
�otients in Dependent Type Theory

Andrew Pi�s
(with thanks to Marcelo Fiore and Shaun Steenkamp)

FSCD 2020

1/17

Theorem-provers based on
dependent type theory

User-defined inductive constructions are one of the
main reasons for the usefulness of these systems

e.g. Agda, Coq & Lean

2/17

Theorem-provers based on
dependent type theory

User-defined inductive constructions are one of the
main reasons for the usefulness of these systems

e.g. Agda, Coq & Lean

datatype definitions can be mutually recursive, parameterised & indexed
with dependent pa�ern-matching for defining functions on datatypes

2/17

Theorem-provers based on
dependent type theory

User-defined inductive constructions are one of the
main reasons for the usefulness of these systems

But for many applications we need not only to

generate constructions

but also to

equate them

2/17

Finite lists
data List(X : Set) : Set where

[] : List X

:: : X � List X � List X

3/17

Finite multisets
data Bag(X : Set) : Set where

[] : Bag X

:: : X � Bag X � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

≡ is the usual, inductively defined equality type and hence is
automatically an equivalence relation and congruent for ::

So we do not have to give those “boiler-plate” constructors,
we just have to give ones specific to multisets

3/17

Higher Inductive Types

As well as constructors for elements, higher inductive
types (HITs) allow constructors for equalities between
elements, equalities between equalities between
elements, etc, etc.

HITs are a contribution of Homotopy Type Theory (maybe the most important
one).

Examples from the HoTT book : propositional truncation, Cauchy reals, Aczel
constructive sets, Conway games.

4/17

Higher Inductive Types

As well as constructors for elements, higher inductive
types (HITs) allow constructors for equalities between
elements, equalities between equalities between
elements, etc, etc.

I will restrict a�ention to dependent type theory
satisfying Hofmann & Streicher’s Axiom K, where higher
equality types are all contractible (equivalent to
singletons). HITs are still interesting in this truncated
se�ing.

Altenkirch & Kaposi coined the term
quotient inductive type (QIT) for them [POPL 2016].

4/17

Motivating questions

QITs seem a very a�ractive extension of the usual
inductive facilities of theorem-provers based on
dependent type theory.

◮ How are QITs characterised?
(e.g. category-theoretic universal property)

◮ How are they constructed?
(e.g. in terms of more standard type-theoretic concepts)

◮ How to make QITs easier to use in
theorem-provers?

5/17

Motivating questions

QITs seem a very a�ractive extension of the usual
inductive facilities of theorem-provers based on
dependent type theory.

◮ How are QITs characterised?
(e.g. category-theoretic universal property)

◮ How are they constructed?
(e.g. in terms of more standard type-theoretic concepts)

I will come at the first two questions via
infinitary equational theories. . .

5/17

Equational theories
Finite multisets
data Bag(X : Set) : Set where

[] : Bag X

:: : X � Bag X � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

Bag X is the initial algebra for the equational theory with

◮ nullary operation [] and
unary operations x :: , for each x : X

◮ unary axioms swap x y , for each x, y : X

for every type Y equipped with those operations and
satisfying those equation, there is a unique function

BagX � Y that commutes with the operations

6/17

Equational theories
Finite multisets
data Bag(X : Set) : Set where

[] : Bag X

:: : X � Bag X � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

Bag X is the initial algebra for the equational theory with

◮ nullary operation [] and
unary operations x :: , for each x : X

◮ unary axioms swap x y , for each x, y : X

It’s a finitary theory.

6/17

Infinitary equational theories
Unordered countably branching trees

data Tree(X : Set) : Set where

leaf : X � Tree X

node : (N � Tree X) � Tree X

perm : (c : PermN)(f : N � TreeX) � node f ≡ node (f ◦ c)

(PermN is the type of permutations of N)

Tree X is the initial algebra for the equational theory with

◮ nullary operations leaf x , for each x : X
and N-ary operation node

◮ N-ary axioms perm c , for each c : PermN

7/17

Infinitary equational theories
Unordered countably branching trees

data Tree(X : Set) : Set where

leaf : X � Tree X

node : (N � Tree X) � Tree X

perm : (c : PermN)(f : N � TreeX) � node f ≡ node (f ◦ c)

(PermN is the type of permutations of N)

Tree X is the initial algebra for the equational theory with

◮ nullary operations leaf x , for each x : X
and N-ary operation node

T0, T1, . . . : Tree

node(T0, T1, . . .) : Tree

◮ N-ary axioms perm c , for each c : PermN

∀x0, x1, . . . : Tree, node(x0, x1, . . .) = node(xc 0, xc 1, . . .)

