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Introduction. One of the most important constructions in topos theory ia that of the
category Shv (̂ 4) of sheaves on a locale (= complete Heyting algebra) A. Normally,
the objects of this category are described as 'presheaves on A satisfying a gluing con-
dition'; but, as Higgs(7) and Fourman and Scott(5) have observed, they may also be
regarded as 'sets structured with an A -valued equality predicate' (briefly, 'A -valued
sets'). From the latter point of view, it is an inessential feature of the situation that
every sheaf has a canonical representation as a ' complete' A -valued set. In this paper,
our aim is to investigate those properties which A must have for us to be able to con-
struct a topos of A -valued sets: we shall see that there is one important respect, con-
cerning the relationship between the finitary (propositional) structure and the in-
finitary (quantifier) structure, in which the usual definition of a locale may be relaxed,
and we shall give a number of examples (some of which will be explored more fully in a
later paper (8)) to show that this relaxation is potentially useful.

To motivate what we are about to do, let us examine the concept of locale in some
detail. To take care of the propositional logic of 'A -valued sets', we require first of all
that A should be a Heyting algebra: that is, a partially ordered set which (considered as
a category) is finitely complete and cocomplete (i.e. has all finite meets and joins) and
is cartesian closed (i.e. has an implication operator -> such that a < (b->c) if and only
if (a A b) < c). To handle predicate logic, we require A to be complete (equivalently,
cocomplete); normally, we express this by saying that we have join and meet maps

y-.PA >A, A-PA >A

where PA is the power-set of A. But we may equivalently express this condition by
saying that for any set / we can form sups and infs of/-indexed families of elements of
A, and so we have maps

which are respectively left and right adjoint to the diagonal map A > A1. (This
interpretation of quantifiers as adjoints to substitution is due to Lawvere(li)). More
generally, for any function/: / > J, the map Af: AJ > A1 (i.e.' compose with/')
has left and right adjoints 3 / ; V/; computed by taking sups and infs over the fibres of/.
Further, the fact that these operations are computed fibrewise tells us that the ' Beck
conditions' hold, i.e. for any pullback square

P-^I

I*
0305-0041/80/0000-7660 $03.50 © 1980 Cambridge Philosophical Society



206 J. M. E. HYLAND, P. T. JOHNSTONE AND A. M. PITTS

we have A° 3f = 3h A
k and Ae Vr = VhA

k: A1 > AJ. We have thus arrived at the idea
that A is complete as an indexed category over the category of sets (see B6nabou(2),
Par6 and Schumacher(i2), Johnstone ((9), appendix), etc.).

The generalization which we propose to study is the following: we consider a Set-
indexed category 0>, for which each category 0>I of /-indexed families is actually a
pre-ordered set. We think of the elements of SPI as ' (nonstandard) predicates on / '
and the pre-order as 'entailment'. To take care of the propositional logic, each 0*1
must be finitely complete and cocomplete and cartesian closed; as indicated above, we
can include quantifiers by requiring that &> be complete as an indexed category; and
finally, to take care of higher-order logic, we require 0* to have a generic (or universal)
predicate.

The definition will be explained in more detail in the next section. Since the chief
function of a structure 0* as above is to codify the internal logic of a topos of ^"-valued
sets, we shall call it a ' topos-representing indexed pre-ordered set'. We hope that our
use of the acronym ' tripos' as an abbreviation for this phrase will not be construed as
frivolity!

Our use of the language of indexed categories indicates that one might go on to con-
sider preorders indexed over toposes other than Set (and perhaps even over more gen-
eral categories) satisfying (analogues of) the above conditions. (Moreover, it is by now
generally recognized that the study of internal locales in toposes is an important tech-
nique in topos theory - see (10), for example.) However, in the present paper our feet will
remain firmly planted in Set; we leave the generalization to other base categories for a
subsequent work (13). We shall, though, endeavour to draw attention to the points in our
argument where we make use of non-constructive methods (such as the axiom of choice).

This paper is a falsification of history to the extent that it presents the recursive
realizability tripos (Example 1 • 7 below) as one example of a general theory, rather than
the spur for developing that theory. The idea of 'building a topos out of recursive
realizability' was developed by the first author in 1978, and expounded in a course of
lectures (attended by the other two authors) early in 1979. (Details of the particular
properties of this topos, which make it of no special interest, will appear in a subsequent
paper (8).) The use of indexed preorders to codify the logic of this and related toposes
was suggested by the third author, and the general theory of such preorders was
developed by all three authors in the summer of 1979.

Independently, W. Powell (14) has arrived at a concept of ' complete Heyting
filtered algebra' very similar to our' triposes'; he too was motivated by the example of
recursive realizability, though in his case the objective was to build not a topos but a
'hierarchy of Va's'. Our notion is also closely related to the 'formal toposes' of M.
Coste(4), and less closely to the 'logical categories' of H. Volger(i8); in the former
case, the main difference is that in a formal topos the equality is already built into the
logic, whereas for us it is the addition of equality to the logic that brings about the
passage from a tripos 0* to the (actual) topos of ^-valued sets.

1. Indexed systems of predicates. We shall be concerned with the notion of a collec-
tion P of 'abstract predicates'. At the least, we shall have a notion of 'entailment',
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written [~, between predicates which is reflexive and transitive; thus (P, 1-) is a pre-
order. Rather curiously, it is an essential feature of the structure we are building that
\- is not required to be antisymmetric - we shall make this remark more precise in
section 4. We regard preorders as categories in the usual way; that is, there is one mor-
phism p > q if and only if p \- q. Of course a functor between two preorders is just
an order-preserving map.

1 • 1. Definition. A Heytingpre-algebra is a preorder which has finite limits and colim-
its, and is cartesian closed. We interpret this as meaning that we are given binary
operations A (meet), V (join) and ->• (Heyting implication), together with distinguished
elements T (top) and _L (bottom); of course these are determined only up to isomor-
phism by their universal properties.

1-2. Definition. A tripos 0 consists of the following:
(i) for each set / , a Heyting pre-algebra (01, I—j);
(ii) foreachmap/:/ > J, functors 0f:0J-—> ^ 7 and 3/, V/: 01 > ^ 7 , such that
(a) 3/ (respectively V/) is left (respectively right) adjoint to 0f,
(b) 0f preserves implication (note that it already preserves meets and joins by

virtue of (a)),
(c) 0 (and hence also 3 and V) is pseudo-functorial: that is, ^(id^HI-id^-, and

^(Sf) H I- &/• @Q for maps/: 7 > J, g:J >• K, a n d
(d) the Beck condition holds for V (and hence also for 3, by taking left adjoints): that

is, for any pullback square
P ^ 7

K I'
we have 0f. Vg -\ \- V

(iii) a generic predicate ae0'L, for some set S: that is, for any (f>e01, there is a
map / : 1 > £ with <j> H (- 0f{cr). (Note: since there may be many such/, we interpret
this condition as meaning that we are given a particular choice of maps

{ }7:01 > Set (/, S) with 0-11- 0y>}z (cr)

— this is analogous to the requirement that we be given particular choices of left and
right adjoints for 0f.)

1-3 Remarks, (i) The preservation of ->• by 0f (condition (ii) (fe) above) cannot be
deduced from the Beck conditions as in standard categorical logic (17), since A is not
given by a pullback. A familiar argument shows that the preservation of -> is equiva-
lent to either of the conditions

A 0) H H f A 3/(0) or W&ftt) -* </>) H I" f -> W )

where/: / > J, (fre&I and \lrs0J. We shall return to this remark in 1-5 below.
(ii) The generic predicate a allows us to define, for each set I, a membership pre-

dicate ele0(I x S7). Specifically, let e7 be ^(ev7) (cr), where ev7:1 x Z7 > 2 is the
evaluation map. Then e7 has the following property: for any set J and predicate
0 e 0 ( l x J), there is a map/: J > S* with ^(id7 xf) (e7) H1- 0.
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We should now give some examples of triposes. However, to cut down the amount
of work needed to verify that the structures we describe do satisfy Definition 1-2, we
shall find it convenient to investigate which parts of that definition are expressible in
terms of the rest. This is the analogue of the definability of second-order logic from V
and -> (Scott, Prawitz(i5), etc.), and the reader should keep the proof of the latter in
mind in what follows - although there is not a word-for-word correspondence.

