Reasoning about L ocal Variables with Operationally-Based L ogical Relations

Andrew M. Pitts*
Cambridge University Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, UK
ap@cl.cam.ac.uk

Abstract

A parametric logical relation between the phrases of an
Algol-like languageis presented. Its definition involves the
structural operational semanticsof thelanguage, but wasin-
spired by recent denotationally-based work of O’ Hearn and
Reynolds on trandating Algol into a predicatively polymor-
phic linear lambda calculus. The logical relation yields an
applicative characterisation of contextual equivalence for
the language and provides a useful (and complete) method
for proving equivalences. Its utility isillustrated by giving
simple and direct proofs of some contextual equivalences,
including an interesting equivalence due to O’ Hearn which
hingesupon the undefinability of ‘ snapback’ operations(and
which goes beyond the standard suite of ‘ Meyer-Seber’ ex-
amples). Whilst some of the mathematical intricacies of de-
notational semanticsareavoided, the hard work in thisoper-
ational approach liesin establishing the ‘ fundamental prop-
erty’ for thelogical relation—the proof of which makes use
of a compactness property of fixpoint recursion with respect
to evaluation of phrases. But oncethis property hasbeen es-
tablished, thelogical relation providesa verification method
with an attractively low mathematical overhead.

1. Introduction

The observable properties of sequentially executed im-
perative programs involving higher order procedures and
locally declared state can be quite subtle. Thisis so even
when the use of local state is quite severely constrained,
as it is in languages which are Algol-like in the sense of
Reynolds[17]—i.e. when the state just consists of variables
storing first order values (as opposed to function closures,
for example), local variable declarations are only permit-
ted in commands (not in expressions), are statically scoped
and are executed using a stack discipline. The subtleties of
the externally observable behaviour of such locally declared

*Research partialy supported by the EU HCM Research Network on
‘Lambda Calcul Typ€'.

state are such that, despite the considerable effortsof anum-
ber of researchers|[5, 11, 10, 16, 8, 20], no concrete denota-
tional model of Algol hasyet been constructed which exactly
capturesobservational equivalencefor n-th order procedures
beyondn = 2 or 3 (depending upon how one countsorders).

Nevertheless, useful semantical ideas and techniques
have emerged from the effort to construct such *fully ab-
stract’” models. The one that we focus on here concerns
the parametric logical relations occurring in the work
of O'Hearn-Tennent [10], Sieber [20, 21], and O’ Hearn-
Reynolds [9]. Such relations are used for two intertwined
purposes. First, they can be used to identify ‘junk’ in a
model—elements that cannot possibly be meanings of
program phrases. Secondly, they can be used to prove that
two program phrases are observationally equivalent. The
work described in this paper was motivated by the desire
to extract the essence of this second aspect of the use of
logical relations from the mathematical structures used to
model an Algol-like language, and to apply that essence
directly to the language itself equipped with the commonly
used notion of operational equivalence—a Morris-style
contextual equivalence.

Recall that two program phrases M; and M, are con-
textually equivalent, written M; = M,, if occurrences of
the phrases in any complete program can be interchanged
without affecting the observabl e effects of executing the pro-
gram. More precisely, M; = M- holdsif for al program
contexts P[—], the programs P[] and P[M>] have equal
observable effects. Although thisis a reasonable notion of
semantic equality for program phrases, the quantification
over all contexts P[—] which occursin its definition makes
it hard to work with directly—because the ways in which
a context can make use of its ‘hole’ can be complicated.
Onetherefore seeksto develop general properties of contex-
tual equivalence. For example, one might hope to establish
thefamiliar functional extensionality property for contextual
equivalence

FeF :050 ©VA:c(FAXF A:0"). (1

This servesto reduce contextual equivalence at the function
type o — o' to that at the structurally ssimpler type o’. In



languages like Scheme or ML thiskind of functional exten-
sionality fails, due to the complicated interactions possible
between call-by-value function application and locally de-
clared statein expressionsof function type, permitting ‘1eak-
age’ of private names out of the textual scope of local decla-
rations. See Pitts and Stark [15, 23] for examples. By con-
trast, Algol-likelanguages, by virtue of having call-by-name
function application and having local variable declarations
restricted to commands, do satisfy (1). Thisis part of the
Algol Operational Extensionality Theorem which we shall
prove (Theorem 2.5). It is ageneralisation to Algol of Mil-
ner’s Context Lemma 6] for the purely functional language
PCF. The properties of Algol contextual equivalence it ex-
presses will come as no surprise to a connoisseur of thelan-
guage, but the author was unableto locate any formal state-
ment or proof of these propertiesin the literature—mainly
because most existing work concerns itself solely with de-
notational semantics of Algol.

There are several ways to prove the Operational Exten-
sionality Theorem. For example, one can deduce it via an
extensionto imperative languages of the methods devel oped
by Howe[2, 3] for purefunctional languages(cf. [18]). Here
we deduceit from the existenceof acertainkind of logical re-
lation, whose definition and propertiesarethe main technical
contribution of this paper. Thistakestheform of a paramet-
ric family of relations between closed Algol terms of equal
type. Roughly speaking, the parameter ranges over relations
between states (which in this case are just assignmentsof in-
teger values to global variables). The definition of the logi-
cal relation proceeds by induction on the structure of types
and involvesthe structural operational semantics of the lan-
guage. Each clause embodies both extensionality properties
and the kind of relational parametricity considered in a de-
notational setting by O'Hearn and Tennent [10]. The Op-
erational Extensionality Theorem follows from the fact that
contextual eguivalence coincides with the parametric logi-
cal relation when its parameter is instantiated to the identity
relation on states. Thisfact isin turn derived from the log-
ical relation’s‘ Fundamental Property’ (cf. [7]), namely that
it ispreserved by the variousterm-forming operationsof Al-
gol. The proof of the Fundamental Property (Theorem 3.9)
isnon-trivial because of the presence of recursively defined
terms in the language. At this point in a denotational de-
velopment one can use the familiar characterisation of |east
fixed points (used to model recursive terms) as least upper
bounds of certain ascending chains and apply Scott Induc-
tion [19, section 3]. Here we develop an operational ana-
logue of this method. Thisis similar to the approach taken
by Smith et al [4], except that we have to deal with anim-
perativelanguage and we use astructural operational seman-
tics based upon an evaluation (or ‘big-step’) relation, rather
than a transition (or ‘small-step’) relation. At the heart of
the proof is a certain ‘ compactness property of evaluation

with respect to the canonical sequence of approximationsto
arecursive term (see the proof of Proposition 3.7).

