
Using Agda to Explore
Path-Oriented Models of

Type Theory

Andrew Pitts

joint work with Ian Orton

Computer Laboratory

1/22

Outline

◮ The mathematical problem
– find new models of Homotopy Type Theory

◮ Why use an interactive theorem prover for this?
– and why Agda particularly?

2/22

HoTT 101

3/22

Martin-Löf Type Theory

is formulated in terms of judgements

“A is a type” (A type)
“A and B are equal types” (A = B type)
“a is a thing of type A” (a : A)
“a and b are equal things of type A” (a = b : A)

not in first-order logic – just an inductive definition using
hypothetical judgements. . .

4/22

Martin-Löf Type Theory

is formulated in terms of hypothetical judgements, e.g.

x : A, y : B(x) ⊢ a(x, y) : C(x, y)

x : A, y : B(x) ⊢ a(x, y) = b(x, y) : C(x, y)

4/22

Martin-Löf Type Theory

is formulated in terms of hypothetical judgements, e.g.

x : A, y : B(x) ⊢ a(x, y) : C(x, y)

x : A, y : B(x) ⊢ a(x, y) = b(x, y) : C(x, y)

involving dependent types.

Expressive power comes via three higher-order aspects. . .

4/22

Higher-order features

function types

A � B

(A � B) � C

((A � B) � C) � D

...

CS Logic Math
✔ ✔ ✖

5/22

Higher-order features

universes – types whose elements are (codes for) types

Prop : Set : Type : TYPE · · ·

CS Logic Math
✖ ✔ ✖

5/22

Higher-order features

identity types – types of proofs of equality

formation: x : A, y : A ⊢ IdA(x, y) type

introduction: x : A ⊢ refl : IdA(x, x)
elimination & computation: [details omitted – DIY!]

5/22

Higher-order features

(intensional) identity types

IdA(x, y)

IdIdA(x,y)(p, q)

IdId
IdA(x,y)(p,q)(P, Q)

IdId
Id

IdA(x,y)(p,q)(P,Q)(P ,Q)

...

CS Logic Math
✖ ✖ ✔

5/22

Equality-as-path

[Awodey-Warren, Voevodsky,. . .]

elements of IdA(x, y) are analogous to
paths from point x to point y in a space A

6/22

Equality-as-path

p → p′

p 6→ q

[Awodey-Warren, Voevodsky,. . .]

elements of IdA(x, y) are analogous to
paths from point x to point y in a space A

elements of IdIdA(x,y)(p, q) as homotopies between
paths p and q,

etc.

6/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

∃! path-contractible spaces [Voevodsky]

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

∃! path-contractible spaces [Voevodsky]

univalent universes only properties invariant
[Voevodsky] under homotopy equivalence

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

∃! path-contractible spaces [Voevodsky]

univalent universes only properties invariant
[Voevodsky] under homotopy equivalence

7/22

Type Theory Homotopy Theory
p : IdA(x, y) path p from x to y in a space A

refl : IdA(x, x) degenerate path constantly at x

subst transport along paths in fibred space

∃! path-contractible spaces [Voevodsky]

univalent universes only properties invariant
[Voevodsky] under homotopy equivalence

Existing models of univalent type theory:

– Kan simplicial sets in classical set theory [Voevodsky]

– uniform-Kan cubical sets in constructive set theory [Coquand, et al]

We need more (and simpler) ones!

7/22

Category Theory

Use categorical algebra to organize what is needed for a
model.

✖ categories of (tame) topological spaces

8/22

Category Theory

Use categorical algebra to organize what is needed for a
model.

✖ categories of (tame) topological spaces

✔ Grothendieck’s toposes = categories of set-valued
sheaves on generalised notion of space

8/22

Category Theory

Use categorical logic to organize what is needed for a
model.

✖ categories of (tame) topological spaces

✔ Grothendieck’s toposes = categories of set-valued
sheaves on generalised notion of space

? elementary toposes = models of intuitionistic HOL

Can use the language of (intuitionistic, extensional)
higher-order logic / type theory to explore relevant
constructions in a topos
– makes things much easier to understand (for non arrow-heads).