It’s an infinitary theory.

7/17

Infinitary equational theories

Signature Σ , (A,B) for terms
A : Set each a : A names an operation symbol

B : A � Set B a is the arity of symbol a : A

TΣ(X) is the datatype of terms over Σ with variables from X : Set.

It has constructors

{

[: X � TΣ (X)

f : Σ(TΣ (X)) � TΣ (X)
, where Σ(Y) ,

∑

a:A(B a � Y)

SoWΣ , TΣ(∅) is the usual W-type of well-founded trees over the signature Σ.

8/17

Infinitary equational theories

Signature Σ , (A,B) for terms
A : Set each a : A names an operation symbol

B : A � Set B a is the arity of symbol a : A

System (E,V , l, r) of equations over the Σ-terms
E : Set each e : E names an equation

V : E � Set V e is set of variables in equation named by e : E

l : (e : E) � TΣ (V e) l e / r e is le�-/right-hand term of equation

r : (e : E) � TΣ (V e) named by e : E

8/17

Infinitary equational theories

Signature Σ , (A,B) for terms
A : Set each a : A names an operation symbol

B : A � Set B a is the arity of symbol a : A

System (E,V , l, r) of equations over the Σ-terms
E : Set each e : E names an equation

V : E � Set V e is set of variables in equation named by e : E

l : (e : E) � TΣ (V e) l e / r e is le�-/right-hand term of equation

r : (e : E) � TΣ (V e) named by e : E

A Σ-algebra Σ(Y)
sup

−−−→ Y satisfies a system of equations (E,V , l, r) if
for all e : E and d : V e � Y there is a proof of Jl eKd ≡ Jr eKd

where for each d : X � Y , J Kd : TΣ (X) � Y is given recursively by
{

J[xKd = d x

Jf (a, f)Kd = sup(a, _b � Jf bKd)

8/17

QW-Types

are initial algebras for infinitary algebraic theories

The QW-type specified by a system of equations Y , (E,V , l, r) over

a signature Σ , (A, B), if it exists, is a Σ-algebra Σ(QW)
sup

−−−→ QW

which is initial among those satisfying Y.

given Y Σ(Y)
sup

satisfying Y

there is a unique

QW

rec

Σ(QW)
sup

Σ(rec)

(There are dependent-elimination/computation rules for QW-types
that are equivalent to initiality, modulo function extensionality.)

9/17

QW-Types
The QW-type specified by a system of equations Y , (E,V , l, r) over

a signature Σ , (A, B), if it exists, is a Σ-algebra Σ(QW)
sup

−−−→ QW

which is initial among those satisfying Y.

Finite multisets:

A = 1 + X , B = _{inl � ∅; inr � 1}
E = X × X , V = _ � 1
l = _{(x, y) � f (inr x) (_ � f (inr y) (_ � [tt))}

r = _{(x, y) � f (inr y) (_ � f (inr x) (_ � [tt))}

Unordered countably branching trees:

A = X + 1, B = _{inl � ∅; inr � N}
E = PermN, V = _ � N
l = _ � f (inr tt)[

r = _ c � f (inr tt) ([◦ c)

QW-types form an expressive collection of QITs

9/17

QW-Types
The QW-type specified by a system of equations Y , (E,V , l, r) over

a signature Σ , (A, B), if it exists, is a Σ-algebra Σ(QW)
sup

−−−→ QW

which is initial among those satisfying Y.

In ZFC, one can construct QW-types as
Quotients of W-types, WΣ/∼ where ∼ is the congruence generated by all
closed instances of the equations, Jl eKd ∼ Jr eKd (e : E, d : V e � WΣ).

