
Electronic Notes in Theoretical Computer Science 41 No. 3 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume41.html pages 70–88

Operational Properties of Lily, a Polymorphic
Linear Lambda Calculus with Recursion�

G.M. Biermana A.M. Pittsb C.V. Russob

a Department of Computer Science, Warwick University, Coventry CV4 7AL, UK
b Computer Laboratory, Cambridge University, Cambridge CB2 3QG, UK

Abstract

Plotkin has advocated the combination of linear lambda calculus, polymorphism
and fixed point recursion as an expressive semantic metalanguage. We study its
expressive power from an operational point of view. We show that the naturally
call-by-value operators of linear lambda calculus can be given a call-by-name seman-
tics without affecting termination at exponential types and hence without affecting
ground contextual equivalence. This result is used to prove properties of a logi-
cal relation that provides a new extensional characterisation of ground contextual
equivalence and relational parametricity properties of polymorphic types.

1 Introduction

When giving denotational semantics of programming languages using domain
theory, use is often made of metalanguages in which to phrase the seman-
tic descriptions [16,14]. The attraction of such an approach is that it allows
the semantically relevant constructs and proof principles inherent in the do-
main theory to be abstracted from the often quite complicated mathematical
details. Restricting attention to the denotational semantics of deterministic
languages (i.e. excluding the use of various kinds of powerdomain), Plotkin [23]
makes a convincing case for polymorphic linear lambda calculus with recursion
as an expressive denotational metalanguage. In particular, the powerful na-
ture of impredicative polymorphism permits the plethora of domain-theoretic
constructs to be defined in terms of remarkably few primitive type-forming
operations, namely ∀-types, ∀α. τ , linear function types, τ � τ ′, and expo-
nential types, !τ : see Fig. 1, which uses the domain-theoretic terminology
of [8]. (Plotkin [23] chooses to make intuitionistic function types primitive
rather than exponential types; we prefer to express the former in terms of !

� Research supported by UK EPSRC grant GR/M04716.

c©2000 Published by Elsevier Science B. V.

Bierman, Pitts and Russo

Lifting τ⊥ � !τ

Functions τ → τ ′ � !τ � τ ′

Strict functions τ ◦→ τ ′ � τ � τ ′

Smash product τ ⊗ τ ′ � ∀α.(τ � τ ′ � α) � α

Coalesced sum τ ⊕ τ ′ � ∀α. !(τ � α) � !(τ ′ � α) � α

Product τ × τ ′ � ∀α.((τ � α)⊕ (τ ′ � α)) � α

Separated sum τ + τ ′ � !τ ⊕ !τ ′

Existential ∃ α. τ(α) � ∀β.(∀α. τ(α) � β) � β

Truth values T � ∀α. !α � !α � α

Flat naturals N⊥ � ∀α. !α � !(!α � α) � α

Inductive µα. τ(α) � ∀α. !(τ(α) � α) � α (α +ve in τ(α))

Co-inductive να. τ(α) � ∃ α. !(α � τ(α))⊗ α (α +ve in τ(α))

Recursive recα. τ(α, α) � να. τ(µβ. τ(α, β), α) (α +ve in τ(α, β),

β −ve in τ(α, β))

Fig. 1. Lily as a denotational metalanguage

and � using Girard’s famous decomposition: τ → τ ′ = !τ � τ ′.) The defini-
tions in Fig. 1 only have weak properties if one works up to β-convertibility of
terms. To get stronger properties, such as category-theoretic universal prop-
erties, it should suffice to work with a notion of equality of terms that makes
∀-types relationally parametric in the sense of Reynolds [24]. In theory, one
way to generate such a notion of equality is via a suitable model: Plotkin [23]
sketches one using strict, inductive partial equivalence relations on a domain
model of the untyped lambda calculus. However, in practice, as far as we
know, the details of this relationally parametric model of polymorphic linear
lambda calculus with recursion have not been worked out in detail. We take
a different 1 and more computational approach: we make polymorphic linear
lambda calculus with recursion into a programming language (we call it Lily)
by endowing it with an operational semantics; we choose a particular notion of
contextual equivalence derived from the operational semantics; and we prove
that this notion of term equality is relationally parametric with respect to a
suitable notion of binary relation. This strategy has been applied successfully
by the second author to the combination of polymorphism with PCF [21] and
with call-by-value PCF [20]. However, it is not so easy to apply the strategy

1 It should also be noted that Lily’s exponential types give a more refined treatment of
usage and strictness properties than does lifting (−)⊥ in the domain model, because the
latter happens to have an extra contraction property that we do not assume for !-types in
Lily.

71

Bierman, Pitts and Russo

to linear lambda calculus, as we now explain.

Recall that two terms of a programming language are contextually equiv-
alent if interchanging them in any complete program does not affect the ob-
servable results of evaluating the program. Even if we fix the operational
semantics of the language, we may or may not get different notions of con-
textual equivalence depending upon what we decide constitutes a ‘complete
program’ and what we observe of evaluation. Consider the classic example of
call-by-name PCF. Taking programs to be closed terms of ground type and
observing convergence to ground values, we get the notion of ground contextual
equivalence studied in the seminal paper by Plotkin [22]; whereas if we ob-
serve termination of evaluation of closed terms of any type we get a different,
lazy contextual equivalence analogous to that for the ‘lazy’ lambda calculus of
Abramsky [1]. Lazy contextual equivalence for linear lambda calculi is studied
in [5,4]. For Lily we work with ground, rather than lazy, contextual equiva-
lence, in order for the definitions in Fig. 1 to be correct; for example, with lazy
contextual equivalence the linear function type τ � τ ′ would not represent a
domain of strict continuous functions τ ◦→ τ ′, but rather its lift (τ ◦→ τ ′)⊥.

Before the work presented here, very little was known about the properties
of ground contextual equivalence for linear lambda calculus: see [4, Sect. 7].
For example it was not even known whether it is different from lazy contextual
equivalence (we show that it is—see Example 3.7). Roughly speaking, what
was lacking was a sufficiently powerful analysis of the properties of linear func-
tions whose codomains are ‘observable’ types (ones at which ground contextual
equivalence distinguishes divergent terms from ones in canonical form). We
provide such an analysis, and much more besides. The contributions of this
paper are as follows.

