∈ P with

for all x ∈ P, f (x) ≤Q y iff x ≤P gy

If gy exists for all y we get g : Q → P , the right adjoint of f .
It is uniquely determined by f and monotone.

[Le� adjoints dually.]

Lawvere and Lambek observed that many logical constructs can be characterised as
le� or right adjoints (substitution stable ones), so their existence is a property of models
not extra structure.

Non-example: modalities are not usually characterisable as adjoints.
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Example: ∀ is right adjoint to weakening

In Heyting’s intuitionistic predicate logic

ϕ(~y) ⊢ ψ(x, ~y) iff ϕ(~y) ⊢ ∀x ψ(x, ~y) [x : X , ~y : ~Y ]

intuitionistic entailment
variables x , ~y stand for unknown
individuals of some sorts X , ~Y
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Example: ∀ is right adjoint to weakening

In Heyting’s intuitionistic
✘
✘
✘
✘
✘
✘

predicate propositional logic

ϕ(~q) ⊢ ψ(p,~q) iff ϕ(~q) ⊢ ? [p,~q : Ω]

The “f ” in this case is the weakening function

({formulas in ~q},⊢) →֒ ({formulas in p and ~q},⊢)

intuitionistic entailment

variables p,~q stand for
unknown propositions (sort Ω)

built up using ⊥, ⊤, ∧, ∨, �
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ϕ(~q) ⊢ ψ(p,~q) iff ϕ(~q) ⊢ Apψ(~q) [p,~q : Ω]

The “f ” in this case is the weakening function

({formulas in ~q},⊢) →֒ ({formulas in p and ~q},⊢)

Surprising fact about intuitionistic propositional logic (IPL):

there exist IPL formulas Apψ(~q) for right adjoints to weakening
(and dually, formulas Epψ(~q) for le� adjoints—existential quantifiers).
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✘
✘
✘
✘
✘

predicate propositional logic

ϕ(~q) ⊢ ψ(p,~q) iff ϕ(~q) ⊢ ? [p,~q : Ω]

The “f ” in this case is the weakening function

({formulas in ~q},⊢) →֒ ({formulas in p and ~q},⊢)

Surprising fact about intuitionistic propositional logic (IPL):

there exist IPL formulas Apψ(~q) for right adjoints to weakening
(and dually, formulas Epψ(~q) for le� adjoints—existential quantifiers).

(In classical PL, Apψ(~q) = ψ(⊤,~q) ∧ ψ(⊥,~q) and Epψ(~q) = ψ(⊤,~q) ∨ ψ(⊥,~q))

7/16



Example: ∀ is right adjoint to weakening
Theorem. Given any formula ψ built up using ⊥, ⊤, ∧, ∨ and � from variables
p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

My original proof [JSL 57(1992)] was via proof theory (using the Vorob’ev-Hudelmaier-Dyckhoff version
of Gentzen sequent calculus) and was constructive—Ap and Ep are computable functions.

8/16



Epϕ , Ep({ϕ})

Ep(∆) ,
∧

Ep(∆)

Apϕ , Ap(∅;ϕ)

Ap(∆;ϕ) ,
∨

Ap(∆;ϕ)

9/16



Example: ∀ is right adjoint to weakening
Theorem. Given any formula ψ built up using ⊥, ⊤, ∧, ∨ and � from variables
p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

My original proof [JSL 57(1992)] was via proof theory (using the Vorob’ev-Hudelmaier-Dyckhoff version
of Gentzen sequent calculus) and was constructive—Ap and Ep are computable functions.

Recent improvement, formalization and verification of algorithms for Ap and Ep by Férée & van Gool
[ACM Cert. Progs & Proofs Conference (2023)].

Non-constructive, model-theoretic proof by Ghilardi & Zawadowski [JSL 60(1995)] uses a duality
between Heyting algebras and sheaves-with-game-theoretic-structure. Later simplified by van Gool &
Reggio [Canadian Math. Bull. 62(2019)] using topological duality between Heyting algebras and Esakia
spaces (roughly: finitely presentable extensions in HAs have adjoints because their duals are open
maps).
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Example: ∀ is right adjoint to weakening
Theorem. Given any formula ψ built up using ⊥, ⊤, ∧, ∨ and � from variables
p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

Craig interpolation property:

ϕ(p, q) ⊢ ψ(q, r)
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p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

Craig interpolation property:

ϕ(p, q) ⊢ θ(q) ⊢ ψ(q, r)

exists
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Example: ∀ is right adjoint to weakening
Theorem. Given any formula ψ built up using ⊥, ⊤, ∧, ∨ and � from variables
p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

Uniform interpolation property:

ϕ(p, q) ⊢ Epϕ(q) ⊢ θ(q) ⊢ Arψ(q) ⊢ ψ(q, r)

Many modal logics satisfy uniform interpolation,
but some do not, e.g. S4 [Ghilardi & Zawadowski, Studia Log. 55(1995)].
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Example: ∀ is right adjoint to weakening
Theorem. Given any formula ψ built up using ⊥, ⊤, ∧, ∨ and � from variables
p, q, . . ., there is another such formula Apψ, not involving p, which is the value at ψ of
the right adjoint to weakening; and dually for the le� adjoint (existential quantifier)
Epψ.

