
A Fully Abstract Translation between

a ��Calculus with Reference Types and Standard ML

Eike Ritter�

Oxford University Computing Laboratory

Wolfson Building� Parks Road

Oxford OX� �QD� UK

Andrew M� Pittsy

Cambridge University Computer Laboratory

Pembroke Street

Cambridge CB� �QG� UK

September ����

Abstract

This paper describes a syntactic translation for a substantial fragment of the core
Standard ML language into a typed ��calculus with recursive types and imperative
features in the form of reference types� The translation compiles SML�s use of decla�
rations and pattern matching into ��terms� and transforms the use of environments
in the operational semantics into a simpler relation of evaluation to canonical form�
The translation is shown to be �fully abstract�� in the sense that it both preserves and
re�ects observational equivalence �also commonly called contextual equivalence�� A
co�inductively de�ned notion of applicative bisimilarity for lambda calculi with state
is developed to establish this result�

�Research partially supported by EU ESPRIT project CLICS�II�

yResearch partially supported by UK EPSRC project GR�G������



� Introduction

To apply techniques from operational and denotational semantics to higher order func�
tional programming languages it is often convenient to de�ne a translation of the program�
ming language into a typed ��calculus with appropriate additional features and study the
typed ��calculus instead� The transfer of semantic results about the typed ��calculus back
to ones about the original programming language relies on properties of the translation
which can be rather hard to establish and which seem to be addressed rather rarely in
the literature� Here we study such a translation for a substantial fragment of the core
Standard ML language �MTH��� containing recursively de�ned datatypes and imperative
features in the form of reference types� The translation compiles SML�s use of declarations
and pattern matching into ��terms� and transforms the use of environments in the opera�
tional semantics into a simpler relation of evaluation to canonical form� We show that this
translation is 	fully abstract�� in the sense that it both preserves and re
ects observational
equivalence �also commonly called contextual equivalence��

Riecke �Rie��� investigates a similar problem� namely how to show which translations
between call�by�value and call�by�name PCF are fully abstract� He de�nes a fully abstract
model for the two languages to examine the translations� He transforms the question of
preserving observational equivalence into the question whether a term in one language
and its translation have meanings in the fully abstract models that are related by a log�
ical relation� This method works only if fully abstract domain�theoretic models of the
languages are easily available� This is true for the simple language PCF �albeit after the
addition of a parallel�or function�� but de�nitely not for SML� Indeed the presence of dy�
namically created� mutable storage locations for recursively de�ned data involving higher
order functions makes the construction of adequate� let alone fully abstract� denotational
models dicult in theory and hard to use in practice�

In this paper we establish the full abstraction property of our translation using methods
based on operational semantics rather than denotational semantics� This entails working
directly with the notion of observational equivalence of language expressions� rather than
with equality of their denotations� However� the quanti�cation over program contexts in
the de�nition of observational equivalence makes it rather unamenable to the standard
techniques associated with operational semantics �such as various forms of structural in�
duction�� For the simple language PCF� Milner�s context lemma �Mil��� overcomes this
problem by showing that one can restrict to a very simple collection of applicative con�
texts when establishing instances of PCF observational equivalence� Inspired by Milner�s
result� Mason and Talcott �MT��� ciu Theorem� prove a much harder context lemma for
an untyped ��calculus with mutable local storage locations� Although the restriction on
contexts in their result is not as great as one might hope for� nevertheless they show that
a substantial number of properties of observational equivalence result from it� However�
Milner�s result can be usefully generalized in a di�erent direction� It is equivalent to a
characterization of observational equivalence in PCF in terms of a co�inductively de�ned
notion of applicative bisimilarity� Such notions were transferred from the study of con�
current processes to untyped ��calculus by Abramsky �AO��� and have been applied to
various kinds of lambda calculi� type theory and pure functional programming by Howe
�How���� Ong �Ong��� and Gordon �Gor���� Here we introduce a notion of applicative
bisimilarity for functional languages with state and show that Howe�s method in �How���
can be adapted to prove that it is a congruence� The diculty that has to be overcome
to do this for languages with state concerns the more complicated form of the operational

�



semantics compared with that for pure functional languages� We were guided to our de��
nition by analogy with the co�inductive characterization of equality in recursively de�ned
domains given in �Pit���� applied to the domains needed for a denotational semantics of
the kind of typed ��calculus considered here�

As a consequence of its congruence property� the relation of applicative bisimilarity
implies that of observational equivalence� Unlike the situation for non�imperative �deter�
ministic� functional languages� the two notions do not coincide� This is due to the subtle
nature of observational equivalence in the presence of dynamically created local state� see
�PS���� for example� Nevertheless the notion of applicative bisimilarity we give has su�
cient properties �all relatively easy to establish� apart from the congruence property� to
yield the full abstraction properties of our translation of SML into a typed ��calculus�

The paper is structured as follows� In section � we de�ne the typed ��calculus we con�
sider� the corresponding fragment of Standard ML� and translations between the calculi
in each direction� The next section de�nes the notion of applicative bisimulation used to
show the full abstractness of the translations� and proves that it is a congruence relation�
Afterwards we apply this result to show that both translations preserve and re
ect ob�
servational equivalence and are in fact mutually inverse to each other up to observational
equivalence�

� The Calculi

First we de�ne a ��calculus with reference types� �ML� and then the appropriate fragment
of Standard ML�

��� The ��Calculus �ML

We consider a typed ��calculus with the following features� higher�order� recursively de�
�ned functions� �local� monomorphic� references to mutable locations� and globally de�ned�
mutually recursive datatypes� In fact we de�ne a family of languages� parameterized by a
function

decl � TypConst� Typ

used to give the �recursive� de�nition � � decl��� of some type constants � in the �nite
set TypConst� and where Typ� the collection of types� is de�ned by the grammar�

� ��� � � � TypConst
j unit one element type
j bool two element type
j � � � product type
j � � � function type
j � ref reference type

The type constants � act like mutually recursively de�ned datatypes that are global and
static in the sense that they are �xed once and for all when the language is de�ned� There
are no construction mechanisms for building new recursive datatypes from old ones in the
language itself�

The expressions of the calculus are given as follows� where x is taken from an in�nite
set of identi�ers and a from an in�nite set of address names�

e ��� x j in��e� j out�e� j �� j e �� e j true j false j if e then e else e j e � e

j �e� e� j fst�e� j snd�e� j �x��e j ee j rec f�x� �� e in f�e� j ref�e� j �e j a

�



The expression rec f�x� �� e� in f�e� de�nes f as a recursive function and applies it to e�
and �e accesses the value stored in the address to which e evaluates� The notion of bound
and free variables are de�ned as usual� An expression is closed if it has no free identi�ers�
The canonical expressions are the closed expressions generated by the grammar�

c ��� in��c� j �� j true j false j �c� c� j �x��e j a

Remark We do not have any sum types or alternate clauses in the de�nition of recursive
datatypes� Those constructions are used in modelling standard datatypes like lists� This
omission simpli�es the presentation�see Section ��� for the reason� but the same ideas that
are described in this paper yield the full abstraction of the translations for the extended
calculus as well�

A type assignment � is a �nite function from identi�ers to types� A typing assertion
takes the form

� � e� �

where � is a type assignment� e an expression� � a type and the identi�ers of e are contained
in the domain of �� The rules are listed in the appendix� Note that for every expression
there is at most one type � such that � � e� ��

A state s is a �nite function from addresses to canonical expressions such that all
addresses contained in the canonical expressions are contained in the domain of s� We
write s � fa �� cg for the state obtained from s by extending its domain by a �� dom�s�
and mapping a to c� We write s � fa �� cg for the state obtained from s by mapping
a � dom�s� to c and otherwise acting like s�

The evaluation relation takes the form

hs� ei � hs�� ci

where s and s� are states such that dom�s� 	 dom�s��� e is any expression and c is
canonical� The valid instances of the relation are inductively de�ned by a set of rules
listed in the appendix� They use the sequentiality convention employed in the de�nition
of SML �MTH���� which states that a rule of the form

e� � c� e� � c� 
 
 
 en � cn
e � c

is an abbreviation for

hs�� e�i � hs�� c�i hs�� e�i � hs�� c�i 
 
 
 hsn� eni � hsn��� cni
hs�� ei � hsn��� ci

Note that� as in SML� the evaluation strategy is call�by�value�

��� The fragment of SML

The fragment of Core SML �MTH��� that we consider here is monomorphic� has no excep�
tion mechanism� and only has globally declared datatypes� The pattern matching and the
local value declarations� which are the distinctive features of this fragment compared to
the ��calculus �ML� are handled exactly as in the full Core SML� The commands for ma�
nipulating the state are the same in the fragment and in �ML� The fragment we consider

�



has products instead of pattern rows� This is a technical simpli�cation� and it is easy to
see how the argument advanced in this paper can be extended to cover expression rows�

The pattern matching and local declarations require separate syntactic categories� Val�
ues are the results of evaluating expressions� and only they are bound in local declarations
and matched against a pattern� This re
ects the call�by�value nature of evaluation in
Standard ML� We have the following syntactic categories� called phrases� in the fragment�

� Expressions exp

� Matches match� which are lists of match rules�

� Match rules mrule� which associate an expression to a pattern� The expression is
evaluated if the given value matches the pattern�

� Declarations dec� which associate values to variables�

� Value bindings valbind� which perform the binding in declarations�

� Patterns pat� which are matched against a value�

The grammar for raw SML phrases is as follows�

exp ��� �exp� exp� j true j false j �� j var j ref exp j in��exp� j �exp

j let dec in exp end j exp exp j exp id exp j exp� ty j fn� ty match

match ��� mrule h j matchi

mrule ��� pat� exp

dec ��� val valbind

j local dec in dec end

j dec h� i dec

valbind ��� pat � exp hand valbindi

j rec valbind

pat ��� j true j false j �� j ref pat j in��pat�

var j �pat� � � � � pat� j pat� ty j var htyi as pat

Now we turn to the static semantics� i�e� the typing assignments� The types are the
same as in the ��calculus� The absence of polymorphism in the SML fragment makes it
possible to simplify the judgements considerably� As in the ��calculus� let a context � be
a �nite function from variables to types� We have the following kinds of judgements�

� � exp� � The expression exp has type � in context ��
� �mrule� � The match rule mrule yields a value of type � if matched in context ��
� � dec� � The variables in the declaration dec form a context � with

respect to the context ��

� � valbind� � The value bindings in valbind yield the context � containing
the new variables in valbind�

� � pat� ��� �� The successful matching of pattern pat against a value pro�
duces an expression of type � and adds the variables con�
tained in � to the evaluation context ��

�



Because the judgements are a restriction of those given in the de�nition of Standard ML
�MTH���� we omit the details� An expression is called closed if � � exp� �� where � denotes
the empty context�

The canonical expressions of the ��calculus form a subset of all expressions� This is
necessary because the evaluation of an application works by �rst reducing the argument
to a canonical expression and then substituting this expressions textually into the body
of the function� The pattern matching in SML renders a similar de�nition of the eval�
uation relation impossible� A function application is evaluated not by substitution� but
by matching the argument against the pattern the function speci�es and evaluating the
selected expression� Hence the result of evaluating a function is a closure� i�e� it contains
both the body of the function and the values associated to all free variables in the function�
As a consequence of these di�erences we call the result of an evaluation of a phrase a value
and not a canonical expression�

The values are given by the grammar�

v ��� a j true j false j �� j �v�� v�� j in
��v� j �match� E�E��

where E and E� are environments� i�e� �nite functions from variables to values� We will
write �xi �� vi� for such an environment� In the closure �match� E�E�� the environment
E� contains the values for the variables that are used in recursive function calls and E

contains the value for all other variables� We have the following kinds of judgements�

� s� E � exp � v� s�� The expression M evaluates to the value v in the environment E�

� s� E� v � match � v�� s�� The match match is tested against the value v� yielding v�

as a result�

� s� E� v � pat � E� s�� The pattern pat is matched against value v and added into the
environment�

� s� E � dec � E�� s�� The declaration dec is evaluated� resulting in a new declaration
E��

� s� E � valbind � E�� s�� The binding in valbind is added to E�

Here s and s� are the states before and after evaluation� where a state is a �nite function
from addresses to values� The rules for generating these judgements are listed in the ap�
pendix� They are just as in �MTH��� �and employ the sequentiality convention mentioned
above�� In full SML� evaluation of pattern matches can raise exceptions� Here we just
assume a restriction on expressions so that every match succeeds exactly for one pattern�

��� The translations between the languages

The translation from the ��calculus into SML has to express all selectors like fst and snd

by pattern matching� The translation in the other direction is essentially a compilation of
pattern matching into the ��calculus� Both translations are compositional� the translation
of a phrase is de�ned in terms of the translations of its subphrases� The translation of
��calculus expressions into SML expressions� denoted by ��M � is given in Table � and is
quite straightforward� The translation in the other direction� denoted by ����� is given
in Table � and is more involved� The translations ��exp�� and ��match�� of expressions and
matches are �ML expressions� The translations ��valbind�� and ��dec�� of value bindings and

�



declarations are substitutions� �� which are �nite functions from identi�ers to canonical
�ML expressions� indicated by �ci�xi�� The translation of a pattern is a tuple �cond� ���
The �rst component cond is a boolean expression in �ML that characterizes the condition a
value has to satisfy to be successfully matched against the pattern� The second component
is a substitution that describes how the variables declared by the pattern pat are obtained
from the value matched against the pattern� The variable arg occurring in � represents
this value� The clause for matches pat� �� exp�j 
 
 
 jpatn �� expn describes a ��
term that tests the conditions cond� to condn to select the succeeding pattern pati and
returns the expressions expi with the substitution �i applied� A value binding val pat �
exp is translated into a substitution that binds the variables declared in the substitution
originating from the translation of the pattern pat to the values obtained by performing
the match�

As an example� consider the SML�function

fn � bool� bool��true� x� �� x j �false� y� �� not�y� �

The translation of the �rst pattern is the tuple �fst�arg�� �snd�arg��x��� and the transla�
tion of the second pattern is �not�fst�arg��� �snd�arg��y��� Hence the translation of this
function into �ML is the function

�arg� bool� bool�if fst�arg� then snd�arg� else not�snd�arg�� �

We extend the translation ���� simultaneously to values and environments as follows� for
a value v� ��v�� is a canonical �ML expression de�ned by induction on the structure of v
�details omitted�� for an environment E � �xi �� vi�� ��E�� is de�ned to be the substitution
���vi���xi�� Finally SML states s � fai �� vig are translated into �ML states by de�ning
��s�� � fai �� ��vi��g� and similarly for the action of ��M on �ML states�

Both translations preserve strong typing� i�e� when an expression e is well�formed in
context �� then its translation into the other language is well�formed as well� Moreover�
both translation are sound� i�e� they preserve the validity of evaluation judgments� This
statement becomes meaningful only after the addition of judgements about the evalua�
tion of substitutions into the �ML�calculus� The SML�judgements for the evaluation of
patterns� declarations and value bindings correspond to judgement of this form in the
�ML�calculus� These properties can be shown by an induction over the derivation of the
judgements�

The translation from SML into �ML justi�es why we omitted sum types and alternates
in the de�nition of recursive datatypes� The construction of a ��term that describes the
selection of a succeeding match becomes signi�cantly more complicated if these construc�
tions are added� The proof that the translation between the calculi with these additional
features are fully abstract follows the same line as the one for the calculus used in this
paper� To simplify the exposition� we decided therefore not to consider such an extended
calculus here�

� Applicative bisimulation

We aim to show that the two translations both preserve and re
ect the evaluation be�
haviour of expressions in all program contexts� We will do this by showing that ��M

�



Types

��i�
M � type �i in

datatype �� � in�� of ��
���

and �n � in�n of �n
�unit�M � unit

�bool�M � bool

��� � ���
M � ����M � ����M

��� � ���
M � ����

M � ����
M

�� ref�M � ���M ref

Expressions

�x�M � x

�in�i�e��M � in�i��e�M�
�out�e��M � let val in��x� � �e�M in x end

����M � ��
�e� �� e��

M � �e��
M �� �e��

M

�true�M � true

�false�M � false

�if e� then e� else e��M � �fn true� bool��e��M j false� bool��e��M ��e��M

�e� � e��
M � �e��

M � �e��
M

��e�� e���M � ��e��M � �e��M�
�Fst�e��M � let val�x� � � �e�M in x end

�Snd�e��M � let val� � x� � �e�M in x end

��x��e�M � fn x� ���M � �e�M

�e�e��M � �e��M�e��M

�rec f�x� �� e� in f�e���
M � let val rec f � fn x� �� �e��

M in f��e��
M � end

�ref�e��M � ref��e�M�
��e�M � ��e�M

Table �� Translation from ��calculus to SML

�



The ��expression �i�e� is an abbreviation for fsti�snd�e���

���exp�� expn��� � ���exp���� � � � � ��expn���
��true�� � true

��false�� � false

������ � ��
��in��exp��� � in����exp���

��var�� � var
���exp�� � ���exp��
��dec�� � �t��x�� � � � � tn�xn�

��let dec in exp end�� � ��x��n � 
 
 
 ���xn���exp�����tn�� 
 
 
���t���

��exp exp�� � ��exp����exp��
��fn� ty match�� � �arg� ��ty�����match��

��mrule�� � �cond� exp�
��mrule h j matchi�� � hif cond theni exp helse ��match��i

��pat�� � �cond� ��
��pat� exp�� � �cond� ��exp����

��val valbind�� � ��valbind��
��local dec� in dec� end�� � ��dec������dec����

��dec�� dec��� � ��dec��� � ��dec������dec����

��pat�� � �cond� ��
��pat � exp�� � ����exp���arg�

��pat � exp�� � � ��valbind�� � ��

��pat � exp and valbind�� � � � ��

��valbind�� � ��xi� �i�ti�fi�
��rec valbind�� � ��xi� �i��irec f�arg� � �ti��i�f��fi���i�x��xi�� in f�xi��fi�

�� �� � �true� fg�

��true�� � �arg� fg�
��false�� � �not�arg�� fg�

������ � �true� ���arg�
��var�� � �true� �var�arg��

Table �� Translation from SML to ��calculus

�



��pati�� � �condi� Ei�
��pat�� � � � � patn�� � �

V
condi��i�arg��arg���Ei��i�arg��arg��

��pat�� � �cond� E�
��in��pat��� � �cond� E��out�arg��arg�

��pat�� � �cond� E�
��ref�pat��� � �cond� E����arg��arg�

��pat� ty�� � ��pat��

��pat�� � �cond� E�
��varh� tyi as pat�� � �cond� E � var�arg�

Table � �continued�� Translation from SML to ��calculus

and ���� are mutually inverse� up to observational equivalence� written �obs � By def�
inition� e� �obs e� holds in �ML if for all closing boolean contexts C�� and states s�
�s��hs� C�e��i � hs�� truei i� �s��hs� C�e��i � hs�� truei� The de�nition of �obs for SML
is similar� The quanti�cation over all contexts makes it very dicult indeed to establish
the required properties of the translations directly from the de�nition of �obs� Instead�
we proceed indirectly by giving co�inductively de�ned notions of program equivalence for
�ML and SML� called applicative bisimilarity and written �app� Applicative bisimilarity
implies observational equivalence and it is much easier to establish the �equational� prop�
erties of �app needed to show that the translations between �ML and Standard ML are
mutually inverse�

The dicult part in extending existing de�nitions of applicative bisimilarity for pure
functional languages �AO��� How��� Gor��� to the languages studied here is the handling
of the states involved in the evaluation relation� We were guided to the de�nition given
below by analogy with the co�inductive characterization of equality in recursively de�ned
domains given in �Pit���� applied to the domains needed for a denotational semantics of
the ��calculus �ML� We explain the de�nition �rst for �ML and adapt it afterwards to
the fragment of SML�

��� Simulation for the ��calculus �ML

The relation of applicative similarity is de�ned as the greatest �xed point of a certain
monotone operator R �� R on relations between closed expressions� We start by giving
the de�nition of R on canonical expressions� Afterwards we extend the de�nition of R to
all closed expressions� Because it is not a priori clear that the extension of R to arbitrary
expressions coincides with R on canonical expressions� we use a di�erent symbol hRi for
the relation R on canonical expressions at the moment�

�Modulo a restriction on patterns in the SML expressions arising from the fact that for simplicity we
are avoiding exception handling� see Section 	�

�



De�nition � Given any family of relations R � �R� 	 Exp� � Exp� j � � Types�
between closed �ML expressions� let the family of relations hRi� between canonical expres�
sions of type � be inductively generated by the following rules�

� c hRi� c
� if c � c� and � is either unit� bool or a reference type�

� �c�� c��hRi������c
�
�� c

�
�� if c�hRi��c

�
� and c�hRi��c

�
��

� �x� ��M hRi���� �x� ��M � if for all canonical expressions c of type �� we have
M �c�x� R�� M ��c�x��

� in
��c� hRi� in

��c�� if c hRi� c
� and decl��� � ��

For any two states s� and s�� we will write s�hRis� to mean that s� and s� have the same
domain and for all addresses a in that domain s��a� hRi� s��a� �where � ref is the type
of a��

We extend the de�nition of hRi� to a relation between all closed expressions of type
� by requiring that whenever the �rst expression reduces to a canonical expression� the
second does so� and that the resulting states respect the relation hRi�� This extension is
de�ned as follows�

De�nition � With R as in De�nition �� de�ne another family R of relations between
closed �ML expressions of equal type as follows�

MR�M
� i� �s�� s�� c

hs��Mi � hs�� ci � �s��� c
��

hs��M �i � hs�� c�i and c hRi� c� and s� hRi s�� �

The operator R �� R is monotone and hence we can de�ne a relation v� called applicative
similarity� as the greatest �xed point of this operator� As usual� v is in fact greatest
amongst the post��xed points� i�e� those R satisfying R � R� such R are called applicative
simulations� We extend the relation v to a relation between open expressions of the same
type by de�ning M vM � to hold i� M �ci�xi� vM ��ci�xi� holds whenever ci are canonical
expressions and M �ci�xi� andM ��ci�xi� are closed� One can show easily that this extended
relation v is a partial order and that for all canonical expressions c and c�� chvic� holds i�
c v c� is satis�ed� Applicative bisimilarity� written �app� is de�ned as the symmetrization
of v� M �app M

� i� M vM � and M � vM �
The most important property of the relation v is that it is a pre�congruence� By this

we mean that for all contexts C��� we have C�M � v C�N � whenever M v N � The proof
of this property is rather dicult� Howe �How��� describes a method for showing pre�
congruence that has become well established� for example� it is used for a ��calculus with
non�determinism in �Ong��� and a ��calculus with recursive datatypes and input�output in
�Gor���� One proceeds by de�ning a relation v� that is easily seen to be a pre�congruence
and includes v� the inverse inclusion is then shown by a co�inductive argument� Here we
have to adapt this method to cope with the presence of states in the operational semantics�
We will omit the detailed proofs and sketch only the structure of the argument�

De�nition � The relation v� between two well�formed expressions of the same type is
de�ned by induction over the structure of expressions as follows�

� x v� M whenever x vM �

��



� For every operator � of arity n� ��M�� � � � �Mn� v� N whenever there existM �
�� � � � �M

�
n

such that Mi v
� M �

i for all � � i � n and ��M �
�� � � � �M

�
n� v N � �Similarly for vari�

able binding operators��

First� one establishes some properties of the relation v��

Lemma � �i� If M v� M � and M � vM ��� then M v� M ���

�ii� M v� M �

�iii� M vM � implies M v� M ��

�iv� v� is a congruence relation�

�v� If M v� M � and c v� c�� then M �c�x� v� M ��c��x��

The crucial part of the congruence proof is the following proposition�which is proved by
induction over the derivation of hs��Mi � hs�� ci�

Proposition � Let M be any closed expressions of type �� Then whenever hs��Mi �
hs�� ci then for all closed expressionsM � of type � and states s�� such that M v� M �� s� v

�

s�� and the addresses of M � are in the domain of s��� there exists a canonical expression c�

and a state s�� such that hs���M
�i � hs��� c

�i and c v� c� and s� v
� s���

This is sucient to show

Proposition � M v� M � i� M vM ��

Proof It follows from Proposition � that v� restricted to closed expressions is an ap�
plicative simulation� i�e� is a post��xed point of the operation R �� R� Since the relation
v is the greatest such� we have that M v� M � implies M vM �� The reverse implication
is just Lemma ��iii�� �

The pre�congruence property of applicative similarity immediately yields

Corollary � M �app M
� implies M �obs M

��

However� �app does not coincide with �obs� unlike the case for deterministic� pure func�
tional languages� Partly this is due to the fact that in De�nition � related states are
required to have equal domains� As a consequence if M �app M

