
Generative Unbinding of Names

Andrew M. Pitts ∗

University of Cambridge Computer Laboratory
Andrew.Pitts@cl.cam.ac.uk

Mark R. Shinwell
CodeSourcery, Ltd

shinwell@codesourcery.com

Abstract
This paper is concerned with a programming language construct
for typed name binding that enforces α-equivalence. It proves a
new result about what operations on names can co-exist with this
construct. The particular form of typed name binding studied is
that used by the FreshML family of languages. Its characteris-
tic feature is that a name binding is represented by an abstract
(name,value)-pair that may only be deconstructed via the genera-
tion of fresh bound names. In FreshML the only observation one
can make of names is to test whether or not they are equal. This
restricted amount of observation was thought necessary to ensure
that there is no observable difference between α-equivalent name
binders. Yet from an algorithmic point of view it would be desir-
able to allow other operations and relations on names, such as a
total ordering. This paper shows that, contrary to expectations, one
may add not just ordering, but almost any relation or numerical
function on names without disturbing the fundamental correctness
result about this form of typed name binding (that object-level α-
equivalence precisely corresponds to contextual equivalence at the
programming meta-level), so long as one takes the state of dynam-
ically created names into account.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Operational semantics

General Terms Languages, Theory

Keywords Abstract syntax, binders, alpha-conversion, meta-pro-
gramming

1. Introduction
FreshML and the language systems that it has inspired provide
some user friendly facilities within the context of strongly typed
functional programming for computing with syntactical data struc-
tures involving names and name binding. The underlying theory
was presented in [20, 26] and has been realised in the Fresh patch
of Objective Caml [24]. FreshML has also inspired Pottier’s Cαml
tool [21] for Objective Caml and Cheney’s FreshLib library [3]

∗ Research supported by UK EPSRC grant EP/D000459/1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

type atm
type α bnd
val fresh : unit → atm
val bind : atm ∗ α → α bnd
val unbind : α bnd → atm ∗ α
val (=) : atm → atm → bool

Figure 1. A signature for name binding.

for Haskell. The approach taken to binding in all these works is
“nominal” in that the user is given access to the names of bound
entities and can write syntax manipulating programs that follow
the informal practice of referring to α-equivalence classes of terms
via representatives. However, in FreshML the means of access to
bound names is carefully controlled by the type system. It has been
shown [23, 25] that its static and dynamic properties combine to
guarantee a certain “correctness of representation” property: data
structures representing α-equivalent syntactical terms (that is, ones
differing only in the names of bound entities) always behave the
same in any program. So even though programs can name names,
as it were, α-equivalence of name bindings is taken care of auto-
matically by the programming language design.

Of course such a correctness of representation property depends
rather delicately upon which operations on bound names are al-
lowed. At the heart of this approach to binding is an operation that
we call generative unbinding. To explain what it involves, consider
a simplified version of Fresh Objective Caml with a single type atm
of bindable names and a parametric family of types α bnd classify-
ing abstractions of single names over values of type α. To explain:
both atm and α bnd are abstract types that come with the signa-
ture of operations shown in Figure 1. The closed values of type
atm are drawn from a countably infinite set A of symbols that we
call atoms. Programs only get access to atoms by evaluating the ex-
pression fresh() to get a fresh one; and hence program execution
depends upon a state recording the atoms that have been created
so far. Given a type τ , closed values of type τ bnd are called atom
bindings and are given by pairs 〈〈a〉〉v consisting of an atom a : atm
and a closed value v : τ . Atom bindings are constructed by evalu-
ating bind(a , v). Fresh Objective Caml provides a very convenient
form of generative pattern matching for deconstructing atom bind-
ings. To keep things simple, here we will consider an equivalent
mechanism for deconstructing atom binding via an unbind func-
tion carrying out generative unbinding: unbind 〈〈a〉〉v evaluates by
first evaluating fresh() to obtain a fresh atom a′ and then return-
ing the pair (a′ , v{a′/a}), where in general v{a′/a} denotes the
value obtained from v by renaming all occurrences of a to be a′.
The instance of renaming that arises when evaluating unbind 〈〈a〉〉v
is special: the fresh atom a′ does not occur in v and so v{a′/a} is
equivalent to the result of applying to v the semantically better be-
haved operation of swapping a and a′. Implementing such an atom

85

swapping operation on all types of values is the main extension that
the Fresh patch makes to Objective Caml. A language extension is
not needed if users define atom swapping themselves, on a case-
by-case basis; this more limited approach is quite workable in the
presence of Haskell-style type classes—see [3].

The type α bnd is used in data type declarations in the argument
type of value constructors representing binders. To take a familiar
example, the terms of the untyped λ-calculus (all terms, whether
open or closed, with variables given by atoms a ∈ A)

t ::= a | λa.t | t t

can be represented by closed values of the type term given by the
declaration

type term = V of atm
| L of term bnd
| A of term ∗ term .

(1)

The value �t� : term representing a λ-term t is defined by

�a� � V a

�λa.t� � L 〈〈a〉〉�t�
�t1 t2� � A(�t1� , �t2�)

(2)

and satisfies:

Correctness of Representation: two λ-terms are α-equi-
valent, t1 =α t2, iff �t1� and �t2� are contextually equiva-
lent closed values of type term, i.e. can be used interchange-
ably in any well-typed Fresh Objective Caml program with-
out affecting the observable results of program execution.

Since it is also the case that every closed value of type term is of the
form �t� for some λ-term t, it follows that there is a bijection be-
tween α-equivalence classes of λ-terms and contextual equivalence
classes of closed values of type term. The Correctness property is
not easy to prove because of the nature of contextual equivalence,
with its quantification over all possible program contexts. It was
established in [23, 25] using denotational methods that take permu-
tations of atoms into account. The same methods can be used to
generalise from the example of λ-terms to terms over any nominal
signature in the sense of [29].

Contribution of this paper. For the signature in Figure 1, the
only operation on atoms apart from bind is a test for equality:
a = a′ evaluates to true if a and a′ are the same atom and to false
otherwise. Adding extra operations and relations for atoms may
well change which program phrases are contextually equivalent.
Is it possible to have some relations or operations on atoms in
addition to equality without invalidating the above Correctness
property? For example it would be very useful to have a linear order
(<) : atm→atm→bool, so that values of type atm could be used
as keys in efficient data structures for finite maps and the like. We
show that this is possible, and more. This is a rather unexpected
result, for the following reason.

The proof of the Correctness property given in [23, 25] relies
upon equivariant properties of the semantics, in other words ones
whose truth is invariant under permuting atoms. Atom equality is
equivariant: since a permutation is in particular bijective, it pre-
serves and reflects the value of a = a′. At first it seems that a linear
order on atoms cannot be equivariant, since if a < a′ is true, then
applying the permutation swapping a and a′ we get a′ < a, which
is false. However, equivariance is a global property: when consid-
ering invariance of the truth of a property under permutations, it is
crucial to take into account all the parameters upon which the prop-
erty depends. Here there is a hidden parameter: the current state of
dynamically created atoms. So we should permute the atoms in this
state as well as the arguments of the relation. We shall see that it

Variables f, x ∈ V countably infinite set (fixed)
Atoms a ∈ A countably infinite set (fixed)
Data types δ ∈ D finite set (variable)
Constructors C ∈ C finite set (variable)
Observations obs ∈ O finite set (variable)

Values v ∈ Val ::=
variable x

unit ()
pair (v , v)

recursive function fun(f x = e)
data construction C v

atom a
atom binding 〈〈v〉〉v

Expressions e ∈ Exp ::=
value v

sequencing let x = e in e
first projection fst v

second projection snd v
function application v v
data deconstruction match v with (C x → e | · · ·)

fresh atom fresh()
generative unbinding unbind v

atom observation obs v · · · v
Frame stacks S ∈ Stk ::=

empty Id
non-empty S ◦ (x.e)

States �a ∈ State � finite lists of distinct atoms
Machine configurations 〈�a, S, e〉
Types τ ∈ Typ ::=

unit unit
pairs τ ∗ τ

functions τ → τ
data type δ

atoms atm
atom bindings τ bnd

Typing environments Γ ∈ V
fin→ Typ

Typing judgements
expressions & values Γ � e : τ

frame stacks Γ � S : τ → τ ′

Initial basis
natural numbers nat ∈ D

zero (Zero : unit → nat) ∈ C
successor (Succ : nat → nat) ∈ C

atom equality eq ∈ O (arity = 2)

Figure 2. Language syntax.

is perfectly possible to have a state-dependent equivariant order-
ing for the type atm without invalidating the Correctness property.
Indeed we prove that one can add any n-ary function from atm
to numbers (or to booleans, for that matter) whose semantics is
reasonable,1 without invalidating the Correctness property for any
nominal signature.