The pay-off from the development of the operationally-
based parametriclogical relationisnot only aproof of theex-
tensionality properties of Algol contextual equivalence, but
also auseful and mathematically lightweight tool for proving
particular equivalences. We demonstrate this by example.
Aswell asdealing with thewell-known Meyer-Sieber exam-
ples[5], weprovearather subtle equivalencedueto O’ Hearn
(Example4.1). Itillustratesthe consequencesfor contextual
equivalence of the inahility of the particular Algol-like lan-
guage under consideration to ‘ snap-back’ the state to some
previous point in the thread of computation. We said above
that, roughly speaking, the logical relation is parameterized
by relations between states. More precisely, the parame-
ter is a binary relation on the flat cpo of states—in other
words some states get related to a formal, undefined state.
This level of generdlity is not needed to establish the oper-
ational Extensionality Theorem—nbinary relations on the set
of states would be enough (see Remark 3.11). Rather, the
generalisation involving undefined states is needed to cope
with O'Hearn’s example, and was adopted from the recent
denotationally-based work of O’Hearn and Reynolds [9].
The precise definition of the logical relation and the exten-
sionality results are given in Section 3, and the application
to proving equivalencesis given in Section 4. In the final
section we discuss some related, operationally-based work
and further directions of research.

2. ldealised Algol

Wewill definethe parametriclogical relationfor Idealised
Algol, IA, asmall Algol-like language which has been used
by several authors for illustrative purposes. It is a simply
typed lambda calculus over ground types bool (booleans),
int (integers), var (variablesfor storing integers), and cmd
(commandsfor changing state). It containsterms (of the ap-
propriate types) for lambda abstraction (Az:o . M), appli-
cation (F' A), conditionals (if B then M; else M),
fixpoint recursion (fix z:0 . M), integer and boolean con-
stants (n, b), and some arithmetic operations and relations
(V1 % N3). We choose to make dereferencing explicit in the
syntax: !V isthe IA term of type int denoting the contents
of aterm V' of type var. In addition to denumerable sets of
identifiers of each type (z7), there is a denumerable set of
global variables (v), each of which is an IA term of type
var. Finaly, I'A contains emd-building constructsfor no-op
(skip), integer assignment (V := N), sequencing (C ; C2),
and local variable blocks (new z := N in C end), in ad-
dition to the conditional and fixpoint constructs which are
available at all types (and which permit one to define vari-
ous recursive control structures, such as while — do —).
We write M : o to indicate that the 1A term M hastypeo.



2.1. Remark (Binding and substitution). The IA terms
for local variable blocks, lambda abstraction and fixpoint
recursion are al identifier-binding constructs. free oc-
currences of V%" in the command C' become bound in
new z := N in C end; and free occurrences of z7 in
theterm M becomeboundin Az:o. M andin fix x:0 . M.
Henceforward we will identify IA terms up to a-conversion
of their bound identifiers. Then M[M' /x| will denote the
result (well-defined up to a-equivalence) of substituting a
term M’ of type o for al free occurrences of the identifier
z? intheterm M. Similarly, M [v'/v] will denotethe result
of substituting the global variable v’ for al occurrences of
the global variable v in M. We write fi(M) for the finite
set of freeidentifiers of M, and gv(M) for its finite set of
global variables. Let

TA, (w) ©{M 0 | i(M) =0 & gv(M) C w}

denotethe set of closed 14 termsof type o with global vari-
ablesin the set w.

We specify the operational semanticsof 74 intermsof an
inductively defined evaluation relation of the form

whks; M, s'; R. 2

Here w isafinite set of global variables—we call such sets
worlds, because they are an operational trace of the Kripke-
style ‘possible world” semantics of block structure using
functor categoriesintroduced by Reynoldsand Oles[11]. In
(2), M and R are elements of IA,(w), and s, s’ are states
of world w—i.e. functions assigning integers to the global
variablesin w. We write States(w) for the set of al such
states. The intended meaning of (2) isthat given the initial
assignment s of values to the relevant global variables,
evaluation of M vyieldsthe final result R and state s'. The
rules for inductively generating the evaluation relation are
givenin Figure 1. They are quite standard, apart from some
notational choices. wv denotes the set w augmented by a
new elementv ¢ w, andthen s ® v:=n € States(wv)
denotes the state properly extending the function s by
mapping v to the integer n. On the other hand, if v € w
and s € States(w), then s;v:=n € States(w) denotes
the state mapping v to n and otherwise acting like s.

The rulesin Figure 1 appear more general than they re-
ally are when it comes to sequential state change, because
IA evauation does have the familiar and desirable property
of an Algol-like language that evaluation of terms of non-
command type is state dependent, but not state changing.
Thisisthefirst of anumber of important, but quite straight-
forward propertiesof the evaluation relation given by thefol -
lowing lemma. Each property can easily be proved by induc-
tion on the derivation of evaluations from the rulesin Fig-
ure 1.

2.2. Lemma. (Side-effect freeexpressions) If (2) holds
and o # c¢md, then s = ¢'.

(Equivariance). Givenabijectionr : w = w', write M [r]
for the result of replacing each v € w by w(v) in M;
and for each state s € States(w), write s[r] for the
element of States(w') which mapseach v/ € w' to
s(m=1(v")). If (2) holds, then w' + s[x]; M[x] |,
s'[r]; R[r].

(Determinacy) If w F s; M |, si; R; holdsfor i = 1,2,
then Ry = R, and s| = s). (Recall that we are
identifying IA terms up to a-equivalence.)

(Weakening and Strengthening) Supposethat w = w; U
wy Withw; Nwy = (), andthat s; € States(w;) fori =
1,2. Given M € IA,(wy),thenw F s; ® so; M |,
s'; Rholdsifandonlyif R € IA,(w;)ands’ = s} ®ss
for some s} withwy F s1; M |}, si; R.

Inview of thefirst part of thelemma, when o # c¢md we
abbreviate (2) to

wks; M, R. (3)

Similarly, since the only result term of type emd is skip,
when o = ¢md we abbreviate (2) to

whs; M s 4
Finally, we write
whks;M 1, (5)

toindicatethat w + s; M |}, s; R does not hold for any s’
and R.

