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Abstract. This paper formalises within first-order logic some common
practices in computer science to do with representing and reasoning
about syntactical structures involving named bound variables (as op-
posed to nameless terms, explicit substitutions, or higher order abstract
syntax). It introduces Nominal Logic, a version of first-order many-sorted
logic with equality containing primitives for renaming via name-swapping
and for freshness of names, from which a notion of binding can be de-
rived. Its axioms express key properties of these primitives, which are
satisfied by the FM-sets model of syntax introduced in [11]. Nominal
Logic serves as a vehicle for making two general points. Firstly, name-
swapping has much nicer logical properties than more general forms of
renaming while at the same time providing a sufficient foundation for a
theory of structural induction/recursion for syntax modulo α-conversion.
Secondly, it is useful for the practice of operational semantics to make
explicit the equivariance property of assertions about syntax—namely
that their validity is invariant under name-swapping.

1 Introduction

It is commonplace, when using formal languages in computer science or mathe-
matical logic, to abstract away from details of concrete syntax in terms of strings
of symbols and instead work solely with parse trees—the ‘abstract syntax’ of a
language. Doing so gives one access to two extremely useful and inter-related
tools: definition by recursion on the structure of parse trees and proof by induc-
tion on that structure. However, conventional abstract syntax is not abstract
enough if the formal language involves variable-binding constructs. In this situ-
ation the common practice of human (as opposed to computer) provers is to say
one thing and do another. We say that we will quotient the collection of parse
trees by a suitable equivalence relation of α-conversion, identifying trees up to
renaming of bound variables; but then we try to make the use of α-equivalence
classes as implicit as possible by dealing with them via suitably chosen represen-
tatives. How to make such suitable choices of representatives is well understood,
so much so that is has a name—the ‘Barendregt Variable Convention’: choose
a representative parse tree whose bound variables are fresh, i.e. mutually dis-
tinct and distinct from any (free) variables in the current context. This informal
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practice of confusing an α-equivalence class with a member of the class with
sufficiently fresh bound variables has to be accompanied by a certain amount of
hygiene on the part of human provers: our constructions and proofs have to be in-
dependent of which particular fresh names we choose for bound variables. Nearly
always, the verification of such independence properties is omitted, because it
is tedious and detracts from more interesting business at hand. Of course this
introduces a certain amount of informality into ‘pencil-and-paper’ proofs that
cannot be ignored if one is in the business of producing fully formalised, machine-
checked proofs. But even if you are not in that business and are content with
your pencil and paper, I think there is a good reason to examine this informal use
of ‘sufficiently fresh names’ and put it on a more precise, mathematical footing.

The reason I have in mind has to do with those intuitive and useful tools
mentioned above: structural recursion for defining functions on parse trees and
structural induction for proving properties of them. Although it is often said
that the Barendregt Variable Convention allows one to work with α-equivalence
classes of parse trees as though they were just parse trees, this is not literally
the case when it comes to structural recursion/induction. For example, when
dealing with an induction step for a variable-binding construct, it often happens
that the step can be proved if the bound variable is chosen sufficiently fresh,
but not for an arbitrary bound variable as the induction principle demands. The
Barendregt Variable Convention papers over the crack in the proof at this point
(by preventing one considering the case of an arbitrary bound variable rather
than a fresh one), but the crack is still there. Although one can easily side-step
the problem by using a suitable size function on parse trees to replace structural
induction with mathematical induction, this is not a very satisfying solution.
The size function will be defined by structural recursion and the crucial fact
that α-equivalent parse trees have the same size will be proved by structural
induction, so we are using structural recursion/induction anyway, but somehow
not in the direct way we would like. We can do better than this.

Indeed, the work reported in [10, 11, 24] does so, by providing a mathemat-
ical notion of ‘sufficiently fresh name’ that remains very close to the informal
practice described above while enabling α-equivalence classes of parse trees to
gain useful inductive/recursive properties. The theory stems from the somewhat
surprising observation that all of the concepts we need (α-conversion, freshness,
variable-binding, . . . ) can be defined purely in terms of the operation of swapping
pairs of names. In particular, the freshness of a name for an object is expressed
in terms of the name not being in some finite set of names that supports the
object—in the sense that swapping any pair of names not in that finite set leaves
the object unchanged. This notion of support is weak second order, since it in-
volves an existential quantification over finite sets of names. However, much of
the development in [11] only makes use of certain first-order properties of the
freshness (i.e. ‘not-in-the-support-of’) predicate in combination with the swap-
ping operation. This paper presents this first-order theory of names, swapping
and freshness, called Nominal Logic.
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2 Equivariant Predicates

The fundamental assumption underlying Nominal Logic is that the only predi-
cates we ever deal with (when describing properties of syntax) are equivariant
ones, in the sense that their validity is invariant under swapping (i.e. transpos-
ing, or interchanging) names.

Names of what? Names of entities that may be subject to binding by some of
the syntactical constructions under consideration. In Nominal Logic these sorts
of names, the ones that may be subjected to swapping, will be called atoms—the
terminology refers back to the origins of the theory in the Fraenkel-Mostowski
permutation model of set theory. Atoms turn out to have quite different logical
properties from constants (in the usual sense of first-order logic) which, being
constant, are not subjected to swapping. Note that this distinction between atom
and constant has to do with the issue of binding, rather than substitution. A
syntactic category of variables, by which is usually meant entities that may be
subject to substitution, might be represented in Nominal Logic by atoms or
by constants, depending upon circumstances: constants will do if we are in a
situation where variables are never bound, but can be substituted; otherwise
we should use atoms. The interesting point is that we can make this (useful!)
distinction between ‘bindable’ names and names of constants entirely in terms
of properties of swapping names, prior to any discussion of substitution and its
properties.

Why the emphasis on swapping two names, rather than on the apparently
more primitive notion of renaming one name by another? The answer has to do
with the fact that swapping is an idempotent operation: a swap followed by the
same swap is equivalent to doing nothing. This means that the class of equivari-
ant predicates, i.e. those whose validity is invariant under name-swapping, has
excellent logical properties; it contains the equality predicate and is closed under
negation, conjunction, disjunction, existential and universal quantification, for-
mation of least and greatest fixed points of monotone operators, etc., etc. The
same is not true for renaming. (For example, the validity of a negated equality
between atoms is not necessarily preserved under renaming.)

That we should take equivariance into account when we reason about syn-
tactical structures is one of the main messages of this paper. Even if you do not
care about the details of Nominal Logic to be given below, it is worth taking note
of the fact that name swapping and the equivariance property provide a simple
and useful foundation for discussing properties of names and binding in syntax.
Here is a simple example to illustrate this point, taken from type theory.

Example 2.1. McKinna and Pollack [19] note that in the näıve approach to
named bound variables, there is a difficulty with proving the weakening property
of type systems by rule induction. For example, consider the usual typing relation
assigning simple types to terms of the untyped λ-calculus. We take the latter to
mean α-equivalence classes [t]α of parse trees t given by the grammar

t ::= a | λa.t | t t (1)
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where a ranges over an infinite set of variables. The typing relation takes the
form Γ ` [t]α : τ where types τ are given by the grammar τ ::= X | τ → τ
(with X ranging over an infinite collection of type variables) and the typing
context Γ is a finite partial function from variables to types. The typing relation
is inductively generated by axioms and rules following the structure of the parse
tree t. (If the reader is not familiar with these rules, see [13, Chapter 2], for
example; but note that as mentioned in the Introduction, the literature usually
does not bother to make a notational distinction between t and [t]α.)