We have to work quite hard to get this result, which generalises
the one announced in [26] (with a flawed proof sketch) and finally
proved in [25, 23]; but whereas those works use denotational tech-
niques, here we use an arguably more direct approach based on the
operational semantics of the language. Along the way to the main
result (Theorem 14) we prove a Mason-Talcott-style “CIU” [12]
characterisation of contextual equivalence for our language (The-

1 We explain what is reasonable in Section 3.

86

orem 10). This is proved using Howe’s method [10] applied to a
formulation of the operational semantics with Felleisen-style eval-
uation contexts [4], via an abstract machine with frame stacks [16].
We also prove “extensionality” laws for the atom binding type con-
struction α bnd (Propositions 16 and 19). The proof technique un-
derlying our work is rule based induction, but with the novel twist
that we exploit semantic properties of freshness of names that are
based on the use of name permutations and that were introduced in
[6] and developed in [17, 28, 19].

2. Generative Unbinding
We use a version of FreshML that provides the signature in Figure 1
in the presence of higher order recursively defined functions on user
declared data structures. Its syntax is given in Figure 2. As usual,

fun(f x = −)
let x = e in −
match v with (C x →− | · · ·)
S ◦ (x.−)

are all variable-binding constructs and we identify expressions and
frame stacks up to renaming of bound variables. As well as vari-
ables (standing for unknown values), the language’s expressions
and frame stacks may contain atoms drawn from a fixed, count-
ably infinite set A. As discussed in the introduction, atoms are used
in FreshML to represent names in object-level languages. Note
that even though there are variable-binding constructs in FreshML,
none of the language constructs in Figure 1 involve binding atoms.
So we do not identify expressions up to renaming atoms; for exam-
ple, if a 	= a′, then 〈〈a〉〉(C a) and 〈〈a′〉〉(C a′) are different expres-
sions (that turn out to be contextually equivalent). We write

atom(e) (3)

for the finite set of atoms that occur anywhere in the expression e.
The same notation atom(−) is used for the finite set of atoms in
a frame stack and, more generally, in a finite list of expressions,
frame stacks, atoms, and so on.

The language defined in Figure 1 is parameterised by the choice
of a finite set O of function symbols (that we call observations on
atoms and whose role is discussed below), by a finite set D of data
type symbols, and by a finite set C of constructor symbols. Each
constructor C ∈ C is assumed to come with a type, C : τ → δ,
where τ ∈ Typ and δ ∈ D. The choice of D, C and this typing
information constitutes an ML-style top-level declaration of some
(possibly mutually recursive) data types:

type δ1 = C1,1 of τ1,1 | · · · | C1,n1 of τ1,n1

...
and δm = Cm,1 of τm,1 | · · · | Cm,nm of τm,nm .

(4)

Here δi (for i = 1..m) are the distinct elements of the set D of data
type symbols and Ci,j (for i = 1..m and j = 1..ni) are the distinct
elements of the set C of constructor symbols. The above declaration
just records the typing information C : τ → δ that comes with each
constructor, grouped by result types: δi appears as the result type of
precisely the constructors Ci,1, . . . , Ci,ni and their argument types
are τi,1, . . . , τi,ni . For the moment we place no restriction on these
types τi,j : they can be any element of the set Typ whose grammar
is given in Figure 2. However, when we consider representation of
object-level languages up to α-equivalence in Section 5, we will
restrict attention to top-level data type declarations where the types
τi,j do not involve function types.

We consider observations on atoms that return natural num-
bers.2 So we assume D always contains a distinguished data type

2 The effect of admitting some other types of operation on atoms is dis-
cussed in Section 6.2.

Γ(x) = τ

Γ � x : τ Γ � () : unit

Γ � v1 : τ1 Γ � v2 : τ2

Γ � (v1 , v2) : τ1 ∗ τ2

Γ, f : τ → τ ′, x : τ � e : τ ′

Γ � fun(f x = e) : τ → τ ′
C : τ → δ Γ � v : τ

Γ � C v : δ

a ∈ A

Γ � a : atm

Γ � v1 : atm Γ � v2 : τ

Γ � 〈〈v1〉〉v2 : τ bnd

Γ � e : τ Γ, x : τ � e′ : τ ′

Γ � let x = e in e′ : τ ′
Γ � v : τ1 ∗ τ2

Γ � fst v : τ1

Γ � v : τ1 ∗ τ2

Γ � snd v : τ2

Γ � v1 : τ → τ ′ Γ � v2 : τ

Γ � v1 v2 : τ ′

δ = C1 of τ1 | · · · | Cn of τn

Γ � v : δ Γ, x1 : τ1 � e1 : τ · · · Γ, xn : τn � en : τ

Γ � match v with (C1 x1 → e1 | · · · | Cn xn → en) : τ

Γ � fresh() : atm

Γ � v : τ bnd

Γ � unbind v : atm ∗ τ

arity(obs) = k Γ � v1 : atm · · · Γ � vk : atm

Γ � obs v1 . . . vk : nat

Γ � Id : τ → τ

Γ, x : τ � e : τ ′ Γ � S : τ ′ → τ ′′

Γ � S ◦ (x.e) : τ → τ ′′

Notation:

• Γ, x : τ indicates the typing environment obtained by extending
the finite partial function Γ by mapping a variable x to the type
τ (we always assume that x /∈ dom(Γ)).

• In the typing rule for match-expressions, the hypothesis “δ =
C1 of τ1 | · · · | Cn of τn” refers to the top-level data type
declaration (4); in other words, the only constructors whose
result type is δ are C1, . . . , Cn and τi is the argument type of
Ci (for i = 1..n).

Figure 3. Typing relation.

nat for the type of natural numbers and that correspondingly C con-
tains constructors Zero : unit → nat and Succ : nat → nat for
zero and successor. Each obs ∈ O denotes a numerical function on
atoms. We assume it comes with an arity, specifying the number
of arguments it takes: so if arity(obs) = k and (v1, . . . , vk) is a
k-tuple of values of type atm, then obs v1 . . . vk is an expression
of type nat. The typing of the language’s values, expressions and
frame stacks takes place in the presence of typing environments, Γ,
each assigning types to finitely many variables. The rules in Fig-
ure 3 for the inductively defined typing relation are entirely stan-
dard, given that we are following the signature in Fig 1.

As well as an arity, we assume that each obs ∈ O comes with a
specified interpretation: the form this takes is discussed in the next
section.

The expressions of the language are given in a “reduced” (or “A-
normal” [5]) form in which the order of evaluation is made explicit
through let-expressions. Hence there is a single form of frame on
the evaluation stack S in configurations 〈�a, S, e〉 of the abstract
machine that we use for defining the language’s dynamics. The
other two components of machine configurations are the state �a,

87

〈�a, S, e〉 −→ 〈�a′, S′, e′〉

1. 〈�a, S ◦ (x.e), v〉 −→ 〈�a, S, e[v/x]〉
2. 〈�a, S, let x = e1 in e2〉 −→ 〈�a, S ◦ (x.e2), e1〉
3. 〈�a, S, match C v with(· · · | C x→e | · · ·)〉 −→ 〈�a, S, e[v/x]〉
4. 〈�a, S, fst(v1 , v2)〉 −→ 〈�a, S, v1〉
5. 〈�a, S, snd(v1 , v2)〉 −→ 〈�a, S, v2〉
6. 〈�a, S, v1 v2〉 −→ 〈�a, S, e[v1, v2/f, x]〉 if v1 = fun(f x = e)

7. 〈�a, S, fresh()〉 −→ 〈�a � a′, S, a′〉 if a′ /∈ atom(�a)

8. 〈�a, S, unbind 〈〈a〉〉v〉 −→ 〈�a � a′, S, (a′ , v{a′/a})〉 if a′ /∈
atom(�a)

9. 〈�a, S, obs a1 . . . ak〉 −→ 〈�a, S, �m�〉 if arity(obs) = k,
(a1, . . . , ak) ∈ atom(�a)k and �obs��a(a1, . . . , ak) = m

Notation:

• e[v, . . . /x, . . .] is the simultaneous, capture avoiding substitu-
tion of values v, . . . for all free occurrences of the correspond-
ing variables x, . . . in the expression e;

• v{a′/a} is the result of replacing all occurrences of an atom a
by an atom a′ in the value v;

• �a � a′ is the state obtained by appending an atom a′ not in
atom(�a) to the right of the finite list of distinct atoms �a;

• �m� is the the closed value of type nat corresponding to m ∈
N: �0� � Zero() and �m + 1� � Succ �m�;

• �obs� is the meaning of obs: see Section 3.