Suppose then that we are given a structure SP consisting of
(i)' for each set / , a preorder (0>I, l-7), together with a binary operation -> on SPI

which models purely implicational logic: that is,
(a) <f>\-jf-+<f>,
(6) e->($->f)y-I(d-+<f>)^(d-+rJr),
(c) if d\-j<fi-*-fr and 6t-7 <f>, then d l-7 \jr, and
(d) if <f> H7 f then 0 H7 0 -» ^r,

for any 6, (fi.ijre&'I;
(ii)' for each map/: / > J, functors 0>f: 0>J > 0>1 and V/:0>1 > 0>J satisfy-

ing the relevant parts of 1-2 (ii) (a), (b), (c) and (d), plus
(e) V/(^/(^) -+ <j>) -i \- f -> V/(^) for all / : I >J,<f>e0>I and fte^J;
(iii)' a generic predicate, just as in 1-2 (iii). Then we have

1-4 THEOREM. Suppose given a structure SP satisfying conditions (i)', (ii)' and (iii)'
above. Then if we define propositional operations on &I by

T = V7r(e/-*e7),

-L = V7r(e7),

{where n is theprojection I x S7 > I), and existential quantification along f: I > J by

(where n: I x S-7 > I and n'-.Jx ~LJ *- J), we obtain a tripos.

Proof. In what follows, we shall frequently appeal to valid purely implicational
entailments; we assume that the reader can show that (i)' (a), (b), (c) and (d) generate
all such, or else that he is willing to consult some suitable treatment of propositional
logic - e.g. (16). We begin with the universal properties of the propositional operations:

(i) Since SP-nijf)) V- (e7->e7) is valid, we obtain (f> \- VT7-(G7->G7) = T by adjointness,
so T is a top element oiSPI.

(ii) Given any a: I > 2, define b: I > 2 7 by b (i) (i') = a(i). Then

J. =

Hl-a(o-).

Pu t t ing a = {4>}i, we obtain ±1- <j>; so 1 is a bottom element

(iii) With a and b as above, for any <j> and \\r in 0>I we have

<t>hf=Vn( (̂ "7T0 -> (0>v\jr -> e7)) -* e7)

H V(n. (id7, b)) ̂ ( id7, b) ((0>n<f> -> (&>nf -•£,)) -> G7).
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So by functoriality of 3P and V, and the fact that 0 preserves ->, we have

j S A ^ h ( ^ ( ^ ^ a ( < r ) ) ^ a ( ( r ) . (1)

Putting a = {0}7 and o = {^}7 in turn, and applying prepositional logic, we obtain

Conversely suppose d\-I<f> and 5 l-7 ^r; then ^7r01- ZPir^ and ^7r# H ̂ r ^ , SO by
propositional logic

^nd \- {0>TT4> -> (SPiif -> e7)) -> e7,
and thus 6\-I(j>MJr.^o(j>MJris the meet of 0 and ̂  in ^"7.

(iv) Next we show that (—) A ^ is left adjoint to <p ->( — ). Putting 0 -»• ̂  for ^ and
}7 for a in (1) above, we obtain

by propositional logic. Conversely,

0>n<p H ^ " T T ^ ^ ((0>n<j> -> (0>-nf-> ez))

is always valid, so, by adjointness and condition (e) of (ii)', we have

(v) Finally, we consider joins in 3PI. We always have

0>-n<f> \- (0>n(f> -+ G 7 ) -> G7,

s o 0>n</> \- ((0>TT4> -+ e7) A (^m/r -> e7)) -+ et

and hence 0 H 7 0 v ^ ; similarly ^r\-I<l>\j ^r. Now suppose <$>\-jd and ^r\-1d. With
a = {#}7 and 6 denned as before, we have

j i v ^ h ^ V7rV(id7,6) ^>(id7,6)((0»TT0->e7 A^TT^-^e7)->67)

by propositional logic.
It remains to show that 3/is left adjoint to 0>f. Suppose <j> l-i&fW); then by func-

toriality and propositional logic we obtain

j VTT'(V(/X id) (0>n0>M-+0>(fx id) 6 j )

j VTT'(V(/X i d ) ^ ( / x id) (^V

Then with a = {^}j:«/ > S and 6: J > 2 J defined as before,

i- j VTT' V(id, 6) ^(id, b) ((frfrfr-> 6 j ) -> e j )
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Conversely if 3/(0) \-j fit then

X id) ej)-+&(fx id)ej)
I-/ VT7(^(/X id) V(/x id) (0>n</> ^0>{fx id) ea) -+0>(fx id) e,)

id) (0>n<f> -*- ̂ "(/ x id) 6

using the Beck condition for the pullback square

I x 2 / > J x S-7

and the fact that £P(f x id) preserves ->.

1-5 Remark. In the proof of Theorem 1-4, we used condition (e) of (ii)' (on commuting
V past ->) to establish the cartesian closedness of (£?I,!-/). We hope that some apprecia-
tion of its significance will emerge from the following points:

(i) in the presence of the adjunctions 3/H 0*$ and ( — )A0H0->-( —), there is an
equivalence between the conditions

A f) and

(ii) the condition 3/(^/(0) A "̂) h- ^ A 3/(^) is an immediate consequence of

(iii) the condition 0>f(<fi ->i/r)\- 0>f(<f>)-+0>f(i/r), usually thought of as a consequence
of the adjunction (—) A <j> -\ <f> -*• (— ) and the left exactness of t?f, is (in the absence of A
but the presence of &f-\ V/and monotonicity of->in the second variable) equivalent
t o

(iv) the condition

follows from &f-\ V/ and ( - ) A ^ H ^ - > ( - ) .

Thus by (iii) the operative part of condition (ii)' (e) must be (as indeed it was in the
proof of 1-4) the condition (iv) above. With the higher-order structure, it is sufficient to
recapture cartesian closedness. Then the other basic laws relating quantifiers and
connectives follow by (i) and (ii).

We now turn to some examples of triposes, starting with the kind that were sketched
in the Introduction.

1-6. Localic examples, (i) Given a locale A, we define the canonical tripos of A by
setting 0*1 = A1, with \-z simply the pointwise partial order on functions / > A.
The propositional connectives are similarly defined pointwise; the maps &>f are induced
by composition with/, and V/: 0>I > 2PJ sends <j> e A1 to the map
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(with a similar definition for 3/). The generic predicate is of course id^ e0>A = AA. As
we indicated in the Introduction, it is easy to verify that the conditions of Definition
1-2 are satisfied.

(ii) Given a filter O on a locale A, we can modify the above example if we set
3PI = A1 as before, but

i>\-jf iff A

the remaining structure being defined as in (i). Because <t> is a filter, it is not hard to see
that \-j is a preorder on A1, and the conditions of 1-2 are again easy to verify. More
generally, if O is a filter on any tripos SP (i.e. a filter on the Heyting pre-algebra 0*1),
redefining the preorder on each 01 as above yields a new tripos 0*$,.

(iii) To emphasize the importance of condition (iii) (existence of a generic predicate)
in Definition 1-2, we give an example of an indexed preorder which is not a tripos. Let
A be an infinite Heyting algebra (not necessarily complete), and for any set / define
01 to be the set of all maps / >• A with finite image. It is easy to verify that if we
define the substitution maps 0f, logical connectives and quantifiers as in (i) we obtain
an indexed preorder satisfying (i) and (ii) of Definition 1-2. However, any generic
predicate cr e 0>Yi would have to be a surjection 2 > A, so no such predicate can exist.
For a particular A, there may be possibilities intermediate between this one and taking
01 = A1; for example if A is the set of rationals in [0,1] with its usual total order, we
can take 01 to be the set of functions/: / > A such that all accumulation points of
{/(i) | i el} in [0,1] are rational. (The reader may find it of interest to carry through the
construction of ths category ^"-Set described in §2 for this particular 0; the result
is a logos in the sense of (6), but not a topos.)

1-7 Realizability examples. A partial applicative structure consists of a set A
together with a partial binary operation (denoted (a, b)\ > «(&)) on A, such that there
are elements e, k, s eA with , > _

k(a) (b) X a,

and

for all o, b, ceA, where (following Freyd(6)) ' 5=.' denotes 'one side is defined iff the
other is and then they are equal' (i.e. it is equality for partial elements in the sense
of (5)). Such a structure is of course intended to model an untyped theory of (partial)
functional application.

For such a structure A, we define a binary operation -> on the power-set PA of A by

p->q = {aeA\ for all bep, a(b) is defined and a(b)eq}.

(The idea of treating the realizability interpretation of implication in this model-
theoretic way is due to Scott. If we think of subsets of A as 'propositions', then ele-
ments of A are ' proofs' of these propositions, with a ep read as ' a proves p'.)

Now for any set / let 0*1 be PA1, with | - 7 denned by (j) h-7 ir if and only if there is
aeA with ae(<f>(i)->ft{i)) for all iel. Given/:/ > J, we define 0>f to be composi-
tion with / , whilst V/ sends $ e PA1 to the map

j \ • D f \ i }
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where f/(i) = jJ = {a e A \f(i) = j}; i.e. it is A iif{i) = j , and 0 otherwise. The generic
predicate cr is idP^ e^(PA); we claim that the above definitions make 0* into a tripos.

To prove this, we shall make use of Theorem 1-4. Note first that for any ^ e ^ i w e
have e e <fi(i)-+<f>(i) for all i, so l-7 is reflexive. Similarly, if

ae#(i)->^(i) and b£<j>(i)-+\jr(i) for alii,

then s(&(a)) (b) e8(i)-^-\/r(i) for all i; so j - j is transitive.
For any index set / , the elements k and 5 yield 'proofs' of the propositional tauto-

logies (i)' (a) and (6) of 1-4. To verify (c), suppose

aed{i)-^{(j){i)-^f{i)) and bed(i)<p{i)

for all i; then s(a) (fc)e#(i)->^(i) for all i. Similarly if ae(j>{i)^-ijr{i) for all i, then
k(a) e 0(i) -> (0(i) -*• ̂ "(i)) for all i, and so (d) holds.

It is clear that ZPfis functorial and 3P is itself a functor. For the rest of the conditions
in 1 -4 (ii)', we make use of the translation of the A-calculus into combinatory logic. Thus
for example, to show that V/is functorial, take a e <f>(i) -> ijf(i) for all i and note that, in
A-notation, Xxy.a{x{y)) e (V#) (j) -> ( W ) (j)

for all j 'e J. But we may take s(k(a)) for Axy.a(a;(«/)); so V/(0) \-j V/(^). The other
conditions are similar. Finally, condition (iii)' of 1-4 is trivial from the definition oi&Pf;
so we have a tripos, as claimed.

1-8. Remarks, (i) When we defined universal quantification for the realizability
tripos, the reader might have expected to see the formula

rather than the more complicated one which we gave; but unfortunately the above
definition fails to be right adjoint to SP$'if/is not surjective. Nevertheless, we shall see in
Proposition 1-12 below that there is a map A: P(PA) > PA with the property that
V/(0) is isomorphic to the map^'l > A {<}>{i) \f(i) = j}, for a l l / a n d <f>.

(ii) The most familiar example of a partial applicative structure is the set N of
natural numbers with the partial application n(m) = value of the nth partial recursive
function at m (if defined). This gives rise to the recursive realizability tripos, which was
the motivating example for the whole development of this paper. However, there are
other realizability triposes of interest; for example, the various models of the (un-
typed) A-calculus give rise to them.

We conclude this section with a number of results which extend the definability
theorem (1 -4), in that they tell us that 'up to equivalence' a tripos may always be taken
to satisfy some of the conditions of Definition 1 • 2 in a' stricter' sense than we originally
envisaged. Note first that, in all the examples described above, &I is actually S7, where
2 is the index set of a generic predicate for / , and ̂ /"is composition with/. We shall call
such a tripos canonically presented.

1-9 PROPOSITION. Any tripos is equivalent to a canonically presented one. (Note:
by 'is equivalent to', we really mean 'represents the same topos as'. How a tripos
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represents a topos will be made precise in §2; for the moment, we may take 'equiva-
lent ' to mean' equivalent as a pseudofunctor from Set to the 2-category of preorders'.)

Proof. Given a tripos 0>, with generic predicate o~ e ̂ "2, define a functor & from sets
to preorders by &I = (27, \-j), where g i-7 h in 2 7 if and only if ^g{cr) H7 3Ph{<r) in 0>I,
with SPf = ~Lf: 2 J *• 2 7 for a map / : / > J. The definition of a generic predicate
now tells us that the maps <j> > {^}7 and g > ^g{^) set up an equivalence between
8PI and 27, which is pseudo-natural in / . So we may use it to transport the rest of the
structure in 1-2 from 0> to 0P; for example ,we may define implication in SPI by

So & is a canonically presented tripos equivalent to &.

110 Remark. From the point of view of indexed categories, Proposition 1-9 says
that we may assume that the (pseudo)functor 0> satisfies a 'descent condition' on
objects; i.e. its composite with the forgetful functor from preorders to sets is a sheaf for
the canonical topology on Set. However, we cannot require & to satisfy a similar
condition on morphisms; indeed, as we shall see in §4, it is precisely the difference
between the 'uniform' preorder t-/ on &I = 0>(iy and the pointwise preorder (l-j)7

which gives rise to the difference between locales and triposes in general. This is (at least
initially) rather surprising, since we are accustomed to consider indexed categories
which are locally internal (i.e.' have small homs' in the terminology of (12)), and there-
fore automatically satisfy a descent condition on morphisms; whereas descent con-
ditions on objects do not normally play an important role in indexed category theory.

1-11 PROPOSITION. Let £Pbea canonically presented tripos. Then we may choose the
propositional operations on each 3PI so that they are induced pointwise by the operations on
&\.

Proof. Let m: S x S > S be nx A 7r2e^(2 x S), where nlt n2:2 x S > 2 are the
product projections. Then for any f,getPI = S7, we have

= /A<7,

so we may redefine the meet operation in &I to be composition with m. Then for any
iel we have (/Ag)(i) = m(fi,gi) = fihgi. Similarly for the other propositional
operations.

Thus the propositional structure of 0* is determined by that of S. Furthermore, the
entailment relations i—7 are determined by that on 2, in the following sense. Let
D = {p e 2 ITJ \~ip} be the set of propositions isomorphic to the top element of 2. Then
given/, <7e27, we have

ff-jg iff

iff

iff

where I denotes the unique map / > 1.
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To complete this transference of structure on 0> to structure on 2, we need to show
that the quantifiers can be computed fibre-wise (i.e. so that the Beck conditions hold
up to equality, and not just up to isomorphism). The next proposition says that we can
do this; but it differs from the previous two results in that it makes use of the axiom of
choice in the base category Set.

1-12 PROPOSITION. Let SP be a canonically presented tripos. Then the quantifiers in &
may he chosen so that we have

(V#) (j) = A #( t ) \f(i) = j) and (3/0) (j) = Vfo(»)\f(i) = j)

for some maps A, V:

Proof. Let e£ s 2 x PS be the (standard) membership relation on 2 (not the pre-
dicate denned in 1 • 3 (ii)), and let e: GE > 2, n: e£ > P 2 be the restrictions to e s of
the two projection maps. We define A, V: ^ 2 > 2 to be Vra(e)and 3n(e) respectively.

Given f-.l > J a n d </>: I > 2 , let K = {{(j>iji) \iel} c 2 x J. Then we have a
pullback square

V. I-
J ^P2

where s(j) = {<j>i\fi = j}, r(p,j) = (p, s(j)) and f'(p, j) = j . So by the Beck conditions

A-s =

and V-s
where <j>' is the composite er: IT >• 2. So it remains to show that V/'(0')-H(-j
and 3/'(0') Hl-j3/(^). But if ^r:/ > Ifisthemapil > {<fii,fi), thengissurjective;
so by (AC) it has a right inverse, and hence Vq.&q-W-idpK H I- 3q.£Pq. Thus

-IK, Yn
and similarly 3/'(^') -IK/ 3/(0).

Taken together, Propositions 1 • 9,1 • 11 and 1-12 assert that (if we accept the axiom of
choice in Set) our notion of tripos is effectively no more general than Powell's 'com-
plete Heyting filtered algebras' (14), or the very similar 'models of second order pro-
positional logic' used by the first author in a preliminary draft of (8). Nevertheless, we
believe that the conceptual advantages of the indexed-category approach will quickly
become apparent when we embark on the construction of the topos of ̂ -valued sets in
the next section.

2. The topos of SP-sets. In this section, our aim is to construct from an arbitrary
tripos & a topos of '^"-valued sets' in a way which generalizes the constructions of
Higgs (7) and Fourman and Scott (5). Before proceeding to the particular notion of a
^"-valued set, however, it will be convenient to make a few remarks about the general
concept of a ^-relational structure.

Given a many-sorted purely relational first-order language JSf without equality, a
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&-interpretation ofJC assigns to each sort (type) X a set X, and to each relation symbol
R of sort (X1(..., X J an element R of ^(Ui^X^. Given such an interpretation we
may proceed to define, for each formula <f> of JS? and each string of variables

x = (x1( ...,xn)

containing the free variables of cf>, an interpretation ^ ( x J J e ^ I I X J (where Xf is
the sort of the variable xt), by an obvious induction on the structure of <$>. In this
interpretation, we have [R(x)]] = &>n{R) where v is the projection map from ITX^ to
the product of the (interpretations of) sorts actually occurring in R; the propositional
connectives are interpreted by the Heyting pre-algebra operations in ^(UX^, and the
quantifiers Vy, 3y by V77, 3n, where n: Y x UXt »• FIXf is the projection. (Nots: it
would be perfectly possible to extend this interpretation to a 1 anguage having function-
symbols as well as relation-symbols; but we shall not need to avail ourselves of this
possibility, except for a moment in the proof of Proposition 2-12.)

We shall be working with the version of intuitionistic predicate logic where each step
in a deduction is labelled by a string of (free) variables denoting the types of elements
which are assumed to have been picked at that step; so the fundamental (syntactic)
entailment-notion appears as

where F is a finite collection of formulae, (j> a formula, and x a string containing all the
free variables of the formulae in F U {<p}. A detailed description of this entailment-
notion will be found in (3).

Given a particular ^-interpretation, we also have a semantic entailment-notion

whose interpretation is the statement that

A [7(x)Il-^(x)J in

These two entailment-notions are linked by

2-1 LEMMA (Soundness Lemma). For any tripos 8P and any 3P-interpretation of a

language JC as above, ifT\-x(j) holds in intuitionistic predicate logic, then F ¥ x <j> holds in
the interpretation.

The proof of the Soundness Lemma is a standard induction over the definition of
\-x, and we shall not give the details. Nevertheless, we shall use the Soundness Lemma
repeatedly in what follows: in order to establish that 0(x) is valid (i.e. 0 (= *(f>) in some
^-interpretation, we shall simply appeal to the fact that ^(x) is deducible intuition-
istically from formulae which we already know to be valid. (We assume that the reader
is capable of carrying out straightforward deductions in intuitionistic predicate logic.)

2-2 Definition. Let 0> be a tripos. A ^-valued set (briefly, &>-set) is a ^"-relational
structure (X, =) where = is a binary relation such that

and t=,3,Vx,x',x" (x = x ' A X ' = x"->x = x").
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Thus in the sense of ̂ "-logic, equality is symmetric and transitive. We do not require
it to be reflexive; instead, we define the interpretation of an 'existence' or 'member-
ship' predicate Ex by ^ ( x ) j = [ x = x j .

(We shall frequently write ' x e l ' in place of'Ex(x)'.) This predicate clearly satisfies

N^Vx (x = x~Ex{x)). (*)
For certain purposes (particularly when we come to consider subobjects in the cate-
gory of ,^-sets) it will be convenient to regard Ex as a second primitive predicate, and
(*) as an additional axiom; clearly, this does not essentially change our notion of ^ -
valued set. We should also mention here that we shall frequently abuse notation by
using the same letter for a ,^-set and its underlying set, although at some points (where
we have to consider more than one ,^-set structure on the same set) we shall have to be
careful of the distinction.

2-3 Definition. A relation on a ̂ -set (X, = )is an element Roi&X which respects the
equality predicate, i.e.

We say R is strict if in addition it respects the existence predicate, i.e.
h^Vx (B{x)-+Ex(x)).

Clearly if (Xlt = x), (X2, = 2), ...,(Xn, =n) are ^-sets, we may make the product
II™=1 X{ into a ̂ -set if we define equality by

[x" = y j = [ x 1 = 1 y 1 A . . . A X n = j J .

Thus the above definitions for unary relations may immediately be extended to w-ary
relations.

2-4 Definition. If (X, =) and (Y, =) are ^-sets, we say a relation F on X x Y is
functional if it is strict, single-valued and total, where 'F is single-valued' means

¥ , Vx, y, y' (F(x, y) A F(X, y') -* y = y')
and ' F is total' means

N ,̂Vx (xeX-+3y{F{x,y))).
We say two functional relations F and G are equivalent if

N^Vx.y (F{x,y)<->O(x,y)).
(Note: since G is strict and single-valued and F is total, it would in fact be sufficient to
have t= <3> Vx,y (i^x, y)-s»G(x,y)).) It is an immediate application of the Soundness
Lemma that this does define an equivalence relation on the set of functional relations.
Finally, we define a morphism of&setsf: (X, =) -> (Y, =) to be an equivalence class of
functional relations. We adopt the convention that if a lower-case letter such as /
denotes a morphism of ^-sets, the corresponding capital letter denotes (the name of)
a functional relation representing it.

2-5 LEMMA. &-sets and their morphisms form a category ^"-Set.
Proof. First we have to define identity morphisms and composition. The identity

morphism (X, =) > (X, =) is simply the equivalence class of the functional relation
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Ix = x ' J e^X x X). Given morphisms f:X > Y and g: Y > Z, we form their
composite as the equivalence class of the functional relation

Py(f(x, y) A G(y, z)) J e ^ I x Z ) .

It is a straightforward application of the soundness lemma to show that this relation
is functional from X to Z, and that its equivalence class does not depend on the
choice of the representatives F and G.

The requirement that relations be extensional (i.e. that they respect equality) tells
us at once that identity morphisms, as defined above, are identities for composition;
and the associative law for composition follows from the triviality

1= , Vx, w(3z(3y(^(x, y) A G(y, z)) A H(Z, W))«-»3y(^(x, y) A 3z(G(y, z) A H(z, w)))

We now embark on the proof that ^-Set is a topos. The argument should have a
familiar appearance to anyone who has read (5); the only technical complications are
mild ones arising from the fact that we do not have any canonical way of choosing
representative functional relations for morphisms of ̂ -sets.

2-6 LEMMA. The category ^"-Set has finite limits.

Proof. First we construct a terminal object. Let 1 be any one-element set, and make
it into a ̂ "-set by denning = to be the top element of 0>( 1 x 1). For any ^-set (X, =),
if we regard the existence predicate Ex as an element oigP{X x 1), it is functional from
X to 1; and it is clearly the unique such relation up to equivalence.

The product (X, =)x(Y, = ) of ^-sets has already been defined after 2-3. The
product projections p:Xx Y >X and q:Xx Y > Y are represented by the
relations

Ix = x ' A y e r ] e ^ ( I x 7 x I ) and [ x e l Ay = y'}e0>{X x Y x Y)

respectively. Given the morphisms f:Z > X a n d g:Z > Y, then the pairing
(/, g): Z > X x Y is represented by

As usual, it is a straightforward application of soundness to show that the above
relations are functional, that p(f, g) = f and q(f, g) = g, and that (/, g) is uniquely
determined by its composites with p and q.

To complete the proof of the Lemma, we have to define equalizers. Let/, g: X I Y
be a parallel pair of morphisms in ̂ -Set. We define a morphism h :E > X as follows:
the ,^-set E has the same underlying set as X, with membership predicate

|[xetfj= Py(*l(x,y)AG!(x,y))I

and equality |x = E x ' J = [x =x
x' A ~x.eE A x ' e ^ ] .

