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Abstract. This paper studies inductive definitions involving binders,
in which aliasing between free and bound names is permitted. Such
aliasing occurs in informal specifications of operational semantics, but
is excluded by the common representation of binding as meta-level λ-
abstraction. Drawing upon ideas from functional logic programming, we
represent such definitions with aliasing as recursively defined functions
in a higher-order typed functional programming language that extends
core ML with types for name-binding, a type of “semi-decidable propo-
sitions” and existential quantification for types with decidable equality.
We show that the representation is sound and complete with respect to
the language’s operational semantics, which combines the use of eval-
uation contexts with constraint programming. We also give a new and
simple proof that the associated constraint problem is NP-complete.

1 Introduction

Perhaps the single most important technique in the study of programming lan-
guage semantics is the use of inductive definitions. This is especially the case
for operational semantics, which in broad terms consists of one or more in-
ductively defined relations between data structures involving programming lan-
guage syntax. The inductive definition commonly takes the form of finitely many
“schematic” rules containing parameters that can be instantiated, usually in in-
finitely many different ways, to get concrete rules for inductively generating
instances of the relations. Schematic rules are necessarily written in some meta-
language whose definition is often left implicit in published research. Having to
be completely precise about the meta-language of rule schemes is an inescapable
part of the current trend toward mechanization of semantics, whether it be
machine-assisted proof construction/checking, or executable semantic specifi-
cations. In this paper we are concerned with the latter, but in either case it is
clear that the ubiquitous presence of binding constructs in the “object-language”
(that is, the programming language whose semantics is being formalized) cre-
ates difficulties for mechanized meta-languages (see the POPLmark Challenge
wiki, for example). Ideally one would like the executable meta-language for rule
schemes to provide a fully automatic treatment of α-conversion of bound names
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in object-languages. Here we investigate a way of doing that within the context
of higher-order typed functional programming. In doing so we take a “nomi-
nal” approach to object-level binders for the following reasons to do with name
aliasing.

One way of dealing with issues of α-conversion is to make the representation
of object-level binders completely anonymous. This can be achieved through a
case-by-case use of de Bruijn indices [8], or more systematically by use of Higher-
Order Abstract Syntax (HOAS) [21] to enforce that object-level bound names
are only represented by meta-level bound names. In either case the conceptu-
ally simple operation of instantiating parameters in a rule scheme, which may
involve capture of a free name by a binder of the same name, has to be replaced
by something more complicated—simply because “binder of the same name”
makes no sense if binders have been anonymized. But there is a more serious
problem with anonymous representations of object-level binding: they rule out
the common practice of name-aliasing involving binders, be it the use of the
same name at two different binding occurrences, or the use of the same name for
both a free and a binding occurrence. For example, in an inductive definition of
β-reduction of λ-terms it is natural to use the rule scheme

t → t′

λx. t → λx. t′

where the two different binding occurrences within the conclusion are both
named x. In this case the name-aliasing does not cause a problem for a for-
malization using HOAS, which might render the above rule as

f(x) → f ′(x)
λ(f) → λ(f ′)

where f and f ′ are meta-variables of function type. The top half of Fig. 1 contains
another example. (The bottom half of the figure will be explained in Sect. 2.)
In this case the conclusion of the third rule contains both free (the first x) and
binding (the x within L(<x>t)) occurrences with the same name. We leave the
reader to ponder how to convert these rules into an extensionally equivalent
HOAS formalization (probably by ignoring the third rule completely). In fact
we do not know any definitive results comparing the class of relations (on tuples
of α-equivalence classes of λ-terms, say) defined by HOAS rule schemes with
the class defined by first-order rule schemes with conventional, named binders.
In any case, the phenomenon of name-aliasing seems too convenient to give up
unless we really have to.

So we advocate the study of executable meta-languages for rule schemes that
allow object-level binders to be named. More specifically we study such an ex-
ecutable meta-language which is a higher-order, typed functional programming
language, drawing upon the ideas of functional logic programming [14]. Our mo-
tivation for favouring this paradigm over the relational paradigm of first-order
logic programming has to do with the expressiveness and modularity afforded by
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nfv(x, t): “x : vr is not a free variable of the λ-term t : tm”

x # x′

nfv(x, Vx′
)

nfv(x, t) & nfv(x, t′)

nfv(x, A(t, t′)) nfv(x, L(<x>t))

nfv(x, t) & x # x′

nfv(x, L(<x′
>t))

Equivalent standard form
ϕ

nfv y
has

ϕ � Ex, x′(y = (x, Vx′) & x # x′) v Ex, t, t′(y = (x, A(t, t′)) & nfv(x, t) & nfv(x, t′))
v Ex, t(y = nfv(x, L(<x>t))) v Ex, x′, t(y = nfv(x, L(<x′>t)) & nfv(x, t) & x # x′)

Fig. 1. Example α-inductive definition

higher-order functions. For example, having higher-order functions allows one to
encode definitions that are parameterised by other definitions (such as the var-
ious operations on relations that occur in the relational approach to contextual
equivalence of programs [12, 17, 25]).