Figure 4. Transition relation.

consisting of the finite list of distinct atoms that have been allocated
so far, and the expression e to be evaluated. The use of reduced
form is a common device to ease development of properties of the
language’s dynamics. Those dynamics are given by the transition
relation in Figure 4. The first six types of transition are all quite
standard. Transition 7 defines the dynamic allocation of a fresh
atom and transition 8 defines generative unbinding using a freshly
created atom; we discuss transition 9 for observations on atoms in
the next section. For the atom a′ in 7 to really be fresh, we need
to know that it does not occur in S; similarly, in 8 we need to
know that a′ does not occur in (S, a, v). These requirements are
met if configurations 〈�a, S, e〉 satisfy that all the atoms occurring
in the frame stack S or the expression e occur in the list �a. Using
the notation atom(−) mentioned above (3), we can write this
condition as

atom(S, e) ⊆ atom(�a) .

Theorem 2 shows that this property of configurations is invariant
under transitions, as is well-typedness. Before stating this theorem
we introduce some useful terminology.

Definition 1 (Worlds). A (possible) world w is just a finite subset
of the the fixed set A of atoms. We write World for the set of all
worlds.

In what follows we will index various relations associated with
the language we are considering by worlds w ∈ World that make
explicit the atoms involved in the relation. Sometimes (as in the
following theorem) this is a merely a matter of notational con-
venience; world-indexing will be more crucial when we consider
program equivalence: see Remark 12 below.

〈�a, S, e〉↓n 〈�a, S, e〉↓

〈�a, Id , v〉↓0

〈�a, S, e〉 −→ 〈�a′, S′, e′〉 〈�a′, S′, e′〉↓n

〈�a, S, e〉↓n+1

〈�a, S, e〉↓n

〈�a, S, e〉↓

Figure 5. Termination relations.

Theorem 2 (Type Safety). Write �w 〈�a, S, e〉 : τ to mean that
atom(S, e) ⊆ atom(�a) = w and that there is some type τ ′ with
∅ � S : τ ′ → τ and ∅ � e : τ ′. The type system has the following
properties.

Preservation: if �w 〈�a, S, e〉 : τ and 〈�a, S, e〉 −→ 〈�a′, S′, e′〉,
with atom(�a′) = w′ say, then w ⊆ w′ and �w′ 〈�a′, S′, e′〉 :
τ .

Progress: if �w 〈�a, S, e〉 : τ , then either S = Id and e ∈ Val , or
〈�a, S, e〉 −→ 〈�a′, S′, e′〉 holds for some �a′, S′ and e′.

3. Observations on Atoms
The language we are considering is parameterised by a choice of a
finite set O of numerical functions on atoms. We assume that each
obs ∈ O comes with a specified meaning �obs�. As mentioned in
the introduction, we should allow these meanings to be dependent
on the current state (the list of distinct atoms that have been created
so far). So if arity(obs) = k, for each �a ∈ State we assume given
a function �obs��a : atom(�a)k → N mapping k-tuples of atoms
occurring in the state �a to natural numbers. These functions are
used in the transitions of type 9 in Figure 4. Not every such family
(�obs��a | �a ∈ State) of functions is acceptable as an observation
on atoms: we require that the family be equivariant. To explain
what this means we need the following definition.

Definition 3 (Permutations). A finite permutation of atoms is a
bijection π from the set A of atoms onto itself such that supp(π) �
{a ∈ A | π(a) 	= a} is a finite set. We write P for the set of all
such permutations. If π ∈ P and �a ∈ State, then π · �a denotes the
finite list of distinct atoms obtained by mapping π over the list �a; if
e is an expression, then π ·e denotes the expression obtained from it
by applying π to the atoms in e; and similarly for other syntactical
structures involving finitely many atoms, such as values and frame
stacks.

We require the functions (�obs��a | �a ∈ State) associated with
each obs ∈ O to satisfy an equivariance property: for all π ∈ P,
�a ∈ State and (a1, . . . , ak) ∈ atom(�a)k (where k is the arity of
obs)

�obs��a(a1, . . . , ak) = �obs�π·�a(π(a1), . . . , π(ak)) . (5)

We impose condition (5) for the following reason. In Figure 4,
the side conditions on transitions of types 7 and 8 do not specify
which of the infinitely many atoms in A − atom(�a) should be
chosen as the fresh atom a′. Any particular implementation of
the language will make such choices in some specific way, for
example by implementing atoms as numbers and incrementing a
global counter to get the next fresh atom. We wish to work at a level
of abstraction that is independent of such implementation details.
We can do so by ensuring that we only use properties of machine
configurations 〈�a, S, e〉 that depend on the relative positions of
atoms in the list �a, rather than upon their identities. In other words,
properties should respect α-equivalence of configurations when
the state component is regarded as binding atoms in the stack

88

Equality, eq (arity = 2):

�eq��a(a, a′) �
(

0 if a = a′,
1 otherwise.

Linear order, lt (arity = 2):

�lt��a(a, a′) �
(

0 if a occurs to the left of a′ in the list �a,
1 otherwise.

Ordinal, ord (arity = 1):

�ord��a(a) � n, if a is the nth element of the list �a.

State size, card (arity = 0):

�card��a() � length of the list �a.

Figure 6. Examples of observations on atoms.

and expression components. For the reasons given in the previous
section we only use configurations that are closed in the sense
of satisfying atom(S, e) ⊆ atom(�a) (cf. Theorem 2); and α-
equivalence for such configurations relates 〈�a, S, e〉 with 〈π ·�a, π ·
S, π · e〉 for any π ∈ P. So properties of configurations should
be equivariant: if 〈�a, S, e〉 has the property, then so should 〈π ·
�a, π · S, π · e〉. The main property of configurations we need
is termination, defined in Figure 5, since as we see in the next
section this determines contextual equivalence of expressions. With
condition (5) we have:

Lemma 4. If 〈�a, S, e〉↓n, then 〈π ·�a, π ·S, π · e〉↓n for any π ∈ P.

Proof. In view of the definition of termination in Figure 5, it suf-
fices to show that the transition relation is equivariant:

〈�a, S, e〉 −→ 〈�a′, S′, e′〉 ⇒
〈π · �a, π · S, π · e〉 −→ 〈π · �a′, π · S′, π · e′〉 .

This can be proved by cases from the definition of −→ in Fig 4.
Cases 1–8 follow from general properties of the action of permu-
tations on syntactical structures (such as the fact that π · (e[v/x])
equals (π · e)[π · v/x]); case 9 uses property (5).

As a corollary we find that termination is indeed independent of
the choice of fresh atom in transitions of the form 7 or 8.

Corollary 5. If 〈�a, S, fresh〉↓n+1 with atom(S) ⊆ atom(�a), then
for all a′ /∈ atom(�a), it is the case that 〈�a � a′, S, a′〉↓n. Simi-
larly, if 〈�a, S, unbind 〈〈a〉〉v〉↓n+1 with atom(S, a, v) ⊆ atom(�a),
then for all a′ /∈ atom(�a), it is the case that 〈�a � a′, S, (a′ ,
v{a′/a})〉↓n.

There are observations on atoms that are not equivariant, that is,
whose value on some atoms in a particular state does not depend
just upon the relative position of those atoms in the state. For
example, if we fix some enumeration of the set of atoms, α : N ∼=
A, it is easy to see that the unary observation given by �obs��a(a) =
α−1(a) fails to satisfy (5). Nevertheless, there is a wide range of
functions that do have this property. Figure 6 gives some examples.
The first one, eq, combined with the usual arithmetic operations for
nat that are already definable in the language, gives us the effect
of the function (=) : atm → atm → bool from the signature in
Figure 1; so we assume that the set O of observations on atoms
always contains eq.

