
FreshML: Programming with Binders Made Simple

Mark R. Shinwell Andrew M. Pitts Murdoch J. Gabbay

Cambridge University Computer Laboratory, Cambridge, CB3 0FD, UK
{Mark.Shinwell,Andrew.Pitts,Murdoch.Gabbay}@cl.cam.ac.uk

Abstract
FreshML extends ML with elegant and practical constructs for
declaring and manipulating syntactical data involving statically
scoped binding operations. User-declared FreshML datatypes in-
volving binders are concrete, in the sense that values of these types
can be deconstructed by matching against patterns naming bound
variables explicitly. This may have the computational effect of
swapping bound names with freshly generated ones; previous work
on FreshML used a complicated static type system inferring infor-
mation about the ‘freshness’ of names for expressions in order to
tame this effect. The main contribution of this paper is to show
(perhaps surprisingly) that a standard type system without fresh-
ness inference, coupled with a conventional treatment of fresh name
generation, suffices for FreshML’s crucial correctness property that
values of datatypes involving binders are operationally equivalent
if and only if they represent α-equivalent pieces of object-level
syntax. This is established via a novel denotational semantics.
FreshML without static freshness inference is no more impure than
ML and experience with it shows that it supports a programming
style pleasingly close to informal practice when it comes to dealing
with object-level syntax modulo α-equivalence.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—syntax; D.3.2 [Programming Languages]: Lan-
guage Classifications—applicative (functional) languages; D.3.3
[Programming Languages]: Language Constructs and Features—
data types and structures, patterns; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—denotational
semantics, operational semantics

General Terms
Languages, Design, Theory

Keywords
Metaprogramming, variable binding, alpha-conversion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’03 August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

1 Introduction
User-declared datatypes and pattern-matching in functional pro-
gramming languages like ML and Haskell simplify one of the main
tasks for which these languages were intended, namely metapro-
gramming—the construction and manipulation of syntactical struc-
tures. In particular, the declaration of recursive functions for ma-
nipulating the parse trees of object-level languages is made much
simpler (and hence less error prone) through the use of patterns to
match against parts of trees. Unfortunately a pervasive problem
spoils this rosy picture: object-level languages often involve bind-
ing operations. In this case meta-level programs only make sense,
or at least only have good properties, when we operate not on parse
trees but on their equivalence classes for a relation of α-equivalence
identifying trees differing only in the names of bound entities. At
the moment programmers deal with this case-by-case according to
the nature of the object-level language being implemented, using a
self-imposed discipline. For example, they might work out (not so
hard) and then correctly use (much harder) some ‘nameless’ rep-
resentation of α-equivalence classes of parse trees in the style of
de Bruijn [8]. The tedious and error-prone nature of ad hoc solu-
tions to this semantically trivial, but pragmatically non-trivial issue
of α-equivalence is widely acknowledged [27, Sect.13]. We need
better automatic support for object-level α-equivalence in metapro-
gramming languages.

FreshML is an ML-like language which provides such support. Its
design was introduced by Pitts and Gabbay [25] and subsequently
refined and implemented by Shinwell [29]. It provides the user
with a general-purpose type construction, written 〈bty〉ty, for bind-
ing names of user-declared type bty in expressions of arbitrary type
ty. This can be used in datatype declarations of types representing
object-level syntax to specify information about binding in the type.
For example, suppose we want to represent expressions of a small
fragment of ML with the following forms:

x value identifier
fn x => e function abstraction
e1 e2 function application
let fun f x = e1 in e2 end local recursive function

In FreshML we can declare a new type name of bindable names for
object-level value identifiers and then declare a datatype expr for
the above ML expressions:

bindable type name
datatype expr = Vid of name

| Fn of <name>expr
| App of expr * expr
| Let of expr * <name>expr
| Letf of <name>((<name>expr) * expr)

In this declaration, types tell the system which data constructors
are binders and how their arguments are bound. For example in
let fun f x = e1 in e2 end there is a binding occurrence of f
whose scope is both e1 and e2; and another of x whose scope is
just e1. These binding scopes are reflected by the argument type
of Letf in the declaration of expr . This declarative specification
of binding structure is particularly useful because FreshML endows
datatypes like expr with two crucial properties:

Abstractness: object-level expressions represented as values of the
datatype are operationally equivalent in FreshML if and only if they
are α-equivalent in the object language.

Indeed, datatypes like expr are equality types in the ML sense, and
meta-level equality correctly represents object-level α-equivalence.

Concreteness: values of such datatypes can be deconstructed by
matching against patterns which explicitly name bound entities.

Indeed, FreshML provides automatic language-level support for
the common informal idiom which refers to α-equivalence classes
via representative parse trees, with bound names changed ‘on the
fly’ to make them distinct among themselves and distinct from
any other names in the current context of use. For example,
the following FreshML declaration of a function subst of type
expr →name→expr →expr suffices for subst e1 x e2 to com-
pute (a representation of) the ML expression obtained by capture-
avoiding substitution of the expression represented by e1 for all free
occurrences of the value identifier named x in the expression repre-
sented by e2.

fun subst e x (Vid y) =
if x =y then e else Vid y

| subst e x (Fn (<y >e1)) =
Fn (<y >(subst e x e1))

| subst e x (App (e1,e2)) =
App (subst e x e1,subst e x e2)

| subst e x (Let (e1,<y >e2)) =
Let (subst e x e1,<y >(subst e x e2))

| subst e x (Letf (<f >(<y >e1,e2))) =
Letf (<f >(<y >(subst e x e1),subst e x e2))

Note how simple subst is!—only the first clause of the declara-
tion is not ‘boiler plate’ [15]. In particular the clauses dealing with
substitution under a binder only have to specify the result when the
bound name is sufficiently fresh. Section 2 shows how FreshML
ensures only this case arises during evaluation; and subst is a to-
tal function because by Sect. 5 values of type expr represent α-
equivalence classes of expressions in the ML fragment.

The Abstractness property says FreshML is correct as a language
for ‘programming modulo α-equivalence’, and the Concreteness
property says it is expressive. The two properties oppose each other
and it is tricky to make them co-exist. We were guided to the design
in [25] that achieves this by using the ‘FM’ mathematical model
of binding in terms of name-swapping [10, 13, 24]. This model
has a notion of an object’s support which specialises to the set of
free names when it is an α-equivalence class of parse trees involv-
ing binders. We put forward the following informal thesis relating
what is sometimes called the ‘Barendregt variable convention’ [3,
page 26] to this notion of support.

Thesis: when people carry out constructions on α-equivalence
classes of parse trees via representative trees using dynamically
freshened bound names, the end result is well-defined, i.e. indepen-
dent of which fresh bound names are chosen, because the freshly
chosen names do not occur in the support of the final result.

The type system in [25] enforces the condition ‘freshly chosen
names do not occur in the support of the final result’ at compile-
time by deducing information about a relation of freshness of names
for expressions which is a decidable approximation to the (in gen-
eral undecidable) ‘not-in-the-support-of’ relation. The result is a
pure functional programming language; static freshness inference
ensures the dynamics of replacing insufficiently fresh names on
the fly is referentially transparent. Purity makes reasoning about
program properties simpler and is desirable, but our static fresh-
ness inference which achieved it had a drawback: since freshness is
only an approximation of ‘not-in-the-support-of’, the type-checker
inevitably rejects some algorithms that do in fact conform to the
above Thesis. Experience showed this happened too often (we dis-
cuss why in Sect. 6).

The main contribution of this paper is to show, perhaps surpris-
ingly, that static freshness inference is not necessary for the crucial
Abstractness property to hold in the presence of the Concreteness
property, so long as the operational semantics of [25] is modified to
make the declaration of fresh bindable names generative like some
other sorts of names (references, exceptions and type names) are in
ML. This fact is not at all obvious and requires proof, which we
give.

Summary

Section 2 introduces a new version of FreshML with a slightly
more ‘effectful’ dynamics than in [25], but considerably simpler
type system. Since we wish to promote it, this new version of
the language is simply called FreshML; the older, more compli-
cated design from [25] will be referred to as FreshML 2000. As
explained in Sect. 3, the essence of the dynamics is the combi-
nation of generative names with name-swapping. To prove that
the FreshML type system controls the dynamics sufficiently for
object-level α-equivalence to coincide with meta-level operational
equivalence (the Abstractness property), in Sect. 4 we describe a
denotational semantics of FreshML in the FM-sets model of bind-
ing [13] that gave rise to the design of FreshML 2000 in the first
place. The denotational semantics is structured using a monad
and makes use of FM-cpos, which seem interesting in their own
right. Section 5 contains the main technical contributions of the
paper: we prove that this denotational semantics is computation-
ally adequate for the operational semantics (the proof uses a suit-
able logical relation between semantics and syntax whose details
are omitted in this extended abstract) and then we use this result to
establish the Abstractness property (Theorem 5.6). Section 6 dis-
cusses the pros and cons of using static freshness inference as orig-
inally envisioned in [25] for FreshML 2000. Section 7 describes
our experiences implementing FreshML. From the programmer’s
point of view, we claim that FreshML extends ML with elegant
and practical constructs for declaring and manipulating syntacti-
cal data involving binding operations. We give a few examples:
capture-avoiding substitution, α-equivalence, computation of free
variables (Fig. 5), and normalisation by evaluation (Fig. 7); more
can be found at http://www.freshml.org/. Finally, Sect. 8 dis-
cusses related work and draws some conclusions about the results
presented here and their implications for future work.