Contributions of this paper. We begin by fixing a simple, yet expressive class
of inductive definitions permitting name-aliasing in binders, where binding is
handled generically through the existing notion of a “nominal signature”. These
α-inductive definitions (Sect. 2) may involve side-conditions asserting constraints
in terms of α-equivalence and the “not-a-free-variable-of” relation. In Sect. 3 we
make the apparently new observation that such constraints can express member-
ship in finite sets; consequently the associated constraint satisfaction problem
is NP-complete (Theorem 3.3). Section 4 introduces the main contribution of
the paper, a typed higher-order functional programming language that extends
core ML with name-binding types, a type of “semi-decidable propositions” and
existential quantification for types in a class of equality types coinciding with
the arities of a user-declared nominal signature. This language, which we call
αML, draws upon the ideas of αProlog [7], extending them to higher-order func-
tional programming. αML is a simplification of both our first attempt to do
this [16] and of αProlog itself, in that it avoids the use of concrete names and
name-permutations in programs (see Remark 2.2 and Sect. 6 for the significance
of this). αML has a remarkably simple operational semantics that combines the
use of Felleisen-style evaluation contexts with constraint programming; we show
that it restricts to the usual operational semantics on the purely functional part
of αML (Theorem 4.1). By design, αML represents α-inductive definitions as
certain recursively defined functions; we prove that this representation is sound
and complete (Corollary 5.3). Finally, Sect. 6 discusses related and future work.

2 α-Inductive Definitions

In this section we give a simple, yet expressive class of inductively defined re-
lations between α-equivalence classes of expressions, or α-inductive definitions
for short. Alpha-equivalence arises from the presence of binding constructs in
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the expressions and we will deal with this in a generic way by using nominal
signatures [28], Σ. These generalize the usual notion of many-sorted algebraic
signature to encompass constructors that bind names of various sorts. Such a Σ
is given by a finite set of name sorts N , a disjoint finite set of data sorts S, and
a finite set of constructors K : A -> S, each with a specified result sort S and
argument arity A—where the nominal arities of the signature are given by:

A ::= S (data sort)
A *· · ·* A (tuples)
N (name sort)
[N]A (name-abstractions).

(1)

For example, the nominal signature for untyped λ-calculus has a name sort vr for
variables, a data sort tm for λ-terms and constructors V : vr->tm, A : tm*tm->tm
and L : [vr]tm -> tm. For other examples, see [24, Sect. 2]. As in that paper,
we associate with each arity A of a nominal signature Σ a set α-TreeΣ(A) of
α-equivalence classes of abstract syntax trees, or α-trees for short. The elements
of each α-TreeΣ(A) are equivalence classes [g]α of syntax trees g ∈ TreeΣ(A)
built up from countably many names n ∈ Name(N) (for each name sort N of
Σ) by repeatedly applying the following three operations.
Constructor application: K g ∈ TreeΣ(S), if g ∈ TreeΣ(A) and K : A -> S.
Tupling: (g1, . . . , gn) ∈ TreeΣ(A1 *· · ·* An), if gi ∈ TreeΣ(Ai) for i = 1..n.
Name-abstraction: 〈n〉g ∈ TreeΣ([N]A), if n ∈ Name(N) and g ∈ TreeΣ(A).
(These trees are the ground nominal terms from [28], that is, the ones not in-
volving variables.) The third operation, name-abstraction, is the generic binding
form provided by nominal signatures: renaming 〈n〉(−)-bound names in trees
gives an equivalence relation =α [24, Fig. 1] and α-TreeΣ(A) is the quotient
TreeΣ(A)/=α. To specify inductively defined relations between α-trees we make
use of a simple meta-language of patterns.

Definition 2.1 (patterns and valuations). The patterns p ∈ PatΣ(A) for
describing α-trees of each arity A of Σ are built up from countably many vari-
ables x ∈ Var(A) (for each A) by repeatedly applying the three tree-forming
operations mentioned above:
Constructor application: K p ∈ PatΣ(S), if p ∈ PatΣ(A) and K : A -> S.
Tupling: (p1, . . . , pn) ∈ PatΣ(A1 *· · ·* An), if pi ∈ PatΣ(Ai) for i = 1..n.
Name-abstraction: <x>p ∈ PatΣ([N]A), if x ∈ Var(N) and p ∈ PatΣ(A).

A valuation V is a finite function mapping variables to α-trees (of the same
arity). If the variables occurring in a pattern p ∈ PatΣ(A) are in dom(V ) (the
domain of definition of V ), then �p�V ∈ α-TreeΣ(A) denotes the α-tree resulting
from p by replacing each x ∈ dom(V ) with V (x).