A Strictness Theorem. The conventional wisdom [2, p 16] is that oper-
ational semantics of linear lambda calculus is ‘naturally’ call-by-value in
some parts (e.g. for �, ⊗, and ⊕) and call-by-name in others (e.g. for !, →,
and ×). We show that the naturally call-by-value operators can be given a
call-by-name semantics without affecting termination at exponential types
(Theorem 2.3) and hence without affecting ground contextual equivalence.
This technical result turns out to be the key to developing a rich operational
theory for Lily.

A Parametric Logical Relation. Using the Strictness Theorem, we show
that Lily ground contextual equivalence coincides with a particular logical
relation (Theorem 3.2), involving parameters that are ‘admissible’ term-
relations similar to those used previously by the second author [20,21]. As
a corollary we obtain new extensionality results for linear lambda calculus
(Corollary 3.5). The logical relation also allows us to prove results that
validate the definitions in Fig. 1 and indicate the expressive power of Lily’s
combination of linear lambda calculus with impredicative polymorphism
and fixpoint recursion (see Remark 3.8, Example 3.9 and Remark 3.10).

72

Bierman, Pitts and Russo

A Common Intermediate Language for Strict and Lazy. From a pro-
gramming language perspective Lily has the potential to be a common
intermediate language for both strict and lazy functional programming. To
realise that potential one would need to work at a more intensional level
than we do in most of this paper (cf. [27]). However we do indicate how
to replace the call-by-name semantics of terms involving exponential types
in Lily (which subsumes fixpoint recursion) with a call-by-need semantics
without affecting ground contextual equivalence (see Sect. 4). Details will
appear elsewhere, along with an exploration of translations of the pure core
of ML and Haskell into Lily.

2 A Strictness Theorem

Lily combines a term calculus for Plotkin’s dual intuitionistic linear logic [3]
with fixpoint recursion and impredicative polymorphism. In the presence of
the latter it turns out that we can cut down to just linear function and ex-
ponential types without losing expressive power. The types and terms of the
Lily language are given in Fig. 2, together with its type assignment relation.
We find it convenient to employ a syntactic distinction between intuitionistic
variables x ∈ IVar , that may be duplicated and discarded, and linear vari-
ables a ∈ LVar , that must be used exactly once. ∀α.(), λa : τ.(), Λα.(),
!(x = () : τ), and let !x = M in () are variable-binding constructs and we
identify types and terms up to renaming of bound variables. The notations
ftv(), fiv(), flv() are used to denote the sets of free type variables, free in-
tuitionistic variables and free linear variables of an expression. We use the
notation −[−/−] to indicate capture-avoiding substitution.

Recursively defined thunks

A syntactic novelty of Lily is the absorption of fixpoint recursion into
the terms of exponential type. A recursively defined thunk !(x = M : τ)
is a canonical form introducing a recursively defined non-linear term as a
suspended computation. The corresponding eliminator let !x = M in M ′

evaluates the termM to such a recursive thunk, substitutes an unfolding of the
thunk’s body for the intuitionistic variable x and evaluates the body M ′ (see
Fig. 3 below; and see Sect. 4 for an alternative, call-by-need semantics). Since
a thunk’s body may be duplicated during the evaluation of the let construct,
potentially duplicating linear variables, the typing rules ensure that thunks
contain no free linear variables. We can get conventional fixpoint terms by
defining

fix x : τ.M � let !x = !(x =M : τ) in M(1)

and non-recursive thunks (of type !τ) by defining

!M � !(x =M : τ) (x /∈ fiv(M)).(2)

73

Bierman, Pitts and Russo

Types τ ::= α type variable (α ∈ TyVar)

τ � τ linear function type

∀α. τ ∀-type

!τ exponential type

Terms M ::= a linear variable (a ∈ LVar)

x intuitionistic variable (x ∈ IVar)

λa : τ.M abstraction

MM application

Λα.M generalisation

M τ specialisation

!(x =M : τ) recursively defined thunk

let !x =M1 in M2 exponential eliminator

Type assignment relation Γ ; ∆ �α M : τ is inductively generated by the
following rules. (Γ is a finite function from intuitionistic variables to types
with domain dom(Γ); ∆ is a finite function from linear variables to types with
domain dom(∆), and α is a finite set of type variables.)

ftv(Γ, τ) ⊆ α x ∈ dom(Γ)

Γ, x : τ ; ∅ �α x : τ

ftv(Γ, τ) ⊆ α

Γ ; a : τ �α a : τ

Γ ; ∆, a : τ �α M : τ ′ a ∈ dom(∆)

Γ ; ∆ �α λa : τ.M : τ � τ ′

Γ ; ∆1 �α M1 : τ � τ ′ Γ ; ∆2 �α M2 : τ dom(∆1) ∩ dom(∆2) = ∅
Γ ; ∆1,∆2 �α M1M2 : τ ′

Γ ; ∆ �α,α M : τ α ∈ α ∪ ftv(Γ,∆)

Γ ; ∆ �α Λα.M : ∀α. τ
Γ ; ∆ �α M : ∀α. τ ftv(τ ′) ⊆ α

Γ ; ∆ �α M τ ′ : τ [τ ′/α]

Γ, x : τ ; ∅ �α M : τ x ∈ dom(Γ)

Γ ; ∅ �α !(x =M : τ) : !τ

Γ ; ∆1 �α M1 : !τ Γ, x : τ ; ∆2 �α M2 : τ ′

x ∈ dom(Γ) dom(∆1) ∩ dom(∆2) = ∅
Γ ; ∆1,∆2 �α let !x =M1 in M2 : τ ′

Fig. 2. Lily syntax and type assignment

74

Bierman, Pitts and Russo

Conversely, recursively defined thunks could have been expressed in terms of
non-recursive thunks and fixpoints, by taking !(x =M : τ) to be !(fix x : τ.M)
(see Corollary 3.6). There is perhaps not much to choose between the two
formulations. We prefer the compactness of the one we have presented. It
easily generalises to mutually recursive thunks !(x1 = M1 : τ1, . . . , xn = Mn :
τn) whose type !(τ1, . . . , τn) is equivalent to !τ1 ⊗ · · · ⊗ !τn.