Uniform interpolation property:

ϕ(p, q) ⊢ θ(q) ⊢ ψ(q, r)

Many modal logics satisfy uniform interpolation,
but some do not, e.g. S4 [Ghilardi & Zawadowski, Studia Log. 55(1995)].

Originally I hoped that IPL would not (!), for the following reason. . .
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Topos models of intuitionistic higher-order logic
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Topos models of intuitionistic higher-order logic

Intuitionistic Higher-Order Logic (IHOL) has

Sorts X ::= N | P(X1, . . . , Xn)

ground sorts
(e.g. for numbers)

power sort, whose varables stand for
subsets of X1 × · · · × Xn

(the sort Ω of propositions is P( ), i.e. n = 0)
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Topos models of intuitionistic higher-order logic

Intuitionistic Higher-Order Logic (IHOL) has

Sorts X ::= N | P(X1, . . . , Xn)

Formulas ϕ built up using _�_ and ∀x : X ._ from
atomic formula for membership

(x1, . . . , xn) ∈ y [where x1 : X1 ,. . . , xn : Xn and y : P(X1, . . . , Xn)]

⊥,⊤, ∧, ∨,↔, ∃ and = are definable (impredicatively!)
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Topos models of intuitionistic higher-order logic

Intuitionistic Higher-Order Logic (IHOL) has

Sorts X ::= N | P(X1, . . . , Xn)

Formulas ϕ built up using _�_ and ∀x : X ._ from
atomic formula for membership

(x1, . . . , xn) ∈ y [where x1 : X1 ,. . . , xn : Xn and y : P(X1, . . . , Xn)]

subject to the usual rules of intuitionistic logic plus

Comprehension ∃y : P(~X). ∀~x : ~X . (~x ∈ y ↔ ϕ(~x))

(and Infinity axioms, if we have a ground sort for numbers)
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Topos models of intuitionistic higher-order logic

Intuitionistic Higher-Order Logic (IHOL) has

Sorts X ::= N | P(X1, . . . , Xn)

Formulas ϕ built up using _�_ and ∀x : X ._ from
atomic formula for membership

(x1, . . . , xn) ∈ y [where x1 : X1 ,. . . , xn : Xn and y : P(X1, . . . , Xn)]

subject to the usual rules of intuitionistic logic plus

Comprehension ∃y : P(~X). ∀~x : ~X . (~x ∈ y ↔ ϕ(~x))

Simple, but expressive
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Topos models of intuitionistic higher-order logic

A topos is any category with

◮ finite limits

◮ power objects
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Topos models of intuitionistic higher-order logic

A topos is any category with

◮ finite limits

gives adjoint characterisation of
cartesian product

injective functions / subsets
inverse image of subset along a function

◮ power objects

gives adjoint characterisation of
powerset + comprehension
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Topos models of intuitionistic higher-order logic

A topos is any category with

◮ finite limits

◮ power objects

1945-74 [Leray, Cartan, Weil, Serre, Godement 〉 Grothendieck – sheaf toposes

1974-79 Lawvere & Tierney 〈 Freyd, Joyal, Lambek, Johnstone, . . . ] – elementary toposes
connection with IHOL

1979 [Kreisel, Gandy 〉 Hyland – realizability toposes
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Three examples

◮ Classical truth: JϕK ⊆ {∗} (two subsets)

∗ ∈ Jϕ � ψK iff either ∗ ∈ JψK, or ∗ /∈ JϕK

The topos Set of classical sets and functions
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The topos Set of classical sets and functions

◮ Continuous truth: JϕK ⊆ R (open subsets)

x ∈ Jϕ � ψK iff for some ε > 0, for all y within ε of x , if y ∈ JϕK, then y ∈ JψK

The topos of Set-values sheaves on R
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The topos Set of classical sets and functions

◮ Continuous truth: JϕK ⊆ R (open subsets)

x ∈ Jϕ � ψK iff for some ε > 0, for all y within ε of x , if y ∈ JϕK, then y ∈ JψK

The topos of Set-values sheaves on R

◮ Kleene-realizable truth: JϕK ⊆ N (all subsets)

n ∈ Jϕ � ψK iff for all m ∈ JϕK, the value of the n th partial recursive function at
m is defined and is in JψK

Hyland’s Effective Topos [Brouwer Cent. Symp., North-Holland (1982)]
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◮ Classical truth: JϕK ⊆ {∗} (two subsets)