When trying to prove the weakening property of the typing relation

(∀Γ )(∀t)(∀τ) Γ ` [t]α : τ ⇒ (∀τ ′)(∀a′ /∈ dom(Γ )) Γ, a′ : τ ′ ` [t]α : τ (2)

it is natural to try to proceed by ‘rule induction’ and show that the predicate
ϕ(Γ, [t]α, τ) given by

(∀τ ′)(∀a′ /∈ dom(Γ )) Γ, a′ : τ ′ ` [t]α : τ

defines a relation that is closed under the axioms and rules inductively defining
the typing relation and hence contains that relation. But the induction step for
the rule for typing λ-abstractions

Γ, a : τ1 ` [t]α : τ2

a /∈ dom(Γ )
Γ ` [λa.t]α : τ1 → τ2

(3)

is problematic: we have to prove

ϕ(Γ, a : τ1, [t]α, τ2) ∧ a /∈ dom(Γ ) ⇒ ϕ(Γ, [λa.t]α, τ1 → τ2);

i.e. given
ϕ(Γ, a : τ1, [t]α, τ2) (4)

and
a /∈ dom(Γ ), (5)

we have to prove that

Γ, a′ : τ ′ ` [λa.t]α : τ1 → τ2 (6)

holds for all a′ /∈ dom(Γ ) (and all τ ′)—and there is a problem with doing this
for the case a′ = a.

But this difficulty with the induction step is easily circumvented if we take
equivariance into account. The axioms and rules defining typing are closed under
the operations of swapping pairs of variables (and also under swapping pairs of
type variables, but we do not need to use that here). For example, if we have
an instance of rule (3) and we swap any pair of variables throughout both the
hypotheses and the conclusion, we get another valid instance of this rule. It
follows from this swapping property of the axioms and rules that the typing
relation, being the least relation closed under the axioms and rules, is also closed
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under the swapping operations. Therefore any assertion about typing that we
make by combining the typing relation with other such equivariant predicates
(such as ‘a ∈ dom(Γ )’) using the usual logical connectives and quantifiers will
be equivariant. In particular the predicate ϕ defined above is equivariant. Thus
if we know that (4) holds, then so does ϕ(Γ, a′′ : τ1, [(a′′ a) · t]α, τ2) for any fresh
variable a′′. (Here (a′′ a) · t indicates the parse tree resulting from swapping a ′′

and a throughout t.) So by definition of ϕ, since a′ /∈ dom(Γ, a′′ : τ1), we have
(Γ, a′′ : τ1), a

′ : τ ′ ` [(a′′ a) · t]α : τ2. Since (Γ, a′′ : τ1), a
′ : τ ′ = (Γ, a′ : τ ′), a′′ : τ1

(we are using partial functions for typing contexts) and a′′ /∈ dom(Γ, a′ : τ ′)
(by choice of a′′), we can apply typing rule (3) to conclude that Γ, a′ : τ ′ `
[λa′′.((a′′ a) · t)]α : τ1 → τ2. But λa′′.((a′′ a) · t) and λa.t are α-equivalent parse
trees, so Γ, a′ : τ ′ ` [λa.t]α : τ1 → τ2 holds. Thus if (4) and (5) hold, so does
ϕ(Γ, [λa.t]α, τ1 → τ2) and we have completed the induction step. ut

From the considerations of this section we abstract the following ingredients
for a language to describe syntax involving names and binding: the language
should contain a notion of atom together with operations for swapping atoms in
expressions (in general we may need several different sorts of atoms—for exam-
ple, atoms for variables and atoms for type variables in Example 2.1); and the
formulas of the language should all be equivariant with respect to these swapping
operations. Atoms and swapping are two of the three novelties of Nominal Logic.
The third has to do with the crucial step in the proof in Example 2.1 when we
chose a fresh variable a′′: we need to give a freshness relation between atoms
and expressions with sufficient properties to make such arguments go through.

3 Nominal Logic: Syntax and Semantics

The syntax of Nominal Logic is that of many-sorted first-order logic with equal-
ity, augmented by the following extra features.

– The collection of sorts S is partitioned into two kinds

S ::= A sorts of atoms
D sorts of data.

– For each sort of atoms A and each sort S there is a distinguished function
symbol of arity A, A, S −→ S whose effect on terms a : A, a′ : A and s : S
we write as the term (a a′) · s and pronounce ‘swap a and a′ in s’.

– For each sort of atoms A and each sort S there is a distinguished relation
symbol of arity A, S whose effect on terms a : A and s : S we write as the
formula a

�
s and pronounce ‘a is fresh for s’.

Just as for ordinary first-order logic, a theory in Nominal Logic is specified by
a signature of sort, function and relation symbols, together with a collection of
(non-logical) axioms, which are first-order formulas involving equality, swapping,
freshness and symbols from the signature.
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Example 3.1 (λ-Terms mod α-equivalence, version 1). Here is an example
of a theory in Nominal Logic to which we will return to throughout the paper.

Sort of atoms: Var
Sort of data: Term
Function symbols: var : Var −→ Term

app : Term,Term −→ Term
lam : Var ,Term −→ Term

subst : Term,Var ,Term −→ Term
Axioms:

(∀a : Var)(∀t, t′ : Term) ¬ var (a) = app(t, t′) (7)

(∀a, a′ : Var)(∀t : Term) ¬ var (a) = lam(a′, t) (8)

(∀a : Var)(∀t, t′, t′′ : Term) ¬ lam(a, t) = app(t′, t′′) (9)

(∀t : Term) (∃a : Var) t = var (a)
∨ (∃t′, t′′ : Term) t = app(t′, t′′)
∨ (∃a′ : Var)(∃t′ : Term) t = lam(a′, t′)

(10)

(∀a, a′ : Var) var(a) = var(a′) ⇒ a = a′ (11)

(∀t, t′, t′′, t′′′ : Term) app(t, t′) = app(t′′, t′′′) ⇒ t = t′′ ∧ t′ = t′′′ (12)

(∀a, a′ : Var) (∀t, t′ : Term) lam(a, t) = lam(a′, t′) ⇔
(a = a′ ∧ t = t′) ∨ (a′ � t ∧ t′ = (a a′) · t)

(13)

(∀~x : ~S) (∀a : Var) ϕ(var (a), ~x)
∧ (∀t, t′ : Term) ϕ(t, ~x) ∧ ϕ(t′, ~x) ⇒ ϕ(app(t, t′), ~x)
∧ (∃a : Var) a � ~x ∧ (∀t : Term) ϕ(t, ~x) ⇒ ϕ(lam(a, t), ~x)
⇒ (∀t : Term) ϕ(t, ~x)

(14)

where the free variables of ϕ are in t, ~x

(∀t : Term)(∀a : Var) subst(t, a, var (a)) = t (15)

(∀t : Term)(∀a, a′ : Var) ¬ a = a′ ⇒ subst(t, a, var (a′)) = var(a′) (16)

(∀t, t′, t′′ : Term) (∀a : Var) subst(t, a, app(t′, t′′)) =
app(subst(t, a, t′), subst(t, a, t′′))

(17)

(∀t, t′ : Term) (∀a, a′ : Var) ¬ a′ = a ∧ a′ � t ⇒
subst(t, a, lam(a′, t′)) = lam(a′, subst(t, a, t′))

(18)

Axioms (7)–(10) say that var , app and lam have disjoint images that cover
Term . Axioms (11)–(13) give the injectivity properties of these three construc-
tors. In particular axiom (13) reflects the fact that equality of terms of sort
Term should correspond to equality of α-equivalence classes of parse trees for
the grammar in (1); and freshness a � t to the fact that a variable does not oc-
cur freely in a parse tree. Axiom (14) formalises a structural induction principle
for such α-equivalence classes (cf. [11, Theorem 6.8]). Finally, axioms (15)–(18)
amount to a structurally recursive definition of capture-avoiding substitution for
λ-terms (cf. [11, Example 6.9]).