Ground contextual equivalence

Recall from the Introduction that we wish to identify terms if they give
the same evaluation behaviour in all contexts of ground type, such as types
of booleans and natural numbers. But there are no such types in Lily as we
have defined it! In fact this ground contextual equivalence is the same as the
contextual equivalence determined by observing the termination properties of
evaluation at exponential types !τ (and then the ground types are definable,
modulo ground contextual equivalence, as in Fig. 1). To see this, consider
adding to Lily a type bool together with truth-values and conditionals

Γ ; ∅ �α true : bool Γ ; ∅ �α false : bool

Γ ; ∆1 �α M1 : bool dom(∆1) ∩ dom(∆2) = ∅
Γ ; ∆2 �α M2 : τ Γ ; ∆2 �α M3 : τ

Γ ; ∆1,∆2 �α if M1 then M2 else M3 : τ

Then for any closed term M of exponential type !τ , let !x = M in true is a
closed term of type bool that evaluates to true if and only if M evaluates (in
the operational semantics to be described below) to some thunk. Conversely,
for any closed term B of type bool, B evaluates to true if and only if the
closed term if B then !(x = x : τ) else Ω (!τ) of type !τ evaluates to some
thunk. Here Ω is a generic divergent term

Ω � let !x = !(x = x : ∀α. α) in x(3)

whose type is ∀α. α. (Using the macro in equation (1) for fixpoint expressions,
this takes on the more familiar form Ω = fix x : (∀α. α). x.) Thus contextual
equivalence based upon observing convergence to true at type bool is the
same as that based upon observing convergence to canonical form at expo-
nential types. (This is different from observing convergence at all types: see
Example 3.7 below.)

When defining a contextual equivalence for linear lambda calculi one has
to refine the traditional formulation, in which ‘holes’ in contexts have implicit
parameters (namely the binding variables within whose scope the hole lies),
since it matters whether these parameters are linear or not. The first author
discusses one such refinement in [4, Sect. 3.1] using second-order variables
to give a more explicit treatment of holes (see also [19,5,15]). An attractive
alternative (because it doesn’t require the introduction of extra syntactic ma-
chinery) is to avoid the use of contexts completely and define the equivalence

75

Bierman, Pitts and Russo

to be the largest substitutive congruence relation on well-typed open terms
having the required convergence property for closed terms of exponential type.
This ‘relational’ approach to contextual equivalence is taken in [10,21] and will
be used in the full version of this paper. However, in order to simplify the
exposition in this extended abstract, we will restrict attention to ground con-
textual equivalence of closed terms (of closed types), for which we can side-step
these issues about contexts and use the following definition. It depends upon
the notion of a closed term M of closed exponential type converging to (some)
canonical from, which we write as M ⇓! and define below (see Corollary 2.4).

Definition 2.1 (Ground contextual equivalence for closed terms) Let
Typ denote the set {τ | ftv(τ) = ∅} of closed types; and for τ ∈ Typ, let
Term(τ) denote the set {M | ∅ ; ∅ �∅ M : τ} of closed terms of type τ . Given
M,M ′ ∈ Term(τ), we write M =gnd M

′ : τ to mean:

• for any x,N, τ ′ satisfying x : τ ; ∅ �∅ N : !τ ′, it is the case that N [M/x]⇓! if
and only if N [M ′/x]⇓! ; and

• for any a,N, τ ′ satisfying ∅ ; a : τ �∅ N : !τ ′, it is the case that N [M/a]⇓! if
and only if N [M ′/a]⇓! .

Operational semantics

Figure 3 gives two possible evaluation relations for closed Lily terms, dif-
fering in their treatment of the application of a linear function to an argument.
The strict (or call-by-value) relation ⇓s corresponds to the ‘natural’ opera-
tional interpretation of intuitionistic linear logic advocated by Abramsky [2,
p 16] and used by others (such as [27,4]); whereas the other relation, ⇓n , used
for a linear lambda calculus by Crole in [5], gives all constructs a non-strict
(or call-by-name) semantics. The two relations give rise to two termination
relations

strict termination relation: M ⇓s � ∃ V.M ⇓s V

non-strict termination relation: M ⇓n � ∃ V.M ⇓n V.

These are different relations, as the following simple example shows.

Example 2.2 Choose any closed types τ, τ ′ ∈ Typ. Define

E � λa : τ. λf : τ � τ ′. f a.

Then E (Ω τ) ∈ Term((τ � τ ′) � τ ′) and E (Ω τ)⇓n but E (Ω τ) ⇓s . (Here
Ω is the generic divergent term defined at (3).)

However, as the following slightly surprising theorem shows, the two termi-
nation relations do coincide if we restrict our attention to terms of exponential
type.

Theorem 2.3 (Strictness Theorem) For all τ, τ ′ ∈ Typ, M ∈ Term(τ),
and open terms of exponential type, ∅ ; a : τ �∅ N : !τ ′

N [M/a]⇓n ⇔ ∃ V.M ⇓s V & N [V/a]⇓n .

76

Bierman, Pitts and Russo

Common rules:

λa : τ.M ⇓ λa : τ.M Λα.M ⇓ Λα.M !(x =M : τ) ⇓ !(x =M : τ)

M ⇓ Λα.M ′ M ′[τ/α] ⇓ V
M τ ⇓ V

M1 ⇓ !(x =M : τ) M2[(let !x = !(x =M : τ) in M)/y] ⇓ V
let !y =M1 in M2 ⇓ V

Strict evaluation, M ⇓s V , is inductively generated by the common rules plus

M1 ⇓s λa : τ.M M2 ⇓s V M [V/a] ⇓s V
′

M1M2 ⇓s V
′

Non-strict evaluation, M ⇓n V , is inductively generated by the common
rules plus

M1 ⇓n λa : τ.M M [M2/a] ⇓n V

M1M2 ⇓n V

Fig. 3. Evaluating closed Lily terms

Hence in particular for M ∈ Term(!τ), M ⇓n ⇔M ⇓s .