∗ ∈ Jϕ � ψK iff either ∗ ∈ JψK, or ∗ /∈ JϕK

The topos Set of classical sets and functions

◮ Continuous truth: JϕK ⊆ R (open subsets)

x ∈ Jϕ � ψK iff for some ε > 0, for all y within ε of x , if y ∈ JϕK, then y ∈ JψK

The topos of Set-values sheaves on R

◮ Kleene-realizable truth: JϕK ⊆ N (all subsets)

n ∈ Jϕ � ψK iff for all m ∈ JϕK, the value of the n th partial recursive function at
m is defined and is in JψK

Hyland’s Effective Topos [Brouwer Cent. Symp., North-Holland (1982)]

What kind of “truth values” does a topos have in general?
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Heyting algebras

are bounded (⊤, ⊥) distributive la�ices (∧, ∨) with relative pseudocomplements (�).

They relate to Heyting’s “sterile” formalization of Brouwer’s intuitionism as Boolean
algebras relate to classical logic.
In particular

the sentences of an IHOL theory modulo provability

or equivalently

the global elements E(1,Ω) of the subobject classifier Ω of a topos E

has the structure of a Heyting algebra.
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Heyting algebras

are bounded (⊤, ⊥) distributive la�ices (∧, ∨) with relative pseudocomplements (�).

They relate to Heyting’s “sterile” formalization of Brouwer’s intuitionism as Boolean
algebras relate to classical logic.
In particular

the sentences of an IHOL theory modulo provability

or equivalently

the global elements E(1,Ω) of the subobject classifier Ω of a topos E

has the structure of a Heyting algebra.

Open question: is every Heyting algebra isomorphic to E(1,Ω) for
some topos E?
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Open question: ∀ H, ∃? E with H ∼= E(1,Ω)

It suffices to resolve the question in the case when H is a free Heyting algebra F[X ] on
a set X , i.e. {sentences of IPL over X} mod ⊢.
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Open question: ∀ H, ∃? E with H ∼= E(1,Ω)

It suffices to resolve the question in the case when H is a free Heyting algebra F[X ] on
a set X , i.e. {sentences of IPL over X} mod ⊢.

My failed strategy from 1980s for resolving the question in the negative:

Not hard to prove:

if F[X ] is of the form E(1,Ω), then
the quantifier structure inE (it’s amodel of IHOL) implies that IPL has uniform interpolants.

So to prove there is no such E, it suffices to find an IPL formula ϕ for which Apϕ or Epϕ
cannot exist.
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Open question: ∀ H, ∃? E with H ∼= E(1,Ω)

It suffices to resolve the question in the case when H is a free Heyting algebra F[X ] on
a set X , i.e. {sentences of IPL over X} mod ⊢.

My failed strategy from 1980s for resolving the question in the negative:

Not hard to prove:

if F[X ] is of the form E(1,Ω), then
the quantifier structure inE (it’s amodel of IHOL) implies that IPL has uniform interpolants.

So to prove there is no such E, it suffices to find an IPL formula ϕ for which Apϕ or Epϕ
cannot exist.

1992: oh no! Apϕ and Epϕ always exist.
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Open question: ∀ H, ∃? E with H ∼= E(1,Ω)

It suffices to resolve the question in the case when H is a free Heyting algebra F[X ] on
a set X , i.e. {sentences of IPL over X} mod ⊢.

Dito Pataraia (d.2011) strategy from 2007 for resolving the question in the positive:

1. Formulate IHOL in terms of algebraic logic—notion of a “higher-order cylindric Heyting algebra”
(hocha).

Every hocha H has a Heyting algebra of sentences H(1,Ω)

Every hocha H generates a topos E (like tripos-to-topos construction of Hyland-Johnstone-P)
with E(1,Ω) ∼= H(1,Ω).

[all OK]

2. Somehow use Ghilardi’s construction of free Heyting algebras
[C.R Math. Acad. Sci. Canada(14)1992] to construct a hocha H with H(1,Ω) ∼= F[X ].

But it’s not clear how DP intended to do that :-(
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In conclusion

[Please would someone resolve the open question about Heyting
algebras and toposes.]
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In conclusion

[Please would someone resolve the open question about Heyting
algebras and toposes.]

Category theory has been essential for linking logic to
geometry (sheaf toposes) and computation (realizability toposes).

In the modern era, logical (type theoretical) account of
higher-dimensional category theory (“it sucks” , DS) is proving essential for
obtaining a homotopy theory of spaces that has computational content
(cf. the cubical type theory of Coquand et al)
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In conclusion

[Please would someone resolve the open question about Heyting
algebras and toposes.]

Category theory has been essential for linking logic to
geometry (sheaf toposes) and computation (realizability toposes).

In the modern era, logical (type theoretical) account of
higher-dimensional category theory (“it sucks” , DS) is proving essential for
obtaining a homotopy theory of spaces that has computational content
(cf. the cubical type theory of Coquand et al)

Thank you for your a�ention!
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