2 FreshML-Lite
This section introduces the new version of FreshML. Compared
with [25], we do without freshness inference in the type system and
use a generative operational semantics for fresh names. To make
the presentation more accessible, here we use a cut-down language,
which we call FreshML-Lite, combining the principal novelties of
FreshML with a pure functional subset of ML.

Types τ ∈ Ty ::= Values v ∈ Val ::=
bindable name name atom a
abstraction type 〈name〉τ abstraction 〈a〉v
unit type unit pair (v, v)
product type τ × τ unit ()
function type τ → τ closure [E, x(x) = e]
data type δ constructed C

C v
Patterns pat ::=
variable x
abstraction <x>x
pair (x,x)

Declarations dec ::=
value val pat = e
fresh atom fresh x
recursive function fun x (x) = e
sequential dec dec

Expressions e ::=
value identifier x
constructor C
atom equality test e = e
atom swapping swap e,e in e
atom abstraction <e>e
unit ()
pair (e,e)
application e e
case split case e of (C x => e | · · ·)
local declaration let dec in e end

Environments Typing contexts States
E ∈ VId fin−→ Val Γ ∈ VId fin−→ Ty a ∈ �

fin �
Top-level datatype declaration

datatype bool = true | false
and δ1 = C of τ | · · ·

...

Figure 1. FreshML-Lite syntax and semantic objects

FreshML-Lite syntax is specified in Fig. 1. For simplicity we as-
sume a single, top-level datatype declaration, including a type bool
of booleans and possibly some other mutually recursively defined
datatypes δ1, δ2, . . . There is a single type of bindable names, called
name, whose values are called atoms1 and which are the elements of
a fixed, countably infinite set � . The type 〈name〉τ of abstractions
has values given by pairs, written 〈a〉v and consisting of an atom
a ∈ � and a value v of type τ . As we see below, FreshML-Lite’s
semantics (both operational and denotational) identifies abstraction
values up to renaming the 〈 〉-enclosed atom; for example, 〈a〉a
and 〈a′〉a′ turn out to be operationally equivalent values of type
〈name〉name. In FreshML-Lite programs, values of type name are
introduced via local declarations of fresh atoms, in much the same
way that names of references are introduced in ML; values of ab-
straction type are introduced with expressions of the form <e1>e2

and eliminated via a local declaration with an abstraction pattern,
let val <x>y = e in e′ end.

FreshML-Lite’s type system is quite standard compared with the
one given in [25] (the latter infers freshness information in addition
to conventional ML typing properties). Figure 2 gives a selection of

1The terminology stems from the denotational model given in Sect. 4.

Expressions

Γ ` e1 : name Γ ` e2 : name

Γ ` e1 = e2 : bool
(1)

Γ ` e1 : name Γ ` e2 : name Γ ` e3 : τ

Γ ` swap e1,e2 in e3 : τ
(2)

Γ ` e1 : name Γ ` e2 : τ

Γ ` <e1>e2 : 〈name〉τ (3)

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1,e2) : τ1 × τ2

(4)

Γ ` dec : Γ′ Γ + Γ′ ` e : τ

Γ ` let dec in e end : τ
(5)

Declarations

Γ ` e : 〈name〉τ x 6= y

Γ ` val <x >y = e : {x 7→ name, y 7→ τ} (6)

Γ ` e : τ1 × τ2 x 6= y

Γ ` val (x ,y) = e : {x 7→ τ1, y 7→ τ2}
(7)

Γ ` fresh x : {x 7→ name} (8)

Values

a ∈ �
` a : name

(9)

a ∈ � ` v : τ

` 〈a〉v : 〈name〉τ (10)

` v1 : τ1 ` v2 : τ2
` (v1, v2) : τ1 × τ2

(11)

Figure 2. FreshML-Lite typing (excerpt)

the typing rules. Comparing rules (3), (6) and (10) with rules (4),
(7) and (11) respectively, we see that as far as typing properties
are concerned, 〈name〉τ is like a product type name × τ (cf. The-
orem 3.1). However, the two types have different dynamic proper-
ties. We have chosen to remain close to the Definition of Standard
ML [18] and specify the dynamics using inductively defined evalu-
ation relations of the form

a,E ` e ⇓ v, a′ (21)

a,E ` dec ⇓ E′, a′ (22)

where the states a and a′ are finite subsets of � and the value
environments E and E′ are finite functions mapping value identi-
fiers to values.2 Figure 3 gives a selection of the evaluation rules.
Rules (14) and (18) make use of the notation

(a a′) · v (23)

which stands for the value obtained from v by swapping all occur-
rences of the atoms a and a′ in it.

2In contrast to FreshML 2000 where the environment-style operational
semantics is necessary for type soundness, it is quite possible to use a
‘substituted-in’ formulation of FreshML’s dynamics, in which values form
a subset of expressions.

a,E ` e1 ⇓ a, a′ a′,E ` e2 ⇓ a, a′′
a,E ` e1 = e2 ⇓ true, a′′

(12)

a,E ` e1 ⇓ a, a′ a′,E ` e2 ⇓ a′, a′′ a 6= a′

a,E ` e1 = e2 ⇓ false, a′′
(13)

a,E ` e1 ⇓ a1, a
′ a′,E ` e2 ⇓ a2, a

′′

a′′,E ` e3 ⇓ v, a′′′
a,E ` swap e1,e2 in e3 ⇓ (a1 a2) · v, a′′′ (14)

a,E ` e1 ⇓ a, a′ a′,E ` e2 ⇓ v, a′′
a,E ` <e1>e2 ⇓ 〈a〉v, a′′

(15)

a,E ` e1 ⇓ v1, a
′ a′,E ` e2 ⇓ v2, a

′′

a,E ` (e1,e2) ⇓ (v1, v2), a′′
(16)

a,E ` dec ⇓ E′, a′ a′,E + E′ ` e ⇓ v, a′′
a,E ` let dec in e end ⇓ v, a′′ (17)

a,E ` e ⇓ 〈a〉v, a′ a′ ∈ � − a′ v′ = (a a′) · v
a,E ` val <x1>x2 = e ⇓ {x1 7→ a′, x2 7→ v′}, a′ ∪ {a′}

(18)

a,E ` e ⇓ (v1, v2), a′

a,E ` val (x1,x2) = e ⇓ {x1 7→ v1, x2 7→ v2}, a′
(19)

a ∈ � − a
a,E ` fresh x ⇓ {x 7→ a}, a ∪ {a} (20)

Figure 3. FreshML-Lite evaluation (excerpt)

The state may grow during evaluation: if (21) holds, Lemma 2.4
below shows that a ⊆ a′ (and similarly for (22)). The features
that cause it to grow are not only declarations of fresh atoms (see
rule (20)), but also value declarations involving abstraction pat-
terns: see rule (18). This rule lies at the heart of our treatment
of binders. It says that when matching an abstraction pattern <x>y
against an abstraction value 〈a〉v, we associate x not with a, but
rather with a new atom a′ not in the current state; and then y is as-
sociated with (a a′) · v. In fact the valid instances of the evaluation
relations (21) and (22) all have the property that a′ contains all the
atoms occurring in v (provided a contains all those occurring in E,
which we will always assume to be the case). So the new atom a′ in
rule (18) does not occur in v and therefore the swapping (a a′) · v
is equal to [a:=a′] · v, the result of replacing all occurrences of a
in v with a′. We postpone to Sect. 7 discussing ways of making
the implementation of this rule more efficient, both by avoiding the
generation of fresh atoms where possible and by delaying the com-
putation of atom swaps (replacements) until needed.

FreshML-Lite permits explicit name-swapping in expressions with
the syntax swap e1,e2 in e3; typing and evaluation rules are (2)
and (14) in Figs 2 and 3. Name-swapping can express the operation
e @x from [25] of concreting an abstraction at a (fresh) atom, using

let val <x’ >y = e in swapx,x’ in y .

Here is a more typical example, using swap-expressions to replace
the bound names in a number of abstractions with the same name.