Having fixed the syntax and operational semantics of our
Algol-like language, we can give the formal definition of
contextual eguivalence. Asusual, acontext C[—,] isaterm
in which a subexpression of type o has been replaced by a
‘hole’, —,. The expression resulting from filling the hole
with an expression M : o will be denoted by C[M]. Since
—o may occur within the scope of identifier-binding con-
structs, free identifiers of A/ may become bound in C[M].
We write traps(C[—,]) for the set of identifiers that oc-
cur in C[—,] associated to binders containing the hole —,
within their scope. This ‘capture’ of identifiersin fi(AM) N
traps(C[—]) means that although the operation of substi-
tuting M for —, in C[—,] respects a-conversion of bound
identifiersin M, it doesnot necessarily respect a-conversion
of bound identifiersin C[—,]. Thereforewe do not identify
contexts up to a-conversion. As for terms, so for contexts
we write C[—,] : ¢' to indicate that ¢’ is the type of the
context; fi(C[—,]) and gv(C[—,]) denote the finite sets of
freeidentifiers and global variables of the context. A closed
context is one with no free identifiers.



wks;Ry,s;R ((fRx=b|n|v|skip|Aiz.M)

w bk SaB ‘Ubool Sl;b

whk s F |

cshiAvie . M wrk s’ M[A/27) U, 8" R

o—0

whks's My, s";R

wks;(FA) Y, s";R

wh s; Mfixz:o. M/z%] |, s'; R

w F s; (if B then Miyye else Mease) |, s"; R

. . I, ",
whk 8Ny e 8501 whks;Na ;s ;0

w k85 (N7 % Ny) Viype(s) s c

wk s;V yar 85V whks';N{,, s ;n

2(ifc:nlxng)

w8301 Yopa ' skip

wkt sifixzio. M|, s;R

.
var 53

FsV v
v (ifn=s'(v))

whk sV i, ssn

wk s';Cy Yy s skip

wk s;V:i=N {4 (s";v:=n);skip

whk s;N {;, s';n

w F 5;(C1;C2) Ueppa 8”5 skip

wv  (s' @ v:=n);C[v/z] |4 (8" @ v:=n');skip

(if v & w)

wt s;(new z:= N in C end) |,,; s"; skip

Figure 1. IA evaluation rules

2.3. Definition (IA contextual equivalence). If M; and
M, are IA terms of type o with freeidentifiers contained in
aset I of identifiers, and global variables contained in a set
w of global variables, we write

’LU,FI_Ml gg M2

to indicate that the terms are contextually equivalent. By
definition this means that for all worlds w’ 2 w, al closed
contexts C[—,] : c¢md with gv(C[—,]) C w' andT" C
traps(C[—5]), and all states s, s’ € States(w')

w'F C[M],s|s" & wF CM],s{s"

(Incase T = (), i.e. when the M; are closed terms, we just
writew = My =2, M, for w,@ M =, Mz)

Thustwo termsare contextually equivalent if occurrences
of them in some closed command can be interchanged with-
out affecting the meaning of the command as apartial func-
tion from states to states. Thisis areasonable notion of pro-
gramequivalencefor 74, giventhat itisprimarily alanguage
for defining state-changing algorithms. It isimmediatefrom
the definitionthat contextual equivalenceisacongruencefor
IA,i.e itisan equivalencerelation and is respected by the
various term-forming operations. However, the quantifica-
tion over al contextsthat occursin the definition of contex-
tual equivalencemakesit hard to establish further properties
directly from 2.3. For example, it is not immediately obvi-
ousthat two closed commands are contextually equivalent if
they determinethe same partial functionfrom statesto states.

Thisisone of anumber of useful ‘extensionality’ properties
of IA that are summed up by the Operational Extensionality
Theoremfor IA givenbelow. Inorder to stateit weintroduce
the notion of extensional equivalence.

2.4. Definition (Extensional equivalence). If M; and M,
are closed 74 terms of type o with global variables con-
tained in aset w, we write

w bk My =9 M,

to indicate that the terms are extensionally equivalent. This
notion is defined by induction on the structure of o, as fol-
lows.

o If 0 = bool,int, thenw = M; =** M, is defined
to hold if for al s € States(w) and al constants c,
whk Mq,s |, cifandonlyif w - Ms,s ), c.

o w - O =t (), isdefined to hold if for dl s,s’ €
States(w), w F Cp, sl s ifandonlyif w - Cs,s{s'.
o whk V; = 1, isdefined to hold if w + 1V} =X 1V,

—wvar

andw F (V} :=n) =t (V;, :=n), foral n.

—cmd

e whk I %?,’;L(,Z F; isdefinedto holdif foral w' 2 w,

andall A € IA,, (w'), w' b Fy A= F, A,

We extend extensional equivalenceto open termsviaclosed
instantiations: given terms My, M, : o with free identifiers
inT = {z,...,27~} and global variablesin w, we write

’lU,F F M1 EEXt Mg



to mean that w' + M;[A/#] = M,[A/Z) holds for all
w' Dwandal 4; € I4,,(w') (i=1,...,n).

2.5. Theorem (Oper ational Extensionality). IA contex-
tual equivalence coincideswith extensional equivalence:

w,I‘I—M1 =, M, <:>w,I‘|—M1 EEXt M.

We will provethistheorem in the next section as acorol-
lary of the properties of the parametric logical relation for
TA. Wefinish this section with some applications of the the-
orem to proving general propertiesof IA contextual equiva-
lence from corresponding properties of the evaluation rela-
tion.

2.6. Example (Meyer-Sieber [5, Ex. 1]). If C' : e¢md has
its free identifiers contained in T" and its global variables
contained in w, and if V%" ¢ T', then

w,['F (new z:=nin C end) Z.,,4 C.

Proof. Accordingto Theorem 2.5, it sufficesto show for all
worlds w, al closed commands C' € IA,;q4(w), and ll
states s, s’ € States(w) that w + s;C |} s’ holdsif and
onlyif wt s; (new z:=n in C end) |} s'. Because of the
structural nature of the rulesin Figure 1, the only way that
the second evaluation can be deduced is from

wv bk (s@v:=n);C[v/z]|s @v:=n (6)

for somev ¢ w andsomen’. Since C isclosed, C[v/z] =
C; inparticular gv(C[v/z]) = gv(C) C w and so by the
“Weakening and Strengthening’ property of |} (LemmaZ2.2),
(6) holdsif and only if w - s; C |} s, asrequired. O

2.7. Example (Meyer-Sieber [5, Ex. 3]). Suppose
C : comd has free identifiers in I'zy%"23%" and global
variablesin w. Define:

Ci» e ew T1:=n; in
new I :=ns in
C
end
end

Co ©f ew To :=ns In
new r{ :=n; in
0[1'2,1'1/1171,1'2]
end
end

Thenw, ' F Cs Zimg Cor.

Proof. The argument is similar to that for the previous ex-
ample, but using the *Equivariance’ property of |} givenin
Lemma?2.2. O

Recall that inlogicsof partially defined terms, two partial
terms are often called ‘ Kleene equivalent’ if whenever one
termis defined so isthe other and in that case they are equal.
Following asuggestion of Harper, we adopt thisterminology
for programming language expressions that may diverge.
For IA this leads to the following, rather strong notion of
equivalence.