Proof (sketch) The intuition for why the theorem holds is that if N [M/a]
converges (under either semantics), then its canonical form must be a thunk
of type !τ ′, and this thunk must be a residual of one of the original thunks
in N [M/a]. Since none of those thunks can mention a linear variable (by
the typing rule for thunks), the residual thunk cannot suspend any linear ar-
guments, so each linear argument within N [M/a] must have been evaluated
before reaching the canonical form. Thus, when evaluating to a thunk, it
makes no difference to termination behaviour whether we choose to postpone
or force the evaluation of function arguments, since, in either case, the ar-
guments must be evaluated before reaching the canonical form. That’s the
intuition, but we found it surprisingly hard to give a formal proof. In this
extended abstract we merely sketch the structure of our proof. Among the
terms N having a free linear variable a, we single out those for which a occurs
in a position where it will be immediately evaluated in the non-strict seman-
tics. The structure of these evaluation contexts can be analysed as a nested
stack F [a] = F1[F2[· · ·Fn[a] · · ·]] of ‘frames’ Fi[−] of the form (−M), (− τ),
or (let !x = − in M). The advantage of this frame stack formulation is that
it permits us to give a direct inductive definition of the non-strict termination
relation F [M]⇓n that follows the syntactical structure of the frame stack F
and the term M . Arguing by structural induction for this relation, we prove
that for F [N] of exponential type and containing a free linear variable a it is
the case that

(F [N])[M/a]⇓n ⇒ ∃ V.M ⇓s V & (F [N])[V/a]⇓n .

77

Bierman, Pitts and Russo

(There are two subcases, proved simultaneously, according to whether a occurs
in F , or in N . It is of course crucial that we are restricting attention to terms
F [N] of exponential type; for example, a base case of the induction is when F
is the empty frame stack and N is in canonical form, of exponential type, and
hence necessarily not involving a, rendering this case trivial.) Taking F to be
the empty frame stack in the above implication, we obtain the left-to-right
half of the theorem. The other half of the theorem we deduce from a result of
independent interest, namely a version of the Mason-Talcott ‘ciu’ theorem [12]
for Lily ground contextual equivalence. For τ ∈ Typ and M,M ′ ∈ Term(τ)
define ciu-equivalence, M =ciu M

′ : τ , to mean that for all closed frame stacks
F mapping from τ to an exponential type, we have F [M]⇓n ⇔ F [M ′]⇓n .
Then it is the case that =ciu coincides with =gnd and hence in particular is
a congruence. (There are by now a number of means for establishing this
kind of result; we prefer one that is an adaptation of the method of proving
congruence due to Howe [9].) Using the congruence property of =ciu it is
simple enough to prove

M ⇓s V ⇒ N [M/a] =ciu N [V/a]

by induction on the derivation ofM ⇓s V . The right-to-left half of the theorem
follows from this and the definition of =ciu. ✷

Corollary 2.4 If we take the notion of convergence at exponential type, M ⇓!,
used in the definition of ground contextual equivalence (Definition 2.1) to be
either M ⇓s or M ⇓n , we get the same equivalence relation on Lily terms.

Remark 2.5 (‘Computational’ types) Do other types apart from expo-
nentials enjoy the strictness property of Theorem 2.3? Call a type κ ‘compu-
tational’ if for all τ ∈ Typ, M ∈ Term(τ) and open terms ∅ ; a : τ �∅ N : κ it
is the case that

N [M/a]⇓n ⇔ ∃ V.M ⇓s V & N [V/a]⇓n .

Thus the theorem says that !τ ′ is computational, for any τ ′ ∈ Typ. Using the
definitions in Fig. 1, we conjecture that all closed types in the grammar given
by

κ ::= α | !τ | κ⊗ κ | κ⊕ κ | τ + τ | T | N⊥
| µα. κ(α) | να. κ(α) | recα. κ(α, α)

are computational.

3 A Parametric Logical Relation

We are going to show that ground contextual equivalence of Lily terms, =gnd

(Definition 2.1), coincides with a certain logical relation that, by construc-
tion, has various extensionality and parametricity properties that we wish to
establish for =gnd. The following definition gives some operations on binary
relations between Lily terms that we need to achieve this.

78

Bierman, Pitts and Russo

Definition 3.1 For each closed type τ ∈ Typ, let Test(τ) denote the set of
closed linear function abstractions λa : τ.M of type τ � !τ ′ for some τ ′ ∈ Typ.
For τ, τ ′ ∈ Typ, define the set of term-relations to be

Rel(τ, τ ′) � { r | r ⊆ Term(τ) × Term(τ ′) }
and the set of test-relations to be

Rel∗(τ, τ ′) � { s | s ⊆ Test(τ) × Test(τ ′) } .
We define the following operations on term-relations and test-relations:

• Given r ∈ Rel(τ, τ ′), define r� ∈ Rel∗(τ, τ ′) to be

r� � { (V, V ′) | ∀(M,M ′) ∈ r. V M ⇓! ⇔ V ′M ′ ⇓! } .
• Given s ∈ Rel∗(τ, τ ′), define s� ∈ Rel(τ, τ ′) to be

s� � { (M,M ′) | ∀(V, V ′) ∈ s. V M ⇓! ⇔ V ′M ′ ⇓! } .
• Given r1 ∈ Rel(τ1, τ

′
1) and r2 ∈ Rel(τ2, τ

′
2),

define r1 � r2 ∈ Rel(τ1 � τ2, τ
′
1 � τ ′2) to be

r1 � r2 � { (M,M ′) | ∀(M1,M
′
1) ∈ r1. (MM1,M

′M ′
1) ∈ r2 } .

• Given a family (R(r) ∈ Rel(τ [σ/α], τ ′[σ′/α′]) | σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′))
of term-relations, define ∀r. R(r) ∈ Rel(∀α. τ ,∀α′. τ ′) to be

∀r. R(r) � { (M,M ′) | ∀σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′). (M σ,M ′ σ′) ∈ R(r) } .
• Given r ∈ Rel(τ, τ ′), define !r ∈ Rel(!τ , !τ ′) to be

!r � { (!(x =M : τ), !(x′ =M ′ : τ ′)) | (fix x : τ.M, fix x′ : τ ′.M ′) ∈ r } .
(Fixpoint terms such as fix x : τ.M were defined in (1).)

The operation r �→ r�� derived from the above definition is a closure
operation on term-relations whose fixed points r = r�� turn out to have good
properties (they respect =gnd and are suitable for a syntactic version of fixpoint
induction) that we exploit to get the following theorem. We omit its proof in
this extended abstract, because it is quite involved; although the structure of
the proof is similar to [21, Sect. 4] the details are different. 2

Theorem 3.2 (Relational parametricity for =gnd) For each Lily type τ
and each list �α = α1, . . . , αn of distinct type variables containing the free
type variables of τ , we define a function from tuples of term-relations, �r =
r1, . . . , rn, to term-relations

r1 ∈ Rel(τ1, τ
′
1), . . . , rn ∈ Rel(τn, τ

′
n) �→ ∆τ (�r/�α) ∈ Rel(τ [�τ/�α], τ [�τ ′/�α′])

by induction on the structure of τ using the operations of Definition 3.1, as
follows:

∆αi
(�r/�α) � ri

2 For one thing, the Strictness Theorem 2.3 is needed in several places; for another, the use of linear
function abstractions rather than evaluation contexts as ‘tests’ in Definition 3.1 means we have to work
harder to prove the theorem—the reward being a richer collection of ��-closed relations and hence a better
ability to prove properties of =gnd.

79

Bierman, Pitts and Russo

∆τ1�τ2(�r/�α) � ∆τ1(�r/�α) � ∆τ2(�r/�α)

∆∀α. τ (�r/�α) � ∀r.∆τ (�r, r
��/�α, α)

∆!τ (�r/�α) � (!∆τ (�r/�α))��.

When τ is closed, we can take �α and �r to be empty and get ∆τ � ∆τ (∅/∅) ∈
Rel(τ, τ). Then for all M,M ′ ∈ Term(τ)

(M,M ′) ∈ ∆τ ⇔M =gnd M
′ : τ .

As part of the proof of the above theorem, one needs to establish the
following technical property of the parametric logical relation which we state
separately because it is useful in its own right.

Lemma 3.3 For each Lily type τ , with free type variables in �α say, if each
term-relation r in �r satisfies r = r��, then so does ∆τ (�r/�α).

Corollary 3.4 (Kleene equivalences) For τ ∈ Typ, write Val(τ) for the
subset of Term(τ) consisting of the closed terms in canonical form—the terms
which appear of the right-hand side of the evaluation relations in Fig. 3, namely
abstractions, generalisations and recursively defined thunks (cf. Fig. 2). If
M,M ′ ∈ Term(τ) are Kleene equivalent, i.e. satisfy ∀V ∈ Val(τ).M ⇓n V ⇔
M ′ ⇓n V , then M =gnd M

′ : τ . (Similarly for ⇓s .) Hence

(λa : τ.M)N =gndM [N/a] : τ ′

(Λα.M)σ=gndM [σ/α] : τ [σ/α]

let !y = !(x = N : τ) in M =gndM [(fix x : τ.N)/y] : τ ′.

Moreover, if M,M ′ ∈ Term(τ) are doth divergent (say M ⇓s and M ′ ⇓s), then
M =gnd M

′ : τ .

Proof. It follows from Lemma 3.3 and the definition of (−)� that ∆τ (�r/�α)
respects Kleene equivalence. Hence so does =gnd; and being reflexive, this
implies that it also contains Kleene equivalence. ✷

Corollary 3.5 (Extensionality properties of =gnd)

M =gnd M
′ : τ � τ ′ ⇔ ∀V ∈ Val(τ).M V =gnd M

′ V : τ ′(4)

M =gnd M
′ : ∀α. τ ⇔ ∀σ ∈ Typ.M σ =gnd M

′ σ : τ [σ/α](5)

M =gnd M
′ : !τ ⇔ (M ⇓! & M ′ ⇓!) ∨ ∃ x,N, x′, N ′.

M ⇓s !(x = N : τ) &

M ′ ⇓s !(x′ = N ′ : τ) &

fix x : τ.N =gnd fix x′ : τ.N ′ : τ

(6)

Proof. These properties follow by combining Theorem 3.2 with Lemma 3.3,
the definition of ∆, and the Strictness Theorem 2.3. For example, to prove (4)
first observe that

M =gnd M
′ : τ � τ ′ ⇔ ∀N ∈ Term(τ).(M N,M ′N) ∈ ∆τ ′(7)

80

Bierman, Pitts and Russo

holds by a standard argument for such logical relations, using the facts that
=gnd coincides with ∆ and that ∆τ�τ ′ = ∆τ � ∆τ ′ . By Lemma 3.3, ∆τ ′ =
(∆τ ′)�� and so the right-hand side of equation (7) is equivalent to

∀N ∈ Term(τ).∀(F, F ′) ∈ (∆τ ′)�. F (M N)⇓! ⇔ F ′ (M ′N)⇓! .(8)

By the Strictness Theorem 2.3 (and Corollary 2.4)

F (M N)⇓! ⇔ ∃ V.N ⇓s V & F (M V)⇓!

and similarly for F ′. Therefore (8) is equivalent to

∀V ∈ Val(τ).∀(F, F ′) ∈ (∆τ ′)�. F (M V)⇓! ⇔ F ′ (M ′ V)⇓!

i.e. to ∀V ∈ Val(τ).(M V,M ′ V) ∈ (∆τ ′)��, i.e. to ∀V ∈ Val(τ).(M V,M ′ V) ∈
∆τ ′ . So replacing the right-hand side of equation (7) with this and applying
Theorem 3.2 again, we get the desired extensionality property (4) of terms of
linear function type. ✷

Corollary 3.6 Any recursively defined thunk, !(x = M : τ) ∈ Val(!τ), can
be expressed as a non-recursive thunk (2) of a fixpoint term (1) up to ground
contextual equivalence:

!(x =M : τ) =gnd !(fix x : τ.M) : !τ.(9)

So in particular every element of Val(!τ) is ground contextually equivalent to
!N for some N ∈ Term(τ).

Proof. By the extensionality property (6) in Corollary 3.5, equation (9) holds
if

fix x′ : τ. fix x : τ.M =gnd fix x : τ.M : τ

where x′ /∈ fiv(fix x : τ.M); but this does hold, by unfolding the left-hand
side using the last Kleene equivalence in Corollary 3.4:

fix x′ : τ. fix x : τ.M =gnd (fix x : τ.M)[(fix x′ : τ. fix x : τ.M)/x′]
= fix x : τ.M.

✷

Example 3.7 (Ground and lazy contextual equivalences differ) Con-
sider the generic divergent term Ω (see equation (3)) and the generic family
of divergent terms Ω′:

Ω � fix x : (∀α. α). x Ω′ � Λα. fix x : α. x.

These are both closed terms of type ∀α. α. For any τ ∈ Typ it is not hard to see
that Ω τ ⇓s and Ω′ τ ⇓s . Hence Ω τ =gnd Ω′ τ : τ , by Corollary 3.4. Therefore
by the extensionality property (5) in Corollary 3.5 we have Ω =gnd Ω′ :
∀α. α. However, these two terms are evidently not equated by lazy contextual
equivalence, where one observes convergence in contexts of all types, not just
of exponential types; for Ω′ is in canonical form whereas Ω diverges, so that
we can observe a difference between them using the identity context. Similar
examples can be given using function types and property (4) rather than using
∀-types, thus settling an open problem in [4, Sect. 7].

81

Bierman, Pitts and Russo

Remark 3.8 (Relational parametricity for ∀-types) As a consequence of
Theorem 3.2, terms of ∀-types enjoy relational parametricity properties mod-
ulo ground contextual equivalence. For since any M ∈ Term(∀α. τ) satisfies
M =gnd M : ∀α. τ , by the theorem we have (M,M) ∈ ∆∀α. τ . Hence from
Definition 3.1 we get that for any σ, σ′ ∈ Typ and r ∈ Rel(σ, σ′) satisfying
r = r��, it is the case that (M σ,M σ′) ∈ ∆τ (r/α). Then one can use the
definition of ∆τ (r/α) to infer properties of M . Of course, to use this method
one needs a rich source of term-relations satisfying r = r��. Such a source
arises from the fact that the graph {(M,M ′) | F M =gnd M

′ : σ′} of any
linear function F ∈ Term(σ � σ′) is such a term-relation. This allows one to
establish many ‘free theorems’ [28] to do with (di)naturality properties of the
Lily type constructors with respect to linear functions (which play the role
in this theory that strict continuous functions do in domain theory). Indeed,
if we make definitions of types as in Fig. 1, the expected category-theoretic
properties of these types can be established up to ground contextual equiva-
lence. Example 3.9 shows this for coalesced sums; the categorical properties
of the other type constructors in Fig. 1 will be treated in the full version of
this paper.

Example 3.9 (Categorical coproducts) Consider the category whose ob-
jects are closed Lily types, τ ∈ Typ, and whose morphisms from τ to τ ′ are
ground contextual equivalence classes of closed Lily terms of type τ � τ ′.
The composition of morphisms represented by M ∈ Term(τ � τ ′) and M ′ ∈
Term(τ ′ � τ ′′) is the morphism represented by M ′ ◦ M ∈ Term(τ � τ ′′),
where

M ′ ◦M � λa : τ.M ′ (M a).

The identity morphism for τ is represented by Id τ ∈ Term(τ � τ), where

Id τ � λa : τ. a.

(The validity of β-conversion for ground contextual equivalence (Corollary 3.4)
and the extensionality property (4) in Corollary 3.5 are needed to see that
these definitions do yield a category.) For closed types τ1, τ2 ∈ Typ, we claim
that

τ1 ⊕ τ2 � ∀α. !(τ1 � α) � !(τ2 � α) � α(10)

is the coproduct of τ1 and τ2 in this category, with coproduct injections repre-
sented by Inl ∈ Term(τ1 � τ1 ⊕ τ2) and Inr ∈ Term(τ2 � τ1 ⊕ τ2), where

Inl � λa1 : τ1.Λα. λb1 : !(τ1 � α). λb2 : !(τ2 � α).

let !x1 = b1 in let !x2 = b2 in x1 a1

Inr � λa2 : τ2.Λα. λb1 : !(τ1 � α). λb2 : !(τ2 � α).

let !x1 = b1 in let !x2 = b2 in x2 a2.

To establish this claim, first note that given any object τ ∈ Typ and any

82

Bierman, Pitts and Russo

morphisms represented by Fi ∈ Term(τi � τ) (i = 1, 2), then

[F1, F2] � λa : τ1 ⊕ τ2. a τ (!F1)(!F2)

represents a morphism from τ1 ⊕ τ2 to τ satisfying

[F1, F2] ◦ Inl =gnd F1 : τ1 � τ

[F1, F2] ◦ Inr =gnd F2 : τ2 � τ
(11)

(using Corollaries 3.4 and 3.5). So we just have to see that [F1, F2] is the
unique such morphism. It is now that we use the relational parametricity
properties of ∀-types mentioned in Remark 3.8. We can show, for any G ∈
Term(τ1 ⊕ τ2 � τ) and M ∈ Term(τ1 ⊕ τ2), that

G(M(τ1 ⊕ τ2)(!Inl)(!Inr)) =gnd M τ !(G ◦ Inl) !(G ◦ Inr) : τ(12)

(where we are using the notation for non-recursive thunks introduced in equa-
tion (2)). Postponing the proof of this naturality property for a moment, let
us see how it yields the required uniqueness property of τ1 ⊕ τ2, namely

(G1 ◦ Inl =gnd G2 ◦ Inl : τ1 � τ) & (G1 ◦ Inr =gnd G2 ◦ Inr : τ2 � τ)

⇒ (G1 =gnd G2 : τ1 ⊕ τ2 � τ).

(13)

Given any Fi ∈ Term(τi � τ) (i = 1, 2), taking G = [F1, F2] in equation (12)
and using equations (11), we get

[F1, F2](M(τ1 ⊕ τ2)(!Inl)(!Inr)) =gnd M τ (!F1) (!F2) : τ

and hence by definition of [F1, F2] (and validity of β-conversion for =gnd)

(M(τ1 ⊕ τ2)(!Inl)(!Inr)) τ (!F1) (!F2) =gnd M τ (!F1) (!F2) : τ.

So for any τ ∈ Typ and Vi ∈ Val(!(τi � τ)), using Corollary 3.6 to express Vi

as !Fi for suitable (fixpoint) expressions Fi, we deduce that

(M(τ1 ⊕ τ2)(!Inl)(!Inr)) τ V1 V2 =gnd M τ V1 V2 : τ.

Therefore by Corollary 3.5 we have

M =gnd M(τ1 ⊕ τ2)(!Inl)(!Inr) : τ1 ⊕ τ2(14)

for any M ∈ Term(τ1 ⊕ τ2). So given any G1, G2 ∈ Term(τ1 ⊕ τ2 � τ) and
any V ∈ Val(τ1 ⊕ τ2), from equations (14) and (12) we get

Gi V =gnd Gi (V (τ1 ⊕ τ2)(!Inl)(!Inr)) =gnd V τ !(Gi ◦ Inl) !(Gi ◦ Inr) : τ.

So if G1 and G2 satisfy the antecedent of equation (13), we get G1 V =gnd

G2 V : τ for all V , and so the conclusion of equation (13) holds by Corol-
lary 3.5 (together with the congruence properties of =gnd that are inherent in
its definition).

Thus the coproduct property of τ1 ⊕ τ2 is a consequence of property (12).
To prove (12), consider the term-relation

r � { (M,M ′) | GM =gnd M
′ : τ } ∈ Rel(τ1 ⊕ τ2, τ).

As in Remark 3.8, applied to the particular ∀-type that defines τ1⊕ τ2 in (10),

83

Bierman, Pitts and Russo

each M ∈ Term(τ1 ⊕ τ2) satisfies

(M(τ1 ⊕ τ2),M τ) ∈ (!(∆τ1 � r))�� � (!(∆τ2 � r))�� � r.(15)

It is not hard to see that (Inl , G ◦ Inl) ∈ ∆τ1 � r and that ∆τ1 � r =
(∆τ1 � r)�� (the latter because r = r��); from these facts it follows that
(!Inl , !(G ◦ Inl)) ∈ !(∆τ1 � r) and hence (!Inl , !(G ◦ Inl)) ∈ (!(∆τ1 � r))��.
Similarly, we have (!Inr , !(G ◦ Inr)) ∈ (!(∆τ2 � r))��. So from (15) we get

(M(τ1 ⊕ τ2)(!Inl)(!Inr) , M τ !(G ◦ Inl) !(G ◦ Inr)) ∈ r
from which (12) follows by definition of r.

Remark 3.10 (Defining types up to ground contextual isomorphism)
Instead of making a definitional extension of Lily as in Fig. 1, one can con-
sider extending the syntax and semantics of Lily with term-formers, typing
and evaluation rules for tensor product, sum, product, existential, inductive,
co-inductive, and recursive types. One can prove the key Theorems 2.3 and 3.2
for this extended version of Lily (and in doing so, one sees for which of the
term-formers is it the case that strict and non-strict operational semantics
are equivalent for =gnd: for example tensor products M ⊗ M ′ can be eval-
uated strictly, but pairs (M,M ′) cannot). Then one can use the relational
parametricity property mentioned in Remark 3.8 to prove the following defin-
ability result for types.

We say that two types τ and τ ′ are ground contextually isomorphic if there
are functions I ∈ Term(τ � τ ′) and J ∈ Term(τ ′ � τ) whose compositions
J ◦ I and I ◦ J are ground contextually equivalent to the identity functions
for τ and τ ′ respectively. Then in the extended version of Lily, the new
types are all definable in terms of �, ∀ and ! up to ground contextual
isomorphism, using the formulas on the right-hand side in Fig. 1.

Details of the proof (which is quite involved, especially when it comes to
recursive types, where ideas due to Freyd [7] and Plotkin [6] are needed) will
appear in the full version of this paper.

4 A Lazy Version of Lily

In Sect. 2, we investigated the equivalence of call-by-value and call-by-name
evaluation strategies for arguments to linear functions. Nothing is gained by
adopting a call-by-need (or lazy) strategy for linear function application, since
a linear argument is either suspended, or evaluated exactly once. However,
in the operational semantics in Fig. 3, when evaluating let !y = M1 in M2,
the value of M1 is eliminated by substituting the same unfolding of its body
for each occurrence of y in M2. As there is no restriction on the number of
occurrences, this duplicates computations that could be shared. For Lily to
merit serious consideration as an intermediate language for both strict and lazy
source languages, we should provide a call-by-need operational semantics for
such terms. Furthermore, to apply the results of this paper to this Lazy Lily

84

Bierman, Pitts and Russo

we must show that ground contextual equivalence is unaffected by the switch
from call-by-name to call-by-need semantics.

Environments A ::= [] empty

[x = M]A binding.

Call-by-need evaluation, 〈M,A〉 ↓ 〈V,A′〉, is inductively generated by the
following rules:

〈λa : τ.M,A〉 ↓ 〈λa : τ.M,A〉

〈Λα.M,A〉 ↓ 〈Λα.M,A〉

〈!(x =M : τ), A〉 ↓ 〈!(x =M : τ), A〉
〈M1, A1〉 ↓ 〈λa : τ.M,A2〉 〈M [M2/a], A2〉 ↓ 〈V,A3〉

〈M1M2, A1〉 ↓ 〈V,A3〉
〈M,A1〉 ↓ 〈Λα.M ′, A2〉 〈M ′[τ/α], A2〉 ↓ 〈V,A3〉

〈M τ,A1〉 ↓ 〈V,A3〉
〈M,A1 [x = M]A2〉 ↓ 〈V,A3 [x = M ′]A4〉
〈x,A1 [x = M]A2〉 ↓ 〈V,A3 [x = V]A4〉

〈M1, A1〉 ↓ 〈!(x =M : τ), A2〉 x = fresh(dom(A2))

〈M2[x/y], [x = M]A2〉 ↓ 〈V,A3〉
〈let !y =M1 in M2, A1〉 ↓ 〈V,A3〉

Fig. 4. Lazy Evaluation of closed Lily terms

Fig. 4 defines an evaluation relation for Lazy Lily in the style of [11]. An
environment (or heap) is an association list mapping (distinct) intuitionistic
identifiers to suspended terms, similar to an explicit substitution. (The no-
tation A1 [x = M]A2 denotes the (list) concatenation of A1 and [x = M]A2.)
The lazy evaluation relation ↓ relates configurations pairing a term and
an initial environment to configurations pairing a canonical form and a final
environment. The variable x is evaluated by looking up its suspended term M
in the initial environment, evaluating that term in the same environment, and
then returning its value V along with the final environment, updated to record
the value of x. Since the environment is threaded through a derivation, the
result of the first computation ofM is cached and recalled in subsequent refer-
ences to x: the computation is shared. Evaluating a let !y =M1 in M2 term
evaluates M1 to a canonical form !(x = M : τ), binds the body of this thunk
to a fresh renaming of y (creating a cycle in the environment), and continues
with the evaluation of the renamed body M2[x/y]. Assuming that the initial

85

Bierman, Pitts and Russo

configuration is closed with respect to the domain of the environment—a prop-
erty that is preserved by evaluation—choosing an x that is fresh for dom(A2)
avoids the capture of free variables.