Γ(x) = τ

Γ �w x bE x : τ Γ �w () bE () : unit

Γ �w v1 E v′
1 : τ1 Γ �w v2 E v′

2 : τ2

Γ �w (v1 , v2) bE (v′
1 , v′

2) : τ1 ∗ τ2

Γ, f : τ → τ ′, x : τ �w e E e′ : τ ′

Γ �w fun(f x = e) bE fun(f x = e′) : τ → τ ′

C : τ → δ Γ �w v E v′ : τ

Γ �w C v bE C v′ : δ

a ∈ w

Γ �w a bE a : atm

Γ �w v1 E v′
1 : atm Γ �w v2 E v′

2 : τ

Γ �w 〈〈v1〉〉v2
bE 〈〈v′

1〉〉v′
2 : τ bnd

Γ �w e1 E e′1 : τ Γ, x : τ �w e2 E e′2 : τ ′

Γ �w let x = e1 in e2
bE let x = e′1 in e′2 : τ ′

Γ �w v E v′ : τ1 ∗ τ2

Γ �w fst v bE fst v′ : τ1

Γ �w v E v′ : τ1 ∗ τ2

Γ �w snd v bE snd v′ : τ2

Γ �w v1 E v′
1 : τ → τ ′ Γ �w v2 E v′

2 : τ

Γ �w v1 v2
bE v′

1 v′
2 : τ ′

δ = C1 of τ1 | · · · | Cn of τn Γ �w v E v′ : δ
Γ, x1 : τ1 �w e1 E e′1 : τ · · · Γ, xn : τn �w en E e′n : τ

Γ �w match v with (C1 x1 → e1 | · · · | Cn xn → en) bE
match v′ with (C1 x1 → e′1 | · · · | Cn xn → e′n) : τ

Γ �w fresh() bE fresh() : atm

Γ �w v E v′ : τ bnd

Γ �w unbind v bE unbind v′ : atm ∗ τ

arity(obs) = k Γ �w v1 E v′
1 : atm · · · Γ �w vk E v′

k : atm

Γ �w obs v1 . . . vk
bE obs v′

1 . . . v′
k : nat

Γ �w Id bE Id : τ → τ

Γ, x : τ �w e E e′ : τ ′ Γ �w S bE S′ : τ ′ → τ ′′

Γ �w S ◦ (x.e) bE S′ ◦ (x.e′) : τ → τ ′′

Figure 7. Compatible refinement bE of an expression relation E .

89

Remark 6 (Fresh Atoms Largest). Note that in the operational se-
mantics of Figure 4 we have chosen to make “fresh atoms largest”,
in the sense that the fresh atom a′ in transitions 7 and 8 is added
to the right-hand end of the list �a representing the current state.
In the presence of observations on atoms other than equality, such
a choice may well affect the properties of the notion of program
equivalence that we explore in the next section. Other choices are
possible, but to insist that program equivalence is independent of
any such choice would rule out many useful observations on atoms
(such as lt or ord in Figure 6).

4. Contextual Equivalence
We wish to prove that the language we have described satisfies
“Correctness of Representation” properties of the kind mentioned
in the introduction. To do so, we first have to be more precise about
what it means for two expressions to be contextually equivalent,
that is, to be interchangeable in any program without affecting the
observable results of executing that program. What is a program,
what does it mean to execute it, and what results of execution do
we observe? The answers we take to these questions are: programs
are closed well-typed expressions; execution means carrying out
a sequence of transitions of the abstract machine from an initial
machine configuration consisting of a state (that is, a list of atoms
containing those mentioned in the program), the empty frame stack
and the program; and we observe whether execution reaches a ter-
minal configuration, that is, one of the form 〈�a, Id , v〉. We need
only observe termination because of the language’s strict evaluation
strategy: observing any (reasonable) properties of the final value v
results in the same notion of contextual equivalence. Also, it is tech-
nically convenient to be a bit more liberal about what constitutes an
initial configuration by allowing the starting frame stack to be non-
empty: this does not change the notion of contextual equivalence
because of the correspondence between frame stacks and “evalua-
tion” contexts—see the remarks after Definition 11 below. So we
can say that e and e′ are contextually equivalent if for all program
contexts C[−], the programs C[e] and C[e′] are operationally equiv-
alent in the following sense.

Definition 7 (Operational Equivalence of Closed Expressions).
�w e ∼= e′ : τ is defined to hold if

• atom(e, e′) ⊆ w;
• ∅ � e : τ and ∅ � e′ : τ ; and
• for all �a, S and τ ′ with w ∪ atom(S) ⊆ atom(�a) and ∅ � S :

τ → τ ′, it is the case that 〈�a, S, e〉↓ ⇔ 〈�a, S, e′〉↓.

However, for the reasons given in [18, Section 7.5], we pre-
fer not to phrase the formal definition of contextual equivalence
in terms of the inconveniently concrete operation of possibly cap-
turing substitution of open expressions for the hole “−” in pro-
gram contexts C[−]. Instead we take the more abstract relational ap-
proach originally advocated by Gordon [7] and Lassen [11] which
focuses upon the key features of contextual equivalence, namely
that it is the largest congruence relation for well-typed expres-
sions that contains the relation of operational equivalence of Defi-
nition 7. A congruence relation is an expression relation that is both
an equivalence and compatible, in the following sense.

Definition 8 (Expression Relations). An expression relation E
is a set of tuples (Γ, w, e, e′, τ) (made up of a typing context, a
world, two expressions and a type) satisfying atom(e, e′) ⊆ w,
Γ � e : τ and Γ � e′ : τ . We write Γ �w e E e′ : τ to indicate that
(Γ, w, e, e′, τ) is a member of E . We use the following terminology
in connection with expression relations.

E is an equivalence if it is reflexive (atom(e) ⊆ w ∧ Γ � e :
τ ⇒ Γ �w e E e : τ), symmetric (Γ �w e E e′ : τ ⇒ Γ �w

e′ E e : τ) and transitive (Γ �w e E e′ : τ ∧ Γ �w e′ E e′′ :
τ ⇒ Γ �w e E e′′ : τ).

E is compatible if bE ⊆ E , where bE is the compatible refinement of
E , defined in Figure 7.

E is substitutive if Γ �w v E v′ : τ ∧ Γ, x : τ �w e E e′ : τ ′ ⇒
Γ �w e[v/x] E e′[v′/x] : τ ′.

E is equivariant if Γ �w e E e′ : τ ⇒ Γ �π·w π · e E π · e′ : τ .
E is adequate if �w e ∼= e′ : τ ⇒ ∅ �w e E e′ : τ .

We extend operational equivalence (Definition 7) to an expres-
sion relation, Γ �w e ∼=◦ e′ : τ , by instantiating free variables with
closed values:

Definition 9 (∼=◦). Supposing Γ = {x1 : τ1, . . . , xn : τn}, we
define Γ �w e ∼=◦ e′ : τ to hold if

• atom(e, e′) ⊆ w;
• Γ � e : τ and Γ � e′ : τ ; and
• for all w′ ⊇ w and all closed values vi with atom(vi) ⊆ w′

and ∅ � vi : τi (for i = 1..n), it is the case that �w′ e[�v/�x] ∼=
e′[�v/�x] : τ .

Note that for closed expressions, that is, in the case that Γ = ∅, the
relation ∼=◦ agrees with ∼=:

∅ �w e ∼=◦ e′ : τ ⇔ �w e ∼= e′ : τ . (6)

Theorem 10 (CIU). Operational equivalence of possibly open
expressions, ∼=◦, is a compatible adequate equivalence. It is the
largest such expression relation. It is also substitutive and equiv-
ariant.

Proof. The fact that ∼=◦ is equivariant follows from Lemma 4; and
the fact that it is an equivalence and adequate is immediate from
its definition. So the main difficulty is to show that it is compat-
ible and substitutive. One can do this by adapting a construction
due to Howe [10], as follows. Let the expression relation ∼=∗ be
inductively defined from ∼=◦ by the rule

Γ �w e c∼=∗ e′ : τ Γ �w e′ ∼=◦ e′′ : τ

Γ �w e ∼=∗ e′′ : τ
. (7)

(In making this inductive definition, we are implicitly relying upon
the easily proved fact that compatible refinement, E �→ bE , is a
monotone operation on expression relations, that is, E1 ⊆ E2 ⇒bE1 ⊆ bE2.) It is not hard to show that ∼=∗ is compatible and
substitutive and contains ∼=◦. So the compatibility and substitutivity
of ∼=◦ follow once one proves ∼=∗ ⊆ ∼=◦ and hence that these two
expression relations coincide. This can be deduced by proving the
following two properties, (8) and (9). In (8), c∼=∗ is extended to a
relation between frame stacks using the last two rules in Figure 7;
and in (9), (∼=∗)+ denotes the transitive closure of ∼=∗.

∅ �w S c∼=∗ S′ : τ → τ ′ ∧ ∅ �w e ∼=∗ e′ : τ ∧
atom(�a) = w ∧ 〈�a, S, e〉↓n ⇒ 〈�a, S′, e′〉↓ (8)

Γ �w e ∼=∗ e′ : τ ⇒ Γ �w e′ (∼=∗)+ e : τ . (9)

If we have these two properties, then from the first one (using the
fact that c∼=◦ is closed under weakening from a world w to a larger
one w′ ⊇ w) we get

∅ �w e ∼=∗ e′ : τ ⇒ ∀�a, S, τ ′. w ∪ atom(S) ⊆ atom(�a) ∧
∅ � S : τ → τ ′ ∧ 〈�a, S, e〉↓ ⇒ 〈�a, S, e′〉↓ .

90

Since the right-hand side of this implication is a transitive relation
between e and e′, it follows that

∅ �w e ∼=∗+
e′ : τ ⇒ ∀�a, S, τ ′. w∪atom(S) ⊆ atom(�a) ∧
∅ � S : τ → τ ′ ∧ 〈�a, S, e〉↓ ⇒ 〈�a, S, e′〉↓

and hence by property (9) that

∅ �w e ∼=∗ e′ : τ ⇒ ∀�a, S, τ ′. w ∪ atom(S) ⊆ atom(�a) ∧
∅ � S : τ → τ ′ ∧ 〈�a, S, e′〉↓ ⇒ 〈�a, S, e〉↓ .

Therefore by definition of ∼= (Definition 7) we have

∅ �w e ∼=∗ e′ : τ ⇒ �w e ∼= e′ : τ . (10)

Since the open extension ∼=◦ of ∼= is easily seen to be substitutive
and reflexive, (10) implies that ∼=∗ ⊆ ∼=◦, as required.

So to complete the proof, one just has to establish properties (8)
and (9). The second is easy to prove, but property (8) requires a
tricky induction on the derivation of 〈�a, S, e〉↓n from the rules in
Figure 5. The induction step corresponding to transitions of type 8
in Figure 4, that is, to generative unbinding, is quite delicate. It
relies upon the fact that when a′ /∈ atom(v), a renamed value
v{a′/a} is the same as a permuted value (a a′) · v (where (a a′)
denotes the permutation swapping a and a′). This allows one to
use the equivariance of the termination relation, Lemma 4, to prove
the induction step—the details appear in the full version of this
paper. Of course, the validity of Lemma 4 depends crucially upon
the equivariance condition (5) that we require of observations on
atoms.

Definition 11 (Contextual Equivalence). In view of the discus-
sion at the beginning of this section, Theorem 10 tells us that ∼=◦

coincides with a conventional notion of contextual equivalence de-
fined using program contexts: so from now on we refer to ∼=◦ as
contextual equivalence.

We labelled the above theorem “CIU” because it is analogous
to a theorem of that name due to Mason and Talcott [12]. CIU, af-
ter permutation, stands for “Uses of Closed Instantiations”; and the
theorem tells us that to test open expressions for contextual equiv-
alence it suffices to first close them by substituting closed values
for free variables and then test the resulting closed expressions for
termination when they are used in any evaluation context [4]. This
follows from the definition of ∼=◦ and the fact that termination in
evaluation contexts corresponds to termination of machine config-
urations via the easily verified property

〈�a, S, e〉↓ ⇔ 〈�a, Id , S[e]〉↓ (11)

where the expression S[e] is defined by recursion on the length of
the stack S by:

Id [e] � e

S ◦ (x.e′)[e] � S[let x = e in e′] .
(12)

Theorem 10 serves to establish some basic properties of contex-
tual equivalence, such as the fact that the state-independent transi-
tions in Figure 4 (types 1–6 and 9) give rise to contextual equiva-
lences. For example, Γ �w let x = v in e ∼=◦ e[v/x] : τ ′ holds if
Γ �w v : τ and Γ, x : τ �w e : τ ′. However, we have to work a
bit harder to understand the consequences of transitions of types 7
and 8 for contextual equivalence at atom binding types, τ bnd. We
address this in the next section.

Remark 12 (Possible Worlds). It is immediate from the definition
of ∼=◦ that it satisfies a weakening property:

Γ �w e ∼=◦ e′ : τ ∧ w ⊆ w′ ⇒ Γ �w′ e ∼=◦ e′ : τ . (13)

If it also satisfied a strengthening property

Γ �w′ e ∼=◦ e′ : τ ∧ atom(e, e′) ⊆ w ⊆ w′

⇒ Γ �w e ∼=◦ e′ : τ (14)

then we could make the indexing of contextual equivalence by
“possible worlds” w implicit by taking w = atom(e, e′). When
O just contains eq, property (14) does hold; this is why there is
no need for indexing by possible worlds in [23, 25]. However, it is
not hard to see that the presence of some observations on atoms,
such as the function card in Figure 6, can cause (14) to fail. It is
for this reason that we have built indexing by possible worlds into
expression relations (Definition 8).

5. Correctness of Representation
Recall from Section 2 that the language we are considering is pa-
rameterised by a top-level declaration of some (possibly mutually
recursive) data types:

type δ1 = C1,1 of τ1,1 | · · · | C1,n1 of τ1,n1

...
and δm = Cm,1 of τm,1 | · · · | Cm,nm of τm,nm .

(15)

If we restrict attention to declarations in which the argument types
τi,j of the constructors Ci,j are just finite products of the declared
data types δ1 . . . , δm, then the above declaration corresponds to a
many-sorted algebraic signature; furthermore, in this case the lan-
guage’s values at each data type are just the abstract syntax trees
of terms of the corresponding sort in the signature. By allowing
atoms and atom bindings in addition to products in the argument
types τi,j , one arrives at the notion of “nominal signature”, intro-
duced in [29] and more fully developed in [19]. It extends the no-
tion of many-sorted algebraic signature with names (of possibly
many kinds) and information about name binding in constructors.
Here, for simplicity, we are restricting to a single kind of name,
represented by the type atm of atoms; but our results extend easily
to the case of many kinds of name.

Definition 13 (Nominal Signatures). The subset Arity ⊆ Typ is
given by the grammar

σ ∈ Arity ::= unit | σ ∗ σ | δ | atm | σ bnd (16)

where δ ranges over the finite set D of data type symbols. (In
other words Arity consists of those types of our language that
do not involve any use of the function type construction, →.) The
elements of the set Arity are called nominal arities.3 A nominal
signature (with a single sort of atoms, atm) is specified by a
data type declaration (15) in which the argument types τi,j of the
constructors Ci,j are all nominal arities.

For each σ ∈ Arity , the closed values of that type, ∅ �w v : σ,
correspond precisely to the ground terms (with arity σ and atoms
in w) over the nominal signature, as defined in [29]. For example,
the declaration (1) corresponds to the nominal signature for λ-
calculus; and closed values of type term correspond as in (2) to
the abstract syntax trees for λ-terms (open or closed ones, with
variables represented by atoms). For other examples of nominal
signatures, with more complicated patterns of binding, see [19,
Section 2.2].

The occurrences of σ bnd in a nominal signature (15) indicate
arguments with bound atoms. In particular, we can associate with
each such signature a notion of α-equivalence, =α, that identifies
values up to renaming bound atoms. The inductive definition of =α

is given in Figure 8. It generalises to an arbitrary nominal signature

3 The notation 〈〈atm〉〉σ is used in [29, 19] for what we here write as σ bnd.

91

�w () =α () : unit

�w v1 =α v′
1 : σ1 �w v2 =α v′

2 : σ2

�w (v1 , v2) =α (v′
1 , v′

2) : σ1 ∗ σ2

C : σ → δ �w v =α v′ : σ

�w C v =α C v′ : δ

a ∈ w

�w a =α a : atm

a′′ /∈ w ⊇ atom(a, v, a′, v′)
�w∪{a′′} v{a′′/a} =α v′{a′′/a′} : σ

�w 〈〈a〉〉v =α 〈〈a′〉〉v′ : σ bnd

Figure 8. α-Equivalence.

the syntax-directed characterisation of α-equivalence of λ-terms
given in [9, p. 36]. The definition in Figure 8 is essentially that
given in [19], except that we have included an indexing by possible
worlds w, to chime with our form of judgement for contextual
equivalence; without that indexing, the condition “a′′ /∈ w ⊇
atom(a, v, a′, v′)” in the rule for α-equivalence of values of atom
binding type would be replaced by “a′′ /∈ atom(a, v, a′, v′)”.