2.8. Definition (K leene equivalence). We say that closed
terms M, , M, € 1A, (w) are Kleene equivalent, and write

w My = M,

if foral s,s’", R, w + s; My |, s'; R holdsif and only if
whs; My, s R.

Thefollowing lemmais easily proved by inductionon o.
29. Lemma. Ifw F M; =K' M, thenw F M; =t M,

Thusin view of Theorem 2.5, any Kleene equivalent 7 A
terms are contextually equivalent. Here are a number of
examples, singled out because they will be needed later.

2.10. Examples. The following pairs of terms are Kleene
equivalent and hence al so contextually equivalent. In (vii)—
(x), L, isan abbreviation for fixx : . .

(i) !(if B then V) else V5) and
if B then V] else V5.

(i) (if B then V; else V) := N and
if Bthen V] := N else 1, := N.

(iii) V := (if B then N, else N,) and
if B then V := N; else V := Ns.

(iv) (if B then Fj else F») A and
if B then (F A) else (F; A).

V) Az:0.M)Aand M[A/z°].
(vi) fixx : o.M and M[fixz :0.M/z].

(Vi) Lins and (L yar).

(viii) Lepmq and (J—U(M" = N)1 or (V = J—int)-

(iX) J—cmd and (J—cmd; C)v or (C; J—cmd)-
(X) Ly and (L, A).

3. The parametric logical relation

If X isasdt, thelift of X, (X, <), isthe so-called flat
partially ordered set whose set of elementsis X U {Lx}
(where Lx ¢ X) and whose only non-trivial ordering is
lx < z(any z € X). We need this construct in case
X = States(w) isthe set of states at world w. We refer



to the elements of States(w)  as lifted states, and denote
itsleast element by L (for all w). It is convenient to extend
the evaluation and divergence relations to lifted states by
declaring that w + L;M |}, s'; R does not hold for any
M,R € IA,(w), s' € States(w), but that

whk L; M s

awaysholdsforany M € IA,(w).

We will be working with binary relations between lifted
states that relate | toitself. For each finite set w of global
variableswe define

Rel(w) def {R C States(w), x States(w), |

(L,1) e R}

3.1. Definition. The identity relation, Zd,, € Rel(w), is
defined to be {(s,s) | s € States(w),}. If wy and w,
aredigoint sets of global variables, we write wy w» for their
union. The smash product Ry ® Ry € Rel(wjws) of
relationsR; € Rel(w;) isdefinedtobe {(s; ® s2, 5] @ s5) |
(s1,81) € R1 & (s2,85) € Ro}, where

def | S1 U 83 |f81 7£J_;é82
851 Q82 = .
1 ifsg = 1,0rsy = L

where s; U so € States(wiws) is the state mapping v to
SZ(V) if v ew; (fori=1,2).

Note that the smash product operation on relationsis as-
sociative, commutative, and has identity relations as units:

(R1 ®R2) ® Rz =R1 ®(R2 ®R3),
Ri1 ®R2 =Rz ® Ry,
Idy, ® R =R.

Armed with these notions we can give the principal defini-
tion of the paper.

3.2. Definition (Parametric logical relation). For each fi-
nite set w of global variables, each type o, and each relation
R € Rel(w), wedefineabinary relation between closed 74
terms of type o with global variablesin w, denoted

w F M1 Ro— M2 (Ml,Mz S IAU(IU))

Therelationsare defined simultaneoudly for al w and R, by
induction on the structure of o, as follows. (In giving the
clauses, we make use of the extension of the evaluation and
divergencerelationsto lifted states mentioned above.)

o If o = bool (respectively o = int), thenw - M; R,
M, is defined to hold if for all boolean (respectively
integer) constants ¢y, co, and al (s1,s2) € R

whks;; My, c1 &whk sy My |, ca = cp =c,

wh sy My, e &whk sy Mo fte = (51,L) €R,
and

wh sy My fie &wh so;Ma ||, c2 = (L,s2) € R.

elfc = cemd,thenw F Ci Remag Ca is defined
to hold if for all states s,s, € States(w), and all
(81,82) S R

whks;0 s8] &wh se;Cy ) sh = (s],85) €R,

whks1;C1 s & wh s2;C5 rema = (7, L) €R,
and

wk 51301 emd & w5202 sy = (L, s5) € R.

e lf o = war,thenw +F Vi Ryer Vo is defined to
hold if for all global variables vi,v, € w, and all
(81,82) S R

wk s Vidye Vi &whk so; Vo |
Vo ((s1;v1:=n),(s2;ve:=n)) € R
& 81(V1) = SQ(VQ),

Vo =

var

wks;; Vil Vl&U”_SQ;VQ‘rTvaT:}

Vo ((s1;vy:=n), L) ER,

var

and

w l_51;‘/1 ﬂvar &w '_52;‘/2'1}0117“,2 =
Vn (L, (s2;ve:=n)) € R.

o Ifo = o1 —>a2,thenw F Fy Rgl_nyz Fy isdefined to
hold if for all R' € Rel(w') with w' digoint from w,
andall A, Ay € IA,, (ww')

ww' A (ROR )y, A2 =
ww' = (F1 A1) (R®R)gy (F2 A2).

3.3. Remark. Thelast clause in this definition is an oper-
ational version of the kind of relational parametricity for
functionsused previoudly by O’ Hearn and Tennent (see|[ 10,
Sect. 2.2)); it d'so embodies the typical feature of ‘logical
relations' —that functions map related argumentsto related
results. Theway thelogical relation takes account of diver-
gencein the clausesfor bool, int, cmd, and var reflectsre-
cent work of O’Hearn and Reynolds [9], and is crucia for
Example 4.1. There is a more elegant formulation of those
clauses, given below. We chose to take the more concrete
form in Definition 3.2, because it is useful for calculations.
The proof of the following two propertiesis a tedious, but
essentially straightforward case analysis (making use of the
determinacy of evaluation, Lemma2.2).



(i) Let Val,(w) denote the set of closed syntactic values
of type o with global variablesin the set w—i.e. the set
of those I A terms R appearing on the right-hand side
of evaluations (2). (For example, Val pq(w) is just
{skip}.) Foreach s € States(w), and M € IA,(w),
let s ® M € (States(w) x Val,(w)), bedefined by

o M % (s',R) ifwks;M|,s;R
S =
L otherwise

Given R € Rel(w), let R ® Zd be the binary relation
on (States(w) x Val,(w)), given by

RTdE {(L, L)Y U{(s1 ®R,5:®R) |

(s1,82) E R& R € Valy(w)}.

Then when o = bool, int, or emd, w = M; Ry, M,
holdsif and only if for al (s1,s2) € R

(51 ® My, s ® M) € R ® Td.

