Using Agda to Explore
Path-Oriented Models of
Type Theory

Andrew Pitts

joint work with lan Orton

EH UNIVERSITY OF
¥ CAMBRIDGE

Computer Laboratory

1/22

Outline

The mathematical problem
— find new models of Homotopy Type Theory

Why use an interactive theorem prover for this?
— and why Agda particularly?

HoTT 101

Martin-Lof Type Theory

is formulated in terms of judgements

“Ais a type" (A type)
“A and B are equal types” (A = B type)
“a is a thing of type A" (a:A)
“a and b are equal things of type A" (a=b:A)

not in first-order logic — just an inductive definition using
hypothetical judgements. ..

Martin-Lof Type Theory

is formulated in terms of hypothetical judgements, e.g.

x:A,y:B(x)Fa(x,y):C(xy)

x:A,y:B(x)Fa(x,y) =b(x,y): C(x,vy)

Martin-Lof Type Theory

is formulated in terms of hypothetical judgements, e.g.

x:Avy:B(x)Fa(xy):C(xvy)

x:Ay:B(x)Fa(x,y) =b(xy):C(xy)

involving dependent types.

Expressive power comes via three higher-order aspects. . .

Higher-order features

function types
A—-B
(A-B)-C
((A-B)-~C)-D

CS | Logic | Math
Vv | %

5/22

Higher-order features

universes — types whose elements are (codes for) types

Prop : Set : Type : TYPE - .-

CS | Logic | Math
x| v | %

Higher-order features

identity types — types of proofs of equality

formation: x: A,y : AF Ida(x,y) type
introduction: x: A F refl: Ida(x, x)
elimination & computation: [details omitted — DIY!]

5/22

Higher-order features

(intensional) identity types
Ida(x,vy)
Idia, (xy) (P, 9)
IdIdIdA(x,y)(p/q) (P, Q)

IdIdIdIdA (xy) (p.a) (P’Q) (P, Q)

CS | Logic | Math
x| %X | v

Equality-as-path

[Awodey-Warren, Voevodsky,. . .|

elements of Id4(x,y) are analogous to
paths from point x to point y in a space A

Equality-as-path

[Awodey-Warren, Voevodsky,. . .|

elements of Id4(x,y) are analogous to
paths from point x to point y in a space A

elements of Idiq,(vy) (p,g) as homotopies between
paths p and ¢,

etc.

Type Theory

Homotopy Theory

p:Ida(x,y)
refl: Ida(x, x)

path p from x to y in a space A
degenerate path constantly at x

Type Theory Homotopy Theory

p:1lda (x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space
B Bly)
A % o—\,_/——\/\.a} oy

Type Theory Homotopy Theory

p: IdA(x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space

Bi) Blx)

Type Theory Homotopy Theory

p:1lda (x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space
3! path-contractible spaces [Voevodsky|
A A

(eowfl) ——> (y, p>
PO(H'\ wn ZUJA,ID\A (x;y)

Type Theory Homotopy Theory

p:1lda (x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space
= path-contractible spaces [Voevodsky|
univalent universes only properties invariant
[Voevodsky] under homotopy equivalence
X Y
l s dds

Type Theory Homotopy Theory

p:1lda (x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space
= path-contractible spaces [Voevodsky|
univalent universes only properties invariant
[Voevodsky] under homotopy equivalence
X Y
iy
loy Sovwae

Type Theory Homotopy Theory

p:1lda (x, y) path p from x to y in a space A
refl: Idy (x, x) degenerate path constantly at x
subst transport along paths in fibred space
3! path-contractible spaces [Voevodsky|
univalent universes only properties invariant
[Voevodsky] under homotopy equivalence

Existing models of univalent type theory:

— Kan simplicial sets in classical set theory [Voevodsky]

— uniform-Kan cubical sets in constructive set theory [Coquand, et al|

We need more (and simpler) ones!

Category Theory

Use categorical algebra to organize what is needed for a
model.

% categories of (tame) topological spaces

Category Theory

Use categorical algebra to organize what is needed for a
model.

% categories of (tame) topological spaces

Grothendieck’s toposes = categories of set-valued
sheaves on generalised notion of space

Category Theory

Use categorical logic to organize what is needed for a
model.

% categories of (tame) topological spaces

v Grothendieck’s toposes = categories of set-valued
sheaves on generalised notion of space

? elementary toposes = models of intuitionistic HOL

Can use the language of (intuitionistic, extensional)
higher-order logic / type theory to explore relevant

constructions in a topos
— makes things much easier to understand (for non arrow-heads).

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0,1 : I) and consider
associated path types:

formation: x,y : A - Patha(x,y) type
introduction: f:I — A F path(f) : Patha(f0, f1)

+ simplest possible subst structure, “Dold fibrations”

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0,1 : I) and consider
associated path types:

formation: x,y : A - Patha(x,y) type
introduction: f:I — A F path(f) : Patha(f0, f1)

+ simplest possible subst structure, “Dold fibrations”

What properties of I allow one to get a model of MLTT
+ univalence this way? (with identity types given by Path)

We have been using Agda to help us explore this
question.

http://wiki.portal.chalmers.se/agda

At its core:
inductive definitions of indexed families of data types
involving dependently typed functions. J

User declares what are the types of data constructors and then Agda
assists the user to define well-typed functions on the data using
dependently-typed patterns [Coquand], by gradually replacing
meta-variables (“holes").

Functional programming = theorem proving:
propositions are (some) types, proofs are elements of types.

http://wiki.portal.chalmers.se/agda

Agda

http://wiki.portal.chalmers.se/agda

At its core:
inductive definitions of indexed families of data types
invohﬂngchpendenﬂytype&quncﬂons

User declares what are the types of data constructors and then Agda
assists the user to define well-tyged functions on the data using
dependently-typed patterns fCoquand], by gradually replacing

Functional program
propositions are (s

ng = theorem proving:
e) types, proofs are elements of types.

Simple access to these is the deal clincher for me (background:
semantics of programming languages).

http://wiki.portal.chalmers.se/agda

Agda

Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

No separate tactic language (oer than eisp

Agda

Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

No separate tactic language (oer than eisp
® No tactics ¢

Agda

Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

No separate tactic language (oer than eisp
® No tactics ye

Test-bed for new ideas.
® Test-bed for new ideas.

Agda

Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

No separate tactic language (oer than eisp
® No tactics ye

Test-bed for new ideas.
® Test-bed for new ideas.
? Can it cope with big proofs?

Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

No separate tactic language (oer than eisp
® No tactics ye

Test-bed for new ideas.
® Test-bed for new ideas.
? Can it cope with big proofs?

Access to unsafe features — great for
experimentation rather than trusted verification.

An experiment

Work in the internal language of a topos

(To simulate enough of this, we use unsafe features of Agda
» postulates & TrustMe
» local use of ——type-in-type
» REWRITE & POLARITY pragmas

to add to MLTT

either impredicative universe of h-propositions [Escardo]

or Hofmann's predicative quotient types

12/22

Adding quotient types to Agda

postulate
/_: (A : Set)(R: A-> A - Set) » Set -- formation
{-# POLARITY _/_ ++ * #-} -- make /R strictly +ve
module _ (A : Set)(R : A - A - Set) where
postulate
[IT:A-A/R -- introduction
by : V{ixy} > Rxy->[x1=[y]l -- introduction equality
gelim : -- elimination

(B: A/ R~ Set)
(f:(x:A) ->BI[x])
(e : (xy :A)(r:Rxy)-subst B (byr) (f x) =fy)

gcomp : -- computation

(e ; (xy : A)(r:Rxy)-subst B (by r) (f x) =°fy)
(x : A) »gelimB fe [x]=fx

{-# REWRITE qcomp #-} -- make gcomp definitional

13/22

Adding quotient types to Agda

postulate
/ : (A: Set)(R: A->A- Set) - Set -- formation

T . X X
No need to assume R is an equivalence relation.