Example 2.1. If eq : τ × τ → bool gives a notion of
equality for τ -values, then the following function eqa of type
〈name〉τ × 〈name〉τ → bool correctly computes ‘equality modulo
α-conversion’ for 〈name〉τ -values:

fun eqa (p)=
let val (z,z’) = p

val <x>y = z
val <x’>y’ = z’

in
eq (swap x,x’ in y, y’)

end.

Compare this with the characterisation of α-equivalence via swap-
ping of [32, Theorem 1]. �

Remark 2.2. The full version of FreshML extends FreshML-Lite
with a number of useful features, as well as including standard fea-
tures from ML such as polymorphism, references and exceptions.

• Compound patterns are allowed, in which abstraction patterns
can be nested with other forms of pattern. For example, the
declaration of eqa from Example 2.1 can be simplified to:

fun eqa (<x>y,<x’>y’) = eq (swap x,x’ in y, y’).

• Rather than having just one type name of bindable names,
users can declare as many distinct such types as they need;
they form a subclass of the equality types and expressions can
be polymorphic in the type of bindable names used.

• Abstraction types 〈bty〉ty, with bty a declared type of bindable
names, are a special case of abstraction types 〈ety〉ty where ety
is an arbitrary equality type. Their values are written 〈〈v1〉〉v2

(so 〈a〉v is a synonym for 〈〈a〉〉v when a is an atom). The se-
mantics ensures that these values are indistinguishable up to
renaming all the free atoms in the value v1 (of equality type
ety) occurring in the value v2 (of type ty); this permits sim-
ple representations of binding constructs in which the number
of bound names is not fixed, such as the ML matching con-
structs (which bind all the variables occurring in a pattern), or
Scheme’s general form of let-expression with a list of decla-
rations.

• If ety and ety′ are equality types, then so is 〈ety〉ety′ and the
built-in equality function at that type is the appropriate form
of α-equivalence (cf. Example 2.1).

We conclude this section by giving some ‘sanity checks’ on
FreshML-Lite’s typing and evaluation rules.

Lemma 2.3. Given value and typing environments E and Γ, write
` E : Γ to mean that dom(E) = dom(Γ) and that for each x ∈
dom(Γ), ` E(x) : Γ(x) holds. Then if a,E ` e ⇓ v, a′, ` E : Γ
and Γ ` e : τ hold, so does ` v : τ . �

Lemma 2.4. Given a state a containing all the atoms occurring in
a value environment E, if a,E ` e ⇓ v, a′ holds then a ⊆ a′.
Moreover, the pair (v, a′) is uniquely determined up to permuting
the atoms in a′ − a: if a,E ` e ⇓ v′, a′′ also holds, then there is a
bijection π between a′−a and a′′−a such that v′ is obtained from
v by applying π to the atoms occurring in it. �

3 The essence of FreshML is swapping
Although in rule (18) of Fig. 3 one can replace swapping (a a′) · v
with renaming [a:=a′] ·v, because a′ does not occur in v, neverthe-
less swapping rather than renaming underlies our treatment of fresh
bindable names. This is because it is simpler to use a totally defined
operation that can be applied whether or not a′ occurs in v; but if a′

Types
[[name]]ML = unit ref

[[〈name〉τ]]ML = [[name]]ML × [[τ]]ML

Expressions
[[e1 = e2]]ML = [[e1]]ML = [[e2]]ML

[[swap e1,e2 in e3]]ML = swap [[e1]]ML [[e2]]ML [[e3]]ML
[[<e1>e2]]ML = ([[e1]]ML,[[e2]]ML)

[[val <x1>x2 = e]]ML = val (x′1,x
′
2) = [[e]]ML;

val x1 = ref ();
val x2 = swap x1 x

′
1 x
′
2

(where x′1, x′2 are fresh)
[[fresh x]]ML = val x = ref ()

Values
[[a]]ML = a

[[〈a〉v]]ML = ([[a]]ML, [[v]]ML)

The rest of the translation is the identity; for example
[[τ1 × τ2]]ML = [[τ1]]ML × [[τ2]]ML

[[(e1,e2)]]ML = ([[e1]]ML,[[e2]]ML)
[[val (x1,x2) = e]]ML = val (x1,x2) = [[e]]ML

[[(v1, v2)]]ML = ([[v1]]ML, [[v2]]ML),
etc.

Figure 4. Translating FreshML-Lite into ML+swap

does occur in v, renaming can have bad properties, whereas swap-
ping is well-behaved. For example if a, a′ and a′′ are distinct, 〈a′〉a
and 〈a′′〉a are equivalent, but [a:=a′] · (−) sends the first to 〈a′〉a′
and the second to the inequivalent value 〈a′′〉a′. We might repair
this familiar problem of ‘capture’ of free names by binders with a
theory of capture-avoiding renaming, but a much simpler solution
is just to use swapping (a a′) ·(−); its self-inverse nature has excel-
lent properties which include preserving α-equivalence. Indeed, a
growing body of evidence shows that name-swapping, and more
generally permutations of names, are very useful for describing
properties of syntax involving binders: see [5, 6, 11, 24, 32].

As far as dynamics are concerned, name-swapping is the only thing
FreshML has over ML. To see this, consider the extension of Stan-
dard ML [18] with a primitive polymorphic function swap of type
unit ref→unit ref→α→α for swapping addresses (the values
of type unit ref) in ML values. Then the FreshML-Lite language
of the previous section can be translated into it as in Fig. 4.

Theorem 3.1. The above translation preserves and reflects
FreshML-Lite typing and evaluation: Γ ` e : τ holds in FreshML-
Lite iff [[Γ]]ML ` [[e]]ML : [[τ]]ML holds in ML+swap; and a,E ` e ⇓
v, a′ holds in FreshML-Lite iff a, [[E]]ML ` [[e]]ML ⇓ [[v]]ML, a

′ holds
in ML+swap. �

Since the translation is compositional, this theorem implies it is
‘computationally adequate’: if the translations of two phrases are
contextually equivalent in ML+swap, then they are already contex-
tually equivalent in FreshML-Lite. (See Definition 5.3 for a pre-
cise definition of contextual equivalence.) The converse is not true;
the translation is far from being ‘fully abstract’. This is because
abstraction values in FreshML-Lite are translated to (atom,value)-
pairs in ML+swap and the identity of the first component can be
discovered there in a way that we shall prove in Sect. 5 is impossible
in FreshML-Lite. For example, the results in Sect. 5 show that the
following two expressions of type (〈name〉name) × (〈name〉name)

are contextually equivalent in FreshML-Lite:

let fresh x fresh y in (<x >x ,<y >y) end,
let fresh x in (<x >x ,<x >x) end.

Under the translation they become the contextually inequivalent ex-
pressions

let val x = ref () val y = ref () in ((x ,x),(y ,y)) end,
let val x = ref () in ((x ,x),(x ,x)) end

which are distinguished in ML+swap by the context

let val x = [–] in #1(#1(x)) = #1(#2(x)) end

(where #1 and #2 are ML notation for first and second projection
functions). It might seem then that we could better mimic 〈name〉τ
in ML+swap with an abstract type with underlying representation
name × τ . However, being abstract, we would lose the Concrete-
ness property mentioned in the Introduction, i.e. the ability to match
against patterns involving abstraction, which seems so convenient
in practice (see also Remark 5.7).

4 Denotational semantics
In this section we give meaning to FreshML-Lite types and ex-
pressions with a denotational semantics in the universe of FM-
sets. This permutation model of set theory devised by Fraenkel
and Mostowski in the 1930s is shown in [13] to provide a syntax-
independent mathematical model of fresh bindable names and α-
conversion, by expressing those concepts purely in terms of swap-
ping names. This mathematics gave rise to the FreshML 2000 de-
sign [25]. We saw in the previous section that the dynamics of
FreshML’s treatment of bindable names reduces to two things: a
dynamically generated supply of fresh names (provided by the ML
type unit ref) and name-swapping (which we had to introduce
as a primitive). So it is perhaps not surprising that a mathematical
model of freshness and name-swapping can provide a denotational
semantics of FreshML-Lite that fits its operational semantics well.
The computational adequacy result of Theorem 5.4 shows that it
does; from this we deduce results about the correctness of repre-
sentation of object-level α-equivalence.

What is an FM-set? Ordinary sets are members of a cumulative hi-
erarchy obtained by starting with nothing (∅) and continuing trans-
finitely, at each stage forming new sets by taking powersets. The
universe of FM-sets differs just in that we start with a fixed infinite
collection � of ‘atoms’ (so-called because they will be members of
the universe that do not possess elements themselves), and at each
stage take only the set of subsets that possess a finite support. By
definition a set a of atoms is a support for X if for all a, b ∈ � −a,
X equals (a b) · X . Here (a b) · X denotes the set obtained from
X by swapping a and b wherever they appear in it (hereditarily). It
is the case (though not obviously so: see [13, Proposition 3.4]) that
every member X of the universe of FM-sets possesses a smallest
finite support, written supp(X).

The only restriction we have when doing FM-set theory is that we
must remain within the universe of sets with finite support. The
axiomatic development of [10] shows that nearly all logical and set-
theoretical constructs have this property. Just axioms of choice, the
ability to form a set consisting of an arbitrary choice of infinitely
many objects of the universe, are limited. For example, and this will
be relevant below, if xn (for n = 0, 1, . . .) is a countable sequence
of elements of an FM-set, although each element of the sequence
possesses a finite support, there may be no single finite set of atoms
that is a support for all the xn simultaneously; only if there is such
a finite set will the function sending each n to xn, i.e. the set of

ordered pairs {(n, xn) | n = 0, 1, . . .}, be finitely supported and
hence an FM-set.

FreshML-Lite features fixpoint recursion in both types and ex-
pressions. It is well-known how to use domain theory to give
denotational semantics for this. Here we use a domain theory
in FM-sets; this gives us access to the FM-set former for atom-
abstractions [13, Sect. 5] to give meaning to FreshML-Lite’s ab-
straction types 〈name〉τ . We only need a relatively simple notion of
domain, namely ω-complete partial orders (cpos), within the FM-
sets universe:

Definition 4.1. An FM-cpo D is an FM-set equipped with a
finitely supported partial order vD⊆ D×D (often written just v)
such that any finitely supported ω-chain d0 v d1 v d2 v · · · ∈ D
(i.e. one for which there is a single finite set of atoms a with
supp(dn) ⊆ a for all n) has a least upper bound (lub). We also
assume supp(D) = supp(vD) = ∅ (i.e. D and vD do not depend
on particular atoms). A morphism of FM-cpos f : D → D′ is a
function D → D′ that preserves v, swapping (i.e. f((a b) · d) =
(a b) · f(d)), and lubs of finitely supported ω-chains. �
Such aD need not have lubs of arbitrary ω-chains. For example the
denotation of name→ unit turns out to be isomorphic to the FM-
cpo of subsets of � that are either finite or whose complement is
finite, partially ordered by inclusion; if we enumerate the elements
of � = {a0, a1, a2, . . .},3 then the chain ∅ v {a0} v {a0, a2} v
{a0, a2, a4} v · · · is not finitely supported and moreover does not
possess a lub in this FM-cpo.

Our semantics is monadic in the sense of Moggi [19]: each type τ is
assigned an FM-cpo [[τ]] whose elements are used to give meaning
to FreshML-Lite values, ` v : τ ; whereas (closed) expressions
of type τ are assigned elements of T[[τ]], where T is a particular
‘dynamic allocation’ monad on FM-cpos. We define T below, but
first here is the definition of [[τ]] as τ ranges over FreshML-Lite
types.

• [[unit]]
def
= {1}, [[name]]

def
= � : Each FM-set X determines a

discrete FM-cpo taking v as equality on X . The one-element set
interprets unit and the set of atoms � interprets name.

• [[δn]]
def
= Dn: For datatypes we use minimal solutions to simul-

taneous recursive domain equations corresponding to the datatype
declaration. We can construct them by standard techniques using
colimits of embedding-projection pairs (see [1, Sect. 5] for exam-
ple), which transfer smoothly to FM-cpos; we omit details.

• [[〈name〉τ]]
def
= [�][[τ]]: For abstraction types we use the atom-

abstraction FM-cpo [�]D built from an FM-cpo D, much like the
atom-abstraction FM-set in [13, Sect. 5]. This consists of equiva-
lence classes for the pre-order (i.e. reflexive-transitive relation) on

� ×D given by: (a1, d1) v (a2, d2) iff a1 = a2 and d1 vD d2,
or a2 /∈ supp(d1) and (a1 a2) · d1 vD d2 (cf. Example 2.1). Over-
loading the notation, we write [a]d for the element of [�]D given
by the equivalence class of the pair (a, d). We can calculate that
supp([a]d) = supp(d)− {a}.

• [[τ × τ ′]] def
= [[τ]] × [[τ ′]]: For product types we use the prod-

uct of FM-cpos, given as for ordinary cpos by ordered pairs with
componentwise ordering.

• [[τ → τ ′]]
def
= [[τ]]→ T[[τ ′]]: The function FM-cpo D → D′ of

D and D′ consists of all finitely supported subsets of D ×D′ that
3Any such bijection of the set of atoms with the natural numbers is

external to the FM-sets universe since it cannot be finitely supported.

are total, monotone functions from D to D′ preserving least upper
bounds of finitely supported chains. To interpret function types we
combine this construct with the dynamic allocation monad T de-
scribed below. Thus values of type τ → τ ′, i.e. recursive function
closures, are modelled by functions mapping values (elements of
[[τ]]) to ‘computations’ of values (elements of T[[τ ′]]).

T is the analogue for the category of FM-cpos of one of the dy-
namic allocation monads on a presheaf category used by Stark [30]
to model the Pitts-Stark ν-calculus [26]. Each FM-cpo TD can be
constructed as the quotient of (� fin � ×D)⊥ by a suitable equiva-
lence relation; we omit the details here and just note that TD carries
the following structure:

• A (mono)morphism η : D→ TD (the monad unit).

• A least element ⊥ ∈ TD.

• A morphism ν : [�]D → D (‘restriction’) satisfying for all
a, b ∈ � and x ∈ TD that

ν[a](ν[b]x) = ν[b](ν[a]x) (24)
ν[a]x = x if a /∈ supp(x). (25)

TD is the minimal cpo with these properties, i.e. it has a certain
category-theoretic universal property, which we omit; and we can
use that to define the lifting part of the monad structure and verify
the usual monad laws. We can present each non-bottom element of
TD as

νa . d
def
= ν[a1] · · · ν[an]η(d) (26)

where a = {a1, . . . , an} is a finite (possibly empty) set of atoms
occurring in the support of d ∈ D (by property (24), the order
in which we list the elements of a on the right-hand side of (26)
is immaterial). The element (26) models a convergent FreshML-
Lite expression whose evaluation creates some fresh atoms a and
returns a value denoted by d. We need a dynamic allocation monad
satisfying (24) and (25), rather than a simpler one just pairing up
name sets and values, to prove Theorem 5.6.

We can now construct the denotations of FreshML-Lite values, ex-
pressions and declarations:

• if ` v : τ is derivable, then [[` v : τ]] ∈ [[τ]]

• if Γ ` e : τ is derivable, then [[Γ ` e : τ]] : [[Γ]]→ T[[τ]]

• if Γ`dec : Γ′ is derivable, then [[Γ ` dec : Γ′]] : [[Γ]]→T[[Γ′]]

where the denotation [[Γ]] of a typing environment Γ is the product
of the FM-cpos [[Γ(x)]] as x ranges over the finite domain of defi-
nition of Γ. Definition is by induction on judgements; we just give
the interesting clauses.

• Fresh name declaration, Γ ` fresh x : Γ′:
[[Γ ` fresh x : Γ′]](ρ)

def
= ν{a} . {x 7→ a}, for some/any a ∈ �

(by construction of T, the right-hand side is independent of a).

• Value declaration for abstractions, Γ ` val <x>x′ = e : Γ′:
Let d = [[Γ ` e : 〈name〉τ]](ρ). Then, for m as defined below,

[[Γ ` val <x>x′ = e : Γ′]](ρ)
def
=

{
⊥ if d = ⊥
m otherwise.

For d 6= ⊥, we have that d = νa . [a]d′ and we can define m def
=

ν({a′}] a) . {x 7→ a′, x′ 7→ (a a′) · d′} for some/any a′ /∈
a ∪ {a} ∪ supp(d′).

• Swap expression, Γ ` swap e1,e2 in e3 : τ :
Let a1 = [[Γ ` e1 : name]](ρ), a2 = [[Γ ` e2 : name]](ρ) and
d = [[Γ ` e3 : τ]](ρ). Then

[[Γ ` swap e1,e2 in e3 : τ]](ρ)
def
=





⊥ if a1 = ⊥,
or a2 = ⊥

(a1 a2) · d otherwise.

• Abstraction expression, Γ ` <e1>e2 : 〈name〉τ :
Given d1 = [[Γ ` e1 : name]](ρ) and d2 = [[Γ ` e2 : τ]](ρ), then
[[Γ ` <e1>e2 : 〈name〉τ]](ρ)

def
=




⊥ if d1 = ⊥, or d2 = ⊥
ν(a] a′) . [a]d otherwise, where d1 = νa . a,

d2 = νa′ . d and a ∩ a′ = ∅.

• Atom value: [[` a : name]]
def
= a.

• Abstraction value: [[` 〈a〉v : 〈name〉τ]]
def
= [a][[` v : τ]].

When we refer to ‘some/any atom’ above, we are really using the
freshness quantifier Nof [13]: we choose some atom satisfying the
condition, but in fact any such one will do.

5 Correctness
In this section we show the denotational semantics of Sect. 4
matches the operational semantics closely enough that we can prove
prove that values of recursively defined FreshML-Lite datatypes
represent α-equivalence classes of object-level syntax (the Ab-
stractness property from the Introduction). For simplicity we take
as object-language the familiar untyped λ-calculus, but the results
easily generalise to other algebraic signatures with binders. We
noted in the previous section that the denotation [[δ]] of a declared
FreshML-Lite datatype δ is a recursively defined FM-cpo. When
δ arises from an algebraic signature with binders, it only involves
product- and abstraction-, but not function-types; in this case [[δ]] is
a discrete FM-cpo given by an inductively-defined FM-set.

Example 5.1. Given the datatype declaration

datatype lam = Var of name
| Lam of 〈name〉lam
| App of lam× lam

then [[lam]] is isomorphic to the discrete FM-cpo given by the in-
ductively defined FM-set µX.(� + [�]X + X ×X). Previous
work [13, Theorem 6.2] shows this to be in bijection with the set
Λ(�)/≡α of α-equivalence classes [t]≡α of untyped λ-terms t
with variables in � :

t ∈ Λ(�) ::= a | λa.t | t t

(Swapping is given by (a b) · [t]≡α = [(a b) · t]≡α , where (a b)·
interchanges all instances of a and b in t; the support of [t]≡α is the
finite set of free variables of t.) It is not hard to see from the typing
rules for values in FreshML-Lite that there is a bijection between
λ-terms t ∈ Λ(�) and values (t)v of type lam , given by

(a)v
def
= Var a

(λa.t)v
def
= Lam (〈a〉(t)v)

(t1 t2)v
def
= App ((t1)v, (t2)v).

One can show by induction on the structure of t that under the
isomorphism Λ(�)/≡α ∼= [[lam]] above, [t]≡α is identified with
[[` (t)v : lam]]. Therefore for all t and t′,

t ≡α t′ iff [[` (t)v : lam]] = [[` (t′)v : lam]] (27)

�

Thus denotations of values of FreshML-Lite datatypes like lam
are in bijection with α-equivalence classes of terms of the object-
language they represent. To connect this to operational behaviour of
FreshML-Lite programs we have to do two things. First, we exam-
ine the translation of object-level terms into expressions rather than
values, since these are what the programmer writes, and second, we
relate equality of denotation of expressions to an appropriate notion
of operational behaviour (Definition 5.3).

To tackle the first issue, still using an object-language of λ-terms,
note that atoms � and value identifiers VId are both countably infi-
nite sets. By enumerating each, fix some explicit bijection ai ↔ xi,
then translate the λ-terms t of Example 5.1 into FreshML-Lite ex-
pressions (t)e as follows:

(ai)e
def
= Var xi

(λai.t)e
def
= let fresh xi in Lam (<xi>(t)e) end

(t1 t2)e
def
= App ((t1)e,(t2)e).

Lemma 5.2. One can show by induction on the structure of t that
if its free variables are among {a1, . . . , an} and if Γ is the typing
context mapping the corresponding value identifiers x1, . . . , xn to
name, then Γ ` (t)e : lam holds and for any ρ ∈ [[Γ]] = � n

[[Γ ` (t)e : lam]](ρ) = ν∅ . [[` (ρ t)v : lam]] ∈ T[[lam]] (28)

where ρ t is the λ-term obtained by simultaneous capture-avoiding
substitution of ρ(xi) for ai in t (for i = 1, . . . , n).

PROOF. When it comes to the step for λ-abstractions in the proof
of (28), the ‘garbage collection’ property (25) of the monad T is
crucial, combined with the fact that in an atom-abstraction FM-cpo
[�]D, an element of the form [a]d never contains a in its support.
�

We now know for all t and t′ that

t ≡α t′ iff [[Γ ` (t)e : lam]] = [[Γ ` (t′)e : lam]] (29)

where Γ is as in Lemma 5.2. For if t ≡α t′, then ρ t ≡α ρ t′ for
any ρ; so from (27) we get [[` (ρ t)v : lam]] = [[` (ρ t′)v : lam]]
and therefore [[Γ ` (t)e : lam]](ρ) = [[Γ ` (t)e : lam]](ρ)
by (28); since this holds for any ρ, we have the left-to-right
implication in (29). Conversely, if [[Γ ` (t)e : lam]](ρ) =
[[Γ ` (t)e : lam]](ρ) holds for any ρ, from (28) again we get
ν∅ . [[` (ρ t)v : lam]] = ν∅ . [[` (ρ t′)v : lam]] in T[[lam]]; but
this implies that [[` (ρ t)v : lam]] = [[` (ρ t′)v : lam]] in [[lam]]
(since the unit of the monad T is a monomorphism); so by (27)
we have ρ t ≡α ρ t′; and then we can take ρ to be ρ(xi) = ai
(i = 1, . . . , n), for which ρ t ≡α t and ρ t′ ≡α t′, to conclude that
t ≡α t′. �

Turning to the second issue mentioned above, namely relating
equality of denotation of expressions to operational behaviour, we
give a notion of contextual equivalence for FreshML-Lite expres-
sions. Roughly speaking, two expressions (of the same type) are
contextually equivalent if they are interchangeable in any complete
program without changing observable behaviour. We take programs
to be closed expressions of type unit, and their observable be-
haviour to be whether they evaluate, ignoring any fresh atoms cre-
ated along the way. The following more precise definition uses typ-
ing and evaluation as defined in Sect. 2, and the notion of a context
C[–]. As usual, contexts are generated by the grammar in Fig. 1
augmented by a placeholder ‘–’. C[e] then denotes the result of
replacing ‘–’ by e.

Definition 5.3. Given Γ ` e : τ and Γ ` e′ : τ , we write

Γ ` e ≈ctx e
′ : τ

and say that e and e′ are contextually equivalent if for all contexts
C[–] with ∅`C[e] : unit and ∅`C[e′] : unit, we have ∃a (∅, ∅`
C[e] ⇓ (), a) if and only if ∃a′ (∅, ∅ ` C[e′] ⇓ (), a′). �
Theorem 5.4. (Computational adequacy) Suppose Γ ` e : τ ,
` E : Γ, and a contains the atoms of E. Let ρ be given by ρ(x) =
[[`E(x) : Γ(x)]], for x ∈ dom(Γ).

(a) If a,E ` e ⇓ v, a′, then [[Γ ` e : τ]](ρ) is equal to the non-
bottom element ν(a′ − a) . [[` v : τ]] of T[[τ]].

(b) Conversely, if [[Γ ` e : τ]](ρ) 6= ⊥, then a,E ` e ⇓ v, a′

holds for some v and a′.

PROOF. (a) is proved by induction on the derivation of a,E ` e ⇓
v, a′. The proof of part (b) is more involved. We use a standard
method based on type-indexed logical relations relating domain el-
ements to FreshML-Lite values and expressions. The construction
is complicated because, as for ML, FreshML allows function types
in recursively defined datatypes (see Fig. 7 in Sect. 6 for an exam-
ple), precluding a simple inductive technique; instead, we deduce
the existence of the logical relations using the general theory of
minimal invariant relations [23] applied in the setting of FM-cpos
(details omitted in this extended abstract). �
Parts (a) and (b) together give the first part of the following corol-
lary. The second part can be deduced from the proof of the theorem,
by exploiting particular properties of the logical relation at equal-
ity types, which for the simplified language given in Sect. 2 we can
take to be types not involving use of the function type construct (ei-
ther in themselves, or in the declarations of any datatypes that they
involve).

Corollary 5.5. Suppose Γ`e : τ and Γ`e′ : τ . If [[Γ ` e : τ]] =
[[Γ ` e : τ]], then Γ ` e ≈ctx e

′ : τ . The converse holds if τ is an
equality type. �
Theorem 5.6. (Correctness of representation) Under the trans-
lation of λ-terms t into FreshML-Lite expressions (t)e of type lam
given above, α-equivalence of λ-terms corresponds to contextual
equivalence of FreshML-Lite expressions: given two λ-terms t
and t′, with free variables among {a1, . . . , an} say, letting Γ be
the typing context that maps the corresponding value identifiers
x1, . . . , xn to name, we have

t ≡α t′ iff Γ ` (t)e ≈ctx (t′)e : lam .

PROOF. The type lam is an equality type, so we can combine
Corollary 5.5 with (29) to get the desired conclusion. �
We emphasise that although this correctness theorem is for λ-terms,
similar results hold for object languages specified by a general no-
tion of binding signature (such as the nominal signatures of [32,
Definition 1], or the nominal algebras of [14]) versus datatypes in
FreshML-Lite whose declarations are derived from the signature in
the simple declarative fashion discussed in the Introduction.