(i) wF Vi Ryar V2 holdsif and only if w = 1V Rips V5
andmoreoverforaln, w F (Vi:=n) Rema (Va:=n).

3.4. Lemma. The parametric logical relation respects ex-
tensional equivalence (Definition 2.4), in the sense that if
whk My Ry Myandw = M; =8 M/ (i = 1,2), then
wht M| R, MJ.

Proof. This follows directly from Definitions 2.4 and 3.2,
by induction on the structure of o. O

3.5. Definition. Extend the parametric logical relation to
open terms as follows. Given R € Rel(w) and terms
My, Ms:o with freeidentifiersinT' = {z°*,...,z%~} and
global variablesin w, write

w,FI—M1 Rg M2

to mean that for all R’ € Rel(w') with w’ digoint from
w, and for al closed terms A;1, A;x € 1A, (ww') (i =
1,...,n)

Vi (ww' FAi (R®R)s, AiZ) =
M[A /2] (R®R")y Ma[As/T].
This definition reduces to the one in Definition 3.2 in

the case that ' = {), because of the following weakening
property of the parametric logical relation.

36.Lemma. (i) If R € Rel(w) and R' € Rel(w')
withw N w' = (§, and if ' and I’ are digoint sets of
identifiers, then

w, T+ M; Ry My =
ww',TT' + My (R®R')y Mo.

(i) w,0+ M; R, M- (i.e.theT = () caseof 3.5) holdsif
andonlyifw F My R, M.

Proof. Part (i) reduces (using the associativity of ®) to
proving the corresponding property of the relation between
closed terms:

w M1 Ra M2 = ww' F M1 (R@Rl)a— Mz.

Thisis proved by induction on ¢, using the corresponding
weakening property of evaluation (Lemma 2.2). Part (ii)
follows immediately from this property too. O

3.7. Proposition. The parametric logical relation pre-
serves the term-forming operations of 1A4:

(i) For ¢ = b, n, and skip
0+ c (Zdy),
(where o = bool, int, and cmd respectively).
(i) If v € w, then

w kv (Zdw) yar V.

(i) 1f w,T = By Rypot Bo, w,T + My R, M,, and
w, T+ M! R, M}, then

w, T+ (if B; then M; else M)
R, (if By then M, else M,).

(V) Ifw,T F Ny R No andw, T F N! Ry N3, then
w, T F (N1 % N{) Riype(s) (N2 x Ny).
W) fw,TF Fy Ry_yo F>andw,T - A, R, As, then
w, Tk (F1 A1) Ry (Fy As).
(i) 1fw,T F Vi Roar Vo, then
w, T F Vi R Va.
(Wii) 1fw,T F Vi Roar Vo andw,T - Ny Ry No, then
w, D+ (Vi :=Ny) Rema (Vo := Na).
(viii) fw,T'F Cy Remg Co andw, T+ C] Rema C, then
w, T F (C1;C)) Rema (Co; Ch).
(ix) fw, T2’ F My R, Ms, then

w,I'FAx:o. M Ro_yor Ax:0 . Ms.



() Ifw, T+ Ny R4t Ny andfor somev € witisthecase
that wv, ' F C1[v/2""] Rema Co[v/zV], then

w,I'F (new 2 := N; in C; end)
Remd (new x:= Ny in C end).

(xi) 1fw, Tz F M; R, M, then

w, ' Ffixx:o. M; R, fixx:o. Ms.

Proof (sketch). The properties (i)—<(x) follow from Defini-
tions 3.2 and 3.5 by relatively straightforward arguments,
using closure under extensional equivalence (Lemma 3.4)
combined with the particular Kleene, hence extensional (by
Lemma 2.9) equivalences of Example 2.10. For part (iii),
one has to argue by induction on the structure of o.
However, the proof of property (xi) requires more work.

First, one can show by inductionono thatw - 1, R, L,

(where L, % fix z:0.2). The proof of this uses the fact

that (L, 1) € R (by definition of Rel(w)) together with
the properties of L, given in Example 2.10. Then from
w, 'z’ = M; R, M, onededuces by induction on n that

w, T F fixWzio. My Ry ix™zi0 . M,

wherein genera

fix Vg0 M 1o

fix "y MY Mix™z:0 . M/z].

Therefore property (xi) follows once one proves that
the relations R, satisfy an operational version of chain-
completeness. Since such a property is proved by induction
on o, to make that induction go through easily it is conve-
nient to use the following, contextual form of operational
chain-compl eteness:

Proposition (Operational chain-completeness). The re-
lationsR, havethe property that for all contextsC[—,] : o’

w,T'F Clfix z:0 . M1|R, C[fix z:0 . M>]
holdsif for all m > 0 thereis somen > m such that
w,T F Clix™z:0 . My|R, Clfix ™ z:0 . My).

The proof of this property follows from a (ssmple form
of ) compactness property of evaluation with respect to the
approximations fix ™ z:o . M to fix z:0 . M, namely:

Proposition (Compactness of evaluation). If
wt s;Clixz:o. M| |, s'; R

thenw + C[fix™z:0. M], 5!}, R', s' holdsfor somen and
R'.

There are several methods for proving this proposition.
Our preferred one is a generalisation to 74 of [12, Sect. 5],
because that approach yields amore involved form of com-
pactness of evaluation which is useful for establishing op-
erational chain-completeness properties in the presence of
more complicated datatypes(such aslazy lists). We omitthe
details here. O

3.8. Remark (Contraction). The syntactic form of IA’s
new —:=— in — end construct suggests the second
hypothesis of part (x) of Proposition 3.7 should just be

w,Fl'vaT F Cl Rcmd 02
rather than
wv,['F C1[v/2""] Rema Co[v/z].

Thelatter isaweaker assumption than the former, and so (x)
as stated is a stronger form of preservation than one might
expect. It reflects the fact that new — :=N in C[—] end
is really a binding operation on variables rather than iden-
tifiers. From a metalogical point of view, the difference
between ‘variables' and ‘identifiers’ (which ametalogician
might well prefer to call ‘ constants' and ‘variables' respec-
tively) liesin the structural rules satisfied by the judgements
of theform

w,F F ]\/[1 = ]\/[2

with which we formulate the various notions of equivalence
of IA terms considered in this paper. In particular, the two
zones of the ‘context’ (in type theory parlance) on the left-
hand side of - have different propertieswith respect to sub-
gtitution:

w, 'z’ b My =, M
w, '+ M [M/x%] =, M2[M]z°]
wv, '+ My =5 M,
wv', Tk Mi[v'|v] =5 Ma[v'/V]

(ifw,I' F M:0)

In combination with weakening properties (such as
Lemma 3.6(i)), this means that the ‘T'-zone' satisfies con-
traction

’U),FJT‘{JT% F M1 =g’ M2

w,Tz? b My[z7,27 [x], 25| =5 Ma[z?,27 [2],x]]

whereas the ‘ w-zone' does not. For example
vive, D (vii=1;vy:=2) 2 g (V2 :=2; vy :=1)
holds, but of course the contracted form
v, (vi=1;vi=2) 2y (Vi=2;vi=1)

does not.