This particular theory has a concrete model given by α-equivalence classes of
parse trees for the grammar in (1). However, as explained in [11], in general the
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Nominal Logic notions of atom, swapping and freshness can be given a meaning
independent of any particular object-level syntax using FM-sets—the Fraenkel-
Mostowski permutation model of set theory. The following definitions give a
simplified, but essentially equivalent, presentation of FM-sets that emphasises
swapping over more general permutations of atoms. At the same time we use a
mild generalisation of [11] (mentioned in [10, Sect. 7]) in which the set of atoms
is partitioned into countably many different kinds (and we only swap atoms of
the same kind).

Definition 3.2 (Nominal sets). Fix a countably infinite family (An | n ∈ N)
of pairwise disjoint, countably infinite sets. We write A for the union of all the
An and call its elements atoms. A nominal set X is a set |X | equipped with a
well-behaved notion of swapping atoms in elements of the set. By definition this
means that for each element x ∈ |X | and each pair of atoms a, a′ of the same
kind (i.e. a, a′ ∈ An for some n ∈ N), we are given an element (a a′) ·X x of
X , called the result of swapping a and a′ in x. These swapping operations are
required to have the following properties:

(i) Equational properties of swapping: for each x ∈ |X | and all pairs of
atoms of equal sort, a, a′ ∈ Am and b, b′ ∈ An (any m, n ∈ N)

(a a) ·X x = x (19)

(a a′) ·X (a a′) ·X x = x (20)

(a a′) ·X (b b′) ·X x = ((a a′)b (a a′)b′ ) ·X (a a′) ·X x (21)

where

(a a′)b ,











a if b = a′

a′ if b = a

b otherwise

(22)

and similarly for (a a′)b′.
(ii) Finite support property: we require that each x ∈ |X | only involve finitely

many atoms, in the sense that given x, there exists a finite subset w ⊆ A

with the property that (a a′) ·X x = x holds for all a, a′ ∈ An − w (any
n ∈ N). It follows that

suppX(x) ,
⋃

n∈N

{a ∈ An | {a′ ∈ An | (a a′) ·X x 6= x} is not finite} (23)

is a finite set of atoms (see the proof of [11, Proposition 3.4]), which we call
the support of x in X .

A morphism of nominal sets, f : X −→ Y , is by definition a function from the
set |X | to the set |Y | that respects the swapping operations in the sense that

f((a a′) ·X x) = (a a′) ·Y f(x) (24)

holds for all x ∈ |X | and all atoms a, a′ (of the same kind). Clearly the composi-
tion of two such functions is another such; and identity functions are morphisms.
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Therefore nominal sets and morphisms form a category, which we denote by
Nom .

Remark 3.3 (From swapping to permutations). The following remarks are
for readers familiar with the mathematical theory of groups and group actions.
It is a standard result of that theory that the group of all permutations of the
n-element set {1, . . . , n} is isomorphic to the group freely generated by n − 1
symbols gi (i = 1, . . . , n − 1), subject to the identities

(gi)
2 = id (i < n)

(gi gi+1)
3 = id (i < n − 1)

(gi gj)
2 = id (j < i − 1)

with the generator gi corresponding to the permutation transposing i and i + 1.
(See for example [16, Beispiel 19.7].) From this fact one can easily deduce that
the group of all (kind-respecting) finite permutations of the set of atoms A is
freely generated by the transpositions (a a′) (with a, a′ ∈ An for some n ∈ N),
subject to the identities

(a a)(a a) = id

(a a′)(a a′) = id

(a a′)(b b′) = ((a a′)b (a a′)b′ )(a a′)

where the atoms (a a′)b and (a a′)b′ are defined as in equation (22). It follows that
if |X | is a set equipped with swapping operations satisfying equations (19)–(21),
then these operations extend uniquely to an action of all finite permutations
on elements of |X |. If |X | also satisfies property (ii) of Definition 3.2, then this
action extends uniquely to all (kind-respecting) permutations, finite or not; and
the elements of |X | have the finite support property for this action in the sense
of [11, Definition 3.3]. These observations form the basis of a proof that the
category Nom of Definition 3.2 is equivalent to the Schanuel topos [11, Sect. 7],
which underlies the universe of FM-sets used in [11].

It is not hard to see that products X × Y in the category Nom are given
simply by taking the cartesian product {(x, y) | x ∈ |X | ∧ y ∈ |Y |} of underlying
sets and defining the swapping operations componentwise:

(a a′) ·X×Y (x, y) , ((a a′) ·X x, (a a′) ·Y y).

(Clearly (x, y) has the finiteness property in X×Y required by Definition 3.2(ii),
because x has it in X and y has it in Y .) Similarly, the terminal object 1 in Nom
has a one-element underlying set and (necessarily) trivial swapping operations.

So we can interpret many-sorted first-order signatures in the category Nom :
sorts S are interpreted as objects [[S]]; function symbols f , of arity S1, . . . , Sn −→
S say, as morphisms [[f ]] : [[S1]] × · · · × [[Sn]] −→ [[S]]; and relation symbols R, of
arity S1, . . . , Sn say, as subobjects of [[S1]]×· · ·×[[Sn]]. Indeed, Nom has sufficient
properties to soundly interpret classical first-order logic with equality 1 using the
1 And much more besides, since it is equivalent to the Schanuel topos, but that will

not concern us here.
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usual techniques of categorical logic—see [18], or [23, Sect. 5] for a brief overview.
In fact, readers unfamiliar with such techniques need not become so just to
understand the interpretation of first-order logic in the category of nominal sets,
since it is just like the usual Tarskian semantics of first-order logic in the category
of sets (at the same time remaining within the world of equivariant properties).
For it is not hard to see that the subobjects of an object X in the category
Nom are in bijection with the subsets A ⊆ |X | of the underlying set that are
equivariant, in the sense that (a a′) ·X x ∈ A whenever x ∈ A, for any atoms
a, a′ (of the same kind). As we mentioned in Sect. 2, the collection of equivariant
subsets is closed under all the usual operations of first-order logic and contains
equality. So it just remains to explain the interpretation in Nom of the distinctive
syntax of Nominal Logic—atoms, swapping and freshness.