We work modulo axiom K (uniqueness of identity proofs), so do not
need to postulate more than qcomp.

As well as quotients with the expected universal property, this gives:
> propositional truncation, mere existence and disjunction

> function extensionality

\BUT programming with gelim is a pain — there has to be a better way.)

gcomp : -- computation

(B: A/ R > Set)
(f: (x:A) -BI[x])
(e : (Xy :A)(r:RXxy)->subst B (byr) (fx)=Tfy)

{-# REWRITE qcomp #-} -- make gcomp definitional

13/22

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0,1 : I) and consider
associated path types:

formation: x,y : A - Patha(x,y) type
introduction: f:I — A F path(f) : Patha(f0, f1)

+ simplest possible subst structure, “Dold fibrations”

What properties of I allow one to get a model of MLTT
+ univalence this way? (with identity types given by Path)

14/22

An interval theory

non-trivial = (0 = 1)

connected (Vi: I, P(i) V—P(i)) - Vi,j: I, P(i) - P(j)
total order Vi,j: I, i <j V j<i

with monus

Vi, ji1, (j<isisj<OAG=i=0)Ai~(i=f)=7) |

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with X, II, Id, 0, 1 4,
W types, ...

15/22

An interval theory

non-trivial = (0 = 1)

connected (Vi: I, P(i) V—P(i)) - Vi,j: I, P(i) - P(j)
total order Vi,j : I, i <j V j<i

with monus

Vi jiL, (jSi-isj<i)A(i~i=0)A(i=(i~j)=)) |

Theorem (in Agda) For any such I in a topos, Dold

fibrations give a knodel of MLTT with X, II, Id, 0, 1 4,
W types, ...

Among other things, Agda helped us to calculate correctly with
p
. . P . 0
(higher) paths. E.g. stops one confusing x ——y with x 47"y

?i It l? !

x*>q y

15/22

IdActId :
v{¢ €' T} >
(A : T - Set ¢')
{{_ : isFib A}}
(@ab: (x:T) ~»AX)
(x : 1)
(g : Id Aab x)

q~ IdAct Aab

IdActId A {{a}} a b

let f =qat_in
path:

q

~[erefl q]
q ¢ ~refl (a x)

~[~cong (q *_) (~symm (~invl (~substrefl a (a x))))]
q « ~symm (~substrefl a (a x)) * ~substrefl a (a x)

~[~cong (A p - q ¢ ~symm (~substrefl a (a x)) ¢ p) (refle (~substrefl a (a x))) 1]
q ¢ ~symm (~substrefl a (a x)) * ~refl (~subst a (~refl x) (a x)) ¢ ~substrefl a (a x)

~[{3)((q from j) ¢ ~symm (~substrefl a (f j)) ¢ (i)(~subst a (~refl x) (f (cvx 0 i j))) ¢ ~substrefl a (a x)) 1]
~refl (b x) + ~symm (~substrefl a (b x)) ¢ (i)(~subst a (~refl x) (f i)) « ~substrefl a (a x)

~[~symm (refle (~symm (~substrefl a (b x)) ¢ { i)(~subst a (~refl x) (f i)) ¢ ~substrefl a (a x)))]
~symm (~substrefl a (b x)) ¢ (i)(~subst a (~refl x) (f 1)) e ~substrefl a (a x)

~[~cong (A p - ~symm p « { i)(~subst a (~refl x) (f i)) < ~substrefl a (a x)) (I~+0id A {{a}} b x)]
~symm (I~*0 A b (~refl x)) ¢ (i)(~subst a (~refl x) (f 1)) e ~substrefl a (a x)

~[~cong (A p » ~symm (I~*0 A b (~refl x)) ¢ (i)(~subst a (~refl x) (f i)) < p) (I~*0id A {{a}} a x)]
~symm (I~¥0 A b (~refl x)) « (i)(~subst a (~refl x) (f 1)) « (I~%0 A a (~refl x))

endp

16/22

An interval theory

non-trivial = (0 = 1)

connected (Vi: I, P(i) V—P(i)) - Vi,j: I, P(i) - P(j)
total order Vi,j: I, i <j V j<i

with monus

Vij:L (j<i-i=j<i)A({=i=0)A(~(i+j)=j)

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with X, II, Id, 0, 1 4,
W types, ...

Theorem (pencil-and-paper) There are examples of such
toposes

An interval theory

non-trivial = (0 = 1)

connected (Vi: I, P(i) V—P(i)) - Vi,j: I, P(i) - P(j)

total order Vi,j: I, i <j V j<i

with monus

Vi, ji1, (j<isisj<OAG=i=0)Ai~(i=f)=7) |

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with X, II, Id, 0, 1 4,
W types, ... (univalence?)

Theorem (pencil-and-paper) There are examples of such
toposes (but not presheaf toposes /'\)

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do | find out about the (possibly obscure) bits of
homotopy theory that | might need to build path-based
models of type theory?

18/22

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do | find out about the (possibly obscure) bits of
homotopy theory that | might need to build path-based
models of type theory?

A Search nLab [Urs Schreiber].

18/22

ncatlab.org

Schreiber
What is... the nLab

Home Page | All Pages | Latest Revisions | Authors | Feeds | Export | soucn

What is... the nLab? wiki

Some thoughts. (See also: Wikipedia on the nlLab)

Contents An "open lab-book”
wiki devoted to
Mathematics, Phys
and Philosophy

1. Connect the relevant information.

2. Show the big_picture.
3. Tap the power of the swarm. Record.
4. Stop duplicating_answers.

1. Connect the relevant information.

We all waste too much time with searching for mathematical information that is already out there. As a
student, before the dawn of the internet, I wasted days in the library, on chasing references to the secrets of
the universe. Now the internet exists, but we still waste time searching randomly. Things have not been
connected. The nLab means to connect the dots. The idea is that you stop searching randomly and just
follow the links. Hypertext. That was the original vision of the web. We need more research-level maths
hypertext.

2. Show the big picture.

We are in an age where in theoretical physics we are supposed to work on quantum gravity and unification,
needing the very latest of the developments in mathematics. At the same time we still bring up students
with old textbooks. This way even the best of them at the end of their study can only grasp a tiny fraction of
the big picture, because the knowledge is so scattered in tiny sub-expert communities. This is insane and
unnecessary. The nLab means to connect the dots and show the big picture. That's why it's organized by
higher category theory. This is the structure that helps organize things and bring them together
conceptually. (While of course many specific entries need not be category theoretic at all).

19/22

ncatlab.org

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do | find out about the (possibly obscure) bits of
homotopy theory that | might need to build path-based
models of type theory?

A Search nLab [Urs Schreiber].

For things like nLab
— is more formalisation desirable?

— is more automation (ML) possible?

20/22

Wanted

» Mathematics: the world’s simplest model of
univalent type theory.

» |TP: better support for quotient types (integrated
with inductive types + pattern matching).

» “Social exploration”: 777

21/22

Some details

lan Orton & AMP, Axioms for Modelling Cubical Type Theory in a
Topos. In Proc. CSL 2016, LIPIcs 62, pp. 24:1-24:19, 2016.
www.cl.cam.ac.uk/~rio22/agda/cubical-topos/root.html

lan Orton & AMP, Models of Type Theory Based on Moore Paths.
In Proc. FSCD 2017, LIPIcs, to appear, 2017.

Model of MLTT from an ordered-interval-with-monus:
www.cl.cam.ac.uk/~ampl2/agda/interval-theory/Main.html

22/22

www.cl.cam.ac.uk/~rio22/agda/cubical-topos/root.html
www.cl.cam.ac.uk/~amp12/agda/interval-theory/Main.html

	HoTT 101