3.9. Theorem (Fundamental Property). (i) For  any
IA term Mo with free identifiers contained in I" and
global variables contained in w, it is the case that
w, T+ M (Zdy,)s M.

(i) fw,IT" - My (Zdy)s M, then for all worldsw’ D
w and contexts C[—,] : o' with gv(C[—,]) C w'
and ' C traps(C[—,]), it isthe case that w',T" +
C[M] (Zdy o C[Ms].

Proof. Both partsareproved by induction onthestructureof
M and C[—,], using Proposition 3.7 and Lemma3.6. [

3.10. Corollary. The parametric logical relation in case
R = Zd coincides with extensional eguivalence:

w, T+ My (Tdy), Ma & w, T+ My =& My,

Proof. By Theorem 3.9(i), w,I" v My (Zdy), Mi. SO
if w,[' F M; =* M,, then by Lemma 3.4 we have
that w,I' - M; (Zd,), M. Thisis haf of the required
bi-implication. The other half can be proved directly from
Definitions 3.2 and 2.4, by induction on the structure of o.

O

We are now in aposition to prove the Operational Exten-
sionality Theorem 2.5.

Proof of Theorem 2.5. We split the proof into three parts:

’U),F = M, EEXt My = w,F F M, =, M (7)

w,I‘x" M, =, My =
w', T+ M[A/27] =2, M3[A/z°] (8)

for any A:o withfreeidentifiersinT" and global variablesin
w' D w,and

whk M =2, My = whk M; g(;Xth (9)

Repeated use of (8) reducesthe converse of (7) to the special
casewhenT' = (), whichis (9). Thustogether these proper-
tiesyield the required bi-implication.

Proof of (7): Supposethat w,I" - M; =<' M, and
hence by the above Corollary that w,T' - My (Zdy), Mo.
We wish to show that w,I" F M; =, M,, i.e. that for al
w' D w, al closed contexts C[—,]:cmd with gv(C[—,]) C
w'and T C traps(C[—,]), and dl states s, s’ € States(w')

w' = C[M],ss" & w bk C[Ms)],s{s"

But given such a context, by Theorem 3.9(ii) (and
Lemma 3.6(ii)) we have w' F C[M;] (Zdy )emd C[M3].
Since (s,s) € Zd,, it follows from the definition of
the parametric logical relation at type ¢md and from the
definition of Zd,,r that the above bi-implication holds.

Proof of (8): If w,T'z” + M; =, M-, then straight
from the definition of contextual equivalenceweget w',T" -
(Az:o . M1) A 25,5 (Az:o. M) A. The result follows
by transitivity of = together with the fact that 3-conversion
(Example 2.10(v)) is a valid Kleene equivalence, hence is
avalid extensional equivalence (by Lemma2.9) and soisa
valid contextual equivalence, by (7).

Proof of (9): It isstraightforward to show that =, satis-
fiesthe defining clausesfor 226 in Definition 2.4, by induc-
tion on the structure of o. O

3.11. Remark (Doing without L). We have developed a
logical relation parameterised by relations between lifted
states, because that seems necessary for proving some con-
textual equivalences (specifically, Example 4.1). However,
many examplesand the operational Extensionality Theorem
itself, can be deduced using a simpler logica relation, call
itw - — R, —, which is parameterised merely by binary
relations on states, R C  States(w) x States(w). The
defining clause at type cmd is. w F C} Remg O holdsif

and only if for al (s1,s2) € R and s, s, € States(w)

whs1;C1 U8 = 3sh (wh s2;C05 85 & (s
wh s2;Cy sy = 3s) (whs1;01 8] & (s

,85) €ER)
,55) €R).

_~ =~

The defining clause at types o = bool, int is: w = M; R,
M- holdsif and only if for al (s1, s2) € R and constants ¢

wks;Mil,cewlk sy My, c.

At type var we can define R, asin Remark 3.3(ii). Fi-
nally, the definition of ﬁ,ﬁaz isthe same asfor R,, -0,
(except that oneis quantifying over adifferent kind of state-
relation).

4. Example equivalences

The Fundamental Property of the parametriclogical rela-
tion (Theorem 3.9) and its relationship to contextual equiv-
alence (Corollary 3.10 plus Theorem 2.5) enable oneto use
the definition of the logical relation at function typesto rea-
son about propertiesof procedureswith respect to local vari-
ables. Here are some examples.

4.1. Example(O’Hearn [8, 2.3]). Let

def .
Ci = newz:=0in

p(z:=1);
if lz =1 then L.,  else skip
end
def
Cs = p(J—cmd)~

where L .4 4 fixcemd . c. Thenp : emd = cmd +
Cl gcmd 02-



Proof. By the Operational Extensionality Theorem 2.5
it suffices to prove for al worlds w, al terms P €
TA cmdg—scema(w), and al states s, s’ €  States(w), that
w k s;C[P/p] | s ifandonly if w F s;C2[P/p] | s'.
FromtherulesinFigurelitfollowsthatw + s; C1[P/p]{s’
holdsif and only if for some (any) v ¢ w,

In#Al.wvk (s®@v:=0);P(v:=1)
s ®v:=n (10
Andsincev ¢ gu(P),w F s; C2[P/p]{ s" holdsif and only
if
wv bk (s@v:=0);P(Lepg) s’ @v:=0. (11)
Putting these facts together, to verify the example we must

provethat (10) holdsif and only if (11) does.
DefineR € Rel({v}) tobe

RE (L, 1)U
{(81732) | SI(V) =0= SQ(V)} @]
{(31732) | SI(V) =1& sy = J_}.