Definition 3.4. Here is the intended interpretation of atoms, swapping and
freshness in the category of nominal sets of Definition 3.2.

Atoms. A sort of atoms in a Nominal Logic signature will be interpreted by
a nominal set of atoms An (for some n ∈ N), which by definition has un-
derlying set |An| = An and is equipped with the swapping operations given
by

(a a′) · b ,











a if b = a′

a′ if b = a

b otherwise

(where b ∈ An and a, a′ ∈ Am for any m ∈ N). We always assume that
distinct sorts of atoms are interpreted by distinct kinds of atoms. (So we are
implicitly assuming that signatures contain at most countably many such
sorts.)

Swapping. Note that by virtue of equation (21), the function a, a′, x 7→ (a a′)·X
x determines a morphism An × An × X −→ X in the category Nom . This
morphism is used to interpret the distinguished function symbol A, A, S −→
S for swapping, assuming the nominal set of atoms An is the interpretation
of the sort of atoms A and that X is the interpretation of S. Thus

[[(a a′) · s]] = ([[a]] [[a′]]) ·X [[s]] when s : S and [[S]] = X .

Freshness. The distinguished relation symbol � of arity A, S for freshness is
interpreted as the ‘not in the support of’ relation (−) /∈ suppX(−) between
atoms and elements of nominal sets. Thus if the nominal set of atoms An

is the interpretation of the sort of atoms A and X is the interpretation of
the sort S, then for terms a : A, s : S, the formula a � s is satisfied by
the interpretation if and only if [[a]] /∈ suppX([[s]]), where suppX is as in
equation (23). (It is not hard to see that this is an equivariant subset of
An × |X | and hence determines a subobject of [[A]] × [[S]] in Nom .)
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4 Nominal Logic Axioms

For simplicity, we will use a Hilbert-style presentation of Nominal Logic: a single
rule of Modus Ponens, the usual axiom schemes of first-order logic with equality,
plus the axiom schemes for swapping and freshness given in Fig. 1.

Properties of swapping

S1 (∀a : A)(∀x : S) (aa) � x = x

S2 (∀a, a′ : A)(∀x : S) (aa′) � (aa′) � x = x

S3 (∀a, a′ : A) (aa′) � a = a′

Equivariance

E1 (∀a, a′ : A)(∀b, b′ : A′)(∀x : S) (aa′) � (b b′) � x = ((aa′) � b (aa′) � b′) � (aa′) � x
E2 (∀a, a′ : A)(∀b : A′)(∀x : S) b � x ⇒ (aa′) � b � (aa′) � x
E3 (∀a, a′ : A)(∀~x : ~S) (aa′) � f(~x) = f((a a′) � ~x)

where f is a function symbol of arity ~S −→ S

E4 (∀a, a′ : A)(∀~x : ~S) R(~x) ⇒ R((aa′) � ~x)
where R is a relation symbol of arity ~S

Properties of freshness

F1 (∀a, a′ : A)(∀x : S) a � x ∧ a′ � x ⇒ (aa′) � x = x

F2 (∀a, a′ : A) a � a′ ⇔ ¬a = a′

F3 (∀a : A)(∀a′ : A′) a � a′

where A 6= A′

F4 (∀~x : ~S)(∃a : A) a � ~x

Notes

1. A, A′ range over sorts of atoms, S ranges over sorts and ~S over finite lists of sorts.
2. In axiom E3 and E4, (a a′) � ~x indicates the finite list of arguments given by (aa′) � xi

as xi ranges over ~x.
3. In axiom F4, a � ~x indicates the finite conjunction of the formulas a � xi as xi

ranges over the list ~x.

Fig. 1. The axiom schemes of Nominal Logic for freshness and swapping

The following result shows that the axioms in Fig. 1 validate the fundamen-
tal assumption mentioned at the start of Sect. 2, namely that all properties
expressible in Nominal Logic are invariant under swapping atoms.



Nominal Logic 229

Proposition 4.1 (Equivariance). For each term t and formula ϕ, with free

variables amongst ~x : ~S say, we have

(∀a, a′ : A)(∀~x : ~S) (a a′) · t(~x) = t((a a′) · ~x) (25)

(∀a, a′ : A)(∀~x : ~S) ϕ(~x) ⇔ ϕ((a a′) · ~x) (26)

where t((a a′) · ~x) denotes the result of simultaneously substituting (a a′) · xi for
xi in t (as xi ranges over ~x) and similarly for ϕ((a a′) · ~x).

Proof. Property (25) follows from axioms E1 and E3, by induction on the struc-
ture of the term t. For (26) we proceed by induction on the structure of the
formula ϕ, using standard properties of first-order logic for the induction steps
for connectives and quantifiers. Note that by virtue of axiom S2, equation (26)
holds if and only if

(∀a, a′ : A)(∀~x : ~S) ϕ(~x) ⇒ ϕ((a a′) · ~x) (27)

does. So the base case when ϕ is equality follows from the usual axioms for
equality, the base case for the freshness predicate � follows from axiom E2, and
that for relation symbols from axiom E4 (using (25) in each case). ut

Proposition 4.2 (Soundness). The axioms in Fig. 1 are all satisfied by the
nominal sets interpretation of atoms, swapping and freshness given in Sect. 3.

Proof. Satisfaction of axioms S1–S3 and E1 is guaranteed by part (i) of Def-
inition 3.2 (since the swapping action for a nominal set of atoms is given by
equation (22)). Satisfaction of axioms E2 and F1–F3 is a simple consequence
of the definition of support in equation (23). Axioms E3 and E4 are satisfied
because function and relation symbols are interpreted by morphisms and subob-
jects in the category of nominal sets, which have these equivariance properties.
Finally, axiom F4 is satisfied because the support of an element of a nominal
set is a finite subset of the fixed, countably infinite set A of all atoms. ut

Did we forget any axioms? In other words are the axiom schemes in Fig. 1
complete for the intended interpretation in the category of nominal sets? Ax-
iom F4 says that there is an inexhaustible supply of atoms that are fresh, i.e. not
in the support of elements in the current context. This is certainly a consequence
of property (ii) of Definition 3.2, which guarantees that elements of nominal sets
have finite support. However, that property is ostensibly a statement of weak
second order logic, since it quantifies over finite sets of atoms. So we should
not expect the first-order theory of Nominal Logic to completely axiomatise the
notion of finite support. Example 4.5 confirms this expectation. Before giving it
we state a useful property of freshness in Nominal Logic that we need below.

Proposition 4.3. For any term t, with free variables amongst ~x : ~S say, we
have

(∀a : A)(∀~x : ~S) a � ~x ⇒ a � t(~x) (28)

(Recall that a � ~x stands for the finite conjunction of the formulas a � xi as
xi ranges over ~x.)
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Proof. Given any a : A and ~x : ~S, by axiom F4 there is some a′ : A with a′ � ~x
and a′ � t(~x). So if a � ~x, then by axiom F1 (a a′) · xi = xi holds for each xi.
So since a′ � t(~x) by choice of a′, we have

a = (a a′) · a′ by axioms S2 and S3
� (a a′) · t(~x) by axiom E2

= t((a a′) · ~x) by (25)

= t(~x) by axiom F1

as required. ut

Corollary 4.4. If a Nominal Logic theory contains a closed term t : A with A
a sort of atoms, then it is an inconsistent theory.