We can now state the main result of this paper. Recall from Def-
initions 9 and 11 that for closed expressions contextual equivalence
is the same as the relation of operational equivalence given in Def-
inition 7.

Theorem 14 (Correctness of Representation). Suppose that all
the observations on atoms obs in O satisfy the equivariance prop-
erty (5). For each nominal signature, two closed values v, v′ of the
same nominal arity σ (with atoms contained in the finite set w, say)
are α-equivalent if and only if they are contextually equivalent:

�w v =α v′ : σ ⇔ �w v ∼= v′ : σ . (17)

The rest of this section is devoted to the proof of this theo-
rem. Proving the left-to-right implication in (17) is not too hard,
given the simple nature of α-equivalence as defined in Figure 8.
The right-to-left implication is much harder: see the discussion af-
ter Proposition 16. We get it as a corollary of a property of ∼= at
atom binding arities σ bnd that mirrors the fifth rule in Figure 8. In
fact we will prove this property of atom binding (the combination
of Propositions 16 and 19) for all types τ bnd, that is, not just for
nominal arities but also for types τ possibly involving the function
type construct. We can only do so under a restriction on observa-
tions on atoms over and above the equivariance property (5) that we
always assume they possess. This is the “affineness” property given
in Definition 17 below. The equality test eq (Figure 6) is affine and
we will see that this fact is enough to prove Theorem 14 as stated,
that is, without any restriction on the observations present other
than equivariance.

Proposition 15. (i) �w () ∼= () : unit.
(ii) For all types τ1, τ2 ∈ Typ, �w (v1 , v2) ∼= (v′

1 , v′
2) : τ1 ∗ τ2

iff �w v1
∼= v′

1 : τ1 and �w v2
∼= v′

2 : τ2.
(iii) For each data type δi in the declaration (15), �w Ci,j v ∼=

Ci,j′ v′ : δi iff j = j′ and �w v ∼= v′ : τi,j .
(iv) �w a ∼= a′ : atm iff a = a′ ∈ w.

Proof. Part (i) and the “if” directions of (ii)–(iv) are consequences
of the fact (Theorem 10) that ∼=◦ is a compatible equivalence. For
the “only if” directions of (ii) and (iii) we apply suitably chosen
destructors. Thus for part (ii) we use the operational equivalences
�w fst(v1 , v2) ∼= v1 : τ1 and �w snd(v1 , v2) ∼= v2 : τ2 that are

consequences of the definitions of ∼= and the termination relation.
Similarly, part (iii) follows from the easily established operational
(in)equivalences

�w diverge 	∼= v : τ

�w proji,j (Ci,j v) ∼= v : τi,j

�w proji,j (Ci,j′ v) ∼= diverge : τi,j if j 	= j′

which make use of the following expressions

diverge � fun(f x = f x)()

proji,j v � match v with
(Ci,1x1 → dj,1 | · · · | Ci,ni xni → dj,ni)

where dj,j′ �
(

xj if j = j′,
diverge if j 	= j′.

Finally, for the “only if” direction of part (iv) we make use of
the fact that O always contains the atom equality function eq from
Figure 6. Consider the frame stack

Sa � Id ◦ (x. let y = eq x a in
match y with (Zero → () | Succ z → diverge)) .

If a 	= a′ are distinct elements of w, then choosing some �a ∈ State
with atom(�a) = w, it is not hard to see that 〈�a, Sa, a〉↓ holds
whereas 〈�a, Sa, a′〉↓ does not hold. So if �w a ∼= a′ : atm it
cannot be the case that a 	= a′.

This proposition tells us that ∼= has properties mirroring those of
α-equivalence given by the first four rules in Figure 8. To complete
the proof of the correctness theorem, we need to prove a property
of ∼= at atom binding arities σ bnd that mirrors the fifth rule in that
figure. We split this into two parts, Propositions 16 and 19.

Proposition 16. For any type τ ∈ Typ, suppose we are given
closed, well-typed atom binding values ∅ �w 〈〈a〉〉v : τ bnd and
∅ �w 〈〈a′〉〉v′ : τ bnd. If for some atom a′′ /∈ w we have

�w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ (18)

then

�w 〈〈a〉〉v ∼= 〈〈a′〉〉v′ : τ bnd . (19)

Proof. Unlike the previous proposition, this result is not just a
simple consequence of the congruence properties of operational
equivalence. We establish it via a property analogous to (8) in the
proof of Theorem 10, once again using an induction over the rules
defining termination.

Let E be the closure under compatible refinement (Figure 7) of
the pairs of closed atom binding values that we wish to show are
operationally equivalent. In other words E is the expression relation
inductively defined by the following two rules.

a′′ /∈ w ⊇ atom(a, v, a′, v′)
�w∪{a′′} v{a′′/a} ∼= v′{a′′/a′} : τ

∅ �w 〈〈a〉〉v E 〈〈a′〉〉v′ : τ bnd

Γ �w e bE e′ : τ

Γ �w e E e′ : τ
.

The analogue of property (8), with E replacing ∼=∗, holds by in-
duction on the derivation of 〈�a, S, e〉↓n from the rules in Fig-
ure 5; the details of the induction can be found in the full ver-
sion of this paper. If (18) holds, then by definition of E we have
∅ �w 〈〈a〉〉v E 〈〈a′〉〉v′ : τ bnd; and ∅ �w S bE S : τ → τ ′

always holds, by definition of the extension of E to a relation be-
tween frame stacks. So by the analogue of (8) for E we get

〈�a, S, 〈〈a〉〉v〉↓ ⇒ 〈�a, S, 〈〈a′〉〉v′〉↓
for any �a with atom(�a) ⊇ w and any suitably typed frame stack
S. A symmetrical argument shows that the converse implication

92

holds. Thus (18) implies that 〈〈a〉〉v and 〈〈a′〉〉v′ are operationally
equivalent, as required.

Next we need to prove the converse of the above proposition,
namely that (19) implies (18) for any a′′ /∈ w. The difficulty is that
in verifying (18) we have to consider the termination behaviour of
v{a′′/a} and v′{a′′/a′} in all states �a with atom(�a) ⊇ w∪{a′′}.
The atom a′′ may occur at any position in �a and not necessarily at
its right-hand end; whereas in assuming (19), all we appear to know
about the termination behaviour of v{a′′/a} and v′{a′′/a′} is what
happens when a fresh atom a′′ is placed at the end of the state via
generative unbinding (cf. Remark 6). In fact we are able to combine
bind and unbind operations to rearrange atoms sufficiently to prove
the result we want, but only in the presence of observations on
atoms that are insensitive to atoms being added at the left-hand
(that is, least) end of the state. The following definition makes this
property of observations precise. It uses the notation a′ � �a for the
state obtained from �a ∈ State by appending an atom a′ not in
atom(�a) to the left of the finite list of distinct atoms �a (cf. �a � a′

defined in Figure 4).

Definition 17 (Affine Observations). An observation on atoms,
obs ∈ O, is affine if it is equivariant (5) and satisfies: for all
�a ∈ State, all a′ /∈ atom(�a) and all (a1, . . . , ak) ∈ atom(�a)k

(where k is the arity of obs)

�obs�a′��a(a1, . . . , ak) = �obs��a(a1, . . . , ak) . (20)

For example, of the observations defined in Figure 6, eq and lt are
affine, whereas ord and card are not.

The following property of termination follows from its defini-
tion in Figures 4 and 5, using Corollary 5.

Lemma 18. Given a frame stack S and an expression e, suppose
that only affine observations on atoms occur in them. Then for
all �a with atom(S, e) ⊆ atom(�a) and all a′ /∈ atom(�a), 〈a �
�a, S, e〉↓n ⇔ 〈�a, S, e〉↓n.

Proposition 19. Suppose that O only contains affine observations.
Then for any type τ , (19) implies that (18) holds for any a′′ /∈ w.