Remark 2.2. The following points about patterns should be noted.
(a) Variables stand for unknown α-trees, not unknown trees, and (hence) a pat-
tern p ∈ PatΣ(A) describes an α-tree rather than a tree (just which one depends
upon how its variables are instantiated by a valuation). This reflects the common
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practice of leaving α-equivalence implicit and referring to a class via a represen-
tative, signalled by a phrase like “we identify expressions up to α-equivalence”.
(Our own Figs. 2 and 3 in Sect. 4 provide examples of this!)
(b) No concrete names n ∈ Name(N) occur in patterns. In particular, although
the meta-language allows us to name object-level binding occurrences, <x>p, we
use variables x of name sort rather than names themselves to do so. Again, this
reflects common practice. For example, in Barendregt’s classic text [1], Defini-
tion 2.1.1 says that λ-terms are words over an alphabet containing, among other
things, “variables v0, v1, . . .”; then Notation 2.1.2 says that “x, y, z . . . denote
arbitrary variables”; the concrete variables v0, v1, . . . are never mentioned again
and only the meta-variables x, y, z . . . are used throughout the rest of the book.
(c) There are no meta-level variable-binding constructs in patterns—all variables
in a pattern are free. In particular x occurs free in the name-abstraction pat-
tern <x>p. This allows patterns to support the phenomenon of name-aliasing
discussed in the Introduction.
(d) Valuation of patterns is a form of “possibly-capturing” substitution. Once
again, this reflects common practice when instantiating the meta-variables of
schematic rules in operational semantics. Note that, in addition to the previous
point, this is another reason why it makes no sense to try to identify patterns
up to renaming <x>(−)-scoped variables, since valuations do not respect such a
notion of α-equivalence. For example, we cannot regard <x>z and <y>z as equiv-
alent (where x, y and z are distinct), since the valuation V = {x �→ [n]α, y �→
[n′]α, z �→ [n]α} (with n �= n′) has �<x>z�V = [〈n〉n]α �= [〈n′〉n]α = �<y>z�V .

Fix a finite set of relation symbols r <: A, each with a specified arity A. Such an
r is intended to denote a subset of α-TreeΣ(A). Schematic rules for inductively
defining such subsets take the form

r1(p1) & · · · & rm(pm) & c1 & · · · & cn

r(p)
(2)

(see Fig. 1 for an example). The conclusion of (2) is an atomic formula r(p)
with r <: A and p ∈ PatΣ(A) for some arity A; the hypothesis is a finite
(possibly empty) conjunction of such atomic formulas and “side-conditions” ci,
that is, constraints on how the rule may be instantiated by a valuation. What
form of constraints should we use? At the very least we need name-inequality
constraints x �= x′, where x, x′ ∈ Var(N) with N a name sort. Experience
with nominal logic [23, 11] and nominal logic programming [7] shows that it is
useful to generalize name-inequality to name freshness constraints, x # p where
x ∈ Var(N) and p ∈ PatΣ(A), even though these can be inductively defined in
terms of name-inequality (cf. Fig. 1). The intended meaning of x # p on α-trees
is as follows.

Definition 2.3 (free names and freshness). If t ∈ α-TreeΣ(A) we write
FN t for the finite set of names that occur freely in some (indeed, any) tree g
with [g]α = t; in other words, n ∈ FN [g]α iff n occurs in g, but not within the



52 M.R. Lakin and A.M. Pitts

scope of any name-abstraction 〈n〉(−). Note that each α-tree t ∈ α-TreeΣ(N)
of name sort N is of the form t = [n]α = {n} for some n ∈ Name(N) (because
the constructors of a nominal signature only produce results of data sort, rather
than of more general arities, and these are disjoint from the name sorts). Given
t ∈ α-TreeΣ(N) and t′ ∈ α-TreeΣ(A), we write t # t′ and say t is fresh for t′ if
t = [n]α and n /∈ FN t′.

Note that the case of several mutually inductively defined relation symbols r1 <:
A1, . . . , rk <: Ak reduces to the case of a single one at the expense of extending
the signature: we add a new data sort S and new constructors Ii : Ai -> S for
i ∈ {1..k} and use the fact that subsets R ⊆ α-TreeΣ(S) are in bijection with
n-tuples of subsets, R1 ⊆ α-TreeΣ(A1), . . . , Rn ⊆ α-TreeΣ(An). So from now on
we will fix on a single arity Ar of a nominal signature Σ and a single relation
symbol r <: Ar.

Definition 2.4 (formulas and satisfaction). Let FormΣ be the set of first-
order formulas built up from atomic formulas r(p) (where p ∈ PatΣ(Ar)), equal-
ities p = p′ (p, p′ ∈ PatΣ(A), some A) and freshnesses x # p (x ∈ Var(N),
p ∈ PatΣ(A), some N, A) just using finite conjunctions &, finite disjunctions
v and existential quantification Ex(−) (x ∈ Var(A), some A). Given an in-
terpretation R ⊆ α-TreeΣ(Ar) for the relation symbol r and a valuation V
(Definition 2.1) for the free variables of ϕ ∈ FormΣ (i.e. those not within the
scope of an Ex), let (R, V ) |= ϕ denote the associated satisfaction relation.
Thus (R, V ) |= r(p) holds if �p�V ∈ R; (R, V ) |= p = p′ holds if �p�V = �p′�V ;
(R, V ) |= x#p holds if V (x) # �p�V (Definition 2.3); and satisfaction is extended
to compound formulas in the usual way.

Generalizing (2), we will allow the hypothesis of a schematic rule to be a for-
mula in FormΣ . Allowing equality, disjunction and existential quantification in
addition to freshness and conjunction does not increase the expressive power
of inductive definitions; but it does allow us to write inductive definitions in a
“standard form”, illustrated in Fig. 1.

Definition 2.5 (standard α-inductive definitions). An α-inductive defini-
tion D in standard form of a set of α-trees of arity Ar is given by

ϕ

r(x)
(3)

where x ∈ Var(Ar) and ϕ ∈ FormΣ is a formula with at most x free. The
meaning �D� ⊆ α-TreeΣ(Ar) of D is by definition the least fixed point of the
monotone function ΦD on subsets of α-trees that maps each R ⊆ α-TreeΣ(Ar)
to

ΦD(R) � {t ∈ α-TreeΣ(Ar) | (R, {x �→ t}) |= ϕ}. (4)

The definition of �D� via (4) is a fancy way of stating the usual meaning of a
rule-based inductive definition: the rule (3) is schematic in the sense that it has
the variable x as parameter; we instantiate x to get many concrete rules (this



Resolving Inductive Definitions with Binders 53

is the effect of the valuations {x �→ t} in the definition of ΦD) and take the
least set of α-trees closed under these rules, in other words, the least R such
that ΦD(R) ⊆ R. The existence of �D� is an application of the usual Tarski
fixed point theorem (ΦD is monotone because the relation symbol r only occurs
positively in ϕ). Indeed ΦD is finitary and we can construct �D� as the union of
the countable chain of subsets ∅ ⊆ ΦD(∅) ⊆ ΦD(ΦD(∅)) ⊆ · · · of α-TreeΣ(Ar).

3 α-Tree Constraint Problems

The hypothesis ϕ of an α-inductive definition (3) contains non-inductive equal-
ity and freshness constraints. When instantiated by a particular valuation, the
validity of such constraints amounts to α-equivalence of trees g ∈ TreeΣ(A) and
to non-membership of the set of free names of such trees. These are properties
that can be decided in linear time; see [3] for example. However, the problem
of checking whether or not there is some valuation that validates a collection
of equality and freshness constraints is surprisingly more complicated, mainly
because of the presence of variables x in binding position in name-abstraction
patterns <x>p (see points (c) and (d) in Remark 2.2).

Definition 3.1 (constraints and their satisfaction). A formula ϕ ∈ FormΣ

is an α-tree constraint if it is of the form Ex1 · · · Exm (c1 & · · · & cn) with each
ci either an equality (p = p′) or a freshness (x # p). Since such formulas do not
involve the relation symbol r <: Ar, the satisfaction relation of Definition 2.4
restricts to a relation V |= ϕ between valuations and constraints. A constraint
problem is a closed constraint formula and it is satisfiable if ∅ |= ϕ holds, where
∅ denotes the valuation with empty domain.

That satisfaction of α-tree constraint problems is decidable and in NP can be
deduced from results about nominal unification [28]: see [5, Theorem 7.1.2].
One can show that it is also NP-hard via the following simple observation, which
seems to be new.1 In stating it we use the abbreviation <x1, . . . , xn>(−) to stand
for iterated name-abstraction <x1>(· · · <xn>(−) · · · ).
Lemma 3.2 (set membership as an α-tree constraint). Given distinct
variables x, x1, . . . , xk, x′, x′

1, . . . , x
′
k ∈ Var(N) (for some name sort N), define

mem(x, x1, . . . , xk) � Ex′ Ex′
1 · · · Ex′

k (x # x′ & <x1, . . . , xk>x = <x′
1, . . . , x

′
k>x

′).
Then a valuation V on {x, x1, . . . , xk} satisfies mem(x, x1, . . . , xk) iff V (x) is a
member of the finite set {V (xi) | i = 1..k}. 
�
We can use this lemma to show NP-hardness by reduction of Graph 3-Colour-
ability. Given a finite graph with vertices v1, . . . , vn (which we can take to
be variables of some name sort), edges e1, . . . , em and source/target functions
s, t : {e1, . . . , em} ⇒ {v1, . . . , vn}, then the formula

1 Cheney’s proof of NP-hardness [4] for his constraint problems is not applicable here,
because it relies upon the use of concrete names and name-permutations.
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Er, g, b, v1, . . . , vn

(
r # g & g # b & b # r & &n

i=1 mem(vi, r, g, b) & &m
j=1 s(ej) # t(ej)

)

is logically equivalent to an α-tree constraint problem which is satisfiable iff the
graph’s vertices can be coloured with one of three colours (r, g, b) so that no edge
connects vertices of the same colour. So altogether we have:

Theorem 3.3. Satisfiability of α-tree constraint problems is NP-complete. 
�

4 αML

We are going to make the α-inductive definitions of Sect. 2 executable by em-
bedding the simple meta-language language of patterns and formulas in which
they are expressed within an ML-like functional programming language, called
αML. The embedding has two attractive features:
(a) nominal signatures Σ are subsumed within recursive data type declarations;
(b) α-inductive definitions D become instances of recursively defined functions.

To achieve point (a) we mimic FreshML [26] and extend ML’s type system with
types of name N and name-abstraction types [N]T . However, unlike FreshML
and for the reasons given below, we will restrict the use of [N]T to the case
when T is an equality type in the sense of Standard ML [20, Sect. 4.4]. To
achieve point (b) we note that the meaning �D� of D is the fixed point of a
higher-order function (4). We represent subsets of α-TreeΣ(A) by αML functions
of type A -> prop, where prop is a new type of “semi-decidable propositions”;
and then ΦD is represented by a function of type (A -> prop) -> (A -> prop).
In order to be able to write this function, αML extends the pure functional
core of ML with name-binding patterns, with equality and freshness constraints,
and with existential quantification over values of equality types. The syntax of
αML types and expressions is given in Fig. 2. For simplicity’s sake αML has a
monomorphic type system with a single, top-level data type declaration of some
name sorts (N), of some data sorts (S, including a distinguished one bool with
constructors T () and F ()) whose recursive definitions may only involve equality
types (E), and of some general data types (D) whose recursive definitions may
involve function types and prop. Note that in accord with point (a) above, such
a declaration subsumes the notion of nominal signature [28] that we used in
Sect. 2; in particular, the signature’s nominal arities (1) coincide with equality
types.

Turning to αML’s operational semantics, the behaviour of the pure func-
tional constructs is completely straightforward and could be formalized in any
of the standard ways. We use Felleisen-style evaluation contexts [9], formalized
using frame stacks [22], because this makes the combination with αML’s impure
features smoother. These impure features are α-tree equality and freshness con-
straints, and existentially quantified variables of equality type. We describe their
behaviour by combining the use of frame stacks with the techniques of constraint
logic programming (CLP) [15] applied to the α-tree constraint problems of the
previous section. A constraint-based approach gives a clean, abstract presenta-
tion that avoids the use of unifying substitutions; this is especially useful here
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Equality types E ::=
S (data sort)

E *· · ·* E
(tuples, including
nullary case, unit)

N (name sort)

[N]E
(name-
abstraction)

Types T ::=
E (equality type)
D (data type)
T *· · ·* T (tuples)
T -> T (functions)

prop
(semi-decidable
propositions)

Data type declaration:
names N · · ·
data

bool = T of unit | F of unit

S = K1 of E1|· · ·|Kn of En...
D = K′

1 of T1|· · ·|K′
n′ of Tn′

...

Expressions e, v ::=
x, f (variables)
letx = e in e (sequencing)

K v
(constructor
application)

case v of K x => e
| · · ·
| K x => e

(case
analysis)

(v, . . . , v) (tuple)
e.i (projections, i ∈ N)
fun f x = e (recursive function)

v v
(function
application) pure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<v>v
(name- impure
abstraction)

T (empty constraint)
c (atomic constraint)
Ex e (existential)

Atomic constraints c ::=
v = v (equality)
v # v (freshness)

Frame stacks s ::=
id (empty)
s ◦ (x. e) (non-empty)

Expressions and frame stacks in A-normal form
are obtained by restricting v to range over
Values v ::=

x, f | K v | (v, . . . , v) | fun f x = e | <v>v | T

• We only consider well-typed expressions and frame stacks. We use explicitly typed
variables x ∈ Var(T ) as T ranges over types. The typing of the pure functional part of
αML is entirely standard; the types of αML’s impure features are:

Name-abstraction <e>e′ : [N]E if e : N and e′ : E
Empty constraint T : prop
Equality constraint e = e′ : prop if e : E and e′ : E
Freshness constraint e # e′ : prop if e : N and e′ : E
Existential Ex e : T if x ∈ Var(E) and e : T .

• We identify αML expressions up to renaming bound variables. Despite the fact that
αML is a meta-language for object-level languages with binding, there is no reason not
to adopt the usual conventions (see Remark 2.2(a)) for αML’s own variable-binding
constructs. In the pure part, variable-binding occurs in the usual way, in let, case
and fun expressions and in frame stacks s ◦ (x.−); and in the impure part, Ex(−) is a
binder. We write FV (e) for the finite set of free variables of an expression e and say e
is closed if this set is empty. We write e[e′/x] for the capture-avoiding substitution of
e′ for all free occurrences of x in e (well-defined up to renaming bound variables).