When Σ is infinitary, we can1 use the Axiom of Choice (AC) to see that WΣ/∼ is a
Σ-algebra:

sup(a, B a
f
−→ WΣ/∼) = [sup(a,B

f
−→ WΣ/∼

choose
−−−−−→ W)]∼

and then it’s necessarily initial among those satisfying the equations.

1 AC is not necessary for some infinitary QITs, such as the unordered countably branching trees example – see [A. Swan, A Class of

Higher Inductive Types in Zermelo-Fraenkel Set Theory, arXiv:2005.14240, 2020].

9/17

QW-Types
The QW-type specified by a system of equations Y , (E,V , l, r) over

a signature Σ , (A, B), if it exists, is a Σ-algebra Σ(QW)
sup

−−−→ QW

which is initial among those satisfying Y.

In ZFC, one can construct QW-types as
Quotients of W-types, WΣ/∼

When Σ is infinitary, we can use the Axiom of Choice (AC) to see that WΣ/∼ is a
Σ-algebra

Example due to Blass1 (reformulated as a HIT by Lumsdaine-Schulman2): there
is an infinitary equational theory whose associated QW-type would have to be
modelled in sets by an uncountable regular cardinal, so cannot be proved to exist
in ZF without AC, by a result of Gitik3.

1 Andreas Blass,Words, Free Algebras, and Coequalizers, Fundamenta Mathematicae 117(1983)117–160.

2 Peter Lumsdaine and Michael Shulman, Semantics of Higher Inductive Types, Math. Proc. Camb. Phil. Soc. (2019).

3 M. Gitik, All Uncountable Cardinals Can Be Singular, Israel J. Math. 35(1980)61–88.

9/17

QW-Types
The QW-type specified by a system of equations Y , (E,V , l, r) over

a signature Σ , (A, B), if it exists, is a Σ-algebra Σ(QW)
sup

−−−→ QW

which is initial among those satisfying Y.

In ZFC, one can construct QW-types as
Quotients of W-types, WΣ/∼

When Σ is infinitary, we can use the Axiom of Choice (AC) to see that WΣ/∼ is a
Σ-algebra

Example due to Blass1 (reformulated as a HIT by Lumsdaine-Schulman2): there
is an infinitary equational theory whose associated QW-type would have to be
modelled in sets by an uncountable regular cardinal, so cannot be proved to exist
in ZF without AC, by a result of Gitik3.

But ZF is already too weak to give a classical set model of the type theory in
which we work (with its infinite hierarchy of universes).

9/17

Can QW-types be defined from W-types and
quotient types within dependent type theory?

Version for intensional Type Theory considered by Hofmann in his thesis,
but assuming Axiom K and using heterogeneous equality types, ≡≡

A : Set

∼ : A � A � Set

A/∼ : Set

x : A

[x]∼ : A/∼

x y : A

r : x ∼ y

eq r : [x]∼ ≡ [y]∼

B : A/∼ � Set

f : (x : A) � B[x]∼
e : (x y : A) � (x ∼ y) � f x ≡≡ f y

z : A/∼

elimB f e z : B z

· · ·

x : A

elimB f e [x]∼ = f x : B[x]∼

�otients make function extensionality (mod ≡) derivable;
and given fun ext, they are equivalent to coequalizers

10/17

Can QW-types be defined from W-types and
quotient types within dependent type theory?

Two approaches to this question:

[S] Swan, W-Types with Reductions and the Small Object
Argument (arXiv:1802.07588, 2018)

[FPS] Fiore, Pi�s & Steenkamp, Constructing Infinitary
�otient-Inductive Types (FoSSaCS 2020)

10/17

[FPS] Fiore, Pi�s & Steenkamp, Constructing

Infinitary�otient-Inductive Types (FoSSaCS 2020)

QW-type for
Σ , (A, B), Y , (E,V , l, r):

mutual

QW : Set

QW = W/∼

data W : Set where

sq : TΣ (W/∼) � W

data ∼ : W � W � Set where

[definition (omi�ed)

ensures QW satisfies Y]

sup : Σ(QW) � QW

sup(a, f) = [sq(f (a, [◦ f))]∼

An “inductive-inductive”
definition interleaved with
quotients that one can make
in Agda to get a Σ-algebra
satisfying Y. But when
proving initiality for it, it’s
not clear why the associated
recursive definitions are
terminating.