8/22

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0, 1 : I) and consider
associated path types:

formation: x, y : A ⊢ PathA(x, y) type

introduction: f : I � A ⊢ path(f) : PathA(f 0 , f 1)

+ simplest possible subst structure, “Dold fibrations”

9/22

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0, 1 : I) and consider
associated path types:

formation: x, y : A ⊢ PathA(x, y) type

introduction: f : I � A ⊢ path(f) : PathA(f 0 , f 1)

+ simplest possible subst structure, “Dold fibrations”

What properties of I allow one to get a model of MLTT
+ univalence this way? (with identity types given by Path)

We have been using Agda to help us explore this
question.

9/22

Agda

http://wiki.portal.chalmers.se/agda

At its core:

inductive definitions of indexed families of data types
involving dependently typed functions.

User declares what are the types of data constructors and then Agda
assists the user to define well-typed functions on the data using
dependently-typed patterns [Coquand], by gradually replacing
meta-variables (“holes”).

Functional programming = theorem proving:
propositions are (some) types, proofs are elements of types.

10/22

http://wiki.portal.chalmers.se/agda

Agda

http://wiki.portal.chalmers.se/agda

At its core:

inductive definitions of indexed families of data types
involving dependently typed functions.

User declares what are the types of data constructors and then Agda
assists the user to define well-typed functions on the data using
dependently-typed patterns [Coquand], by gradually replacing
meta-variables (“holes”).

Functional programming = theorem proving:
propositions are (some) types, proofs are elements of types.

Simple access to these is the deal clincher for me (background:
semantics of programming languages).

10/22

http://wiki.portal.chalmers.se/agda

Agda

✔ Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

✔ No separate tactic language (other than elisp!)

11/22

Agda

✔ Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

✔ No separate tactic language (other than elisp!)

✖ No tactics (yet)

11/22

Agda

✔ Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

✔ No separate tactic language (other than elisp!)

✖ No tactics (yet)

✔ Test-bed for new ideas.

✖ Test-bed for new ideas.

11/22

Agda

✔ Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

✔ No separate tactic language (other than elisp!)

✖ No tactics (yet)

✔ Test-bed for new ideas.

✖ Test-bed for new ideas.

? Can it cope with big proofs?

11/22

Agda

✔ Just one language (very coherent, with a beautiful,
flexible Haskell-style concrete syntax)

✔ No separate tactic language (other than elisp!)

✖ No tactics (yet)

✔ Test-bed for new ideas.

✖ Test-bed for new ideas.

? Can it cope with big proofs?

✔ Access to unsafe features – great for
experimentation rather than trusted verification.

11/22

An experiment

Work in the internal language of a topos

formation: x, y : A ⊢ PathA(x, y) type

introduction: f : I � A ⊢ path(f) : PathA(f 0 , f 1)

+ simplest possible subst structure, “Dold fibrations”

What properties of I allow one to get a model of MLTT
+ univalence this way? (with identity types given by Path)

To simulate enough of this, we use unsafe features of Agda

◮ postulates & TrustMe

◮ local use of --type-in-type

◮ REWRITE & POLARITY pragmas

to add to MLTT

either impredicative universe of h-propositions [Escardo]

or Hofmann’s predicative quotient types

12/22

Adding quotient types to Agda

13/22

Adding quotient types to Agda

No need to assume R is an equivalence relation.

We work modulo axiom K (uniqueness of identity proofs), so do not
need to postulate more than qcomp.

As well as quotients with the expected universal property, this gives:

◮ propositional truncation, mere existence and disjunction

◮ function extensionality

BUT programming with qelim is a pain – there has to be a better way.