Formulating the lazy semantics is easy, but proving it correct for the non-
strict semantics is not. The correctness results in [11] are with respect to
a denotational model. To get a more direct operational proof, we hoped to
make use of the ‘small-step’ abstract machine semantics formulated by Ses-
toft [26] and the operational techniques in [15] that are based on it. As it
turned out, the ‘big-step’ style of [11] proved more amenable. Seaman and
Iyer [25] give an operational proof of correctness for Lazy PCF using this style
of operational semantics, but their semantics only shares the evaluation of
function arguments, not recursive terms, whose evaluations are duplicated by
unfolding (as for the call-by-name relation ⇓n in Fig. 3). Moreover, Seaman
and Iyer report that they were unable to extend their proof technique to a
semantics that shares evaluations of recursive terms. The problem is that
sharing these computations creates cycles in the environment, violating an
otherwise decreasing measure that they use in their inductive proof. Fortu-
nately, we have identified a more robust measure that allows us to extend the
proof technique to the setting of both Lazy Lily and Lazy PCF with shared
recursion. Since linearity is not the issue, and the result for Lazy PCF is of
wider interest, this result will be reported elsewhere. (The rules in Fig. 4 are
very similar to those of Seaman and Iyer [25] for Lazy PCF; to cater for cycles,
our variable rule evaluates the suspended term with respect to the entire envi-
ronment A1 [x = M]A2, not just the remainder A2: this is just the alternative
semantics of fixpoints proposed, but not proved correct, in [25].)

5 Conclusion

The material presented in this paper establishes some powerful techniques and
results for exploring the surprisingly great expressive power that arises from
the combination of linear lambda calculus, polymorphism and recursion. In
principal, one can give semantics to a wide range of programming languages
via compositional translations into the Lily language, using its versions of
the standard constructs of Scott-Strachey denotational semantics (Fig. 1) and
using the results presented here as the basis for proofs of correctness properties
of the translations. In fact Lily terms modulo ground contextual equivalence
give a more refined treatment of strictness and usage properties than does
the model based on domains and strict continuous functions—for lifting (−)⊥
in the latter has a contraction property that we have not built into Lily’s !-
types. Accordingly, much remains to be done to explore the properties of such
translations. For example, it would be interesting to explore properties of Lily
versions of the semantics of Idealised Algol given by O’Hearn [17]; or of the lazy
state threads of Peyton Jones and Launchbury [18] (to make computational
effects implicit in translations to Lily, one could consider combining it with

86

Bierman, Pitts and Russo

the calculus of monads of Moggi [13]).

References

[1] S. Abramsky. The lazy λ-calculus. In D. A. Turner, editor, Research Topics in
Functional Programming, chapter 4, pages 65–117. Addison Wesley, 1990.

[2] S. Abramsky. Computational interpretations of linear logic. Theoretical
computer Science, 111:3–57, 1993.

[3] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis,
Department of Computer Science, University of Edinburgh, 1997.

[4] G. M. Bierman. Program equivalence in a linear functional language. J.
Functional Programming, 10:167–190, 2000.

[5] R.L. Crole. How linear is Howe? In G. McCusker, A. Edalat, and S. Jourdan,
editors, Advances in Theory and Formal Methods, pages 60–72. Imperial College
Press, 1996.

[6] M. Fiore and G. D. Plotkin. An axiomatization of computationally adequate
domain theoretic models of FPC. In 9th Annual Symposium on Logic in
Computer Science, pages 92–102. IEEE Computer Society Press, Washington,
1994.

[7] P. J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in
Computer Science, Proceedings LMS Symposium, Durham, UK, 1991, volume
177 of LMS Lecture Note Series, pages 95–106. Cambridge University Press,
1992.

[8] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 633–674. North-
Holland, 1990.

[9] D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103–112, 1996.

[10] S. B. Lassen. Relational reasoning about contexts. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications
of the Newton Institute, pages 91–135. Cambridge University Press, 1998.

[11] J. Launchbury. A natural semantics for lazy evaluation. In 20th Symp.
on Principles of Programming Languages, pages 144–154, Charleston, South
Carolina, 1993. ACM.

[12] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1:287–327, 1991.

[13] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

87

Bierman, Pitts and Russo

[14] E. Moggi. Metalanguages and applications. In A. M. Pitts and P. Dybjer,
editors, Semantics and Logics of Computation, Publications of the Newton
Institute, pages 185–239. Cambridge University Press, 1997.

[15] A. K. Moran and D. Sands. Improvement in a lazy context: An operational
theory for call-by-need. In Proc. 26th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pages 43–56. ACM Press, 1999.

[16] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 577–632. North-Holland, 1990.

[17] P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. Journal of the ACM, 47(1):167–223, 2000.

[18] S. L Peyton Jones and J. Launchbury. State in Haskell. Lisp and Symbolic
Computation, 8:293–341, 1995.

[19] A. M. Pitts. Some notes on inductive and co-inductive techniques in the
semantics of functional programs. Notes Series BRICS-NS-94-5, BRICS,
Department of Computer Science, University of Aarhus, 1994.

[20] A. M. Pitts. Existential types: Logical relations and operational equivalence.
In K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark,
July 1998, Proceedings, volume 1443 of Lecture Notes in Computer Science,
pages 309–326. Springer-Verlag, Berlin, 1998.

[21] A. M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10:321–359, 2000.

[22] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[23] G. D. Plotkin. Second order type theory and recursion. Notes for a talk at the
Scott Fest, February 1993.

[24] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513–523. North-Holland,
Amsterdam, 1983.

[25] J. Seaman and S. Purushothaman Iyer. An operational semantics of sharing in
lazy evaluation. Science of Computer Programming, 27(3):289–322, 1996.

[26] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional
Programming, 7:231–264, 1997.

[27] D. N. Turner and P. Wadler. Operational interpretations of linear logic.
Theoretical Computer Science, 227:231–248, 1999.

[28] P. Wadler. Theorems for free! In Fourth International Conference on
Functional Programming Languages and Computer Architecture, London, UK,
1989.

88