11/17

[FPS] Fiore, Pi�s & Steenkamp, Constructing

Infinitary�otient-Inductive Types (FoSSaCS 2020)

QW-type for
Σ , (A, B), Y , (E,V , l, r):

mutual

QW : Set

QW = W/∼

data W : Set where

sq : TΣ (W/∼) � W

data ∼ : W � W � Set where

[definition (omi�ed)

ensures QW satisfies Y]

sup : Σ(QW) � QW

sup(a, f) = [sq(f (a, [◦ f))]∼

An “inductive-inductive”
definition interleaved with
quotients that one can make
in Agda to get a Σ-algebra
satisfying Y. But when
proving initiality for it, it’s
not clear why the associated
recursive definitions are
terminating.
[FPS] uses Agda’s sized
types to prove termination.
However, the semantic
status of sized types is
unclear (to me)
and Agda’s current
implementation of them
allows one to prove falsity.

11/17

[S] Swan,W-Types with Reductions and the Small

Object Argument (arXiv:1802.07588, 2018)

W-types with reductions are the special case of QW-types where
the only equations allowed identify a tree sup(a, f) in a W-type
with one of its leaves f b.

12/17

[S] Swan,W-Types with Reductions and the Small

Object Argument (arXiv:1802.07588, 2018)

W-types with reductions are the special case of QW-types where
the only equations allowed identify a tree sup(a, f) in a W-type
with one of its leaves f b.

[S] shows how to construct them as quotients of subsets of W-types
using a constructively acceptable form of choice, WISC (Streicher,
Moerdijk, Van Den Berg,. . .)

12/17

[S] Swan,W-Types with Reductions and the Small

Object Argument (arXiv:1802.07588, 2018)

W-types with reductions are the special case of QW-types where
the only equations allowed identify a tree sup(a, f) in a W-type
with one of its leaves f b.

[S] shows how to construct them as quotients of subsets of W-types
using a constructively acceptable form of choice, WISC (Streicher,
Moerdijk, Van Den Berg,. . .)

Weakly Initial Set of Covers:

for every A : Set, there is a set of surjections (Ec
ec
։ A | c : CovA)

such that for every surjection E
e
։ A there exists

Ec

ec

E

e

A

for some c : CovA

12/17

[S] Swan,W-Types with Reductions and the Small

Object Argument (arXiv:1802.07588, 2018)

W-types with reductions are the special case of QW-types where
the only equations allowed identify a tree sup(a, f) in a W-type
with one of its leaves f b.

[S] shows how to construct them as quotients of subsets of W-types
using a constructively acceptable form of choice, WISC (Streicher,
Moerdijk, Van Den Berg,. . .)

AC implies WISC.
WISC is conserved under forming

(pre)sheaf toposes and realizability toposes.

12/17

[S] Swan,W-Types with Reductions and the Small

Object Argument (arXiv:1802.07588, 2018)

W-types with reductions are the special case of QW-types where
the only equations allowed identify a tree sup(a, f) in a W-type
with one of its leaves f b.

[S] shows how to construct them as quotients of subsets of W-types
using a constructively acceptable form of choice, WISC (Streicher,
Moerdijk, Van Den Berg,. . .)

Claim: in the [FPS] construction of QW-types, WISC
can be used to eliminate Agda’s sized types in favour of
a suitably inaccessible, well-founded posets of sizes.

12/17

Motivating questions

QITs seem a very a�ractive extension of the usual
inductive facilities of theorem-provers based on
dependent type theory.

◮ How are QITs characterised?
(e.g. category-theoretic universal property)

◮ How are they constructed?
(e.g. in terms of more standard type-theoretic concepts)

◮ How to make QITs easier to use in
theorem-provers?