Fig. 2. αML syntax
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Pure transitions s, e → s′, e′

(P1) s ◦ (x. e), v → s, e[v/x]
(P2) s, (letx = e in e′) → s ◦ (x. e′), e
(P3) s, (v1, . . . , vn).i → s, vi if i ∈ {1..n}
(P4) s, (caseKi v of K1 x1 => e1|· · ·|Kn xn => en) → s, ei[v/xi] if i ∈ {1..n}
(P5) s, v v′ → s, e[v/f, v′/x] if v is fun f x = e

Impure transitions E�x(c; s; e) → E�x′(c′; s′; e′)
(I1) E�x(c; s; e) → E�x(c; s′; e′) if s, e → s′, e′

(I2) E�x(c; s;x.i) → E�x, x1, . . . , xn(c & x=(x1, . . . , xn); s; xi)
(I3) E�x(c; s;case x of K1 x1 => e1|· · ·|Kn xn => en) → E�x, xi(c & x=Kixi; s; ei)

if i ∈ {1..n} and ∅ |= E�x, xi(c & x=Kixi)
(I4) E�x(c; s; c) → E�x(c & c; s;T) if ∅ |= E�x(c & c)
(I5) E�x(c; s; Ex e) → E�x, x(c; s; e) if ∅ |= Ex(T)

• e, s, e′, s′, ei, . . . range over expressions and frame stacks in A-normal form (Fig. 2).
• Impure transitions are between configurations E�x(c; s; e) where c is a finite conjunc-
tion of atomic constraints and �x is a finite list of distinct variables of equality type
containing the free variables of c, s and e. As for expressions, we identify configurations
up to renaming of E-bound variables. The initial configuration is E∅(T; id ; e).
• In (I2) x ∈ Var(E1* · · · *En) and xi ∈ Var(Ei) − �x for i = 1..n.
• In (I3) x ∈ Var(S), S = K1 of E1|· · ·|Kn of En and xi ∈ Var(Ei) − �x for i = 1..n.
• In (I5) x /∈ �x. If x ∈ Var(E) say, then constraint Ex(T) is satisfiable iff E is non-
empty, in the sense that there is an α-tree of arity E. We allow empty data sorts,
e.g. that given by the declaration es = K of es.

Fig. 3. αML operational semantics

because the “possibly-capturing” nature of substitution (cf. Remark 2.2(d)) com-
plicates unification—see for example the use of terms involving explicit name-
permutations in nominal [28] and equivariant [6] unification algorithms. αML’s
operational semantics is specified in Fig. 3. To simplify the presentation we have
restricted to the A-normal forms [10] from Fig. 2; transitions for general expres-
sions can be derived by reducing them to A-normal form. The αML transition
relation is non-deterministic, because of the “narrowing” that occurs when eval-
uating a case-expression whose subject is an existentially quantified variable
(transition (I3) in Fig. 3). There is a considerable literature about this specific
source of non-determinism, centred around the semantics of the functional logic
programming language Curry; see [14] for a survey. Since αML features non-
trivial computational effects and we do not wish to impose a monadic program-
ming style, we prefer a strict evaluation strategy, rather than the call-by-need
strategy that is more common in the functional logic programming literature;
and for simplicity’s sake we wish to avoid residuation and concurrent execu-
tion [14, Sect. 2.4]. So we use a simple-minded design where the “rigid/flexible”
behaviour of case-analysis is part of the dynamics (pure transition (P4) versus
impure transition (I3)), rather than user-specified.

The following theorem shows that we do achieve the design goal of embedding
within αML the usual operational behaviour of pure functional programming
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with recursive data types and call-by-value higher-order functions. It depends on
a notion of configurations being well-typed, E�x(c; s; e) : T , whose straightforward
definition we omit here.

Theorem 4.1 (embedded pure functional language). An αML expression
or frame stack is pure if it does not contain sub-expressions of the form <e>e′,
T, e = e′, e # e′, or Ex e. Suppose s and e are pure and that E∅(T; s; e) : T holds
for some type T . Then E∅(T; s; e) → E�x(c; s′; e′) holds iff �x = ∅, c = T, s′ and
e′ are pure, and there is a pure transition (s; e) → (s′; e′). 
�
αML restricts the name-abstraction type-former [N](−) to apply only to equal-
ity types E (that is, to nominal arities) rather than to general types T , for which
equality constraints are in general uncomputable. This allows expressions of
name-abstraction type to be deconstructed by unification with name-abstraction
patterns <x>p in the presence of freshness constraints on x, rather than using
the “generative name unbinding” [25] mechanism of FreshML, which is based on
a supply of dynamically allocated fresh names (“gensym”). Here is an example.