Proof. Suppose that A is a sort of atoms and that t : A is a term with no free
variables. By the above proposition we have (∀a : A) a � t. Thus t � t and by
axiom F2 this means ¬ t = t, contradiction. ut

Example 4.5 (Incompleteness). Consider the following Nominal Logic the-
ory.

Sort of atoms: A
Sorts of data: D, N
Function symbols: o : N

s : N −→ N
f : D, N −→ A

Axioms:

(∀x : N) ¬ o = s(x)

(∀x, x′ : N) s(x) = s(x′) ⇒ x = x′

Claim: any model of this theory in the category of nominal sets satisfies the
formula

(∀y : D)(∃x, x′ : N) ¬x = x′ ∧ f(y, x) = f(y, x′) (29)

but that formula cannot be proved in Nominal Logic from the axioms of the
theory.

Proof of Claim. Note that in any model of this theory in the category Nom , the
interpretation of the closed terms nk : N (k ∈ N) defined by

{

n0 , o

nk+1 , s(nk)

are distinct elements [[nk]] ∈ |[[N ]]| of the nominal set [[N ]]. Therefore, to see
that (29) is satisfied by the model it suffices to show for each d ∈ |[[D]]| that
[[f ]]([[nk1

]], d) = [[f ]]([[nk2
]], d) ∈ |[[A]]| holds for some k1 6= k2 ∈ N. Note that [[A]]

is a nominal set of atoms, An say. Suppose to the contrary that all the [[f ]]([[nk]], d)
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are distinct atoms in An. Then since the support supp [[D]](d) of d ∈ |[[D]]| is a
finite subset of A, we can find k1 6= k2 ∈ N so that

a1 , [[f ]]([[nk1
]], d) and a2 , [[f ]]([[nk2

]], d)

satisfy a1, a2 /∈ supp[[D]](d). We also have a1, a2 /∈ supp[[N ]](nk) for all k (using
(28) and the fact that the terms nk have no free variables). Hence a1, a2 /∈
suppAn

([[f ]]([[nk]]), d) and thus (a1 a2)·An
[[f ]]([[nk]], d) = [[f ]]([[nk]], d), for all k ∈ N.

Taking k = k1 and recalling the definition of a1 and a2, we conclude that

[[f ]]([[nk2
]], d) = a2 = (a1 a2) ·An

a1 = (a1 a2) ·An
[[f ]]([[nk1

]], d) = [[f ]]([[nk1
]], d)

with k1 6= k2, contradicting our assumption that all the [[f ]]([[nk]], d) are distinct.
To see that (29) is not provable in Nominal Logic it suffices to find a model in

the usual sense of first-order logic for the axioms of this theory and the axioms
in Fig. 1 which does not satisfy (29). We can get such a model by modifying
Definition 3.2 by using an uncountable set of atoms and sets equipped with
swapping actions all of whose elements have countable support. More concretely,
we get a model M by taking [[A]]M to be an uncountable set, the set R of real
numbers say; taking [[N ]]M to be a countable subset of this set, the set N of
natural numbers say; and taking [[D]]M to be the set RN of all functions from
N to R (all such functions are countably supported). The interpretation of the
function symbols o, s and f are respectively zero, successor (n 7→ n + 1) and
the evaluation function RN × N −→ R (d, n 7→ d(n)). The interpretation of the
swapping operation for sort A is as in equation (22) (i.e. (r r ′) ·R r′′ = (r r′)r′′ for
all r, r′, r′′ ∈ R); for sort N , swapping is trivial (i.e. (r r′) ·N n = n for all r, r′ ∈ R

and n ∈ N); and for sort D, it is given by (r r′) ·RN d = λn ∈ N.(r r′) ·R d(n). The
interpretation of the freshness predicate for sort A is 6=; for sort N , it is trivial
(i.e. r � n holds for all r ∈ R and n ∈ N); and for sort D, r � d holds if and
only if r 6= d(n) for all n ∈ N. With these definitions one can check that all the
axioms are satisfied. However (29) is not satisfied, because the inclusion of N into
R gives an element d ∈ RN = [[D]]M for which n 7→ [[f ]]M (d, n) is injective. ut

Even though there is this incompleteness, it appears that the axioms of Nom-
inal Logic are sufficient for a useful theory of names and name-binding along the
lines of [11, 9]. The following sections give some evidence for this claim.

5 The Freshness Quantifier

We begin by proving within Nominal Logic the characteristic ‘some/any’ prop-
erty of fresh atoms (cf. [11, Proposition 4.10]).

Proposition 5.1. Suppose ϕ is a formula with free variables amongst a : A, ~x :
~S (with A a sort of atoms). Then

(∃a : A) a � ~x ∧ ϕ(a, ~x) ⇔ (∀a : A) a � ~x ⇒ ϕ(a, ~x) (30)

is provable in Nominal Logic.
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Proof. If ϕ(a, ~x) holds, then by Proposition 4.1 and axiom S3 we also have
ϕ(a′, (a a′) · ~x); so if a � ~x and a′ � ~x, then axiom F1 gives ϕ(a′, ~x). Thus we
have the left-to-right implication in (30).

Conversely suppose (∀a : A) a � ~x ⇒ ϕ(a, ~x) holds. For any ~x : ~S, using
axiom F4 we can find a : A such that a � ~x and hence also satisfying ϕ(a, ~x).

ut

This property of freshness crops up frequently in proofs about syntax with
named bound variables (see [19] for example): we choose some fresh name with a
certain property and later on, in a wider context, we have to revise the choice to
accommodate finitely many more constraints and so need to know that we could
have chosen any fresh name with that property. For this reason it is convenient
to introduce a notation that tells us we have this ‘some/any’ property without
mentioning the context of free variables ~x explicitly. (Note that (30) holds for
any list ~x so long as it contains the free variables of ϕ other than the atom a
being quantified over.

Definition 5.2 ( 	 -quantifier). For each formula ϕ and each variable a : A
(with A a sort of atoms), define

( 	 a : A) ϕ , (∃a : A) a � ~x ∧ ϕ(a, ~x) (31)

where ~x is the list of free variables of ϕ not equal to the variable a. (There is no
requirement that a actually occur free in ϕ.)

We could have formulated Nominal Logic with the 	 -quantifier as a primitive
and the freshness predicate defined from it, since it is not hard to prove from
the above definition and the axioms of Nominal Logic that

a � x ⇔ ( 	 a′ : A) (a a′) · x = x (32)

holds. When taken as primitive, the axioms for 	 can be derived from the proof
rules mentioned in [10, Remark 3.6]. Here we have chosen the presentation with
� as primitive to emphasise that Nominal Logic is just a theory within usual
first-order logic.

Further evidence of the naturalness of the 	 -quantifier is the fact that, in the
semantics given in Sect. 3, it coincides with a cofiniteness quantifier: ( 	 a : A) ϕ
holds in the nominal sets interpretation if and only if ϕ(a) holds for all but finitely
many atoms a. See [9] for the development of the properties and applications of
the 	 -quantifier within the setting of FM-set theory.