13/17

--cubicalmode of Agda

Cohen, Coquand, Huber & Mörtberg, Cubical Type Theory: A Constructive

Interpretation of the Univalence Axiom (TYPES 2015)

Vezzosi, Mörtberg & Abel, Cubical Agda: A Dependently Typed Programming

Language with Univalence and Higher Inductive Types (ICFP 2019)

(See also Isaev’s Arend prover [arend-lang.github.io])

14/17

arend-lang.github.io

--cubicalmode of Agda

allows user-declared HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

data Tree(X : Set) : Set where

leaf : X � TreeX

node : (N � TreeX) � TreeX

perm : (c : PermN) (f : N � TreeX) � node f ≡ node (f ◦ c)

but now these
are not inductive equality types, but rather

(equivalent) path equality types

14/17

--cubicalmode of Agda

allows user-declared HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

data Tree(X : Set) : Set where

leaf : X � TreeX

node : (N � TreeX) � TreeX

perm : (c : PermN) (f : N � TreeX) � node f ≡ node (f ◦ c)

but now these
are not inductive equality types, but rather

(equivalent) path equality types

interval I with end points i0, i1 : I

path between x, y : X is function p : I � X

with p i0 = x and p i1 = y (definitional equalities)
x ≡ y is the type of such paths

14/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ ys = ?

15/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs∪ ys)

xs∪ (swap y y ′ ys i) = ?

Agda says: Goal: BagX

Boundary

i = i0 ⊢ y :: y ′ :: (xs ∪ ys)

i = i1 ⊢ y
′ :: y :: (xs ∪ ys)

15/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs∪ ys)

xs∪ (swap y y ′ ys i) = swap y y ′ (xs∪ ys) i

15/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs∪ ys)

xs∪ (swap y y ′ ys i) = swap y y ′ (xs∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs ∪ ys) ∪ zs

assoc xs ys zs i = ?

15/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs∪ ys)

xs∪ (swap y y ′ ys i) = swap y y ′ (xs∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs ∪ ys) ∪ zs

assoc xs ys [] i = xs ∪ ys

assoc xs ys (z :: zs) i = z :: (assoc xs ys zs i)

assoc xs ys (swap z z ′ zs j) i = ?

Agda says: Goal: BagX

Boundary

j = i0 ⊢ z :: z ′ :: assoc xs ys zs i

j = i1 ⊢ z
′ :: z :: assoc xs ys zs i

i = i0 ⊢ swap z z
′(xs ∪ (ys ∪ zs) j

i = i1 ⊢ swap z z
′((xs ∪ ys) ∪ zs) j

15/17

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where

[] : BagX

:: : X � BagX � BagX

swap : (x y : X) (zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs∪ ys)

xs∪ (swap y y ′ ys i) = swap y y ′ (xs∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs ∪ ys) ∪ zs

assoc xs ys [] i = xs ∪ ys

assoc xs ys (z :: zs) i = z :: (assoc xs ys zs i)

assoc xs ys (swap z z ′ zs j) i = swap z z ′ (assoc xs ys zs i) j

15/17

--cubicalmode of Agda

◮ Bondary equality constraints for n-dimensional cubes can
very complicated

◮ there is no support for solving them (need something
akin to “chain-reasoning”)

◮ n-cubes are overkill when working modulo Axiom K

◮ The combination of cubical features with pa�ern-matching for
inductive indexed families is tricky to get right (--cubical
mode for Agda v2.6.1 was logically inconsistent)

16/17

Conclusions

QITs (and more generally, HITs) are a very useful feature
that deserve a place in theorem-provers based on

dependent type theory.

Theory: there is more to understand about the
reduction of QITs to W-types and quotient types.

Practice: how can we make it easier to define functions
(⊃ proofs) on QITs, especially in the simple case of

“pseudo-extensional” type theory?
(Axiom K + quotients + propositional extensionality + unique choice)

17/17

Conclusions

QITs (and more generally, HITs) are a very useful feature
that deserve a place in theorem-provers based on

dependent type theory.

Theory: there is more to understand about the
reduction of QITs to W-types and quotient types.

Practice: how can we make it easier to define functions
(⊃ proofs) on QITs, especially in the simple case of

“pseudo-extensional” type theory?
(Axiom K + quotients + propositional extensionality + unique choice)

Thank you for your virtual a�ention!

17/17