13/22

An experiment

Work in the internal language of a topos equipped with
an interval I (with end-points 0, 1 : I) and consider
associated path types:

formation: x, y : A ⊢ PathA(x, y) type

introduction: f : I � A ⊢ path(f) : PathA(f 0 , f 1)

+ simplest possible subst structure, “Dold fibrations”

What properties of I allow one to get a model of MLTT
+ univalence this way? (with identity types given by Path)

14/22

An interval theory
non-trivial ¬(0 = 1)

connected (∀i : I, P(i) ∨¬P(i)) � ∀i, j : I, P(i) � P(j)

total order ∀i, j : I, i ≤ j ∨ j ≤ i

with monus

∀i, j : I, (j ≤ i � i ·− j ≤ i)∧ (i ·− i = 0)∧ (i ·− (i ·− j) = j)

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with Σ, Π, Id, 0, 1 +,
W types, . . .

15/22

An interval theory
non-trivial ¬(0 = 1)

connected (∀i : I, P(i) ∨¬P(i)) � ∀i, j : I, P(i) � P(j)

total order ∀i, j : I, i ≤ j ∨ j ≤ i

with monus

∀i, j : I, (j ≤ i � i ·− j ≤ i)∧ (i ·− i = 0)∧ (i ·− (i ·− j) = j)

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with Σ, Π, Id, 0, 1 +,
W types, . . .

Among other things, Agda helped us to calculate correctly with

(higher) paths. E.g. stops one confusing x
p

? ⇓?

y

?

x q y

with x
p

q
⇓? y

15/22

16/22

An interval theory
non-trivial ¬(0 = 1)

connected (∀i : I, P(i) ∨¬P(i)) � ∀i, j : I, P(i) � P(j)

total order ∀i, j : I, i ≤ j ∨ j ≤ i

with monus

∀i, j : I, (j ≤ i � i ·− j ≤ i)∧ (i ·− i = 0)∧ (i ·− (i ·− j) = j)

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with Σ, Π, Id, 0, 1 +,
W types, . . .

Theorem (pencil-and-paper) There are examples of such
toposes

17/22

An interval theory
non-trivial ¬(0 = 1)

connected (∀i : I, P(i) ∨¬P(i)) � ∀i, j : I, P(i) � P(j)

total order ∀i, j : I, i ≤ j ∨ j ≤ i

with monus

∀i, j : I, (j ≤ i � i ·− j ≤ i)∧ (i ·− i = 0)∧ (i ·− (i ·− j) = j)

Theorem (in Agda) For any such I in a topos, Dold
fibrations give a model of MLTT with Σ, Π, Id, 0, 1 +,
W types, . . . (univalence?)

Theorem (pencil-and-paper) There are examples of such

toposes (but not presheaf toposes

:-()

17/22

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do I find out about the (possibly obscure) bits of
homotopy theory that I might need to build path-based
models of type theory?

18/22

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do I find out about the (possibly obscure) bits of
homotopy theory that I might need to build path-based
models of type theory?

A Search nLab [Urs Schreiber].

18/22

ncatlab.org

19/22

ncatlab.org

4. The social exploration and curation of
formalised mathematical and scientific
knowledge.

Q How do I find out about the (possibly obscure) bits of
homotopy theory that I might need to build path-based
models of type theory?

A Search nLab [Urs Schreiber].

For things like nLab

– is more formalisation desirable?

– is more automation (ML) possible?

20/22

Wanted

◮ Mathematics: the world’s simplest model of
univalent type theory.

◮ ITP: better support for quotient types (integrated
with inductive types + pattern matching).

◮ “Social exploration”: ???

21/22

Some details
Ian Orton & AMP, Axioms for Modelling Cubical Type Theory in a

Topos. In Proc. CSL 2016, LIPIcs 62, pp. 24:1-24:19, 2016.
www.cl.cam.ac.uk/~rio22/agda/cubical-topos/root.html

Ian Orton & AMP, Models of Type Theory Based on Moore Paths.
In Proc. FSCD 2017, LIPIcs, to appear, 2017.

Model of MLTT from an ordered-interval-with-monus:
www.cl.cam.ac.uk/~amp12/agda/interval-theory/Main.html

22/22

www.cl.cam.ac.uk/~rio22/agda/cubical-topos/root.html
www.cl.cam.ac.uk/~amp12/agda/interval-theory/Main.html

	HoTT 101