(Here we have used the freedom to treat membership as a separate primitive; since
F and G are strict relations, it is clear that

xeEN^xeZ,
and hence that the axiom (*) is satisfied.) The morphism h is represented by H, where
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from the definition of E, it is easy to verify that fh = gh. Conversely if k: Z > X
satisfies fk = gk, then

N«-Jr»«(z,x)AlI(x,y)->G'(x,y),

whence (since F is total) we obtain

hyZ(z,x)->3y(J'(x,y)AG(x,y)).
So K is still strict (and therefore functional) as a relation on Z x E; that is, it defines a
morphism k: Z > E, which is clearly the unique factorization oik through h.

2-7 Remark. In the construction of equalizers in the proof of 2-6, it is clear that the
object E depends on the representatives F and G, and not just on the morphisms / and
g. So unless we assume the axiom of choice in our meta-logic, we cannot assert that
^-Set has equalizers in the ' constructive' sense that there is a function assigning a
choice of equalizers to each parallel pair of morphisms.

From the proof of Lemma 2-6, it is clear that the construction of finite limits in
i^-Set is obtained by ' writing down the formulae which define limits in Set' and
interpreting them in the ̂ "-logic rather than in standard logic. This observation has a
converse: to recognize that a given finite diagram in ̂ -Set is a limit, it suffices to check
the validity of the appropriate formulae in the ̂ -logic. As an example, we state

2-8 LEMMA. A commutative square

P ^ X

l\ I'
in ^-Set is a pullback if and only if we have

¥ , Vx, y, z (^(x, z) A G(y, z) -> 3p(#(p, y) A K(p, x)))
and N,Vp,p',x,y (#(p,y) Afl(p'.y) AZ(P,X) AZ(p',x)-*p = p')

for some (equivalently,for any) choice of representatives F, G, H, Kforf, g, h, k.

Proof. It we construct the pullback X x z Y in the usual way from products and
equalizers, it is an easy application of soundness to show that it satisfies the above
conditions. Conversely, if the conditions are satisfied, then the induced morphism
P >XxzY may be represented by a relation which is functional in either
direction, and hence this morphism is an isomorphism.

2-9 COROLLARY. A morphism f: X > Y in Y in ^-Set is a monomorphism if and

°nlyif N , V x x ' y (^(xy)A^(x'

for some (equivalently, for any) representative Fforf.

Proof. Use Lemma 2-8, and the fact that/is mono if and only if

is a pullback.
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In the construction of equalizers in 2-6, we used the fact that, given a strict unary
relation i o n a ,^-set (X, =x), we may define a monomorphism

by defining l|.4|| to be the ^"-set with underlying set X, [xe||.4||I = [.4(x)J and
[ x = i x ' j = [x =xx' A x e MII Ax'e||^4||], and m to be the morphism represented by
M, where \M(a, x) J = [a e ||̂ 4|| A a = x xj. We shall call a monomorphism which arises
in this way canonical.

2-10 LEMMA. Any subobject of a 0*-set X can be represented by a canonical mono-
morphism.

Proof. Given a mono/: Y > X, consider the strict relation A denned by

where F is a representative for/. It is clear from the definition and Corollary 2-9 that
F defines a relation on Y x \\A\\ which is functional in either direction, i.e. there is an
isomorphism/: Y > \\A\\ such that mf = / .

The name 'canonical' is however slightly misleading, since a subobject of X is not
uniquely representable by a canonical monomorphism. If A and B are relations such
that

then ||.41| and ||.B|| are isomorphic over X, but not necessarily equal.

2-11 LEMMA. Let f: Y > X be a morphism of 0>-sets, and A a strict relation on X.
Then there is a pullback diagram

->x
in ^"-Set, where the vertical arrows are canonical monos andf~xA is defined by

for some representative F for f.

Proof. Since F is a strict relation, it is clear that/~M is strict. The top arrow in the
diagram is just the restriction of/, i.e. it is represented by

It is then clear that the diagram commutes; the fact that it is a pullback follows easily
from Lemma 2-8.

212 PROPOSITION. The category ,^-Set has power-objects; i.e., for any object X, the
functor

Sub ( I x - ) : (̂ -Set)°P -> Set
is representable.
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Proof. Let {X, =) be a ^-set. We define its power-object PX to have underlying
set Yix (where 2 is the index set of the generic predicate for 8P), with

and [ R = p x S I = [RePlAS6PlAVx(eJ(x)R)<-.ez(x,S))]

where e x e # ( I x S J ) is the membership predicate defined in 1-3(ii) and R, S are
variables of type S x . (Henceforth we shall write 'x ex R' in place of' ex(x, R)'.)

We have a strict relation E on X x PX defined by

P(x ,R) | = [RePXAxe^R]

and hence a subobject \E\ >XxPX. By the Yoneda Lemma, this induces a
natural transformation

^-Set ( - , PX) > Sub (X x - )

which by Lemma 211 sends a morphism/: Y > PX to the subobject represented by
|| (idx x/)~x^|| > X x Y. We have to show that this transformation is a bijection.

Suppose given a subobject of X x Y, which (by Lemma 210) we may assume to be
canonically represented by a strict relation A onX x Y. By Remark 1-3 (ii), there is a
function g: Y > £* in Set such that ^(idx x g) (ex)-\ \-A in &{Xx Y). Define

xV) by

(note that we are here extending our language by using g as a function-symbol). Since
A is a strict relation, it is easy to see that

from which it follows directly that F is a functional relation, and so defines a morphism
/ : Y >• PX in ̂ "-Set. It is straightforward to check that/is independent of the choice
of representatives A and g, so that we have a function

Sub ( 1 x 7 ) > ^>-Set (Y,PX).

Now the isomorphism ^(id x g) (ex) -W-A in 0>(X x Y) can be interpreted as the
statement

t= yA(x, y) <-» 3K(g(y) = R A X ex R),
whence we obtain ^ yA{x> y ) ^ 3R(jpf(y- R ) A E ^ R ) )

since A is a strict relation; thus we have ||-4|| = || (id x/)"1^! as a subobject of X x Y. A
similar argument shows that the composite

^-Set (Y,PX) > Sub (Z x Y) > ^-Set(Y,PX)

is the identity; so the natural transformation defined above is an isomorphism.
Combining Proposition 2-12 with Lemma 2-6, we at once obtain

2-13 THEOREM. For any tripos &, the category ^-Set is a topos.

2-14 Remark. In particular, 2-13 tells us that ^"-Set has finite colimits, exponentials
and a subobject classifier. It is convenient to describe explicit constructions for some
of these (though we shall omit the proofs).
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(i) Finite coproducts: The initial object of ,^-Set is of course the empty set, with its

unique (up to isomorphism) equality structure. Given ^-sets (X, =x) and (Y, —y)>
their coproduct has underlying set XII Y, with equality given by

3(» x •) (=x) V 30" xj) (= Y) e&({X UY)x(XU Y))
where i: X > XII Y axidj: Y > X U Y are the coproduct inclusions.

(ii) Erponentials: The exponential (Y, =)lx-^ has underlying set £-yxF, with

[Fe Yx] = ['F is a functional relation']]

and IF = G]= [FeyxAGe7^AVx,y((x,y)eF«(x,y)eG)I.

(iii) Subobject classifier: The subobject classifier O has S as underlying set, with
[p = Ql= [P^Ql-

2-15 Examples. To conclude this section, we shall revisit some of the examples of
triposes which we described in § 1, and point out some particular features of the toposes
they generate.

(i) Firstly, if SP is the canonical tripos of a locale A (1 • 6 (i)), then the notion of ̂ "-set
is easily seen to be equivalent to that of an A -valued set as denned in (7); so ̂ "-Set is
equivalent to the Grothendieck topos Shv (.4) of (canonical) sheaves on A.

(ii) Next, suppose 0> is induced by a filter Oona locale A. For each ̂ -set (X, =x)>
we can find a e <I> (depending on X) such that

a < [' =x is symmetric and transitive'!

in 0*{ 1) = A; then it is clear that we may regard X as an .4a-valued set, where Aa is the
open sublocale of A determined by a. Similarly, any morphism of ^"-sets may be
regarded as a morphism of ̂ 4a-valued sets for some a e <b; so we conclude that ^"-Set is
the filtered colimit of the toposes Shv (Aa), a e <1> (the transition maps

being the logical functors induced by the open inclusions Ab > Aa when b < a).
Equivalently, ^-Set may be described as the filterpower Shv(̂ 4)<1> constructed in
((9), §9-3). (A similar argument shows that, if ^ is the tripos obtained from a filter
$ on an arbitrary tripos &P, then ̂ ,-Set ~ (^-Set)^, where $ denotes the filter of those
subobjects of 1 in ̂ "-Set which may be canonically represented by predicates in 0.)