Remark 5.7. What more could one want from such a representa-
tion of object languages in a metalanguage? Well, to be useful, the
metalanguage should provide rich facilities for writing algorithms
to manipulate these representations. FreshML’s abstraction patterns
are very useful in this respect. In particular we can use them to
provide an important facility, namely the ability to recognise that a
meta-level expression represents some object-level term. For an im-
pure functional programming language this cannot just be a matter

1 (* remove : name -> name list -> name list *)
2 fun re move x [] = []
3 | remove x (y ::ys) =
4 if x = y then remove x ys
5 else y ::(remove x ys);
6 (* fv : lam -> name list *)
7 fun fv (Var x) = [x]
8 | fv (Lam (<x >t)) = remove x (fv t)
9 | fv (App (t1,t2)) = (fv t1) @ (fv t2);

10 (* is closed t : lam -> bool *)
11 fun is closed t = ((fv t)=[])

Figure 5. Testing for closed λ-terms in FreshML

of typing and termination; because of side-effects from references
and exceptions, the full FreshML has terminating closed expres-
sions of type lam from Example 5.1 which are not in the image of
the translation t 7→ (t)e of λ-terms. However, even the cut-down
FreshML-Lite of Sect. 2 has this property. For example

genvar
def
= let fresh x in (Var x) end (30)

evaluates to ‘some fresh object-level variable’. Once we identify
[[lam]] with Λ(�)/≡α as in Example 5.1, the denotational se-
mantics of genvar is [[∅ ` genvar : lam]] = ν{a} . ([a]≡α) ∈
T[[lam]] (and [a]≡α is just {a}); from this and Sect. 5 it follows
that genvar is not contextually equivalent to (t)e for any closed
λ-term t. Nevertheless, we can easily write FreshML-Lite boolean-
valued functions to recognise an expression as the encoding of some
object-level term; for example is closed declared in Fig. 5 (for
legibility we used syntax for nested patterns and standard list con-
structs). This uses helper functions remove for removing an atom
from a list of atoms and fv for computing the free variables of a λ-
term (possibly with repeats); and then is closed tests whether that
list is empty. For example is closed genvar evaluates to false
(creating a fresh atom as it does so). Our results can show that for
a closed FreshML-Lite expression e of type lam, if evaluation of
e terminates (i.e. if ∅, ∅ ` e ⇓ v, a holds for some v and a), then
∅`is closed e ≈ctx true : bool if and only if ∅`e ≈ctx (t)e : lam
holds for some closed λ-term t.

6 Freshness inference
Recall from Sect. 4 the important FM-sets notion of finite support
(and the notation supp(X) for the smallest set of atoms supporting
an FM-set X). In informal reasoning about α-equivalence classes
by choosing representatives with sufficiently fresh bound names
(c.f. the ‘Barendregt variable convention’ [3, page 26]), it seems
that the end result is always well-defined, i.e. independent of which
fresh bound names are chosen, because the freshly chosen names do
not occur in the support of the final result (for if a, b /∈ supp(X),
then swapping a and b has no effect onX , i.e. (a b) ·X = X). This
is the informal Thesis put forward in the Introduction. (See [11,
Sect. 2.3] for some mathematical justification of it.) The definition
of the denotational semantics at the end of Sect. 4 contains several
examples of this phenomenon, for example.

FreshML 2000 [25] enforces that freshly chosen names not be in the
support of final results at compile time: the type-checker builds up
additional information about a relation of freshness between value
identifiers and expressions, x # e, which is a sound decidable ap-
proximation to the ‘not-in-the-support-of’ relation a /∈ supp([[e]])
in the denotational semantics. (Semantic ‘not-in-the-support-of’
is undecidable for the usual recursion-theoretic reasons.) This al-
lows FreshML 2000 to reject phrases causing observable side ef-

1 (* remove : <name>(name list) -> name list *)
2 fun re move(<x >[]) = []
3 | remove (<x >(y ::ys)) =
4 if x # y then y ::(remove (<x >ys))
5 else remove (<x >ys);
6 (* fv : lam -> name list *)
7 fun fv (Var x) = [x]
8 | fv (Lam (<x >t)) = remove (<x >(fv t))
9 | fv (App (t1,t2)) = (fv t1)@(fv t2);

Figure 6. Free variables of λ-terms in FreshML 2000

fects when fresh names are allocated dynamically. For example, x
is most definitely not fresh for the expression Var x (correspond-
ing to the fact that a ∈ supp(a) = {a}); and FreshML 2000 will
not admit genvar declared in (30) as a well-typed expression of
type lam . In fact FreshML 2000’s static freshness inference allows
one to simplify its dynamics by not threading through evaluation a
state containing the names generated so far. Not only does a cor-
rectness result like Theorem 5.6 hold for FreshML 2000, but it also
satisfies ‘no junk’ properties; for example, every closed terminating
expression of type lam in the fragment of FreshML 2000 without
references and exceptions is of the form (t)e for some closed λ-
term t. As we saw in Sect. 5, FreshML-Lite has some ‘junk’, but at
least it is possible to recognise it dynamically (Remark 5.7).

So static freshness-checking gives a more effect-free functional lan-
guage with better programming laws. However our experiences im-
plementing and using freshness inference indicate that the price is
too high, as we shall discuss.

As far as implementation goes, unfortunately the freshness infer-
ence algorithm has to proceed not solely on the structure of expres-
sions, but also sometimes on the structure of (inferred) types. This
is due to the notion of purity—judgements which state that values
of certain types (such as bool, int, or string, for example) can
never contain atoms in their support. We need this to treat many
seemingly innocuous uses of freshened bound names. For example
to deduce that fn <x >y => y +1 respects the conditions imposed
by freshness checking, we must deduce x # y +1. To do that we
examine the type of the body of the match, which is int, and with
purity judgements can observe that a value of type int cannot ever
contain any atoms in its support; so we deduce x # y +1. More
complicated problems of this kind arise in recursive datatype dec-
larations; to deduce which kinds4 of atoms may or may not occur
in the support of values of the declared datatypes, it is necessary to
converge on a fixed point as in the procedure for maximising equal-
ity in ML [18, Sect. 4.9]. With purity, more programs are typeable,
but type-checking gets harder for the user to understand and predict.

Experience writing syntax-manipulating programs in FreshML
2000 was one of the main motivations for developing a simpler
FreshML without freshness inference. We were too frequently
forced to adopt an obtuse coding style to get programs to pass the
freshness checks. For example, the code in Fig. 5 does not type-
check in FreshML 2000, because at line 8 the freshness checking
algorithm cannot deduce that x # (remove x fv t) holds. In
fact when evaluating an application of the fv function by match-
ing against the clause at line 6, the final result does not depend
upon the particular fresh atom associated with the bound name x ,
because an atom is not in the support of a list of atoms that has
had that atom removed. This fact has a simple proof by induction

4Both FreshML 2000 and FreshML permit the declaration of different
types of bindable names, whose values range over disjoint copies of � .

1 (* syntax *)
2 datatype lam =
3 Var of name
4 | Lam of <name> lam
5 | App of lam *lam ;
6 (* semantics *)
7 datatype sem =
8 L of (unit -> sem) -> sem (* function *)
9 | N of neu (* neutral *)

10 and neu =
11 V of name (* variable *)
12 | A of neu *sem ; (* neutral appn *)
13 (* reification reify : sem -> lam *)
14 fun reify (L f) =
15 let fresh x :name in
16 Lam (<x >(reify (f (fn () => N (V x))))) end
17 | reify (N n) = reifyn n
18 and reifyn (V x) = Var x
19 | reifyn (A (n,d)) =
20 App (reifyn n, reify d);
21 (* evals :(name*(unit->sem))list -> lam -> sem *)
22 fun evals [] (Var x) = N (V x)
23 | evals ((x,v)::env)(Var y) =
24 if x = y then v ()
25 else evals env (Var y)
26 | evals env (Lam (<x >t)) =
27 L (fn v => evals ((x,v)::env) t)
28 | evals env (App (t1,t2)) =
29 (case evals env t1 of
30 L f => f (fn () => evals env t2)
31 | N n => N (A (n,evals env t2)));
32 (* evaluation eval : lam -> sem *)
33 fun eval t = evals [] t ;
34 (* normalisation norm : lam -> lam *)
35 fun norm t = reify (eval t)

Figure 7. Normalisation by evaluation in FreshML

on the length of the list, but this is not something our freshness-
checking algorithm is able to use at the point it needs to verify the
condition x # (remove x fv t). For this particular example we
can circumvent the problem by using a remove function of type
〈name〉 (name list)→ name list, as in Fig. 6.5 At line 8 of this
figure the previous problem has gone away because x is always
fresh for an object of the form <x >e (and also because x is fresh
for remove , since the definition of that function does not depend
upon any atom in particular). FreshML 2000 spots this at compile-
time and allows this new version of fv as a well-typed expression
of type lam → name list.

Figure 7 gives a subtler example of the shortcomings in static fresh-
ness inference in FreshML 2000, at the same time showing off how
FreshML can express rather clearly non-trivial syntax-manipulating
algorithms; in this case an algorithm computing the normal form of
an untyped λ-term (if there is one) using normalisation by evalua-
tion in a form suggested to us by Thierry Coquand [private commu-
nication] and adapted for call-by-value by Olivier Danvy. (See [2,
Sect. 3] and the references there for more on normalisation by eval-
uation in an untyped setting.) In FreshML the function norm has
type lam → lam (and does indeed compute normal forms where
they exist); in FreshML 2000, norm does not type-check because

5Atom inequality, written x # y , is needed in this declaration of
remove to signal to the freshness-checker that it can use the fact that x
is fresh for y when checking the first branch of the conditional.

datatype ’a am = In of ’a
| Ab of <name>(’a am);

(* monad unit *)
fun return x = In x ;
(* monad lifting

op>>= : ’a am * (’a -> ’b am) -> ’b am *)
infix >>= ;
fun ((In x) >>= f) = f x

| ((Ab (<n >y)) >>= f) = Ab (<n>(y >>= f));
(* forcing at pure types, e.g... *)
fun force (In (s :string)) = s

| force (Ab (<n >y)) = force y

Figure 8. An abstraction monad

the helper function evals does not. Checking fails at the clause
in the definition of evals at lines 26–27, where the system cannot
deduce that x # (fn v => evals ((x,v)::env) t) holds,
under the assumption that x # evals and x # env hold. Indeed
the proof of the corresponding property of supports in the denota-
tional model, though true, is far from immediate.

Remark 6.1. We can get around these shortcomings of freshness
inference within FreshML 2000 by adopting a monadic program-
ming style that mimics the use of the dynamic allocation monad
T in the denotational semantics of Sect. 4, using an abstraction
monad, such as the one in Fig. 8. Using this monad to wrap return
types in abstractions, freshness inference only needs to use the sim-
ple fact x # <x>e; plus the fact that abstractions can be discarded
at pure types, as in the function force in the figure. The efficiency
of this style is questionable, and the resulting programs somewhat
obfuscated. Nevertheless, it was the realisation that one can adopt
this monadic style in FreshML 2000 that led us to the design of the
simpler FreshML and its denotational semantics; and using name
abstraction to model name generation (such as in Fig. 8) still has its
uses in FreshML: see [12].

We advocate use of FreshML, which does not enforce the Introduc-
tion’s Thesis (the property of freshly chosen names not being in the
support of final results) at compile-time. However, freshness infer-
ence may still be useful for other purposes: it could be used in a
program logic for verifying properties of FreshML programs; and
information about freshness deduced at compile-time may be useful
for optimising run-time implementation, the issue we turn to next.

7 Implementation
The source code of an experimental implementation of the
FreshML language (written in Objective Caml) is available at the
web site http://www.freshml.org/. Our implementation pro-
vides the Core of Standard ML [18] together with FreshML’s dis-
tinctive features for programming with binders. There is an interac-
tive interpreter, together with support for processing FreshML code
held in individual source files, but no modules layer. If so desired,
FreshML 2000’s freshness inference can be switched on by starting
freshml with the command-line argument --pure. The web site
contains examples of programming with binders in FreshML, in-
cluding programs calculating the possible labelled transitions from
a π-calculus [17] process, using various forms of encoding [12];
and Barthe’s classification algorithm for type-checking injective
Pure Type Systems [4]. We invite readers to try FreshML for them-
selves!

We saw in Sect. 3 that the dynamics of FreshML can be imple-
mented by translating it into ML augmented with a primitive func-
tion swap : unit ref→unit ref→α→α for swapping address

Canonical values c ::=
atom a
abstraction 〈a〉p
pair (p, p)
unit ()
closure [P, f(x) = e]
constructed C

C p

Non-canonical values p ::= π • c
Explicit permutations π ::=
identity []
composite (a a′) :: π

Value environments P ::= [x 7→ p, . . .]

(where a, a′ range over 	 and x, f over VId)

Figure 9. Values with delayed swapping

names in ML values. It is possible to add this to some existing
ML implementations using unsafe features.6 Since the representa-
tion of values in such systems was not designed with swapping in
mind, such simple hacks may not yield very efficient implementa-
tions of FreshML; but they do enable us to demonstrate FreshML’s
novel features for computing with binders integrated into a com-
plete ML system. Shinwell [28] reports on such an experiment
with Objective Caml and the resulting Fresh O’Caml is available
at http://www.freshml.org/.

To make atom-swapping more efficient, our implementation of
FreshML uses a representation of FreshML values suggested by
Mark Shields [private communication] using delayed swapping. In
this scheme, shown in Fig. 9, values p have at each structural level
‘explicit permutations’ of atoms (represented by finite lists of pairs
of atoms, π, standing for the sequential composition, reading from
left to right, of the corresponding atom swaps). Evaluation pro-
duces values in canonical form, c, where the outermost constructor
is manifest; but value environments P need only associate value
identifiers with values that are not necessarily in canonical form.
For example, evaluation rule (14) from Fig. 3 becomes

a,P ` e1 ⇓ a1, a
′ a′,P ` e2 ⇓ a2, a

′′

a′′,P ` e3 ⇓ c, a′′′ c′ = cf((a1 a2) :: [] • c)
a,P ` swap e1,e2 in e3 ⇓ c′, a′′′

(31)

where p 7→ cf(p) is an auxiliary function converting a non-
canonical value to canonical form by pushing the outermost explicit
permutation through one structural level and applying it to any atom
it meets. This is relatively inexpensive to implement compared with
traversing the whole parse tree swapping its atoms.

It seems that in practice most swappings arise from deconstructing
abstraction values 〈a〉v. In the delayed swapping implementation
scheme, the evaluation rule for this (cf. rule (18) in Fig. 3) becomes

a,P ` e ⇓ 〈a〉(π • c), a′ a′ ∈ 	 − a′
p1 = [] • a′ p2 = (a a′) :: π • c

a,P ` val <x1>x2 = e ⇓ {x1 7→ p1, x2 7→ p2}, a′ ∪ {a′}
(32)

with (a a′) appended to π. Another optimisation is to try to avoid
choosing a fresh atom a′ at all. To make this possible, we can
consider ‘garbage collection’ rules that try to reduce the state (set
of atoms) by removing atoms not in the support of the results of

6Thanks to Claudio Russo for showing how to do this in Moscow ML.

evaluation (properties such as Lemma 2.4 have to be modified if we
do this). Then in the above rule it may be the case that a ∈
 − a′
and we can take a′ = a and replace (a a′) :: π • c with π • c.
We have not yet fully exploited such optimisations. In particular
the freshness inference discussed in Sect. 6 could be useful for op-
timising the dynamics of FreshML. For example, for non-canonical
values of pure type, when converting to canonical form we can just
discard the outermost permutation rather than pushing it down into
the value.

8 Related work
Sheard [27, Sect. 13] gives an excellent survey of the problems
for metaprogramming caused by statically scoped binders in ob-
ject terms and some of the solutions that have been proposed.
FreshML seems unique among metaprogramming languages in pro-
viding language-wide support for object-level α-equivalence while
still allowing the user to refer to bound entities by name. Miller [16]
proposed incorporating elements of higher order abstract syntax,
HOAS [22], into an ML-like programming language, MLλ, with
intentional function types ty => ty’. HOAS also underlies Raf-
falli’s Bindlib Library for O’Caml.7 FreshML’s underlying theory
of binders [13] lifts less to the metalevel: like HOAS it promotes
object-level renaming to the metalevel (via the swapping opera-
tion), but unlike HOAS it leaves object-level substitution to be de-
fined case-by-case using structural recursion. The advantage is that
FreshML data types are concrete and their denotational semantics
in the universe of FM-sets retain the pleasant recursion/induction
properties of classical first-order algebraic data types: see [13,
Sect. 6]. Also, while MLλ and Bindlib give no direct access to
bound names and their distinctions (name equality and inequality),
FreshML does. The price paid for this ability is dynamic generation
of fresh names. The seemingly small computational effect (which
in fact has rather subtle interactions with higher order functions:
see [26]) has a long history in functional programming, from Lisp’s
gensym to more recent advocates, such as [21, 7]. However, the
combination with name-swapping and abstraction types 〈bty〉ty is
unique to FreshML. Since the original design was published in [25],
the use of swapping and freshness to deal with α-equivalence and
name restriction has been taken up by others, such as in [6]. Indeed,
it was reading this work that inspired us to remove the rather restric-
tive freshness checking from FreshML 2000’s statics and design the
new version of FreshML presented here. FreshML 2000’s approach
to names and binding has also inspired work on open code types in
homogeneous metaprogramming languages by Nanevski and Pfen-
ning [20].