Proof. Suppose (19) holds and that a′′ /∈ w. We have to show for
any w′ ∈ World , �a ∈ State and τ ′ ∈ Typ with atom(�a) = w′ ⊇
w ∪ {a′′} and ∅ �w′ S : τ → τ ′ that

〈�a, S, v{a′′/a}〉↓ ⇔ 〈�a, S, v′{a′′/a′}〉↓ . (21)

Since a′′ ∈ atom(�a), we have

�a = �a′ � a′′ � a0 � · · · � an−1 (22)

for some state �a′ and atoms a0, . . . , an−1 (n ≥ 0). Choose distinct
atoms b0, . . . , bn−1 not occurring in w′ and consider the frame
stack S′ given by

Id ◦ (z. unbind z as (x , y0) in
unbind 〈〈b0〉〉y0 as (x0 , y1) in
...
unbind 〈〈bn−1〉〉yn−1 as (xn−1 , yn) in
S{x, x0, . . . , xn−1/a′′, a0 . . . , an−1}[yn])

(23)

where z, x, x0, . . . , xn−1, y0, . . . , yn are distinct variables not oc-
curring in S. Here we have used the notation

unbind v as (x1 , x2) in e � let y = unbind v in
let x1 = fst y in
let x2 = snd y in e

(where y does not occur in (v, x1, x2, e)); (23) also uses the nota-
tion “S[e]” from (12); and it uses the operation (−){x/a} of re-
placing an atom a by a variable x. Using Corollary 5 and property

(11), a somewhat intricate calculation of transitions (given in more
detail in the full version of this paper) yields

〈�b′, S′, π · 〈〈a〉〉v〉↓ ⇔ 〈�b, S, v{a′′/a}〉↓ (24)

and 〈�b′, S′, π · 〈〈a′〉〉v′〉↓ ⇔ 〈�b, S, v′{a′′/a′}〉↓ (25)

where �b � b0 � · · · � bn−1 � �a, �b′ � b0 � · · · � bn−1 � �a′

and π ∈ P is the permutation swapping each ai with bi (for
i = 0..n−1). We noted in Theorem 10 that operational equivalence
is equivariant. So from (19) we have �atom(�b′) π · 〈〈a〉〉v ∼=
π · 〈〈a′〉〉v′ : τbnd. Since ∅ �atom(�b′) S′ : τ bnd → τ ′, this
operational equivalence gives

〈�b′, S′, π · 〈〈a〉〉v〉↓ ⇔ 〈�b′, S′, π · 〈〈a′〉〉v′〉↓ .

Combining this with (24) and (25) yields

〈�b, S, v{a′′/a}〉↓ ⇔ 〈�b, S, v′{a′′/a′}〉↓ . (26)

Recall that �b = b0 � · · · � bn−1 � �a and b0, . . . , bn−1 /∈ w′ =
atom(�a) ⊇ atom(S, a′′, v, v′). So since O only contains affine
observations, we can now apply Lemma 18 to (26) to get (21), as
required.

Example 20. We conjecture that Proposition 19 fails to hold if we
drop the requirement that observations are affine (but still require
them to be equivariant). For example consider the equivariant but
non-affine observation ord in Figure 6 and the values

v � fun(f x = f x)

v′ � fun(f x = let y = ord a in
match y with (Zero → () | Succ y′ → v()))

where a is some atom. We claim that

�{a} 〈〈a〉〉v ∼= 〈〈a〉〉v′ : (unit → unit)bnd (27)

but that for any a′ 	= a

�{a,a′} v{a′/a} 	∼= v′{a′/a} : unit → unit . (28)

The operational inequivalence (28) is witnessed by the state �a �
[a′, a] and the frame stack S � Id ◦ (x. x unit), for which one
has 〈�a, S, v′{a′/a}〉↓, but not 〈�a, S, v{a′/a}〉↓. At the moment
we lack a formal proof of the operational equivalence (27), but the
intuitive justification for it is as follows. For any state �a containing
a and any frame stack S, we claim that in any sequence of transi-
tions from 〈�a, S, 〈〈a〉〉v′〉 the occurrence of ord a in v′ can only be
renamed to ord a′ for atoms a′ at positions strictly greater than 0 in
the current state; and hence 〈�a, S, 〈〈a〉〉v′〉 has the same termination
properties as 〈�a, S, 〈〈a〉〉v〉.
Proof of Theorem 14. One proves that �w v =α v′ : σ implies
�w v ∼= v′ : σ by induction on the the rules defining α-

equivalence in Figure 8, using Propositions 15 and 16.
To prove the converse implication, first note that if ∅ � v : σ,

then v contains no instances of observations obs ∈ O (proof by
induction on the structure of the nominal arity σ).4 It follows from
the definition of operational equivalence in Definition 7 that if
�w v ∼= v′ : σ holds for a language with observation set O, it

also holds for the sub-language with minimal observation set {eq}.
Thus it suffices to prove the implication �w v ∼= v′ : σ ⇒ �w

v =α v′ : σ for this minimal sub-language; and this can be done
by induction on the structure of σ using Propositions 15 and 19 (the
latter applies because eq is affine).

4 The only way observations on atoms can appear in values of the language
is via function values, fun(f x = e), and the definition of “nominal arity”
excludes function types.

93

6. Related and Further Work
6.1 Correctness of Representation

It is instructive to compare the Correctness of Representation prop-
erty of FreshML (Theorem 14) with adequacy results for type-
theoretic logical frameworks [15]. Both are concerned with the
representation of expressions of some object-language in a meta-
language. For logical frameworks the main issue is surjectivity:
one wants every expression at the meta-level to be convertible to
a normal form and for every normal form at certain types to be
the representation of some object-level expression. The fact that α-
equivalence of object-level expressions is preserved and reflected
by the representation is a simple matter, because equivalence in
the logical framework is taken to be αβη-conversion, which spe-
cialises on normal forms to just α-equivalence. Contrast this with
the situation for FreshML where surjectivity of the representation is
straightforward, because values of the relevant FreshML data types
are just first order abstract syntax trees; whereas the fact that α-
equivalence of object-level expressions is preserved and reflected
by the representation in FreshML is a non-trivial property. This is
because we take equivalence of FreshML expressions to be contex-
tual equivalence. This is the natural notion of equivalence from a
programming point of view, but its properties are hard won.

One aspect of adequacy results for logical frameworks high-
lighted in [15] is compositionality of representations. Although im-
portant, this issue is somewhat orthogonal to our concerns here.
It refers to the question of whether substitution of expressions for
variables at the object-level is represented by β-conversion at the
meta-level. From the point of view of nominal signatures [19],
variables are just one kind of name. Properties of α-conversion
of all kinds of names are treated by the theory; but if one wants
notions of substitution and β-conversion for a particular kind of
name, one has to give a definition (an “α-structural” recursive def-
inition [19]). For example in FreshML, using the data type (1) for
λ-terms one can give an appealingly simple declaration for a func-
tion subst : term → atm → term → term for capture avoiding
substitution; see [26, p. 264]. Compositionality of the representa-
tion t �→ �t� given in the introduction then becomes the contextual
equivalence �w �t1[t2/a]� ∼= subst �t2� a �t1� : term. The CIU
theorem (Theorem 10) provides the basis for proving such contex-
tual equivalences.5

6.2 Concrete Semantics

We have explored some of the consequences of adding integer-
valued “observations on atoms” to FreshML over and above the
usual test for equality. Such functions may allow more efficient
data structures to be used for algorithms involving atoms as keys.
For example, binary search trees making use of the comparison
function lt from Figure 6 could be used instead of association lists.

What about adding functions from numbers to atoms? An im-
plementation of the language may well represent atoms by num-
bers, via some fixed enumeration of the set of atoms, α : N ∼= A.
Can we give the programmer access to this bijection? Less radi-
cally, can we allow operations on atoms that make use of arith-
metic properties of the underlying representation? Not without
breaking the invariant atom(S, e) ⊆ atom(�a) of configurations
〈�a, S, e〉—the property of our operational semantics that ensures
that an atom’s freshness with respect to the current state really does
mean that it is different from all other atoms in the current con-
text. For example, suppose we add to the language an operation
suc : atm→atm whose meaning is “successor function on atoms”,
with transitions 〈�a, S, suc a〉 −→ 〈�a, S, a′〉 whenever a = α(n)

5 We believe this particular equivalence is valid when O = {eq, lt}, but not
when O = {eq, card}; cf. Section 7.

and a′ = α(n + 1) for some n ∈ N. Then it may well be the case
that a′ /∈ atom(�a) even though a ∈ atom(�a).

So exposing the numerical representation of atoms involves giv-
ing up the invariant properties of the abstract semantics we have
used here. One motivation for studying this extension of the lan-
guage is the fact that some algorithms make use of concrete numer-
ical representations of keys, for example ones using hash tables or
Patricia trees [14]. It may still be the case that the Correctness of
Representation property holds for this extension, even though our
equivariant proof techniques are no longer applicable. However,
contextual equivalence for this language probably satisfies few use-
ful laws. Perhaps a more interesting alternative to actually exposing
numerical representations of atoms would be to prove contextual
equivalence of efficient and naive implementations of the abstract
semantics extended with types of finite maps on atoms. Such ab-
stract types form an addition to the signature in Figure 1 different
from the kind we have considered here, but certainly one worthy of
investigation.