From the definition of thelogical relation at type cmd (Def-
inition 3.2) we find that

wvbkv:i=1(Td, ®R) g Lemd

holds. (Note that the ability of the parameter of the logical
relation to relate statesto L iscrucial for this.) By the Fun-
damental Property 3.9, w - P (Zdy) cmd—ema P. Hence
by the definition of thelogical relation at type cmd — e¢md,
we have

wvEP(v:i=1) (Zdy, @ R)ema P (Lema)- (12)

Note that by definition of R, for any s’ € States(w) and
s2 € States(w), we have

(s ®@v:=n,s)€e€ld, ®R <
(mM=0&s;=s®@v:=0)V
(n:l&szzj_). (13)

We apply the definition of (Zd, ® R)ema t0 (12) at the
par (s@v:=0,s®v:=0) € Zd, ® R. If (10) holds,
then it cannot bethat wv (s ® v :=0); P (L cma) Temd,
since in that case we would have (s'® v:=mn,1l) €
Zdy, ® R withn # 1, contradicting (13). So wv F
(s ® v:=0); P(Lcma) U s2 holds for some s,. Since it
isthecasethat (s' ® v:=mn,s2) € Zd, ® R, (13) implies
that s, = s’ ® v := 0 and hence (11) holds. We thus have
that (10) implies (11). Starting with the observation that for
al s; € States(w), and s’ € States(w)

(51,8 @v:i=0)€Td,®R < s =58 @v:=0

one can show the converse implication by a similar argu-
ment. Thus (10) if and only if (11), as required. O

4.2. Example (Stoughton [5, Ex. 5]). Let

Cs 4 ew z:=0in
p(z:=lz+2);
if even(z) then L., 4 else skip
end

where 1 .4 IS asin the previous example and even is a
suitablefixpoint term of type int — bool expressing atest for
divisibility by 2. Thenp : emd — emd F Cs Z g Lema-

Proof. Asin the previousexample, the problem reducesvia
the Operational Extensionality Theorem to showing for all
worlds w, terms P € A md—cema(w), and states s €
States(w), that w = C3[P/pl, s fema. It followsfrom the
rulesin Figure 1 that w - C5[P/p], s || s" holdsif and only
if for some (any) v ¢ w

wvk (s@v:=0);P(v:i=v+2),Js®@v:=n (14)
holds for some odd integer n. Define R € Rel({v}) to be
R E{(L, 1)} U {(s1,9) | s1(v) = s2(v) iseven}.

Then
wv bk (vi=Iv+2)(Zd ®R), g (vi=Iv+2).

Soif (14) holds, since (s ® v:=0,s ® v :=0) isinZd,, ®
R, soisthepair (s' ® v :=n, s ® v :=n)—fromwhich it
follows that n is even, by definition of R. Therefore (14)
never holds for odd n, and hencew F C3[P/pl, s temad, 8
required. O

4.3. Example (Tennent [10]). Let

def

Cys = newz:=0in
p(z:=lz+1)(lz)
end
Cs 4 hew z:=0in

plx:=lz-1)(-lz)
end
Thenp : emd — (int — cmd) - Cy Zepma Cs.

Proof. By the Operational Extensionality Theorem 2.5,
it suffices to show for al worlds w, al terms P €
TA ¢rmd— (int—ema)(w), and al states s, s' € States(w),
that

wvk (s®@v:=0);P(v:i=Iv+1)(lv)
Js'®v:=n (15
holdsfor somen if and only if for somen’

wvk (s@v:=0);P(v:i=Iv—-1)(-lv)
Js'®v:=n'. (16)



Letting R € Rel({v}) be
{(s1,82) [ s1 =L =82 Vs1(v) = =s2(v)},
we have that

wvbkvi=v+1(Zdy @R)ema vi=lv—1
wv EIv (Zdy @ R) it —'v
(s®v:=0,s®v:=0) €Zd, ®R.

Sincew F P Zdepq—s (int—cma) P, it followsthat

whk P (V = v + ]_) ('V) (Idw ® R)cmd
P(v:=lv-1)(-lv).

Then by definition of (Zd, ® R) ¢ma and R, if (15) holdsfor
somen, then (16) holdswithn’ = —n, andviceversa. 0

For our final example we combine use of the logi-
cal relation with some equational properties of contextual
equivalence—namely its congruence property (evident from
its definition) and validity of 3-conversion (established in
Example 2.10(v)). Note in particular that these two proper-
ties imply that contextual equivalence is preserved by the
operation of substituting terms for identifiers.

4.4. Example (Sieber [20, p 55]). Given any  world
w, any global variable v. ¢ w, and any term P €
IAcmd%cmd(wv)a let

FY \n:int. newz:=0in
P(z:=1;v:=n);
if !z = 1 then 1,4 else skip

end

Thenforany worldw’ D wv andterms N, N' € IA;,:(w'),
onehasw' - FFN =, F N'.

Proof. Let G % An:int. Ac:emd . P (c;v:=n). Apply-

ing the substitution property of = mentioned above to Ex-
ample 4.1, we have

’U)l F Cl[GN/p] gcmd CQ[GN/p]

Using 3-conversion and the congruence property of = we
deduce that

’U)I F Cl[GN/p] gcmd FN
w' + Co[G N/pl Zema P(Lema ; vi=N).

Now w' F (Lemg 3 Vi=N) Zeng Lema by Exam-
ple 2.10(ix), and thereforew’ - P (Lepmg ; vi=N) Zena
P (L.nq). Putting these facts together, for any N €
IA;(w') we have w' + FN Z.,0 P(Llena) and
hence in particular w' - FN 2., FN’, for any
N,N' € A (w'). 0

5. Related and further work

Logical relations on domains have been used for proving
program equivalences involving local variables, especially
by O'Hearn and Tennent [10], and Sieber [20, 21]. Thedis-
tinctive feature of the work presented here is that the logi-
cal relation is defined directly on the syntax of the language,
using an operational semanticsrather than a denotational se-
mantics. We claim that this approach can lead to more easily
applicable verification methods. The examples given above
seem to support this claim, at least as far as proving contex-
tual equivalencesis concerned.

It isinteresting to compare the results presented here for
Algol with the operational methodsfor reasoning about local
state in Scheme-like languages developed by Honsell, Ma-
son, Smith, and Talcott [1]. ML and Scheme combine call-
by-valuefunction application with declarationsof local state
in function expressions. As we mentioned in the Introduc-
tion, this can result in very complex properties of contextual
equivalence compared with Algol. The root of the problem
is that, unlike for Algol, state grows during evaluation of
expressions—in the sense that the underlying ‘world’ gets
larger. Put another way, the canonical formsto which func-
tion expressionseval uate are not simply lambdaexpressions,
but rather expressions of the form

new £:=nin Ay : 0. M end. (17)

In the presence of call-by-value evaluation of function ap-
plication, such an expression is not necessarily contextually
equivalent to alambda abstraction (one cannot just push the
new declaration under the ). Any version of Operational
Extensionality for this kind of language has to take account
of the fact that two such expressions can be contextually in-
equivalent even though they give contextually equivalent re-
sultswhen applied to any value. For it may well bethat some
complicated context can get access to the bound variables 7
and usetheminargumentsfedto \y : o . M; thereforesucha
context may produce more observableresultsthan those pro-
duced merely by applying (17) to argument values (which,
up to a-conversion, do not involve the bound variables ).
See [15, p 130] for an example of this phenomenon.