Example 5.3 (λ-Terms mod α-equivalence, version 2). We can simplify
some of the axioms of the theory in Example 3.1 using the 	 -quantifier. Specifi-
cally, axiom (13) explaining equality of λ-abstractions is equivalent to

(∀a, a′ : Var) (∀t, t′ : Term) lam(a, t) = lam(a′, t′) ⇔
( 	 a′′ : Var) (a′′ a) · t = (a′′ a′) · t′

(33)
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(cf. [11, Lemma 5.1]); axiom (14), which is the structural induction principle for
α-equivalence classes of λ-terms, can be reformulated as follows (with the extra
free variables in ϕ now implicit):

(∀a : Var) ϕ(var (a))
∧ (∀t, t′ : Term) ϕ(t) ∧ ϕ(t′) ⇒ ϕ(app(t, t′))
∧ ( 
 a : Var)(∀t : Term) ϕ(t) ⇒ ϕ(lam(a, t))
⇒ (∀t : Term) ϕ(t)

(34)

Finally axiom (18), which is the clause for λ-abstractions in the structurally
recursive definition of capture-avoiding substitution, can be replaced by

(∀t : Term)(∀a : Var) ( 
 a′ : Var)(∀t′ : Term)
subst(t, a, lam(a′, t′)) = lam(a′, subst(t, a, t′)).

(35)

The following result is the Nominal Logic version of [11, Lemma 6.3], which
is used in that paper to introduce notation for ‘locally fresh atoms’ in FM-set
theory. (We discuss extending the term language of Nominal Logic in Sect. 7.)

Proposition 5.4. Suppose that t is a term of sort S with free variables amongst
a : A, ~x : ~S (with A a sort of atoms). Then the following is a theorem of Nominal
Logic:

(∀~x : ~S) (( 
 a : A) a � t(a, ~x)) ⇒
(∃!x : S)(∀a′ : A) a′ � ~x ⇒ x = t(a′, ~x)

(36)

(where ∃! means ‘there exists a unique . . . ’ and has the usual encoding in first-
order logic).

Proof. Suppose ( 
 a : A) a � t(a, ~x). So there is some a : A with a � ~x and
a � t(a, ~x). Put x = t(a, ~x). Clearly, if x has the property (∀a′ : A) a′ � ~x ⇒
x = t(a′, ~x), it is the unique such (since by axiom F4 there is some a′ with
a′ � ~x). To see that it does have this property, suppose a′ : A satisfies a′ � ~x.
Since we want to show that x = t(a′, ~x), if a′ = a then we are done. So suppose
¬ a′ = a; thus a′ � a (by axiom F2) and hence a′ � t(a, ~x) by Proposition 4.3.
Since a � t(a, ~x), we have

x , t(a, ~x) = (a a′) · t(a, ~x) by axiom F1

= t((a a′) · a, (a a′) · ~x) by Proposition 4.1

= t(a′, ~x) by axioms S3 and F1

as required. ut

6 Binding

In Example 5.3, the fact that lam is a variable-binding operation is reflected in
axiom (33), which explains equality of terms of the form lam(a, t) via a swapping
formulation of α-conversion (cf. [11, Sect. 2]). Instead of axiomatising binders on
a case-by-case basis, we can make a definitional extension of Nominal Logic with
a new sort-forming operation for atom-abstraction whose intended interpretation
is the following construction on nominal sets.
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Definition 6.1 (Nominal set of atom-abstractions). Given a nominal set
X and a nominal set of atoms An (cf. Definition 3.4), the nominal set of atom-
abstractions [An]X is defined as follows.

Underlying set |[An]X | is the set of equivalence classes for the equivalence
relation on An×|X | that relates (a, x) and (a′, x′) if and only if (a′′ a) ·X x =
(a′′ a′) ·X x′ for some (or indeed any) a′′ ∈ An such that a′′ /∈ suppX(x) ∪
suppX(x′)∪ {a, a′}. We write a.x for the equivalence class of the pair (a, x).

Swapping action is inherited from that for the product An × X :

(b b′) ·[An]X (a.x) , a′.x′ where a′ = (b b′)a and x′ = (b b′) ·X x.

With these definitions one can check that the requirements of Definition 3.2
are satisfied (in particular the support of a.x turns out to be the finite set
suppX(x) − {a}; cf. Proposition 6.2).

See [11, 9] for the use of this notion of atom-abstraction to treat syntax
modulo α-equivalence as inductively defined sets (with useful associated struc-
tural induction/recursion principles) within the Fraenkel-Mostowski permuta-
tion model of set theory. Here we observe that the notion is definable within
Nominal Logic. The situation is analogous to the fact that cartesian products
are definable within ordinary first-order logic: given sorts S1, S2 and S, there is
a first-order theory in all of whose models the interpretation of S is isomorphic
to the cartesian product of the interpretations of S1 and S2. Indeed there are
several such theories; for example, take a function symbol pair : S1, S2 −→ S
and axioms

(∀x1, x
′
1 : S1) (∀x2, x

′
2 : S2) pair (x1, x2) = pair (x′

1, x
′
2) ⇒

(x1 = x′
1) ∧ (x2 = x′

2)
(37)

(∀x : S)(∃x1 : S1)(∃x2 : S2) x = pair (x1, x2). (38)

Within Nominal Logic there is a similar definability result for atom-abstraction
sets. Given sorts A, S and S ′ (with A a sort of atoms), and a function symbol
abs : A, S −→ S′, the axioms

(∀a, a′ : A) (∀x, x′ : S) abs(a, x) = abs(a′, x′) ⇔
( � a′′ : A) (a′′ a) · x = (a′′ a′) · x′

(39)

(∀x′ : S′)(∃a : A)(∃x : S) x′ = abs(a, x) (40)

ensure that in the semantics of Sect. 3, the interpretation of S ′ is isomorphic to
[An]X , where An and X are the nominal sets interpreting A and S respectively.

Figure 2 gives an extension of Nominal Logic with atom-abstractions. Ax-
iom E5 ensures that we still have the crucial equivariance properties of Propo-
sition 4.1 for the extended syntax (and hence also the freshness property of
Proposition 4.3). For axiom A1 we have chosen an equivalent formulation of
(39) avoiding the use of the freshness quantifier; as we noted above, this to-
gether with axiom A2 determine the meaning of [A]S and a.s in the category
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Add to the syntax of Nominal Logic as follows.

– For each sort of atoms A and each sort S, there is a sort of data [A]S, called the
sort of A-atom-abstractions of S.

– For each sort of atoms A and each sort S there is a distinguished function symbol
of arity A,S −→ [A]S whose effect on terms a : A, and s : S we write as the term
a.s and pronounce ‘abstract a in s’.

Add to the axioms of Nominal Logic the following.

E5 (∀b, b′ : A′)(∀a : A)(∀x : S) (b b′) 
 (a.x) = ((b b′) 
 a).((b b′) 
 x)
A1 (∀a, a′ : A)(∀x, x′ : S) a.x = a′.x′ ⇔ (a = a′ ∧ x = x′) ∨ (a′ � x ∧ x′ = (aa′) 
 x)
A2 (∀y : [A]S)(∃a : A)(∃x : S) y = a.x

Fig. 2. Nominal Logic with atom-abstractions

Nom up to isomorphism. For this reason, the following characterisation of fresh-
ness for atom-abstractions is a theorem of the extended Nominal Logic, rather
than one of its axioms.

Proposition 6.2. If A and A′ are distinct sorts of atoms and S is any sort,
then the following formulas are provable in Nominal Logic extended as in Fig. 2.

(∀a, a′ : A)(∀x : S) a′ � a.x ⇔ a′ = a ∨ a′ � x (41)

(∀a : A)(∀a′ : A′)(∀x : S) a′ � a.x ⇔ a′ � x (42)

Proof. In view of axioms F2 and F3, it suffices to prove

(∀a : A)(∀x : S) a � a.x (43)

(∀a : A)(∀a′ : A′)(∀x : S) a′ � x ⇒ a′ � a.x (44)

(∀a : A)(∀a′ : A′)(∀x : S) a′ � a ∧ a′ � a.x ⇒ a′ � x (45)

for all sorts of atoms A and A′ (possibly equal).
For (43), given a : A and x : S, by axiom F4 we can find a′ : A with a′ � a.x

and hence

a = (a a′) · a′ by axioms S2 and S3
� (a a′) · (a.x) by axiom E2 on a′ � a.x

= a′.((a a′) · x) by axioms E5 and S3

= a.x by axiom A1.

For (44), given a : A, a′ : A′ and x : S with a′ � x, we argue by cases
according to whether A and A′ are the same and whether a′ = a or not. If the
sorts are the same and a′ = a, then we have a′ � a.x by (43); in the other
three cases we always have a′ � a (using axioms F2 and F3); so since a′ � a
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and a′ � x, we have a′ � a.x by Proposition 4.3 (which holds for the extended
syntax by virtue of axiom E5).

For (45), given a : A, a′ : A′ and x : S with a′ � a and a′ � a.x, by axiom
F4 we can find a′′ : A′ with a′′ � a, a′′ � x and a′′ � a.x. Then

a.x = (a′ a′′) · a.x by axiom F1

= ((a′ a′′) · a).(a′ a′′) · x) by axiom E5

= a.((a′ a′′) · x) by axiom F1

and hence x = (a′ a′′) · x by axiom A1. Since a′′ � x, we get a′ = (a′ a′′) · a′′ �
(a′ a′′) · x = x, as required. ut

Example 6.3 (λ-Terms mod α-equivalence, version 3). We can reformu-
late Example 5.3 to use atom-abstractions by changing the arity of lam to be
[Var ]Term −→ Term. At the same time, axiom (33) is replaced by a simple
injectivity requirement like axioms (11) and (12):

(∀y, y′ : [Var ]Term) lam(y) = lam(y′) ⇒ y = y′. (46)

Similarly the disjointness axioms (8) and (9) are replaced by

(∀a : Var)(∀y : [Var ]Term) ¬ var (a) = lam(y) (47)

(∀y : [Var ]Term)(∀t, t′ : Term) ¬ lam(y) = app(t, t′) (48)

and the exhaustion axiom (10) by

(∀t : Term) (∃a : Var) t = var(a)
∨ (∃t′, t′′ : Term) t = app(t′, t′′)
∨ (∃y : [Var ]Term) t = lam(y).

(49)

The other axioms alter in straightforward ways to take account of the new arity
of lam .

The following result is needed in the next section. It shows that atom-
abstraction sorts [A]X have a dual nature: their elements a.x embody not only
the notion of abstraction as a ‘(bound variable, body)-pair modulo renaming the
bound variable’, but also the notion of abstraction as a function (albeit a partial
one) from atoms to individuals.

Proposition 6.4. The following formula is provable in Nominal Logic extended
as in Fig. 2.

(∀y : [A]S)(∀a : A) a � y ⇒ (∃!x : S) y = a.x (50)

(where ∃! means ‘there exists a unique . . . ’ and has the usual encoding in first-
order logic).

Proof. The uniqueness part of (50) follows from

(∀a : A)(∀x, x′ : S) a.x = a.x′ ⇒ x = x′
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which is a corollary of axioms A1 and S1. For the existence part of (50), note
that by Proposition 5.1

(∀y : [A]S)(∀a : A) a � y ⇒ (∃x : S) y = a.x

holds if and only if

(∀y : [A]S)(∃a : A) a � y ∧ (∃x : S) y = a.x

and the latter follows from axiom A2 and Proposition 6.2 (specifically, prop-
erty (43)). ut

7 Choice

In informal arguments about syntax one often says things like ‘choose a fresh
name such that . . . ’. Axiom F4 in Fig. 1 ensures that we can comply with such
directives for Nominal Logic’s formalisation of freshness. But it is important
to note that in nominal Logic such choices cannot be made uniformly in the
parameters : it is in general inconsistent with the other axioms to Skolemize F4
by adding function symbols fresh : ~S −→ A satisfying (∀~x : ~S) fresh(~x) � ~x.
Here is the simplest possible example of this phenomenon.

Proposition 7.1. Suppose A is a sort of atoms. The formula

(∀a : A)(∃a′ : A) ¬ a = a′ (51)

is a theorem of Nominal Logic. However, it is inconsistent to assume there is a
function that, for each atom, picks out an atom different from it; in other words
the Nominal Logic theory with a function symbol f : A −→ A and the axiom

(∀a : A) ¬ a = f(a) (52)

is inconsistent.

Proof. The formula (51) is an immediate consequence of axioms F2 and F4. For
the second part we show that (∃a : A) a = f(a) is a theorem. First note that by
axiom F4 (with the empty list of parameters ~x), there is an atom a of sort A.2

We show that a = f(a). For any a′ : A, by Proposition 4.3 we have a′ � a ⇒
a′ � f(a), i.e. (by axiom F2) ¬ a′ = a ⇒ ¬ a′ = f(a), i.e. a′ = f(a) ⇒ a′ = a.
Taking a′ to be f(a), we get f(a) = a. ut

This phenomenon is a reflection of the fact that the category Nom of nominal
sets fails to satisfy the Axiom of Choice (see [8] for a categorical treatment of
choice), which in turn reflects the fact that, by design, the Axiom of Choice

2 The reader can deduce at this point that the author, being of a category-theoretic
bent, is not assuming a formulation of first-order logic that entails that all sorts are
non-empty. Possibly empty sorts, like the empty set, have their uses!



238 Andrew Pitts

fails to hold in the Fraenkel-Mostowski permutation model of set theory [17].
However, there is no problem with principles of unique choice. For example, if a
Nominal Logic theory has a model in Nom satisfying the sentence

(∀~x : ~S)(∃!x′ : S′) ϕ(~x, x′) (53)

then the theory extended by a function symbol f : ~S −→ S′ and axiom

(∀~x : ~S) ϕ(~x, f(~x)) (54)

can also be modelled in Nom (simply because in a cartesian category any sub-
object satisfying the properties of a single-valued and total relation is the graph
of some morphism). Unfortunately a far more common situation than (53) is to
have ‘conditional unique existence’:

(∀~x : ~S) δ(~x) ⇒ (∃!x′ : S′) ϕ(~x, x′) (55)

so that ϕ(~x, x′) is the graph of a partial function with domain of definition given
by δ(~x)—we have already seen two examples of this, in Propositions 5.4 and 6.4.
If the formula (55) is a theorem of a Nominal Logic theory, adding a function

symbol f : ~S −→ S′ and axiom

(∀~x : ~S) δ(~x) ⇒ ϕ(~x, f(~x)) (56)

can result in an inconsistent theory. This is because f represents a total function
from ~S to S′. Given terms ~s : ~S, even if δ(~s) does not hold and so (56) cannot
be used to deduce properties of the term f(~s) : S ′, nevertheless one may be able
to use results such as Proposition 4.3 to deduce properties of f(~s) : S ′ that lead
to inconsistency, especially if S ′ happens to be a sort of atoms. The simplest
possible example of this phenomenon is when ~S is the empty list of sorts and δ
is false . In this case formula (55) is trivially a theorem; the Skolemizing function
f is a constant of sort S ′, so if that is a sort of atoms we get inconsistency by
Corollary 4.4.

This difficulty with introducing notations for possibly partially defined ex-
pressions is masked in [10] by the untyped nature of FM-set theory.3 That
work introduces term-formers for locally fresh atoms and for concretion of atom-
abstractions at atoms, Skolemizing the conditional unique existence formulas of
Propositions 5.4 and 6.4. These new forms of term only have a definite meaning
when certain preconditions are met. Nevertheless they can be given a semantics
as total elements of the universe of FM-sets simply by taking their meaning when
the preconditions are not met to be some default element with empty support
(the empty set, say). Such a ‘hack’ is available to us in classical logic when there
are enough terms of empty support. One such term is enough in an untyped

3 It is also masked in the programming language FreshML sketched in [24], which has
a richer term language than does Nominal Logic; this is because FreshML features
unrestricted fixed point recursion in order to be Turing powerful, and hence naturally
contains partially defined expressions.
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setting such as FM-set theory. In a many-sorted Nominal Logic theory there is
nothing to guarantee that a sort S possesses a term s : S of empty support
(i.e. satisfying (∀a : A) a � s for all sorts of atoms A); indeed Corollary 4.4
shows that sorts of atoms do not possess such terms in a consistent theory.
Therefore, to provide Nominal Logic with a richer term language, incorporating
such things as terms with locally fresh atoms, concretions of atom-abstractions at
atoms and maybe more besides, it seems that one should merge Nominal Logic’s
novel treatment of atoms and freshness with some conventional treatment of the
logic of partial expressions (such as [1, Sect. VI.1] or [26]).

8 Related Work

One can classify work on fully formal treatments of names and binding according
to the mathematical construct used to model the notion of an abstraction over
names:

Abstractions as (name, term)-pairs. Here one tries to work directly with
parse trees quotiented by alpha conversion; [19] and [27] are examples of this
approach. Its drawback is not so much that many tedious details left implicit
by informal practice become explicit, but rather that many of these details
have to be revisited on a case-by-case basis for each object language. The use
of parse trees containing de Bruijn indices [5] is more elegant; but this has
its own complications and also side-steps the issue of formalising informal
practice to do with named bound variables.

Abstractions as functions from terms to terms. The desire to take care
of the tedious details of α-conversion and substitution once and for all at
the meta-level leads naturally to encodings of object-level syntax in a typed
λ-calculus. This is the approach of higher-order abstract syntax [22] and it
is well-supported by existing systems for machine-assisted reasoning based
on typed λ-calculus. It does not lend itself to principles of structural re-
cursion and induction for the encoded object-language that are particularly
straightforward, but such principles have been developed: see [6, 25].

Abstractions as functions from names to terms. The Theory of Contexts
[15] reconciles the elegance of higher-order abstract syntax with the desire
to deal with names at the object-level and have relatively simple forms of
structural recursion/induction. It does so by axiomatizing a suitable type of
names within classical higher order logic. The Theory of Contexts involves
a ‘non-occurrence’ predicate and axioms quite similar to those for fresh-
ness in FM-set theory [11] and Nominal Logic. However, ‘non-occurrence’
in [15] is dependent upon the object language, whereas our notion of fresh-
ness is a purely logical property, independent of any particular object syntax.
(The same remark applies to the axiomatization of α-conversion of λ-terms
in higher order logic in [12]; and to the extension of first-order logic with
binders studied in [7].) Furthermore, the use of total functions on names to
model abstraction means that the Theory of Contexts is incompatible with
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the Axiom of Unique Choice (cf. Sect. 7), forcing the theory to have a rela-
tional rather than functional feel: see [20]. On the other hand, the Theory of
Contexts is able to take advantage of existing machine-assisted infrastruc-
ture (namely Coq [4]) quite easily, whereas Gabbay had to work hard to
adapt the Isabelle [21] set theory package to produce his Isabelle/FM-sets
package [9, Chapter III].

The notion of abstraction that is definable within Nominal Logic (see Sect. 6)
captures something of the first and third approaches mentioned above: atom-
abstractions are defined to be pairs in which the name-component has been made
anonymous via swapping; but we saw in Proposition 6.4 that atom-abstractions
also behave like functions, albeit partial ones. Whatever the pros and cons of the
various views of name abstraction, at least one can say that, being first-order,
Nominal Logic gives a more elementary explanation of names and binding than
the work mentioned above; and a more general one, I would claim, because of the
independence of the notions of atoms, swapping, freshness and atom-abstraction
from any particular object-level syntax.

Nominal Logic gives a first-order axiomatisation of some of the key concepts
of FM-set theory—atoms, swapping and freshness—which were used in [11] to
model syntax modulo α-conversion with inductively defined sets whose structural
induction/recursion properties remain close to informal practice. We have seen
that, being first-order, Nominal Logic does not give a complete axiomatisation
of the notion of finite support that underlies the notion of freshness in FM-sets.
Nevertheless, the first-order properties of the freshness predicate (−) � (−)
seem sufficient to develop a useful theory. Indeed, many of the axioms in Fig. 1
arose naturally in Gabbay’s implementation of FM-set theory in the Isabelle
system [9, Chapter III] as the practically useful properties of finite support.
Nominal Logic is just a vehicle for exhibiting those properties clearly. If one
wants a single, expressive meta-logic in which to develop the mathematics of
syntax, one can use FM-set theory (and its automated support within Isabelle);
it is certainly also worth considering developing a version of classical higher order
logic incorporating Nominal Logic.

Finally, even if one does not care about the details of Nominal Logic, I think
that two simple, but important ideas underlying it are worth taking on board
for the practice of operational semantics (be it with pencil-and-paper, or with
machine assistance):

– Name-swapping (a a′) · (−) has much nicer logical properties than renaming
[a/a′](−).

– The only assertions about syntax we should deal with are ones whose validity
is invariant under swapping bindable names.

Even if one only takes the näıve view of abstractions as (name, term)-pairs, it
seems useful to define α-conversion and capture-avoiding substitution in terms of
name-swapping and to take account of equivariance in inductive arguments. We
gave a small illustration of this in Example 2.1. A further example is provided
by the work of Caires and Cardelli on modal logic for the spatial structure of
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concurrent systems [2]; this and the related work [3] make use of the freshness
quantifier of Sect. 5. See also [14] for the use of permutative renaming to treat
naming aspects of process calculi.
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