FreshML’s correctness properties established in Sect. 5 are not ob-
vious, and we had to work quite hard to establish them. We in-
troduced a new denotational model, FM-cpos, that we think is in-
teresting in its own right. Traditional, Scott-Strachey models of
dynamically allocated local names are not sufficiently abstract to
establish these correctness results (roughly speaking, they do not
verify the laws (24) and (25)). Therefore, beginning with Oles,
Reynolds and Moggi, various people have developed and applied
‘dynamic allocation’ monads in categories of functors valued in ω-
cpos: see [9, 31] for example. The detailed proofs of the results
in Sects 4 and 5 are less complicated than the corresponding ones
in the functor category approach—both conceptually (we are just
doing traditional domain theory, but in a slightly different classical
set theory) and practically (constructions on FM-cpos, especially
function spaces, are much easier to describe concretely than are the

7
http://www.lama.univ-savoie.fr/

sitelama/Membres/pages web/RAFFALLI/bindlib.html

analogous constructs in functor categories). We believe that FM-
cpos should be investigated as an interesting model of restriction
(in the sense of π-calculus) and spatial locality in general; the work
in [5, 11, 12] already takes steps in this direction.

Simplifying FreshML 2000 to produce FreshML as we have de-
scribed in this paper opens up many interesting possibilities. For
one thing, it opens the door to full-scale functional language im-
plementations incorporating our approach to programming with
binders, as Shinwell’s work on Fresh O’Caml [28] shows. It has
also made it possible to support abstraction types for binding data
consisting of more than a single atom (see Remark 2.2). Freshness
inference is poorly-understood for such types; the main problem is
judging which atoms are in the support of a value as well as which
are not. FreshML neatly removes the need to solve this problem
and allows us to provide this generalised form of abstraction.

The features we have described here for programming with binders
seem really useful. Perhaps the school of pure, lazy functional pro-
gramming should have them too—there should be a FreshHaskell!
Once again, the simple form of FreshML presented here holds out
hope that this might be possible, since it removes the need to get
effective static freshness information, which appears to be much
harder for a non-strict language than for a strict one. Of course our
design is impure—some side-effects of generating fresh names are
left exposed in FreshML; in ‘FreshHaskell’ one would presumably
encapsulate them using a monad, mimicking the use of a monad
in the denotational semantics of Sect. 4 (cf. the abstraction monad
’a am in Fig. 8). The design and implementation of ‘FreshHaskell’
remains to be investigated.

9 Acknowledgements
This research was funded by UK EPSRC grant GR/R07615/01 and
by a donation from Microsoft’s Cambridge Research Laboratory.
We thank Luca Cardelli, Thierry Coquand, Olivier Danvy, Simon
Peyton Jones, Claudio Russo, Mark Shields, Keith Wansbrough and
the anonymous referees for helpful comments and feedback on this
work. Peter White contributed much to the implementation work,
which benefitted enormously from use of the O’Caml compiler of
INRIA’s projet Cristal.

10 References
[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky,

D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of
Logic in Computer Science, Volume 3. Semantic Structures,
chapter 1. Oxford University Press, 1994.

[2] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. From
interpreter to compiler and virtual machine: A functional
derivation. Technical Report BRICS RS-03-14, BRICS, De-
partment of Computer Science, University of Aarhus, March
2003.

[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics. North-Holland, revised edition, 1984.

[4] G. Barthe. Type-checking injective pure type systems. Jour-
nal of Functional Programming, 9(6):675–698, 1999.

[5] L. Caires and L. Cardelli. A spatial logic for concurrency
(part II). In CONCUR 2002 – Concurrency Theory, 13th In-
ternational Conference, Brno, Czech Republic, August 20-23,
2002. Proceedings, volume 2421 of Lecture Notes in Com-
puter Science, pages 209–225. Springer-Verlag, Berlin, 2002.

[6] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with
hidden labels. In Foundations of Software Science and Com-

putation Structures, 6th International Conference, FOSSACS
2003, Warsaw, Poland. Proceedings, volume 2620 of Lecture
Notes in Computer Science, pages 216–232. Springer-Verlag,
Berlin, 2003.

[7] K. Claessen and D. Sands. Observable sharing for func-
tional circuit description. In Advances in Computing Science
ASIAN’99, 5th Asian Computing Science Conference, volume
1742 of Lecture Notes in Computer Science, pages 62–73.
Springer-Verlag, 1999.

[8] N. G. de Bruijn. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Indag. Math.,
34:381–392, 1972.

[9] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract
model for the π-calculus (extended abstract). In Eleventh An-
nual Symposium on Logic in Computer Science, pages 43–54.
IEEE Computer Society Press, Washington, 1996.

[10] M. J. Gabbay. A Theory of Inductive Definitions with α-
Equivalence: Semantics, Implementation, Programming Lan-
guage. PhD thesis, University of Cambridge, 2000.

[11] M. J. Gabbay. The π-calculus in FM. Submitted, September
2002.

[12] M. J. Gabbay. FM for process calculi that generate fresh
names. Submitted, June 2003.

[13] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing,
13:341–363, 2002.

[14] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic ap-
proach to metareasoning on nominal algebras in HOAS. In
28th International Colloquium on Automata, Languages and
Programming, ICALP 2001, Crete, Greece, July 2001. Pro-
ceedings, volume 2076 of Lecture Notes in Computer Science,
pages 963–978. Springer-Verlag, Heidelberg, 2001.

[15] R. Laemmel and S. L. Peyton Jones. Scrap your boilerplate:
A practical approach to generic programming. In ACM SIG-
PLAN Workshop on Types in Language Design and Implemen-
tation (TLDI 2003), New Orleans, pages 26–37. ACM Press,
2003.

[16] D. A. Miller. An extension to ML to handle bound variables
in data structures: Preliminary report. In Proceedings of the
Logical Frameworks BRA Workshop, 1990.

[17] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses (parts I and II). Information and Computation, 100:1–
77, 1992.

[18] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Defi-
nition of Standard ML (Revised). MIT Press, 1997.

[19] E. Moggi. Notions of computation and monads. Information
and Computation, 93(1):55–92, 1991.

[20] A. Nanevski. Meta-programming with names and necessity.
In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, ICFP 2002, Pitts-

burgh, Pennsylvania, pages 206–217. ACM Press, New York,
2002.

[21] M. Odersky. A functional theory of local names. In Confer-
ence Record of the 21st Annual ACM Symposium on Princi-
ples of Programming Languages, pages 48–59. ACM Press,
1994.

[22] F. Pfenning and C. Elliott. Higher-order abstract syntax.
In Proc. ACM-SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 199–208. ACM
Press, 1988.

[23] A. M. Pitts. Relational properties of domains. Information
and Computation, 127:66–90, 1996.

[24] A. M. Pitts. Nominal logic, a first order theory of names and
binding. Information and Computation, to appear. (A pre-
liminary version appeared in the Proceedings of the 4th In-
ternational Symposium on Theoretical Aspects of Computer
Software (TACS 2001), LNCS 2215, Springer-Verlag, 2001,
pp 219–242.).

[25] A. M. Pitts and M. J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In Mathemat-
ics of Program Construction. 5th International Conference,
MPC2000, Ponte de Lima, Portugal, July 2000. Proceedings,
volume 1837 of Lecture Notes in Computer Science, pages
230–255. Springer-Verlag, Heidelberg, 2000.

[26] A. M. Pitts and I. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What’s new? In Mathematical Foundations of Computer
Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of
Lecture Notes in Computer Science, pages 122–141. Springer-
Verlag, Berlin, 1993.

[27] T. Sheard. Accomplishments and research challenges in meta-
programming. In Semantics, Applications, and Implementa-
tion of Program Generation, Second International Workshop,
SAIG 2001, Florence, Italy, September 6, 2001, Proceedings.,
volume 2196 of Lecture Notes in Computer Science, pages
2–44. Springer, 2001.

[28] M. R. Shinwell. Swapping the atom: Programming with
binders in Fresh O’Caml. Submitted, June 2003.

[29] M. R. Shinwell and A. M. Pitts. FreshML User Manual. Cam-
bridge University Computer Laboratory, November 2002.
Available at 〈http://www.freshml.org/docs/〉.

[30] I. D. B. Stark. Categorical models for local names. Lisp and
Symbolic Computation, 9(1):77–107, 1996.

[31] I. D. B. Stark. A fully abstract domain model for the π-
calculus. In 11th Annual Symposium on Logic in Computer
Science, pages 36–42. IEEE Computer Society Press, Wash-
ington, 1996.

[32] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal uni-
fication. In Computer Science Logic and 8th Kurt Gödel
Colloquium (CSL’03 & KGC), Vienna, Austria. Proccedings,
Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2003.