Example 4.2. If the nominal signature for λ-terms mentioned in Sect. 2 is part
of the data type declaration, then the λ-term substitution operation (t, t′, x′) �→
t[t′/x′] can be encoded in αML by the following function of type tm*tm*vr-> tm

fun subst(t, t′, x′) = case t of
V x => ifx = x′ then t′ else t

| A x => A(subst(x.1, t′, x′), subst(x.2, t′, x′))
| L x => Ex1 Et1 x1 # (t′, x′) & <x1>t1 = x & L(<x1>subst(t1, t′, x′))

(5)

where we have used some syntactic sugar for tuple-pattern matching, together
with the following abbreviations:

e1 & e2 � letx = e1 in e2 (6)

if e then e1 else e2 � case e of T x1 => e1 | Fx2 => e2 (7)

(where x /∈ FV (e2) in (6) and xi /∈ FV (ei) in (7)). The underlined freshness con-
straint in (5) enforces the usual “capture-avoiding” property when substituting
under a λ-binder (cf. [7, Example 2.3]).

Remark 4.3 (dynamically allocated names). We can add dynamically al-
located names to αML without breaking the “names as meta-variables” aspect
of its design (Remark 2.2(b)): extend its syntax with expressions freshN of
type N (for each name sort N) and its operational semantics with the impure
transition:

(I6) E�x(c; s; freshN ) → E�x, x(c & x # �x; s; x)

where x ∈ Var(N) is not in �x and x # �x is the constraint x # x1 & · · · & x # xn

when �x = x1, . . . , xn. Using this we can define a uniform operation of generative
name-unbinding

unbind e as <x>x′ in e′ � letx = freshN in Ex′ <x>x′ = e & e′ (8)
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where e : [N]E and x ∈ Var(N), x′ ∈ Var(E) are distinct variables not oc-
curring in e. Then, for example, we can replace the last branch of the case
expression in (5) with L x => unbindx as <x1>t1 in L(<x1>subst(t1, t′, x′)). Rule
(I6) and definition (8) together give a version of generative unbinding that is
like the one used by MLSOS [16]. It is operationally different from FreshML’s
version [26], which pushes a swap of x with a fresh name into the body e′. Are
these two forms of generative unbinding behaviourally equivalent? To determine
this requires developing the properties of contextual equivalence for αML, which
we defer to a future paper. Is freshN definable up to contextual equivalence in
terms of the language presented in Figs 2 and 3? It seems unlikely, but we do
not have a proof.

5 α-Inductive Definitions as αML Recursive Functions

We remarked in the previous section that nominal arities are the same thing as
αML equality types. Regarding the relation symbol r <: Ar of nominal arity Ar

as a variable of type Ar -> prop, we identify α-inductive definitions in standard
form D (Definition 2.5) with certain αML recursive function values vD of type
Ar -> prop:

vD � (fun r x = ϕ) where D is
ϕ

r(x)
. (9)

For this to make sense we have to embed formulas ϕ ∈ FormΣ over a nominal
signature Σ (Definition 2.4) as αML expressions of type prop. Clearly the pat-
terns p of each arity A (Definition 2.1) coincide with values v (Fig. 2) of equality
type A. So αML syntax has all the necessary constituents for expressing formu-
las except possibly for conjunction and disjunction. We define conjunction as in
(6) and express disjunction using a flexible case-expression (cf. [27, Sect. 3.1]):

e1 v e2 � Ex (casex of T x1 => e1 | Fx2 => e2)
(where x, x1, x2 /∈ FV (e1, e2)).

(10)

So given an α-inductive definition D in standard form with associated αML
function vD : Ar -> prop as in (9), for each formula ϕ′ ∈ FormΣ we get an
αML expression ϕ′[vD/r] of type prop. The following theorem characterizes sat-
isfaction of ϕ′ in terms of the operational behaviour of this expression. It uses
the solution set of ϕ′ (with respect to a set of variables �x containing those free
in ϕ′): this is defined to be the set solns(ϕ′) of constraints E�x′(c) such that
E�x(T; id ; ϕ′[vD/r]) →· · ·→ E�x, �x′(c; id ; T) and ∅ |= E�x, �x′(c).

Theorem 5.1. For any formula ϕ′ and valuation V we have:

Soundness: if E�x′(c) ∈ solns(ϕ′) and V |= E�x′(c) then (�D�, V ) |= ϕ′.
Completeness: if (�D�, V ) |= ϕ′ then there is E�x′(c) ∈ solns(ϕ′) with V |=

E�x′(c).
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Proof. The theorem can be deduced using standard techniques from constraint
logic programming (CLP) [15, Sect. 4.4 and 4.5]. This is because one can prove
that αML’s operational semantics agrees with the semantics of CLP goal states
〈ϕ, ϕ1, . . . , ϕn | c〉 if the latter are encoded as αML configurations of the form
E�x(c; sϕn,...,ϕ1 ; ϕ), where the frame stack sϕn,...,ϕ1 is defined by: s∅ � id and

s�ϕ,ϕ � s�ϕ ◦ (x. ϕ) (where x /∈ FV (ϕ)). 
�
Definition 5.2 (success). We say that a configuration E�x(c; s; e) : prop may
succeed and write E�x(c; s; e)↓ if there is a finite sequence of transitions from
E�x(c; s; e) to a configuration of the form E�x, �x′(c′; id ; T), for some �x′ and c′ with

∅ |= E�x, �x′(c′).