Note in particular that in this example the lattice of subobjects of 1 in ̂ *-Set may be
identified with the Heyting algebra quotient -4/0, which is not always complete; for
example, if A is the open-set locale of a space X and O the filter of open neighbourhoods
of a point x, then A/<$> is the lattice of 'germs of open sets' at x. Thus toposes of this
form are not always Grothendieck toposes; indeed it can be shown (l) that the topos
Shv (A)^ is Grothendieck if and only if the filter O is principal.

(iii) Finally, we consider the recursive realizability tripos of 1-8(ii). Our concern
here is to make explicit the behaviour of coproducts in ̂ -Set. It is easily verified that
the disjunction in 8P\ = PH may be defined by

,4 v £ = {<0,a)|a<s.4}U {<!,&> l&etf}
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where < - , -> is a suitable pairing function M xN > N. Thus (X, =)U(F, =)
has underlying set X II Y, with equality

\x = x'\ = {<0,a>|ae[a; = x']l} if x,x'eX

= {<l,a)\aelz = x'j} if x.x'eY

= 0 otherwise.

It is now obvious how we may extend this definition to the disjoint union of a count-
able family (Xn\ neN) of ^-sets, and straightforward to verify that it does yield the
coproduct of the Xn in ^"-Set. In particular, a countable copower of 1 exists in ^-Set;
up to isomorphism, it may be described as the set M with equality

\m = TO | = {n} if m = n

= 0 otherwise.

It is further straightforward to verify that this object (with the obvious definitions for
the zero and successor maps) is a natural number object in ̂ -Set. (The details will
appear in (8).)

On the other hand, if (Xa \ a e A) is a family of ̂ -sets having a coproduct X in ^-Set
and xa, xfi are elements of Xa, Xp with a 4= /? and lxa eXaJ 4= 0 4= ^ e l ^ J , then it is
easy to show that there must exist elements ya, yp of X with Ja{xa, ya) # 0 + Jp(xp, yfi)
(where Ja is a representative for the coproduct inclusion^:Xa >• X), and that for
any such pair of elements \ya e l ] and \y^el] must be disjoint. (This is because we
may define a family of maps/a: Xa > l l l l which ' send' xa and Xp to elements of
1II 1 with disjoint extents.) It follows that the number of inhabited ^-sets in the
family (Xa | a e A) must be countable; loosely, we can say that ^-Set has no uncount-
able coproducts. In particular, ^-Set is not a Grothendieck topos.

3. Geometric morphisms. It is well known that continuous maps between locales
correspond precisely to geometric morphisms between their associated sheaf toposes.
In this section we generalize this result to triposes. To be able to construct direct image
functors, we must first consider a process analogous to the construction of the sheaf
generated by a locale-valued set ((5), 4-17).

Let SP be a tripos and (X, =) a ̂ -Set. We define a predicate S (' is a singleton') in

&V<X) by IS(R)1 = [3x(xeZ A Vx'(x ' e j cR^x' = x))].

This is easily seen to be a strict relation on the power-object PX oiX (as defined in the
proof of 2-12), so it determines a canonical monomorphism which we write as

SX >PX.

Up to isomorphism, this is just the singleton map { }: X > PX in the topos

more explicitly, we have

3-1 LEMMA. The predicate in £P(X x ~LX) given by

IXGX

represents an isomorphism X *• SX in
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Proof. A routine application of the Soundness Lemma (2-1).

3-2 Definition. Given ^-Sets (X, =) and (Y, = ), we say that Fe0>(Xx Y) is a
partial functional relation from X to Y if it is a strict single-valued relation (in the sense
of Definitions 2-3 and 2-4) on X x Y. We say that (Y, =) i&weakly complete if, given any
partial functional relation F from X to Y, there is a function / : X > Y in Set such

h

When 0> is the canonical tripos of a locale A, the .4-Set SX has a natural A -sheaf
structure which makes it into the sheaf generated by the A -Set X ((5), theorem 4-18).
The notion of weak completeness represents as much of this additional structure as we
are able to salvage in our more general context:

3-3 PROPOSITION. For any £?-set X, SX is weakly complete. In particular, any ^-set
is isomorphic to a weakly complete one.

Proof. The second assertion follows from the first by Lemma 3-1. To prove the first,
x Hx) be a partial functional relation from Y to SX, and define

Y)

by IG(x,y)] = [ 3 R ( x e x R A % R ) ) ] .

Then by Remark 1-3(ii) we have a map/: Y->T,X with

in ^{X x Y). Now we certainly have

but, since F is a partial functional relation, it is clear that

N %RF(y, R) -> R eSX A/(y) eSX A 3X (X ex R A x exf(y)),

so that 3R(%,R))^(y,/(y)).

3.4. Definition. Let g? and ̂  be triposes. A geometric morphism f: SP > Si is given
by a pair of Set-indexed functors

t • a> > a? f*-<9 i. cp

such that, for each set I, the functor (/*)7 is left adjoint to (f^j and preserves finite
limits (= meets).

Given such a morphism/, we wish to ' extend' it to a geometric morphism of toposes
f-.^-Set s^^-Set. Now since/* preserves substitution (i.e. commutes with the
functors^?/, up to isomorphism), on taking left adjoints we see that/* preserves 3, as
well as I-, T and A. That is, it preserves all the logical structure we needed to construct
the category ̂ -Set and show it had finite limits. It follows at once that we can define a
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left exact functor /*:52-Set > ^"-Set by setting f*(Y, =) = (Y,/*( = )) for an
^-set (7, =), and letting/*(g) (for a morphism g: (Y, =) > (F', =), represented by
Ge@(Yx Y'), say) be the morphism represented by f*Ge0>(Y x 7')-

The definition of/* is less straightforward, since /* does not in general preserve 3;
so, if we apply it to a total functional relation between ^"-sets, the result will be only a
partial functional relation of ^"-sets. However, the existence of weak completions,
which we demonstrated in Proposition 3-3, enables us to get round this difficulty.

3-5 PROPOSITION. Letf:8?-+&% be a geometric morphism of triposes. Then there is a
geometric morphism f: ^ -Set -*-^-Set, whose inverse image is the functor/* defined above.

Proof. Given a ^-set {X, =), we define/^(X, =) to be (2x,/*( =Sx))- Consider the
predicate Ee0>(Lx x X) given by

p/(R,x)J =f%lReSXiA [X6XR].

Since/*/* h- id, it follows easily from Lemma 3-1 that E represents a morphism

ex-J*f*(X,=) >(X, =)

in ̂ "-Set. We shall show that ex is universal among maps/* Y > X, so that/* may be
made into a functor right adjoint to/*.

Given a morphism g'f*Y > X, we first compose it with the isomorphism of 3-1 to
obtain a morphism g', which we may represent by a predicate G' e0'(Y x SX). Define

[(?(y,R)]=/*[[G'(y,R)]AlyeY].

It follows easily that G is a strict single-valued relation from Y to/* X. To see that it is
total, we apply Proposition 3-3 to obtain a map y: Y > 2.x in Set with

pR(G'(y,R))]Hh[G'(y,r(y))I
in 8? Y. Then since G' is total we have

lye F]i-A/*|[ye F J H / * [3R((?'(y,R))]

So G is total, and represents a morphism g: Y >/* X in ^-Set; it is clear that g
depends only on g and not on G'.

Now the composite ex.f*^):f*Y > X is represented by

i.e. by [3R(/*/*(G'(y,R) AReSI) Axe

which entails [3R(G'(y, R) A R G SX A X e x R) ]

in {?(Y x X). But the latter represents the composite
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which is our original morphism g. By the remark which follows the definition of equiva-
lence between functional relations in Definition 2-4, it follows that we have

9 = exj*{g),
i.e. g is a morphism in the comma category (/* j X) from (Y, g) to (/* X, ex).

It remains to show that g is the unique such map. Suppose given a morphism
h: Y >fie X (represented by H e&(Y x S*), say) such that g = ex.f*(h). Then g' is
the composite of ex.f*(h) with the isomorphism X > SX of 3-1, i.e.

. Thus
f

and hence (since H is a strict relation)

\H(y, R)] i- iH(y, R) A / * ( R eflX) A y e Yj

= {G(y,R)l

So by the same remark as before, we have h = g, as required.

3-6 Remark. In the proof of 3-5, we did not need to specify the effect of the functor
/„ on morphisms. In fact it may be denned as follows: given g: X > X' in i
represent the composite

by a functional relation G!e^'(2-x:x S x ) ; then/+(gr) is represented by

More generally, it can be shown that any left exact indexed functor t-.^-^-M induces
in this way a left exact functor I: ^-Set > ^-Set.

When & and 8& are the canonical triposes of locales A and B, we know that (up to
isomorphism) every geometric morphism ^"-Set >^-Set is induced as in 3-5 by
a continuous map A >- B. The proof of this rests on two facts: first, that in this
case ^-Set and ^-Set are defined over Set by geometric morphisms, and secondly
that every geometric morphism between toposes defined over Set is a morphism over
Set. We have seen in 2-15 that, for a general tripos SP, the topos ^-Set need not be
defined over Set. Nevertheless, we do have a functor A: Set > ^-Set which is analo-
gous to the ' constant sheaf functor in the localic case, and, if we restrict our attention
to geometric morphisms ^-Set >^-Set which respect these 'constant' functors,
then we can give a converse result to Proposition 3-5.

3-7 Definition. We define a functor A: Set > ^-Set as follows: For a set X, AX is
the^-set (X, 3AJf(TjC))) where Ax: X > X x X is the diagonal map. For a function
f:X • Y, A/: AX * AYia represented by3(idx,f)(Tx)e0>(X x Y). It is straight-
forward to verify that this does define a functor.

8 PSP 88
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3-8 LEMMA. The functor A is left exact.

Proof. I t is clear that A preserves the terminal object. To see that it preserves pull-
backs, use the fact that if

is a pullback in Set, then

3-9 PROPOSITION. Letf:&->01 be a geometric morphism of triposes. Then

commutes up to natural isomorphism.

Proof. Since/* preserves T and 3, it is clear that

in 3P{X x X), from which the result follows easily.
We can now state the converse of Proposition 3-5. We shall omit moat of the details

of the proof, since they are generally straightforward and we shall in any case not need
to use the result.

3-10. PROPOSITION. Let 0> and S& be triposes, and g:£P-Set > ^-Set a geometric
morphism such that

\.l
commutes up to isomorphism. Then there is a geometric morphism of triposes f: 0*
such that g is isomorphic tof.

Proof. I t is easy to see that every predicate Re&X ia a strict relation on the
LX. Thus the assignment

sets up an equivalence between the preorders 3PX and Sub^^j (AZ); and using Lemma
2-11 we may easily show that this equivalence is natural in X-i.e. it is an equivalence
of Set-indexed categories. So for an element S oi3$X, we may define f*S (up to iso-
morphism) by requiring that

s (g*\\S\\>+g*A'X ~ AX)
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in Sub (AX). Similarly, we define/* up to isomorphism by requiring that

\\UR\\ >—> A'X

| |
g4B\\

be a pullback in ̂ -Set, where v is the unit of gr* H g*.

4. Relations between a tripos and its topos. In this section we present some results
which relate properties of a tripos SP to properties of the topos ^"-Set which it gen-
erates. As a very special case of Proposition 3-5, we now know that triposes which are
equivalent as Set-indexed categories generate equivalent toposes, so we shall lose no
generality by assuming (as we do henceforth) that 8P is canonically presented as in
1-9, and that it has pointwise prepositional operations and fibre-wise quantification as
in 1-11 and 1-12.

In addition to the functor A: Set > 0>Set defined in the last section, we shall also
need to consider the global section functor T: ̂ -Set > Set. From our construction
of weak completions in 3-3 (or directly from the definition of a morphism 1 > X
in ^-Set), it is easy to see that we have

V(X, =) = {/e2*| T h-

where ~ is the equivalence relation defined by

f~g iff T\-U=sx9l

We now introduce some notation. Let A — 2/-II- be the Heyting algebra obtained
from the Heyting pre-algebra 2 = ^ 1 by factoring out the intersection of the preorder
and its opposite, and let q: 2 > A be the quotient map. We shall write a: A > 2
for the element Vgr(idi:) of SPA = 2^, and similarly e: A > 2 for 3g(idi;). We shall say
that ZPhasstandarduniversalquantification (briefly, '£? is V-standard') if the composite
qa is the identity on A; since quantification is computed fibre-wise, this is equivalent
to saying that for every isomorphism class E £ 2 we have /\EeE, where A is the
operation defined in 1-12. Similarly, we say 3P is 3-standard if qe = id4.

4-1 THEOREM. The following conditions on a tripos 8P are equivalent:
(i) 8P is V-standard.
(ii) VD(i)eD, where D = {Pe2|TI- P} and r. D > 2 is the inclusion.
(iii) For every set I, the uniform preorder \-Ion 3PI = 2,1 coincides with the pointwise

preorder.
(iv) The Heyting algebra A iscomplete, andq.'L >A induces an equivalence between

0> and the canonical tripos of A.
(v) The functors T and A define a geometric morphism ^-Set->Set.
(vi) A is an inverse image functor.
(vii) A preserves all small coproducts.

Proof, (i) => (ii) is trivial, since D is one of the fibres of q.
(ii) => (iii): Clearly uniform preorder is always contained in pointwise preorder, since

8-2
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the maps P(i):0>I > 0>l induced by elements i: 1 > I are order-preserving. So
let / , g be two elements oi0>I = S7 such that/(i) |- g(i) for each i. Then

for each i, so we can write/-><7 = &Ph{i) for some h: I > D. But then we have

\- VZ)W^A(0 HI-

so VI(f-±g)eD. But by the remarks after Proposition 1-11 this is equivalent to/1- tg.
(iii) => (i) is trivial, since if the uniform order on Y,E is pointwise (where E is one of the

fibres of q), then any member of E is a uniform lower bound for the inclusion map E-^-'L.
(iii) => (iv): Given (iii) (and hence (i)), the maps q and a form an equivalence of pre-

ordered sets between S and A. Moreover, since SJ is ordered pointwise, it is clear that
q1: S 1 -> A1 is an equivalence for any /. In particular, we deduce that A is complete as a
Set-indexed category, and hence as a lattice.

(iv) => (v): The equivalence between SP and (the canonical tripos of) A induces an
equivalence between ^-Set and A -Set, which commutes up to isomorphism with the
functors Y and A. But, for the topos A -Set, it is well known that T and A form a geo-
metric morphism.

(v) => (vi) => (vii) is trivial.
(vii) => (ii): The element i e "LD defines a canonical subobject || t|| of AD in ^-Set. Now

for any element d of D, it follows easily from Lemma 2-11 that the pullback of || t|| along
A(d): Al $• AZ) is the canonical subobject \\d\\, which is isomoiphic to 1 by the defini-
tion of D. But if AZ) is a D-indexed copower of 1, then the family of all maps A(rf) is
epimorphic, and so the inclusion || i\\ > AD must be an isomorphism. That is, we have

t^Vd(T
or equivalently VD(i)eD.

4- 2 COROLLARY . Let SPbea (canonically presented) tripos, and suppose the preorder on
S = 0*1 is a partial order. Then "Lisa locale, and SP is its canonical tripos.

Proof. Since 1- is a partial order on S, D is the singleton subset {T}, and so VZ) is an
isomorphism. Thus condition (ii) of Theorem 4-1 is trivially satisfied.

We have seen that ^-Set forms a Grothendieck topos in the ' obvious' way (i.e. with
A as the inverse image of the geometric morphism ^"-Set > Set) if and only if &
is V-standard. It is natural to ask whether ^-Set can be a Grothendieck topos in some
' non-obvious' way. Unfortunately, we have not been able to "answer this question
(though, in the particular case of filterpowers, the answer is known to be no (l)); it is
not hard to see that ^-Set has small hom-sets and a set of generators, so the relevant
question is cocompleteness. However, the example of the recursive realizability topos
(2.15 (iii)) shows that ^-Set may have some infinite coproducts even when A does not
preserve them.

It is possible slightly to refine the equivalence between (iii) and (vii) in Theorem 4-1.
Let us call SP K-standard (where K is a regular cardinal) if the uniform preorder \-t on
E7 agrees with the pointwise preorder for every set / of cardinality less than K. (Note
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that the tripos induced by a filter O on a locale A is always w-standard; it is /^-standard
if and only if O is Ac-complete.)

4.3. PROPOSITION. A tripos 8P is K-standard if and only ifthe functor A: Set > 3P-
Set preserves coproducts of cardinality less than K.

Proof. Suppose & is K-standard. Let (X{ \i e/) be a family of sets, where / has cardi-
nality less than K; write X for the disjoint union of the Xo and h:X~+I for the map
having the Xi as fibres. We shall show directly that AX is the coproduct of the AX{ in
^•-Set. Suppose given a family of morphisms ff AXf > (7, =) in ^-Set (repres-
ented by functional relations Ft: Xi x Y >• E, say). We may combine the Ft into a
map F:Xx Y > 2; in proving that F is functional from AX to (Y, =), we use the
principle that if something is ' uniformly valid' on each Xt then it is ' uniformly valid'
on X. For example, to show that F is total, we have to verify that the quantifier VX sends

lTx-*3y(yeYAF(x,y))]e0>X

to an element of D. But we may factor VX as the composite

and, since the Fi are total, the (fibre-wise) quantifier VA sends this element to an I-
indexed family of elements of D. Then since the uniform order on &1 is pointwise,
applying V/ yields an element of D. It is now easy to see that the morphism

represented by F satisfies/. A{vt) = fi for each i (where v{ is the ith. coproduct inclusion);
the fact that these equations determine/uniquely (i.e. that the family of maps A(^) is
epimorphic) is proved by an argument similar to that already given.

Conversely, suppose A preserves coproducts of cardinality less than K. TO show that
9 is K-standard, it suffices by the argument in the proof of 4-1 (ii) => (iii) to show that if
h: I-+D is any map with card I ^ K, then V/(tA) eD. But we can prove this by con-
sidering the subobject | ih\\ of A/ and arguing as in the last part of the proof of 4-1.

Closely related to the notion of /c-standardness is the question of whether A preserves
the natural number object.

4-4 PROPOSITION. AN is a natural number object in ^-Set if and only if A preserves
finite colimits. Moreover, these conditions hold if & is ̂ -standard, and they imply that 0*
is oj-standard.

Proof. If A preserves finite colimits, then it preserves the natural number object by
((9), proposition 6-16). Conversely, suppose AN is a natural number object; then for
each natural number k the object A{0,1,..., k — 1} is a finite cardinal in ̂ "-Set and hence
a fc-fold copower of 1; so & is w-standard by the argument of Proposition 4-3. To see
that A also preserves coequalizers, note first that any functor defined on Set preserves
coequalizers of equivalence relations, since these can be given the structure of split
coequalizers; but if A preserves N then it preserves the construction of the equi-
valence relation generated by a parallel pair of maps, since it preserves finite limits by
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Lemma 3-8. Finally, if 0> is (^-standard then AN is a countable copower of 1, from
which it is easy to verify directly that it is a natural number object.

When 8P is the tripos induced by a filter O on a locale A, then we may factor A as the
composite of the inverse image functor Set > -4-Set and the logical functor

so it preserves the natural number object. So Wj-standardness is not a necessary
condition for 0 to satisfy the conditions of Proposition 4-4. On the other hand, we do
not know any example to show that these conditions are not implied by w-standard-
ness (though it is not true in general that A: Set > 0S&t preserves coequalizers).
Likewise, we do not know any example of a 0 for which ^"-Set fails to have a natural
number object altogether.

Even when 0 is not V-standard, it may still happen that existential quantification
in 0 is standard, i.e. that qe = id^. This is the case, for example, in the realizability
tripos of a partial applicative system (Example 1-7), since there are only two iso-
morphism classes in S, one of them being the singleton {0}.

4-5 LEMMA. Suppose 0 is ^-standard. Then the Heyting algebra A = "L/-W- is com-
plete, and the maps q1:0I-+A1 and e1: A1 > 01 define a geometric morphism from
the canonical tripos of A to 0.

Proof. First we show that q1 is left adjoint to e1. Le t /eS J and g e A1; then iff\-z eg,
we have/(i) I- eg{i) for all i, and hence qf(i) < qeg(i) = g{i) for all i. Since the order on
A1 is by definition pointwise, we thus have qf 4 gin A1. Conversely if qf < g, then we
clearly have qf(i) < g(i) and hence/(i) \-eg(i) for each i; we have to show that this
entailment is uniform in i. Define h = / v eg in 01; then we clearly h&\ef\-jh, and
h(i) -\\- eg{i) for each i, so that qh = g. Now using the definition of e we have

h = 0h(idz) l-,^A(^(3?(idE))) = 0>(qh) (e) = 0>g(e) = eg

and so by transitivity f\-jeg.
It is clear that q1 preserves finite meets, so it only remains to show that A is com-

plete. Le t / : / > J be any map, geA1, heAJ. Then hf < g if and only if qehf 4, g,
which in turn is equivalent to ehf\-1 eg, and hence to eh \-j V/(egr) and to

So we conclude that the composite qJ.'if.eI:AI y AJ acts as universal quanti-
fication for the Set-indexed poset A; it is straightforward to verify that the Beck
condition is satisfied, and so A is complete.

4-6 COROLLARY. Let 0> be an ^-standard tripos, with A = 01/-\\-. Then there is an
inclusion oftoposes e: Shv (A) >• ^ - S e t .

Proof. The geometric morphism of triposes constructed in Lemma 4-5 induces a
geometric morphism Shv(.4) ~ .4-Set >^-Set (Proposition 3-5). Since qe = id^,
the counit of the adjunction {qz-\ e1) is an isomorphism; it is easy to see from the proof
of 3-5 that this condition is inherited by the adjunction (q -\ e), and so this geometric
morphism is an inclusion.
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4-7 Remark. If & is the readability tripos of a partial applicative system, then the

locale A has only two elements and so Shv(.4) is equivalent to Set. If we follow the
prescriptions of 3-5 for constructing the direct and inverse image functors of the
morphism e in this case, we find that they are (isomorphic to) the functors A and F
respectively. So in this case the functor A is right adjoint to P, and not left adjoint as in
the localic case.

We conclude the paper with a partial converse to Corollary 4-6.

4-8 PROPOSITION. Let SPbea tripos, and suppose there is a diagram

Set

oftoposes and geometric morphisms such that u*A is naturally isomorphic tov* and u* is
conservative on subobjects of 1. Then & is 3-standard.
(In passing, we note that the above conditions are satisfied by the diagram

(

/ V
Set

whenever & is 3-standard, by Proposition 3-9 and the fact that the lattice of sub-
objects of 1 in ^-Set is isomorphic to A.)

Proof. Let E be an isomorphism class of elements of S, and consider the canonical
subobject ||t|| of AJE7 in ^"-Set, where i: E > S is the inclusion map. Clearly, the
image of the composite

is the canonical subobject |3#(t)||. Now for any element e of E, the pullback of ||(|
along A(e):Al > AE is the subobject ||e||; i.e. it is the subobject i? which corresponds
to the element E oiA. Now u* preserves pullbacks, and it sends A2? to v*(E), which is
an ^-indexed copower of 1 in § ((9), proposition 4-41). So the subobject u*\ t|| is deter-
mined by its pullbacks along the maps v*(e), and must therefore be isomorphic to
v*(E) x u*(E). In particular, the image of u*\\i\\ > 1 in S is isomorphic to u*(E); that
is, we have u*\\ 3E(i)\\ ~ u*(E) as subobjects of 1. But u* is conservative on subobjects
ofl , so ||3.0(011 = E in ^-Set, i.e. 3E(i)eE.

Note that the hypothesis 'u* is conservative on subobjects of 1' in Proposition 4-8
does not imply that u is a surjection - indeed, in our canonical example of a diagram
satisfying the hypotheses of 4-8, it is a nontrivial inclusion - since ^-Set is not gen-
erated by subobjects of 1. One would like to be able to replace this hypothesis with
something less demanding; but some such' nontriviality' condition is clearly necessary,
since otherwise we could take £ to be the degenerate topos.
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