A technical tool used in [1] is aweak form of extension-
ality, the (ciu) Theorem [loc. cit., 2.3.2]. It allows one to
restrict—but only somewhat—the kind of contexts needed
to characterise contextual equivalence and is probably the
best such result known for this type of local state. By con-
trast, the Operational Extensionality Theorem presented here
(2.5) shows that an extremely restricted collection of con-

texts (generated by just [—] 4, ![—], and [—] := n) suffices
to characterise contextual eguivalence for Algol-like lan-
guages.

Honsell et al develop a number of proof principles in
[loc. cit.] somewhat tailored to the invariance properties



of local state in (Scheme analogues of) particular Meyer-
Sieber example equivalences. By contrast, these and other
equivalences were proved above in quite a uniform way—
by picking suitable instances of the state relation parameter
of the logical relation. The extension of this operationally-
based logical relation method to the harder case of call-by-
value functions with local state will be described in [14].
Although the parametric logical relation presented there is
merely sound for contextual equivalence (i.e. the relation
wt — (Zdy), — iscontained intherelationw + — =, —,
butisnot equal toit), it seemsto provideavery useful tool for
reasoning about the rather complicated behaviour that such
functions can have. Both hereand in [14] werestrict to Sim-
ply typed languages, because we rely heavily upon induc-
tion over the structure of types when defining the logical re-
lation. For untyped languages, or ones with type-reflexive
features (such as storage of higher-order values, or recur-
sively defined datatypes), the mere existence of such logical
relationsis problematic: we expect to adapt the denotational
techniquesin [13, Sect. 4] to tackle this extension.

References

[1] F Honsdl, I. A. Mason, S. F. Smith, and C. L. Talcott. A
variable typed logic of effects. Information and Computa-
tion, 119(1):55-90, May 1995.

[2] D. J Howe Equdity in lazy computation systems. In
4th Annual Symposiumon Logicin Computer Science, pages
198-203. |IEEE Computer Society Press, Washington, 1989.

[3] D. J Howe. Proving congruence of bisimulation in func-
tional programming languages. Information and Computa-
tion, 124(2):103-112, Feb. 1996.

[4] I.A.Mason, S. F. Smith, and C. L. Ta cott. From operational
semantics to domain theory. Information and Computation.
To appear. Revised and extended version of [22].

[5] A.Meyer andK. Sieber. Towardsfully abstract semanticsfor
local variables. In Proc. 15th Symp. on Principles of Pro-
gramming Languages, San Diego, pages 191-203. ACM,
1988.

[6] R. Milner. Fully abstract models of typed lambda-calculi.
Theoretical Computer Science, 4:1-22, 1977.

[7] J. C. Mitchell. Type systems for programming languages. In
J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B, pages 365-458. North-Holland, Amster-
dam, 1990.

[8] P.W.O'Hearnand U. S. Reddy. Objects, Interference and the
Yoneda Embedding, volume 1 of Electronic Notes in Com-
puter Science. Elsevier Science B. V., 1995. Mathemati-
cal Foundations of Programming Semantics, Eleventh An-
nual Conference, Tulane University New Orleans, LA, April
1995.

[9] P.W. O'Hearn and J. C. Reynolds. From algol to polymor-
phic linear lambda calculus. lectures at the |saac Newton
Institute for Mathematical Sciences, Cambridge UK, August
1995.

[10] P. W. O'Hearn and R. D. Tennent. Parametricity and local
variables. Journal of the ACM. To appear.

[11] R J. Oles. Typesalgebras, functor categoriesand block struc-
ture. In M. Nivat and J. C. Reynolds, editors, Algebraic
Methods in Semantics, chapter 15, pages 543-574. Cam-
bridge University Press, 1985.

[12] A. M. Pitts. Operationally-based theories of program equiv-
alence. InP. Dybjer and A. M. Pitts, editors, Semantics and
Logics of Computation. Cambridge University Press. Based
onlecturesgiven at the CLICS-11 Summer School on Seman-
tics and Logics of Computation, Isaac Newton Institute for
Mathematical Sciences, Cambridge UK, September 1995.

[13] A. M. Pitts. Relational properties of domains. Informa-
tion and Computation. To appear. A preliminary version ap-
peared as Cambridge Univ. Computer Laboratory Technical
Report Number 321, December, 1993.

[14] A. M. Pittsand |. D. B. Stark. Operational reasoning for
functions with local state. In A. D. Gordon and A. M. Pitts,
editors, Higher Order Operational Techniquesin Semantics.
To appear.

[15] A. M. Pittsand |. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What's new? In Mathematical Foundations of Com-
puter Science, Proc. 18th Int. Symp., Gdansk, 1993, volume
711 of Lecture Notes in Computer Science, pages 122-141.
Springer-Verlag, Berlin, 1993.

[16] U.S. Reddy. Global state considered unnecessary: Introduc-
tion to object-based semantics. Lisp and Symbolic Compu-
tation, 1995. special issue on State in Programming Lan-
guages, to appear.

[17] J.C.Reynolds. The essenceof Algol. InJ. W. de Bakker and
J.C.van Vliet, editors, Algorithmic Languages. Proceedings
of the International Symposium on Algorithmic Languages,
pages 345-372. North-Holland, Amsterdam, 1981.

[18] E. Ritter and A. M. Pitts. A fully abstract trandation be-
tween a A-cal culuswith reference types and Standard ML. In
2nd Int. Conf. on Typed Lambda Calculus and Applications,
Edinburgh, 1995, volume 902 of Lecture Notes in Computer
Science, pages 397—413. Springer-Verlag, Berlin, 1995.

[19] D.S. Scott. A type-theoretical alternativeto | SWIM, CUCH,
OWHY . Theoretical Computer Science, 121:411-440, 1993.

[20] K. Seiber. Full abstraction for the second order subset of an
ALGoL-likelanguage. Technical Report A 04/95, Fach. In-
formatik, Univ. des Saarlandes, Saarbriicken, Germany, Apr.
1995. To appear in Information & Computation.

[21] K. Sieber. Full abstraction vialogical relations. Habilitation-
sschrift, FB 14 Informatik, Universitat des Saarlandes, July
1995.

[22] S.F Smith. From operational to denotational semantics. In
S. B. et al, editor, 7th International Conference on Mathe-
matical Foundations of Programming Semantics, Pittsburgh
PA, volume 598 of Lecture notesin Computer Science, pages
54-76. Springer-Verlag, Berlin, 1992.

[23] I.D.B. Stark. Names and higher-order functions. Technical
Report 363, Cambridge Univ. Computer Laboratory, Apr.
1995.