We can use Theorem 5.1 to deduce that the operational semantics of vD :
Ar -> prop in αML detects, through the above notion of success, all and only
the α-trees t ∈ α-Tree(Ar) lying in the inductively defined subset �D� (Defini-
tion 2.5). To do so, we first have to discuss how αML represents α-trees, since
they involve concrete names n ∈ Name(N) whereas αML follows the common
practice (Remark 2.2(b)) of only using variables of name sort, x ∈ Var(N).
What matters about names when they are used to describe binding structure
is not their particular identity, but rather the distinctions between them—and
those can be expressed using constraints asserting that all the variables in a list
�x = x1, . . . , xk are distinct:

#�x � &
1≤i<j≤k

xi # xj .

A valuation V with domain �x satisfies #�x iff V (x1), . . . , V (xk) are (α-equivalence
classes of) mutually distinct names. We can represent a particular α-tree in αML
by a pattern in the presence of such a constraint: if t ∈ α-Tree(Ar) is the α-
equivalence class of a tree involving k distinct names (bound or free), we can
find a pattern p : Ar with k variables �x of name sort and a valuation V with
t = �p�V and V |= #�x. Then taking ϕ′ to be #�x & r(p) in Theorem 5.1 we get:

Corollary 5.3. Let D be an α-inductive definition in standard form with asso-
ciated αML function vD : Ar -> prop. If t ∈ α-Tree(Ar) is represented as above
by a pattern p : Ar and a valuation V (with dom(V ) = �x, the variables of p),
then t ∈ �D� iff E�x(#�x; id ; vD p)↓. 
�

6 Related and Future Work

Apopular approach to executable operational semantics is to use higher-order logic
programming, where binders in inductive definitions are represented via higher-
order abstract syntax (HOAS): see Miller [19] for an overview. We think it is both
useful and interesting to study executable operational semantics also using func-
tional logic programming [14]. It has proved harder to integrate HOAS representa-
tions with functional programming: see [18] for a recent view on this. In any case,
in the Introduction we advocated leaving the HOAS mainstream and pursuing a
nominal approach, for reasons to do with name-aliasing. As far as we know the
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first such approach was Cheney and Urban’s first-order logic programming lan-
guage αProlog [7]. Our first attempt to combine αProlog’s computational mecha-
nism (resolution based on nominal unification [28]) with higher-order typed func-
tional programming was influenced by the work on FreshML [26] and produced
MLSOS [16]. Byrd and Friedman’s αKanren [2] combines it with the untyped func-
tional language Scheme. αProlog, MLSOS and αKanren allow the use of constants
to name object-level bound entities. We argued in Remark 2.2(b) that such
concrete names are never used in practice when specifying inductively defined re-
lations. Moreover their use naturally leads to “equivariance” (that is, invariance
under permutations of concrete names) becoming an explicit part of the meta-
language’s operational semantics [6], rather than just a useful meta-theoretic
property of the semantics. By contrast, αML only uses meta-
variables rather than constants to name object-level bound entities, plus fresh-
ness constraints on meta-variables when distinctions between names are needed.
As well as being closer to informal practice, this approach leads both to a pleasingly
simple design for αML’s operational semantics (Fig. 3) and a correctness result
(Corollary 5.3) that was lacking for MLSOS. Our design also avoids the use of ex-
plicit name-swapping; although this is a characteristic feature of nominal logic [23],
nominal unification and αProlog, it is not needed from the point of view of a user
specifying operational semantics in an executable meta-language.

The presence of unifiable meta-variables in binding position in αML patterns
does mean that, as for Cheney’s equivariant unification [4], our constraint satis-
faction problem is NP-complete (Theorem 3.3). There are at least two different
approaches to obtaining a practically useful implementation of αML that should
be investigated. One approach is to identify restrictions on α-inductive definitions
that do not limit their applicability for specifying operational semantics too much,
but for which the associated α-tree constraint problems are in P rather than NP;
cf. Cheney and Urban [7, Sect. 5.3]. Since degrees of “applicability for specifying
operational semantics” are hard to pin down, perhaps a more attractive alternative
is to stick with the general and conceptually simple form of α-inductive definitions
used in this paper, but investigate transformations on α-tree constraint problems
that allow the highly developed technology of Sat-solvers to be applied.

References

[1] Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam (1984) (revised edition)

[2] Byrd, W.E., Friedman, D.P.: alphaKanren: A fresh name in nominal logic pro-
gramming. In: Proc. 2007 Workshop on Scheme and Functional Programming,
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