6.3 Mechanising Meta-Theory

The techniques we used here to prove the Correctness of Repre-
sentation property are operationally based, in contrast to the de-
notational techniques used in [23, 25]. The advantage of working
directly with the syntax and operational semantics of the language
is that there are lower mathematical “overheads”—various kinds
of induction being the main techniques involved. The disadvantage
is that to deploy such inductive techniques often involves great in-
genuity choosing inductive hypotheses and much error prone te-
dium checking induction steps. Furthermore, with these methods
it seems harder to predict the effect that a slight change in lan-
guage or formalisation may have on a proof. Although ingenuity in
choosing inductive hypotheses may always be the preserve of hu-
mans, machine assistance of the kind envisaged by the “POPLmark
challenge” [1] seems a very good idea for the other aspects of the
operationally based approach. The main results presented here are
still a challenging target for fully formalised and machine checked
proofs. We have taken some care with the formalisation (using
a “relational” approach to contextual equivalence, for example);
but results concerning coinductive equivalences, like the CIU the-
orem (Theorem 10), are quite complex logically speaking, com-
pared with the kind of type safety results (like Theorem 2) that
POPLMark has focused on so far. Systems like Isabelle/HOL [13]
that develop proofs in full classical higher order logic seem appro-
priate to the task, in principle. But there is a gap between what is
possible in principle for an expert of any particular system and what
is currently practicable for a casual user. Urban and Berghofer [27]
are developing a Nominal Data Type Package for Isabelle/HOL that
may be very useful for narrowing this gap. The fact that FreshML
and the Urban-Berghofer package both have to do with the same
mathematical universe of “nominal sets” [19] is perhaps slightly
confusing: their Nominal Data Type Package is useful for fully for-
malising proofs about names and name-binding in operational se-
mantics whether or not those proofs have to do with the particular
mechanism of generative unbinding that is the focus of this paper.

7. Conclusion
The FreshML [26, 24] approach to functional programming with
binders combines abstract types for names and name binding with
an unbinding operation that involves generation of fresh names.
In this paper we have studied the theoretical properties of this de-
sign. We showed that the addition of integer valued observations on
names does not break FreshML’s fundamental Correctness of Rep-
resentation property that α-equivalence classes of abstract syntax
trees (for any nominal signature) coincide with contextual equiva-
lence classes of user declared data values. In particular, it is pos-

94

sible to give programmers access to a linear order on names with-
out breaking the “up to α-equivalence” representation of syntax.
The simple insight behind this possibly surprising result has to do
with the fact that FreshML is impure—program execution mutates
the state of dynamically created names.6 If the state is taken into
account when giving the meaning of observations on names, then
the permutation invariance properties that underly the correctness
property can be retained.

The only restriction we placed on observations is that, as func-
tions of both the state and the names they operate upon, they should
be invariant under permuting names. The Correctness of Repre-
sentation property (Theorem 14) remains valid in the presence of
any such observation. However, some observations are better be-
haved than others and we are not advocating that arbitrary equivari-
ant observations be added to FreshML. Some forms of observation
may radically affect the general programming laws that contextual
equivalence satisfies. We saw one example of this here: only for
“affine” observations (which are insensitive to how many names
have been created before the arguments to which they are applied)
were we able to combine Propositions 16 and 19 to get an “exten-
sionality” result explaining contextual equivalence at type τ bnd in
terms of contextual equivalence at τ , for arbitrary higher types τ .

The techniques we used to establish these results are of inde-
pendent interest. They combine the usual engine of structural oper-
ational semantics—namely syntax-directed, rule based induction—
with the approach to freshness of names based on name permuta-
tions that was introduced in [6] and developed in [17, 28, 19].

References
[1] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,

P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic.
Mechanised metatheory for the masses: The POPLmark challenge. In
18th International Conference on Theorem Proving in Higher Order
Logics: TPHOLs 2005, volume 3603 of Lecture Notes in Computer
Science, pages 50–65. Springer-Verlag, 2005.

[2] P. N. Benton and X. Leroy, editors. ACM SIGPLAN Workshop on
ML (ML 2005), Tallinn, Estonia, Electronic Notes in Theoretical
Computer Science. Elsevier, 2005.

[3] J. Cheney. Scrap your nameplate (functional pearl). In 10th ACM
SIGPLAN Int. Conference on Functional Programming (ICFP’05),
Tallinn, Estonia, pages 180–191. ACM Press, 2005.

[4] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science,
103:235–271, 1992.

[5] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In Proceedings ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI’93, Albuquerque, NM, USA, pages 237–247. ACM Press, June
1993.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13:341–363, 2001.

[7] A. D. Gordon. Operational equivalences for untyped and polymorphic
object calculi. In Gordon and Pitts [8], pages 9–54.

[8] A. D. Gordon and A. M. Pitts, editors. Higher Order Operational
Techniques in Semantics. Publications of the Newton Institute.
Cambridge University Press, 1998.

6 The original version of FreshML [20] was pure by dint of the “freshness
inference” included in its type system. Subsequent experience with the lan-
guage showed that the form of freshness inference that was used there was
overly restrictive from a programming point of view. So freshness inference
was dropped in [26]. However, Pottier [22] has recently regained purity in
a FreshML-like language through the use of user-provided assertions. We
have not investigated whether results like those presented in this paper also
apply to Pottier’s language.

[9] C. A. Gunter. Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[10] D. J. Howe. Proving congruence of bisimulation in functional
programming languages. Information and Computation, 124(2):103–
112, 1996.

[11] S. B. Lassen. Relational reasoning about contexts. In Gordon and
Pitts [8], pages 91–135.

[12] I. A. Mason and C. L. Talcott. Equivalence in functional languages
with effects. Journal of Functional Programming, 1:287–327, 1991.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[14] C. Okasaki and A. Gill. Fast mergeable integer maps. In ACM-
SIGPLAN Workshop on ML, Baltimore, Maryland, USA, pages 77–86.
ACM Press, 1998.

[15] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, chapter 17, pages 1063–
1147. Elsevier Science and MIT Press, 2001.

[16] A. M. Pitts. Operational semantics and program equivalence. In
Applied Semantics, Advanced Lectures, volume 2395 of Lecture Notes
in Computer Science, Tutorial, pages 378–412. Springer-Verlag,
2002. International Summer School, APPSEM 2000, Caminha,
Portugal, 2000.

[17] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.

[18] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 7,
pages 245–289. The MIT Press, 2005.

[19] A. M. Pitts. Alpha-structural recursion and induction. Journal of the
ACM, 53(3):459–506, 2006.

[20] A. M. Pitts and M. J. Gabbay. A metalanguage for programming
with bound names modulo renaming. In 5th Int. Conference on
Mathematics of Program Construction (MPC2000), Ponte de Lima,
Portugal, volume 1837 of Lecture Notes in Computer Science, pages
230–255. Springer-Verlag, 2000.

[21] F. Pottier. An overview of Cαml. In Benton and Leroy [2], pages
27–52.

[22] F. Pottier. Static name control for FreshML. Draft, July 2006.

[23] M. R. Shinwell. The Fresh Approach: Functional Programming with
Names and Binders. PhD thesis, University of Cambridge Computer
Laboratory, 2005. Available as University of Cambridge Computer
Laboratory Technical Report UCAM-CL-TR-618.

[24] M. R. Shinwell. Fresh O’Caml: Nominal abstract syntax for the
masses. In Benton and Leroy [2], pages 53–76.

[25] M. R. Shinwell and A. M. Pitts. On a monadic semantics for
freshness. Theoretical Computer Science, 342:28–55, 2005.

[26] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. In 8th ACM SIGPLAN
Int. Conference on Functional Programming (ICFP 2003), Uppsala,
Sweden, pages 263–274. ACM Press, 2003.

[27] C. Urban and S. Berghofer. A recursion combinator for nominal
datatypes implemented in Isabelle/HOL. In 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006), Seattle, USA,
volume 4130 of Lecture Notes in Computer Science, pages 498–512.
Springer-Verlag, 2006.

[28] C. Urban and M. Norrish. A formal treatment of the Barendregt
Variable Convention in rule inductions. In 3rd ACM SIGPLAN
Workshop on Mechanized Reasoning about Languages with Variable
Binding (MERLIN ’05), Tallinn, Estonia, pages 25–32. ACM Press,
2005.

[29] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification.
Theoretical Computer Science, 323:473–497, 2004.

95