� holds then evaluation
of M and M � creates the same number of fresh addresses for local references� whereas
such a property of address creation need not hold when M �obs M �� �For example�
��xboolref����ref�true� is observationally equivalent to ��� but is not applicatively bisim�
ilar to it�� This particular defect is remedied by the more re�ned notions of applicative
equivalence considered in �PS��� PPS���� We do not need such re�nements to establish
the full abstraction result of this paper� However� at the moment there is no known notion
of applicative equivalence that coincides with observational equivalence for languages with
dynamically created local state�

��



��� Simulation for SML

Now we de�ne the applicative bisimulation for the fragment of SML� The idea behind
the de�nition is the same� but the technical details are more complex due to the various
syntactic categories of the language� Because the expression M �c�x� in the ��calculus �ML
corresponds to the pair �E � �x �� v�� exp� in SML� we have to consider �environment�
expression��pairs� For this purpose we de�ne a generalized expression to be either �E� exp��
�E � v�match� or �E� dec�� where exp is an expression� v a value� match a match� and
dec a declaration� Such a generalized expression is called closed if � � E� � and exp�
match or dec are well�formed in context �� We de�ne the applicative simulation for these
generalized expressions�

De�nition � Given any type�indexed family R of relations between closed generalized
expressions of equal type� a family of relations hRi� between values of each type � is
inductively de�ned by the following rules�

� v� hRi� v� if v� � v� and � is bool� unit� or a reference type�

� �v�� v��hRi������v
�
�� v

�
�� if v�hRi��v

�
� and v�hRi��v

�
��

� in��v��hRi�in
��v�� if v� hRi� v�� where decl��� � ��

� �match�� E�� E
�
��hRi�����match�� E�� E

�
�� if for all values v of type �� we have �E�� E

�
��

v�match�� R �E�� E
�
� � v�match���

The relation hRi is extended to states as for �ML� for any two states s� and s�� we write
s�hRis� if s� and s� have equal domains and are related argument�wise by hRi� We also
extend hRi to a relation between environments� E�hRiE�� in exactly the same way� Using
these de�nitions� the extension of hRi to all closed generalized expressions is de�ned as
follows�

De�nition 	 Let R be as in De�nition 	� We de�ne another such family of relations R
as follows�

�i� �E�� exp�� R �E�� exp�� i� �s�� s�� v�
s�� E� � exp� � v�� s� implies �v�� s� such that
s�� E� � exp� � v�� s� and s�hRis� and v� hRi� v� �where � is the type of v�� v���

�ii� �E� � v�� match�� R �E� � v�� match�� i� �s�� s�� v�
s�� E�� v� �match� � v�� s� implies �v�� s� such that
s�� E�� v� � match� � v�� s� and s�hRis� and v� hRi� v� �where � is the type of
v�� v���

�iii� �E�� dec�� R �E�� dec�� i� �s�� s�� E
�
�

s�� E� � dec� � E�
�� s� implies �E�

�� s� such that
s�� E� � dec� � E�

�� s� and E�
�hRiE

�
� and s�hRis��

Let v be the greatest �xed point of the monotone operator R �� R� Then v is
extended to open generalized expressions by de�ning �E�� exp�� v �E�� exp�� to hold i�
for all values vi such that �E� � �xi �� vi�� exp�� and �E� � �xi �� vi�� exp�� are closed�
we have �E� � �xi �� vi�� exp�� v �E� � �xi �� vi�� exp��� The relation of applicative

��



bisimilarity for SML is the symmetrization of this relation� �E�� exp�� �app �E�� exp�� i�
�E�� exp�� v �E�� exp�� and �E�� exp�� v �E�� exp���

A relation v� is de�ned from v in much the same way as for the ��calculus �ML and
the analogues of Lemma � and Proposition � can be established� Thus v coincides with
v� and the latter is a pre�congruence� As in the ��calculus� the congruence property of
the relation v yields immediately that SML applicative bisimilarity implies observational
equivalence�

Theorem �
 For all closed SML expressions exp�� exp� �of equal type�� ��� exp�� �app

��� exp�� implies exp� �obs exp��

� The Equivalence

We are now in a position to establish the full abstraction properties of the translations
between SML and the ��calculus �ML� We �rst show that if we translate an expression to
the other calculus and back� we get a result that is applicatively bisimilar to the expression
we started with� Because we are not considering exception handling in this paper� for this
property to hold for the SML expressions we have to restrict to ones involving matches that
succeed for exactly one pattern� For example� consider the function exp � fn true ��
true� we have ���exp���M � fn arg �� true� and hence �exp�false raises an exception in
SML� whereas ���exp���Mfalse evaluates to true�

Theorem �� For any �ML expression e� we have ���e�M �� �app e� For any generalized
SML expression �E� exp� with exp satisfying the restriction on matches mentioned above�
we have ���E� exp���M �app �E�M�� where ��E� exp�� denotes the �ML expression obtained
by applying the substitution ��E�� to the expression ��exp���

Proof �sketch� The �rst statement is shown by induction over the structure of e� For
the second statement� we show by induction over the structure of exp� that whenever all
values v in E satisfy ���v���M �app v� then ���E� exp���M �app �E� exp��

The induction steps make use of certain identities that hold up to applicative bisim�
ilarity� which are easily established from the co�inductive de�nition of v� For example�
consider the �ML expression fst�e�� The translation into SML and back yields the term
��arg����� �fst�arg�����e�M��� By induction hypothesis ���e�M �� �app e holds� Hence by
the congruence property of �app established in Section ���� we have ���fst�e��M �� �app

��arg����� �fst�arg��e� Then ���fst�e��M �� �app fst�e� follows from the identity

��arg����� �fst�arg��e �app fst�e�

which is easily established from the fact that the preorder v inducing �app is a �xed point
�indeed the greatest one� of the monotone operator R �� R of De�nition �� �

The main result of the paper now follows from the fact that applicative bisimilarity
implies observational equivalence� together with the above theorem and the general prop�
erties of the translations of compositionality and soundness with respect to evaluation�

Theorem �� The translations ���� and ��M between the SML fragment and the ��
calculus �ML are fully abstract� in the sense that they preserve and re
ect observational
equivalence�

e� �obs e� i� �e��
M �obs �e��

M

exp� �obs exp� i� ��exp��� �obs ��exp���

��



�provided exp�� exp� satisfy the restriction on matches mentioned above��

Proof Combining Corollary � with Theorems �� and ��� we have that ���e�M �� �obs e

and ���exp���M �obs exp� From this it follows that it is sucient to just prove that each
translation preserves observational equivalence�

So suppose that e� �obs e� in �ML and that in SML for some boolean context C��
we have s�� � � C��e��

M � � true� s�� Then by the soundness property of ����� in �ML we
have h��s���� ���� C��e��

M ���i � h��s���� ��true��i� Now ��true�� � true� and by compositionality
of ���� and the fact that �app is a congruence� we have

���� C��e��
M ��� � ��C������e��

M ��� �app ��C���e�� �app ��C���e�� �

Hence �by Proposition �� for some s�� h��s���� ��C���e��i � hs��� truei� Then by the soundness
property of ��M � in SML we have ���s����

M � � � ���C���e���
M � �true�M � �s���

M � Since
�true�M � true� ���s����M �app s� and ���C���e���M � ���C���M ��e��M � �app C��e��M �� it
follows that there is some s� with s�� � � C��e��

M � � true� s�� Thus by de�nition of
observational equivalence we have that �e��M �obs �e��M in SML when e� �obs e� in �ML�
The argument that ���� preserves observational equivalence is similar� �

� Conclusions

This paper describes a translation from a fragment of Standard ML to a ��calculus with
reference types� the main feature of which is a compilation of SML�s use of pattern match�
ing into ��terms� We proved that the translation is fully abstract� i�e� that it preserves
and re
ects observational equivalence� The proof of this property is surprisingly dicult�
because it is hard to reason directly about observational equivalence for programming
languages such as SML that involve dynamic creation of local storage for higher order
functions� A co�inductively de�ned notion of applicative bisimilarity is used here to ob�
tain the result�

The notion of applicative similarity developed as a means to an end in this paper
seems interesting in its own right� It implies observational equivalence� but not vice versa�
A closely related notion� which validates more observational equivalences� is developed
in �PPS���� It remains an open problem to �nd a co�inductive characterization of ob�
servational equivalence for languages like SML that combine higher order functions and
local state� Nevertheless� we believe that the existing notions of applicative bisimilarity�
or re�nements of them� may provide simpler methods for verifying program properties
for languages like SML compared with denotational methods� or with reasoning directly
about observational equivalence �as in �MT��� MT���� for example��

The fragment of Standard ML we have considered is monomorphic in order to avoid
the known diculties with mixing ML polymorphism with reference types�diculties
that are largely irrelevant to the concerns of this paper� For simplicity� we also excluded
any exception�handling mechanism and alternate clauses in the de�nition of recursive
datatypes from the fragment� We do not envisage any problem in extending the de�nition
of applicative bisimilarity to cope with these features� although we have not considered
this yet� Apart from anything else� such an extension would enable Standard ML�s method
for evaluating incomplete patterns to be treated�

��



References

�AO��� S� Abramsky and C��H� L� Ong� Full abstraction in the lazy lambda calculus�
Information and Computation� ������� ���� �����

�Gor��� A� Gordon� Functional Programming and Input�Output� PhD thesis� University
of Cambridge� ����� Also available as Technical Report No� ����

�How��� D� J� Howe� Equality in lazy computation systems� In Proc� �th Annual
Symp� Logic in Computer Science� pages ��� ���� IEEE Computer Society
Press� �����

�MT��� I� A� Mason and C� L� Talcott� Equivalence in functional languages with e�ects�
Journal of Functional Programming� ����� ���� �����

�MT��� I� A� Mason and C� L� Talcott� References� local variables and operational
reasoning� In Proc� th Annual Symp� Logic in Computer Science� pages ��� 
���� IEEE Computer Society Press� �����

�Mil��� R� Milner� Fully abstract models of typed ��calculi� Theoretical Computer
Science� ��� ��� �����

�MTH��� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT
Press� Cambridge� MA� �����

�Ong��� C��H� L� Ong� Non�determinism in a functional setting extended abstract� In
Proc� 	th Annual Symp� Logic in Computer Science� Montr�eal� Canada� pages
��� ���� IEEE Computer Society Press� �����

�PPS��� V� C� V� de Paiva� A� M� Pitts and I� D� B� Stark� AMonadic ML� In preparation�

�Pit��� A� M� Pitts� A co�induction principle for recursively de�ned domains� Theoretical
Computer Science� ������� ���� �����

�PS��� A� M� Pitts and I� D� B� Stark� Observable properties of higher order functions
that dynamically create local names� or� What�s new! In Proc� Int� Symp�
on Math� Foundations of Computer Science� pages ��� ���� Lecture Notes in
Computer Science No� ���� Berlin� �����

�Rie��� J� G� Riecke� A complete and decidable proof system for call�by�value equalities�
In M� S� Paterson� editor� Proceedings of the �th International Colloquium on
Automata� Languages and Programming� Warwick� pages �� ��� Lecture Notes
in Computer Science Vol� ���� Berlin� �����

��



A Appendix

First we list the judgements de�ning well�typed terms in �ML as well as the rules for
evaluation to canoncial form� Second� we present the evaluation rules for the fragment of
SML�

A�� Rules for �ML

The rules for well�typed terms in �ML are as follows�

� � x� ��x�
� � e� �

� � in��e�� �
�decl�� � ���

� � e� �
� � out�e�� �

�� � decl����
� � ��� unit

� � r� � ref

� � �r �� e�� unit � � true� bool

� � false� bool
� � b� bool � � e� � � � e�� �

� � �if b then e else e��� �

� � r� � ref � � r�� � ref

� � �r � r��� bool
� � e� �� � � e�� ��

� � �e� e��� � � ��

� � e� � � ��

� � fst�e�� �
� � e� � � ��

� � snd�e�� ��

�� x� � � e� ��

� � �x��e� ����
� � e� ���� � � e�� �

� � ee�� ��

�� f � ����� x� � � e�� �� � � e� �
� � rec f�x� �� e

� in f�e�� ��
� � e� �

� � ref�e�� � ref

� � r� � ref

� ��r� � � � a�� � ref

A�



The rules for evaluation to canonical expression are as follows�

e � c

in��e� � in��c�
e � in��c�
out�e� � c

�� � ��
hs�� ri � hs�� ai hs�� ei � hs�� ci
hs�� r �� ei � hs� � fa �� cg � ��i

true � true false � false

b � true e � c
if b then e else e� � c

hs�� ei � hs�� ai
hs�� �ei � hs�� ci

�c � s��a��

b � false e� � c

if b then e else e� � c

r � a r� � a

r � r� � true

r � a r� � a�

r � r� � false
�a �� a��

e � c e� � c�

�e� e�� � �c� c��

e � �c� c��
fst�e� � c

e � �c� c��
snd�e� � c�

�x��e � �x��e
f � �x��e� e � c e��c�x� � c�

fd � c�

a � a
e � c e���x��rec f�x� �� e

� in f�x��f� c�x� � c�

rec f�x� �� e
� in f�e� � c�

hs�� ei � hs�� ci
hs�� ref�e�i � hs� � fa �� cg � ai

�a �� dom�s���

A�� Rules for SML

The rules for the dynamic semantics of the SML fragment are as follows� They follow
closely the corresponding rules for core Standard ML in �MTH���� We assume that every
match will succeed exactly for one pattern� If this assumption is not made� an exception
may occur in Standard ML� which has no counterpart in the ��calculus� The sequentiality
convention that was mentioned for the ��calculus holds� too�

A�



Expressions

�value�
E � v � v

�var�
E � var � v

�E�var� � v�

�prod�
E � exp� � v� E � exp� � v�

E � �exp�� exp�� � �v�� v��

�let�
E � dec � E� E � E� � exp � v

E � let dec in exp end � v

�in�
E � exp � v

E � in��exp� � in��v�

�ref�
s� E � exp � v� s�

s� E � ref exp � a� s� � fa �� vg
�a �� s��

����
s� E � exp� � a� s� s�� E � exp� � v� s��

s� E � exp� �� exp� � ��� s�� � fa �� vg

�match�
E � exp� � �match� E�� V E� E � exp� � v E� � VE� v � match � v�

E � exp�exp� � v�

�fn�
E � fn match � �match� E� fg�

Matches

�success�
E� v �mrule � v�

E� v � mrule 	 jmatch �� v�

�next�
E� v � mrule � FAIL E� v �match � v��FAIL

E � mrulejmatch � v��FAIL

Match Rules

�success�
E� v � pat � V E E � VE � exp � v�

E� v � pat� exp � v�

�FAIL�
E� v � pat � FAIL

E� v � pat� exp � FAIL

Declarations

�val�
E � valbind � V E

E � val valbind � V E

�local�
E � dec� � E� E �E� � dec� � E�

E � local dec� in dec� end � E�

�empty�
E � � fg

�� �
E � dec� � E� E �E� � dec� � E�

E � dec�h� idec� � E� �E�

A�



Value Bindings

���
E � exp � v E� v � pat � V E hE � valbind � V E�i

E � pat � exp hand valbindi � V Eh�VE�i

�rec�
E � valbind � V E

E � rec valbind � V E

A�


