
Evaluation Logic

�

Andrew M. Pitts

y

University of Cambridge Computer Laboratory

Cambridge CB2 3QG England

Abstract

A new typed, higher-order logic is described which appears particularly

well �tted to reasoning about forms of computation whose operational be-

haviour can be speci�ed using the Natural Semantics style of structural op-

erational semantics [5]. The logic's underlying type system is Moggi's com-

putational metalanguage [11], which enforces a distinction between compu-

tations and values via the categorical structure of a strong monad. This

is extended to a (constructive) predicate logic with modal formulas about

evaluation of computations to values, called evaluation modalities. The

categorical structure corresponding to this kind of logic is explained and a

couple of examples of categorical models given.

As a �rst example of the naturalness and applicability of this new logic

to program semantics, we investigate the translation of a (tiny) fragment

of Standard ML into a theory over the logic, which is proved computation-

ally adequate for ML's Natural Semantics [10]. Whilst it is tiny, the ML

fragment does however contain both higher-order functional and impera-

tive features, about which the logic allows us to reason without having to

mention global states explicitly.

�

This article appears in: G. Birtwistle (ed.), IVth Higher Order Workshop, Ban� 1990,

Workshops in Computing (Springer-Verlag, Berlin, 1991), pp 162{189.

y

Research supported by the CLICS project (ESPRIT BR Action nr 3003).

1

1 Introduction

Higher-order metalogics based on typed lambda calculi (such as Scott's LCF

[20] and Plotkin's formalizations of domain-theoretic denotational semantics [19])

have been used to give semantics to programming languages via formal transla-

tions of programming language syntax into the types and terms of the metalogic.

The basic features of such translations are their compositionality (i.e. the trans-

lation of a compound program expression depends only on the translations of

its subexpressions) and that they adequately capture (via provability within the

metalogic) the intended operational behaviour of program expressions. Armed

with such a translation, amongst other things we can|at least in theory|use

the metalogic to reason formally about program behaviours. The ease with which

this can be done in practice depends partly on the `naturalness' of the translation,

which in turn depends on how well-�tted the logical forms of expression permit-

ted by the metalogic are to programming language features and their operational

semantics.

In this paper we will describe the core of a new metalogic, called Evaluation

Logic, which appears particularly well �tted to reasoning about forms of com-

putation that can be speci�ed using a style of operational semantics known as

Natural Semantics. The latter de�nes the behaviour of the phrases of a program-

ming language via relations such as

State;Phrase) State

0

;Value

which are inductively de�ned by rules reecting the structure of program phrases.

This style of operational semantics is a particular case of the structural approach

of Plotkin [18]. It was developed independently in the context of intuitionistic

type theory by P. Martin-L�of (see [15]), and has been further re�ned and devel-

oped by Milner, Kahn [5] and others. A large-scale example of Natural Semantics

is provided by the o�cial de�nition of the Standard ML language [10].

The starting point of the ideas described in this paper is the recent work by

Moggi [11, 12, 13] making use of the categorical notion of a strong monad as a

powerful organizing tool in the denotational semantics of programming languages.

(See Gunter and Scott [4] and Mosses [14] for a survey of existing techniques in

this area.) Roughly speaking, Moggi's viewpoint is that particular notions of

computation can be modelled by various monads T on suitable categories of

semantic domains: if datavalues of a particular type are modelled by a domain

D, then the denotations of computations of data of that type lie in the domain

T (D). The e�cacy of this viewpoint is borne out in Moggi's work not only by

many concrete examples of monads, but also by the fact that these examples can

be built up in a modular way by applying monad constructors corresponding to

di�erent features of computations. Instead of building new monads from old using

monad constructors, one might consider axiomatizing extra, computation-related

properties of a single strong monad within the framework of a suitable logic. It

is the question of what is a suitable logic for doing this which is addressed in this

paper.

There already exists an elegant equational logic of typed terms corresponding

to the notion of strong monad (in the same way that the simply-typed lambda cal-

culus corresponds to cartesian closedness). This is Moggi's computational lambda

calculus, which we review in Section 2. As well as product and function types,

this calculus contains computation types, T�, with two associated term-forming

operations capturing the structure of a strong monad. The �rst operation asso-

ciates to a term M of type � a term [M] of type T�, whose intended meaning

is `the computation which immediately evaluates to the value M '. The second

operation associates to terms E:T� and F (x):T�

0

(the second depending upon a

variable x:�), a term

let x(E inF (x)

of type T�

0

, intended to denote a basic form of sequential composition: `�rst

evaluate E, bind the result to the parameter x and then evaluate F (x)'.

Such informal statements about evaluation of computations|giving the in-

tended interpretation of computation terms|are not captured directly in Moggi's

computational lambda calculus, which instead gives certain basic equations be-

tween computations analogous to beta and eta conversion for lambda terms. In

this paper we will extend the computational lambda calculus to a constructive

predicate logic which permits the formulation of statements about evaluation of

computations to values, and which accordingly we call Evaluation Logic. This is

achieved by means of evaluation modalities which to each formula �(x) containing

a free variable x:�, and to each term E:T�, assign formulas

[x(E]�(x) and hx(Ei�(x)

in which x becomes a bound variable. The intended meaning of the �rst formula

is `if E evaluates to x, then necessarily �(x) holds', whilst the intended meaning

of the second is `it is possible for E to evaluate to an x for which �(x) holds'.

These evaluation modalities have as derived forms predicates asserting evaluation

of computations to values, and convergence and divergence of computations; they

can also be used to formulate partial and total correctness statements in a natural

way|see Remark 3.2.8.

The evaluation modalities and their rules of inference are described in Sec-

tion 3. Their presence makes Evaluation Logic reminiscent of Dynamic Logic (see

Kozen and Tiuryn [7] for a survey of the latter). Indeed the forms of modalities

which appear in Dynamic Logic are the particular cases of evaluation modalities

with � the unit type 1 (the type containing a unique element up to equality).

However, the motivation for formulating Evaluation Logic came more from the

Natural Semantics style of operational semantics mentioned above. In Section 4

we give a simple example of translating programming language features into an

Evaluation Logic theory adequately capturing operational behaviour speci�ed in

Natural Semantics. The example concerns a fragment of Standard ML contain-

ing both functional features (higher-order recursive function declarations) and

imperative features (assignable global variables).

Metatheoretical conventions

Evaluation Logic, and the computational lambda calculus over which it is based,

contain several unfamiliar variable-binding operations. We deal with these in a

uniform way by adopting the increasingly common device (advocated by Aczel,

Klop [6] and Martin-L�of [15] amongst others) of using a higher-order metalan-

guage to specify the syntax of object-language expressions. For our purposes here,

it is su�cient to use a typed �-calculus over a single ground type exp (the type

of object expressions), with meta-terms identi�ed up to ���-conversion. Lambda

abstraction in this metalanguage will be denoted by (x)e. Meta-application will

be denoted by e(e

0

), with a multiple application such as e(e

0

)(e

00

) abbreviated

to e(e

0

; e

00

). The result of substitution of a meta-term e for a meta-variable x

throughout a meta-term e

0

will be denoted e

0

(e=x).

In this way, the only variable binding takes place via lambda abstraction in

the meta-language, and whilst object-language expressions may contain object-

variables, no concept of a free object-variable is needed.

Acknowledgements

The work described here has bene�ted greatly from discussions with E. Moggi,

upon whose work it builds, and also from discussions with the other members of

the CLICS Project in Cambridge.

2 Computational Lambda Calculus

In this section we review, in a semi-formal style, Moggi's computational met-

alanguage [11, 13], which adds computation types to equational logic over the

standard simply typed lambda calculus with unit type 1, product types � � �

0

and function types �!�

0

.

In the calculus, the unique (up to provable equality) element of the unit type

1 will be denoted h i. First and second projection from a product type will be

denoted by fst and snd, and pairing denoted by h ; i; surjective pairing axioms

form part of the equational logic. Typed lambda abstraction will be denoted by

�x:�:F (x), and application by MM

0

; beta and eta conversion axioms form part

of the equational logic. We omit further details and concentrate instead on the

rules for computation types.

To formulate these, we will be a little more precise about the allowed forms

of judgement in the computational lambda calculus, which are

x

1

:�

1

; : : : ; x

n

:�

n

` M : �

x

1

:�

1

; : : : ; x

n

:�

n

` M =M

0

: �

The intended meaning of these judgements is `M is a term of type �, given that

the variables x

1

; : : : ; x

n

have types �

1

; : : : ; �

n

respectively' and `M and M

0

are

equal terms of type �, given that the variables x

1

; : : : ; x

n

have types �

1

; : : : ; �

n

respectively'.

Remark 2.0.1 It will be a derived property of the systems we consider that for

a given set of typing assumptions, a term has at most one type. Consequently

we can abbreviate the second form of judgement to

x

1

:�

1

; : : : ; x

n

:�

n

`M =M

0

without ambiguity.

The �nite list on the left-hand side of the ``' symbol in the above judge-

ments will be called a context and typically abbreviated to �. Only judgements

satisfying the well-formedness conditions

� the variables x

1

; : : : ; x

n

are distinct

� the variables occurring in M lie in the list x

1

; : : : ; x

n

will be considered. In particular, in giving rule schemes for generating judge-

ments we assume that both the hypotheses and conclusion are well-formed|this

obviates the need for side-conditions in certain rules. We will denote by �; x:�

a context � extended by assigning type � to a variable x not occurring in �; sim-

ilarly �;�

0

denotes juxtaposed contexts with disjoint sets of variables. We omit

the standard rules relating to the structure of contexts and the usual properties

of equality.

2.1 Computation types

If � is a type, so is T�. The term-forming rules are

values

� `M : �

� ` [M] : T�

sequential composition

� ` E : T� �; x:� ` F (x) : T�

0

� ` letx(E inF (x) : T�

0

Remark 2.1.1 Using the metatheoretical conventions mentioned in the Intro-

duction, we should really write letx(E inF (x) as let(E;F)|in other words, let

is a meta-constant of type exp!(exp!exp)!exp. More trivially, a similar re-

mark applies to value terms which, formally, make use of a meta-contant of type

exp!exp.

We think of terms of type T� as the (denotations of) `computations of ele-

ments of type �'. The intended meaning of the the value term [M] is the trivial

computation: `immediately return the value M '. The intended meaning of the

term letx(E inF (x) is the following form of sequential composition of compu-

tations: `�rst evaluate E, to x say, and then evaluate F (x)'. The reader may

verify that the following equality rules respect these informal interpretations:

� `M : � �; x:� ` F (x) : T�

0

� ` let x([M] inF (x) = F (M) e:T� ` let x(e in [x] = e

� ` E : T� �; x:� ` F (x) : T�

0

�; x

0

:T�

0

` G(x

0

) : T�

00

� ` let x

0

((let x(E inF (x)) inG(x

0

) = let x(E in (letx

0

(F (x) inG(x

0

))

This completes our review of the computational lambda calculus. Note that it

is a higher-order calculus not only in the usual sense of permitting the formation

of functionals of higher types (iterating the function-type constructor), but also

because it permits the formation of computations of computations, and so on

(iterating the computation-type constructor).

2.2 Categorical models

The interpretation in a cartesian closed category of the unit, product and func-

tion types and their associated terms and equations is well known: see Lambek

and Scott [8], for example. Here we merely recall the overall shape of this inter-

pretation in one particular formulation. Using �nite products and exponentials

in the cartesian closed category C, an object [[�]] of C is assigned to each type �

by induction on its structure. Similarly, by induction on the structure of terms

M , each derivable typing judgement � `M : � gives rise to a morphism in C

[[� ` M : �]] : [[�]] �! [[�]]

whose domain is by de�nition the �nite product

[[�]]

def

= [[�

1

]]� � � � � [[�

n

]]

when the context � is x

1

:�

1

; : : : ; x

n

:�

n

. The interpretation satis�es all provable

equalities, in the sense that if � ` M =M

0

: � is derivable then [[� ` M : �]] and

[[� `M

0

: �]] are equal morphisms in C.

Moggi has shown that to interpret computation types and their associated

terms and equations in C, one needs to give the extra structure of a strong monad

on C. This is a functor T : C �! C equipped with natural transformations

�

X

: X �! T (X) (unit)

�

X

: T (T (X)) �! T (X) (multiplication)

t

X;Y

: X � T (Y) �! T (X � Y) (strength)

satisfying a number of commutative diagrams (seven, in fact)|see [11] for the

full de�nition in this form. An equivalent de�nition, which is both simpler and

closer to the syntax of computation types, is that of `indexed Kleisli triple'. This

is speci�ed by a map on objects, sending X to T (X), together with the following

data

unit: for each object X, a morphism �

X

: X �! T (X)

lifting: for each morphism f : X � Y �! T (Z), a morphism

f

�

: X � T (Y) �! T (Z)

satisfying the following conditions, the �rst of which expresses naturality of lifting

in the parameter X and the rest of which are parameterized versions of the usual

axioms for a Kleisli triple (see [11, De�nition 1.2]).

� given f : X �! X

0

and g : X

0

� Y �! T (Z), then

(g � (f � id

Y

))

�

= g

�

� (f � id

T (Y)

)

� given f : X � Y �! T (Z), then f

�

� (id

X

� �

Y

) = f

� (�

Y

� �

2

)

�

= �

2

: X � T (Y) �! T (Y)

� given f : X � Y �! T (Z) and g : X � Z �! T (W), then

(g

�

� h�

1

; fi)

�

= g

�

� h�

1

; f

�

i

(where the �

i

are appropriate projection morphisms and h; i denotes pairing of

morphisms).

Given such a structure on C, we extend the interpretation of types as objects

of C by de�ning

[[T�]]

def

= T ([[�]])

and extend the interpretation of terms by de�ning

[[� ` [M] : T�]]

def

= �

[[�]]

� [[� ` M : �]]

and

[[� ` let x(E inF (x) : T�

0

]]

def

= f

�

� hid

[[�]]

; [[� ` E : T�]]i

where f is [[�; x:� ` F (x) : T�

0

]] : [[�]]� [[�]] �! T [[�

0

]]. The conditions on unit

and lifting given above ensure that this interpretation satis�es the equalities in

2.1.

3 Evaluation modalities

The informal interpretation of the value and sequential composition terms was

given in Section 2.1 in terms of a relation of evaluation between computations

and values (of a given type). In the computational lambda calculus, this intended

meaning is only indirectly captured through its equational consequences. We are

now going to embed the computational lambda calculus in a typed predicate logic

containing not only atomic formulas for equality at each type, but also formulas

expressing evaluation of computations to values. In fact evaluation will not be

an atomic formula, but rather will be derived from `modal quanti�ers' which

are really the key feature of the logic. The logic also contains propositional

connectives: in this paper we will only consider conjunction and (intuitionistic)

disjunction.

3.1 Formulas

To introduce the allowed formulas, we will give rules for deriving jugements of

the form

� ` � prop

where as in the previous section, � = x

1

:�

1

; : : : ; x

n

:�

n

is a context assigning types

to variables. To be well-formed, the above judgement must satisfy the condition

that the variables occurring in � lie in �. The intended meaning of the judgement

is of course that `� is a well-formed proposition, given that the variables x

1

; : : : ; x

n

have types �

1

; : : : ; �

n

respectively'. The rules for deriving such judgements are:

Equality

� `M : � � `M

0

: �

� ` M =M

0

prop

Finite conjunction

` true prop

� ` � prop � ` prop

� ` � ^ prop

Finite disjunction

` false prop

� ` � prop � ` prop

� ` � _ prop

Evaluation modalities

� ` E : T� �; x:� ` �(x) prop

� ` [x(E]�(x) prop

� ` E : T� �; x:� ` �(x) prop

� ` hx(Ei�(x) prop

The intended meaning of [x(E]�(x) is: `if E evaluates to x, then necessarily

�(x) holds'. The intended meaning of hx(Ei�(x) is: `it is possible for E to

evaluate to an x for which �(x) holds'.

Remark 3.1.1 Just as in Remark 2.1.1, we note that the above notation is

an informal one which has been adopted for readability. Thus [x(E]�(x) and

hx(Ei�(x) stand for 2(E;�) and 3(E;�) respectively, where2 and 3 are meta-

constants of the higher type exp!(exp!exp)!exp.

3.2 Entailment

To specify the logical properties of the above formulas, we will give rules for

deriving judgements of the form

�;� `

where � is a context (as de�ned in Section 2), � is a �nite set of formulas, is a

formula, and the variables occurring in � and lie in �. The intended meaning

of the judgement is an intuitionistic sequent asserting ` is logically entailed by

the hypotheses �'. As usual, if � is empty, a singleton f�g, or a union �

1

[�

2

,

we write �;� ` as

� ` ; �; � ` and �;�

1

;�

2

`

respectively. Finally, we will write

�; � a `

to indicate that both �; � ` and �; ` � are derivable.

The rules concerning the logical properties of equality, conjunction and dis-

junction are the standard rules for this fragment of intuitionistic predicate calcu-

lus (see Dummett [3]). Note that with the conventions mentioned in the previous

paragraph, the equality judgement

� `M =M

0

used in Section 2 is now taken as the particular instance of the entailment judge-

ment with no hypothesis formulas and conclusion formula M = M

0

. So we can

use the rules of the computational lambda calculus concerning product, func-

tion and computation types to derive entailment judgements. Finally, the rules

concerning evaluation modalities are as follows.

3.2.1 Evaluation modalities preserve entailment:

� ` E : T� �; x:�; �(x) ` (x)

�; [x(E]�(x) ` [x(E] (x)

� ` E : T� �; x:�; �(x) ` (x)

�; hx(Ei�(x) ` hx(Ei (x)

3.2.2 Values:

� ` M : � �; x:� ` �(x) prop

�; �(M) a ` [x([M]]�(x)

� `M : � �; x:� ` �(x) prop

�; �(M) a` hx([M]i�(x)

3.2.3 Sequential composition:

� ` E : T� �; x:� ` F (x) : T�

0

�; x

0

:T�

0

` (x

0

) prop

�; [x(E][x

0

(F (x)] (x

0

) a` [x

0

((let x(E inF (x))] (x

0

)

� ` E : T� �; x:� ` F (x) : T�

0

�; x

0

:T�

0

` (x

0

) prop

�; hx(Eihx

0

(F (x)i (x

0

) a` hx

0

((let x(E inF (x))i (x

0

)

3.2.4 Necessity modality preserves �nite conjunctions:

x:�; e:T� ` [x(e]true

� ` E : T� �; x:� ` �(x) prop �; x:� ` (x) prop

�; [x(E]�(x); [x(E] (x) ` [x(E](�(x) ^ (x))

3.2.5 Possibility modality preserves �nite disjunctions:

x:�; e:T�; hx(eifalse ` false

� ` E : T� �; x:� ` �(x) prop �; x:� ` (x) prop

�; hx(Ei(�(x) _ (x)) ` hx(Ei�(x) _ hx(Ei (x)

3.2.6 Possibility and necessity:

� ` E : T� �; x:� ` �(x) prop �; x:� ` (x) prop

�; [x(E]�(x); hx(Ei (x) ` hx(Ei(�(x) ^ (x))

3.2.7 Possibility and equality:

� ` E : T� � ` N : �

0

� ` N

0

: �

0

�; x:� ` �(x) prop

�; N = N

0

^ hx(Ei�(x) a` hx(Ei(N = N

0

^ �(x))

Remark 3.2.8 Using equality, truth and falsity, we get derived formulas as-

serting evaluation of computations to values, and convergence and divergence of

computations:

E)M

def

= hx(Ei(x =M) `E can evaluate to M '

E+

def

= hx(Eitrue `E can converge'

E*

def

= [x(E]false `E must diverge'

One can also formulate partial and total correctness statements quite naturally

in this language. Given a formula specifying an input-output relation from � to

�

0

�; x:�; x

0

:�

0

` (x; x

0

) prop

and a formula restricting the domain of admissible inputs

�; x:� ` �(x) prop

then we may say that a computation �; x:� ` F (x) : T�

0

is partially correct for

the speci�cation if

�; x:�; �(x) ` [x

0

(F (x)] (x; x

0

)

is derivable, and totally correct if

�; x:�; �(x) ` [x

0

(F (x)] (x; x

0

) ^ F (x)+

is derivable. Note that from rule 3.2.6, the conclusion of the second judgement

entails hx

0

(F (x)i (x; x

0

).

We mention some simple consequences of the rules for evaluation modalities.

Proposition 3.2.9 (i) Using the de�nition given in Remark 3.2.8 for the for-

mula E) M , expressing evaluation of E:T� to M :�, the following rules

are derivable.

� `M : �

� ` [M])M

� ` E)M � ` F (E))M

0

� ` (let x(E inF (x)))M

0

Thus in the logic we indeed get a formalization of the intended behaviour

mentioned in Section 2.1 of value and sequential composition terms under

evaluation

(ii) The judgement

x:�; x

0

:�; [x] = [x

0

] ` x = x

0

is derivable. This expresses the `mono condition' on the unit of the strong

monad T|see [11].

2

Remark 3.2.10 We indicate briey the relation between our evaluation modali-

ties and the propositional modal operators of existing program logics, which take

the form

[P]� and hP i�

with P a program and � a proposition. (See Kozen and Tiuryn [7] for a survey.)

The �rst point is that we can interpret (the denotation of) programs as com-

putations of unit type, i.e. as terms of type T(1). Termination of the program

corresponds to evaluation of P :T(1) to the unique value h i:1. (This idea can be

seen in practice in the language Standard ML [10], which combines higher-order

functional and imperative features: see Section 4.)

Secondly, since every term of type 1 is provably equal to h i, specifying a

formula �(x) depending on a variable x:1 amounts to specifying a formula �(h i)

depending upon no variables, i.e. a proposition. Given P :T(1) and a proposition

�, the evaluation modalities yield new propositions [x(P]� and hx(P i� which

we abbreviate to [P]� and hP i� respectively.

Specializing the rules given above for evaluation modalities to the case � = 1,

we obtain some standard properties of the program modalities, such as:

[P]� ^ hP i ` hP i(� ^)

[skip]� a ` �

� a ` hskipi�

[P ;P

0

]� a ` [P][P

0

]�

hP ;P

0

i a ` hP ihP

0

i�

where skip stands for the value term [h i] and P ;P

0

for the sequential composi-

tion letx(P inP

0

of two terms of type T(1). Moreover, the equality rules for

computation types in Section 2.1 imply associativity and unitary laws:

` (P ;P

0

);P

00

= P ; (P

0

;P

00

)

` skip;P = P

` P ; skip = P

3.3 Categorical models

In Section 2.2 we reviewed how Moggi's computational lambda calculus is inter-

preted in a cartesian closed category, C, equipped with a strong monad, T . To

extend the interpretation to the predicate logic described above, we use the stan-

dard technique of categorical logic originating with Lawvere [9] of interpreting

formulas in a suitable `hyperdoctrine' over C. Since here we are only considering

provability rather than proofs, it is su�cient to consider the case of hyperdoc-

trines which are C-indexed meet semilattices, P, equipped with suitable extra

structure appropriate to the particular logic under consideration. Thus P is at

least a contravariant functor on C valued in the category meet semilattices (the

category whose objects are posets possessing meets of all �nite subsets (includ-

ing the empty meet), and whose morphisms are functions which preserve �nite

meets). In other words, for each object X of C one has a meet semilattice P(X)

of `properties' of X; and for each morphism f : X �! Y in C one has a function

P(f) : P(Y) �! P(X) of `substitution along f ' which preserves �nite meets.

The action of P(f) on B 2 P(Y) will be written f

�1

B. Contravariant functori-

ality of P means that one has id

�1

B = B and g

�1

(f

�1

B) = (f � g)

�1

B.

Given such a P, we wish to interpret each derivable judgement � ` � prop

as an element

[[� ` � prop]] 2 P([[�]])

where as before, the object [[�]] in C is the �nite product [[�

1

]]�� � ��[[�

n

]] when � is

the context x

1

:�

1

; : : : ; x

n

:�

n

. We can then de�ne the satisfaction of an entailment

judgement �;� ` to mean that

^

�2�

[[� ` � prop]] � [[� ` prop]]

holds in the meet semilattice P([[�]]) (where

V

indicates �nite meet and � the

partial order).

The de�nition of [[� ` � prop]] proceeds by induction on the structure of the

formula �, and each of the predicate formers in the logic requires some appropriate

properties or extra structure on P to interpret it soundly. Soundness means that

we should be able to prove for each rule of inference that the conclusion is satis�ed

when all of the hypotheses are.

The conditions on P needed to interpret �nite conjunctions and disjunctions

are quite standard: each P(X) should be a distributive lattice and each f

�1

:

P(Y) �! P(X) should, in addition to preserving �nite meets, also preserve the

�nite joins as well. The property of P needed to soundly interpret equality is

almost as well-known, except that in the absence of propositional implication

certain subtleties arise which would otherwise be masked. Briey, we require all

the order-preserving functions

(�

X

� id

Y

)

�1

: P((X �X)� Y) �! P(X � Y) (1)

(where �

X

is the diagonal hid

X

; id

X

i) to possess left adjoints, 9

�

X

�id

Y

, and

for these left adjoints to satisfy certain conditions termed by Lawvere [9] `Beck-

Chevalley' and `Frobenius Reciprocity' conditions; moreover, equality of mor-

phisms in C must be implied by satisfaction in P of the corresponding equality

formula. Since we wish to concentrate here on describing the categorical se-

mantics of the evaluation modalities, we merely refer the reader to [2] for more

details.

De�nition 3.3.1 (Cf. [12, De�nition 4.8]) A T -modality on P is speci�ed by a

family of order-preserving functions

2

X;Y

: P(X � Y) �! P(X � T (Y))

one for each pair of objects X;Y in C, satisfying the following three conditions

relating to the formulation of the strong monad T as an `indexed Kleisli triple'

as in Section 2.2.

Naturality condition: given f : X �! X

0

, then

P(X

0

� Y)

(f � id

Y

)

�1

-

P(X � Y)

2

X

0

;Y

?

?

2

X;Y

P(X

0

� T (Y))

(f � id

T (Y)

)

�1

-

P(X � T (Y))

commutes.

Unit condition: for all X and Y

P(X � Y)

2

X;Y

-

P(X � T (Y))

@

@

@

id

@

@

@R

?

(id

X

� �

Y

)

�1

P(X � Y)

commutes.

Lifting condition: given f : X � Y �! T (Z), then

P(X � Z)

2

X;Z

-

P(X � T (Z))

h�

1

; fi

�1

-

P(X � Y)

2

X;Z

? ?

2

X;Y

P(X � T (Z))

h�

1

; f

�

i

�1

-

P(X � T (Y))

commutes.

Given two such T -modalities on P, 2 and 3, we can interpret the evaluation

modalities as follows. Suppose, inductively, that we have

[[�]] = X

[[�]] = Y

[[� ` E : �]] = f : X �! T (Y)

[[�; x:� ` �(x) prop]] = A 2 P(X � Y)

Then we de�ne

[[� ` [x(E]�(x) prop]]

def

= hid

X

; fi

�1

(2

X;Y

A)

[[� ` hx(Ei�(x) prop]]

def

= hid

X

; fi

�1

(3

X;Y

A)

The conditions imposed on 2 and 3 by De�nition 3.3.1 ensure that the rules

in 3.2.1,3.2.2 and 3.2.3 are sound for this interpretation. To ensure soundness for

the rules in 3.2.4, clearly we require

(i) each 2

X;Y

: P(X � Y) �! P(X � T (Y)) preserves �nite meets

whilst to ensure soundness for the rules in 3.2.5 we require

(ii) each 3

X;Y

: P(X � Y) �! P(X � T (Y)) preserves �nite joins.

Soundness for 3.2.6 requires

(iii) for all objects X;Y and all elements A;B 2 P(X � Y)

3

X;Y

(A) ^ 2

X;Y

(B) � 3

X;Y

(A ^ B)

Finally, soundness for 3.2.7 requires

(iv) for all objects X;Y and all elements A;B 2 P(X � Y)

9

�

X

�id

T (Y)

(3

X;Y

A) = 3

X�X;Y

(9

�

X

�id

Y

A)

where 9

�

X

�id

Y

denotes the left adjoint to the function (1) mentioned above.

3.4 Examples

We give two examples of the categorical structure developed in the previous

section. In fact, the underlying cartesian closed category in both examples is the

same|namely the category of !-cpo's (without least element) and !-continuous

functions, which we will denote by Cpo. Thus the objects of Cpo are sets equipped

with a partial order possessing least upper bounds of all countably in�nite chains;

the morphisms are functions preserving order and least upper bounds of countably

in�nite chains. Finite products in Cpo are created by the forgetful functor to the

category of sets; an exponential X!Y in Cpo is given by the hom-set Cpo(X;Y)

ordered pointwise from Y .

Of course Cpo (and its subcategories) has very much more structure than

this, which is used in the traditional domain-theoretic approach to denotational

semantics (see [4] for a survey). Moggi has noticed that the way in which this

extra structure is actually used is via the construction of various strong monads

reecting various aspects of computation. From the many examples in [11, 13] we

select those of partiality and partiality with side-e�ects and show how to extend

them to models of our Evaluation Logic by giving suitable hyperdoctrines of

properties equipped with modalities.

Example 3.4.1 (Partiality) For each !-cpo X, recall that the lifted !-cpo, X

?

is obtained by adjoining a least element to X. Speci�cally, to �x notation, de�ne

X

?

def

= f[x] j x 2 Xg [f?g

with partial order given by

e v e

0

in X

?

i� for all x 2 X, if e = [x] then there is some x

0

2 X

with e

0

= [x

0

] and x v x

0

in X.

Then X 7! X

?

is the object part of a strong monad on Cpo whose unit functions

�

X

: X �! X

?

are x 7! [x], and whose lifting operation sends the !-continuous

function f : X � Y �! Z

?

to f

�

: X � Y

?

�! Z

?

where for all x 2 D and

e 2 Y

?

f

�

(x; e) =

(

f(x; y) if e = [y]

? if e = ?

In the resulting model of the computational lambda calculus, the only quality

of computation modelled is non-termination (?). Computations of values in Y

with a parameter in X, i.e. elements of the !-cpo X!Y

?

, amount to partial

continuous functions from X to Y .

To extend the model to formulas, we consider the Cpo-indexed meet semi-

lattice of inclusive subsets, I. Its value, I(X), at an !-cpo X is the set of all

subsets A � X which are closed under taking least upper bounds in X of count-

ably in�nite chains lying in A. For each !-continuous function f : X �! Y ,

f

�1

: I(Y) �! I(X) sends an inclusive B 2 I(Y) to the inverse image f

�1

B

def

=

fx 2 X j f(x) 2 Bg. Finite meets in I(X) are given by set-theoretic intersection.

It is not hard to see that the union of �nitely many inclusive subsets of an

!-cpo is again inclusive. Consequently, each I(X) is a distributive lattice and

each f

�1

preserves �nite joins in addition to �nite meets. So I soundly models

�nite conjunction and disjunction. It also has the requisite properties to model

equality formulas: this follows from the fact that the direct image of an inclusive

A 2 I(X �Y) along the function (x; y) 7! (x; x; y) is just f(x; x; y) j (x; y) 2 Ag,

which is again inclusive. (It is not true in general that the image of an inclusive

subset along an !-continuous function is inclusive.)

Turning now to modelling the evaluation modalities, we de�ne the following

two modalities on I for the lifting monad:

2

X;Y

(A)

def

= f(x; e) 2 X � Y

?

j 8y 2 Y : e = [y] � (x; y) 2 Ag

3

X;Y

(A)

def

= f(x; e) 2 X � Y

?

j 9y 2 Y : e = [y]^ (x; y) 2 Ag

for all !-cpo's X;Y and inclusiveA 2 I(X�Y). The inclusivity of the right-hand

sides in these de�nitions is not completely trivial, bearing in mind the fact that

I is not a model of (intuitionistic) logic with either existential quanti�cation

or implication. Nevertheless the conditions in De�nition 3.3.1 and conditions

(i){(iv) listed after that de�nition are all easily veri�ed for these modalities.

Indeed much more special properties hold of these particular modalities than we

have required in our Evaluation Logic|namely 3

X;Y

and 2

X;Y

give respectively

left and right adjoints to (id

X

� �

Y

)

�1

, and satisfy various Beck-Chevalley and

Frobenius Reciprocity conditions. The categorical logic of this more special kind

of modality is studied in [1, 2].

Example 3.4.2 (Side-e�ects) Let S be some �xed !-cpo of `states'. For ex-

ample, if a state is completely speci�ed by the contents of memory locations

`

1

; `

2

; : : : each of which can contain a number, then S would be the set of �nite

partial functions from addresses to numbers (equipped with the discrete partial

order of equality).

A computation of a value in X whose evaluation has some (unspeci�ed) side-

e�ects on the current state can be modelled in an extensional way by a (continu-

ous) function e : S!(X�S)

?

. Thus given any initial state s 2 S, either e(s) = ?,

i.e. the computation does not terminate, or e(s) = [(x; s

0

)], i.e. the computation

terminates yielding the value x 2 X and a new state s

0

2 S. De�ning

T

S

(X)

def

= S!(X � S)

?

then X 7! T

S

(X) is the object part of a strong monad on Cpo whose unit func-

tions are given by

�

X

(x)(s) = [(x; s)]

and whose lifting operation sends f : X � Y �! T

S

(Z) to the function f

�

:

X � T

S

(Y) �! T

S

(Z) given by

f

�

(x; e)(s) =

(

f(x; y)(s

0

) if e(s) = [(y; s

0

)]

? if e(s) = ?

Over Cpo equipped with this stong monad T

S

we consider the following in-

dexed meet semilattice, I

S

. The value of I

S

at an !-cpo X is the collection of

inclusive subsets of the product X � S, partially ordered by inclusion. In other

words

I

S

(X)

def

= I(X � S)

with I as in the previous example. Similarly, given f : X �! Y in Cpo, then

f

�1

: I

S

(Y) �! I

S

(X) is de�ned to be the inverse image function (f � id

S

)

�1

.

We will adopt the following notation when referring to elements of I

S

(X): given

A 2 I

S

(X), s 2 S and x 2 X, we write

s A(x)

to indicate that (x; s) 2 A, and say `in state s, x has property A'.

It follows immediately from the de�nition of I

S

in terms of I that I

S

inher-

its from the latter the properties needed to model equality formulas and �nite

conjunctions and disjunctions.

Turning now to modelling the evaluation modalities, we give two T

S

-modalities,

2

S

and 3

S

, on I

S

. For each A 2 I

S

(X � Y), de�ne 2

S

X;Y

A and 3

S

X;Y

A in

I

S

(X � T

S

(Y)) by declaring that for all s 2 S, x 2 X and e 2 T

S

(Y)

s (2

S

X;Y

A)(x; e) i� 8s

0

2 S :8y 2 Y : e(s) = [(y; s

0

)] � s

0

 A(x; y)

s (3

S

X;Y

A)(x; e) i� 9s

0

2 S :9y 2 Y : e(s) = [(y; s

0

)] ^ s

0

 A(x; y)

It is not hard to verify that these de�nitions do indeed yield inclusive subsets|

either directly, or by noting that they can be expressed in terms of the modalities

of Example 3.4.1:

2

S

X;Y

(A) = f(x; e; s) j (x; e(s)) 2 2

X;Y�S

(A)g

3

S

X;Y

(A) = f(x; e; s) j (x; e(s)) 2 3

X;Y�S

(A)g

Indeed this observation serves to show that 2

S

and 3

S

inherit from the lifting-

modalities 2 and 3 the properties (i){(iv) given after De�nition 3.3.1. Finally

it can be veri�ed directly from the de�nition of the strong monad T

S

that both

2

S

and 3

S

satisfy the naturality, unit and lifting conditions required by De�ni-

tion 3.3.1.

4 Translating Natural Semantics

In this section we will give an example of translating programming language

features into suitable theories over Evaluation Logic. As discussed in the Intro-

duction, the aim is to see how well �tted is this logic for capturing operational

behaviour speci�ed in terms of the `Natural Semantics' style of operational se-

mantics [18, 5].

An Evaluation Logic theory is speci�ed by a signature of type- and term-

constructors (and possibly formula-constructors, although we will not need these

here), together with the axioms of the theory|which are a collection of judge-

ments (involving expressions generated over the given signature). We will present

such a theory for a fragment of the Standard ML language [10] containing both

functional features (higher-order recursive function declarations) and imperative

features (assignable global variables), and which we call Tiny-ML. We begin by

specifying the programming language syntax.

4.1 Tiny-ML Types

These are the simple types over a ground types of integers, int, and a one-element

ground type, unit:

� ::= int j unit j �

1

!�

2

4.2 Tiny-ML Expressions

These are given by the following grammar:

e ::= x variables

j () unit value

j n integer values

j op(e

1

; e

2

) arithmetic operations

j if e

1

= 0 then e

2

else e

3

conditionals

j fn x:�) e �-abstractions

j e

1

e

2

applications

j letrec f(x) = e

1

:� in f(e

2

) end recursive functions

1

j ` := e assignment to `

j !` contents of `

Here x ranges over a countably in�nite set of variables, n ranges over the inte-

gers, op 2 f+;�; �g, and ` ranges over a countably in�nite set of global memory

locations (constants of type int ref, in ML parlance). Recalling from the Intro-

duction the metatheoretical treatment of variable-binding, we remark that the

form fn x:�) e is in fact long-hand for the meta-expression fn(�; (x)e) with

fn a meta-constant of type exp!(exp!exp)!exp. Similarly, letrec f(x) =

e

1

:� in f(e

2

) end is long-hand for letrec((f)(x)e

1

; �; e

2

) with letrec a meta-

constant of type (exp!exp!exp)!exp!exp!exp.

Perhaps Tiny-ML is not so tiny. Here are some derived forms of expression:

let x = e

1

:� in e

2

def

= (fn x:�) e

2

)e

1

e

1

; e

2

def

= let x = e

1

:unit in e

2

while e

1

6= 0 do e

2

def

= letrec f(x) =

(if e

1

= 0 then () else e

2

;x):unit in f(()) end

1

This should be regarded as an abbreviation for the legal Standard ML expression

let val rec f = fn x) e

1

:� in f(e

2

) end.

4.3 Static Semantics of Tiny-ML

Table 1 gives the rules for deriving type assignments, � ` e : �, giving the

Tiny-ML type � of a Tiny-ML expression e in a context � = x

1

:�

1

; : : : ; x

n

:�

n

.

Conventions about contexts are the same as those in Section 2 for the computa-

tional lambda calculus.

Remark 4.3.1 It is easy to see that in a given context a Tiny-ML expression

has at most one type: if � ` e : � and � ` e : �

0

are both derivable from the rules

in Table 1 then � � �

0

.

4.4 Dynamic Semantics of Tiny-ML

4.4.1 Closed and canonical expressions

Let us call a Tiny-ML expression e closed if there is some type � for which

` e : � is derivable. Thus e contains no (free) variables, and by Remark 4.3.1 �

is uniquely determined by e.

Then the canonical Tiny-ML expressions, c, comprise the subset of all closed

Tiny-ML expressions given by the following grammar:

c ::= () j n j fn x:�) e

4.4.2 States

These are the �nite functions, s, from the set of global memory locations to the

set of integers. If s is a state with domain f`

1

; : : : ; `

k

g and with s(`

i

) = n

i

, we

will write s as

s = f`

1

7! n

1

; : : : ; `

k

7! n

k

g

We write

s(` 7! n)

for the updated state which maps ` to n and otherwise acts like s.

4.4.3 The evaluation relation

This is a relation of the form

s; e � s

0

; c

where s and s

0

are states, e is a closed Tiny-ML expression and c is a canonical

one. The relation is inductively de�ned by the rules given in Table 2. In stating

these rules we use the following simplifying convention from [10]:

`Sequentiality' convention. A rule scheme of the form

e

1

� c

1

e

2

� c

2

� � � e

n

� c

n

e � c

�; x:�;�

0

` x : �

� ` () : unit � ` n : int

� ` e

1

: int � ` e

2

: int

� ` op(e

1

; e

2

) : int

� ` e

1

: int � ` e

2

: � � ` e

3

: �

� ` if e

1

= 0 then e

2

else e

3

: �

�; x:� ` e : �

0

� ` fn x:�) e : �!�

0

� ` e : �!�

0

� ` e

0

: �

� ` ee

0

: �

0

�; f :�!�

0

; x:� ` e

1

: �

0

� ` e

2

: �

� ` letrec f(x) = e

1

:�

0

in f(e

2

) end : �

0

� ` e : int

� ` ` := e : unit `!` : int

Table 1: Rules for the static semantics of Tiny-ML

is an abbreviation for the rule scheme

s

1

; e

1

� s

2

; c

1

s

2

; e

2

� s

3

; c

2

� � � s

n

; e

n

� s

n+1

; c

n

s

1

; e � s

n+1

; c

(Thus the order of hypotheses is signi�cant when using this convention.)

Remark 4.4.1 It is not hard to see from the form of the rules in Table 2 that

if s; e � s

0

; c is derivable, then s and s

0

have the same domain, and e and c have

the same type.

4.5 Translation of Tiny-ML into Evaluation Logic

We begin by giving the theory over Evaluation Logic into which we will translate

Tiny-ML. As we said above, such a theory is speci�ed by a signature and a

collection of axioms.

4.5.1 Signature

The signature of the theory has a single ground type Z (type of integers) and

meta-constants

n : exp

op : exp!exp!exp

cond : exp!exp!exp!exp

rec

�

: (exp!exp!exp)!exp!exp

up

`

: exp!exp

ct

`

: exp

where n ranges over the set of integers, op ranges over f+;�; �g, ` ranges over

the set of global memory locations, and � ranges over the set of types of the

computational lambda calculus (see Section 2) generated from the ground type

Z. The rules for introducing these meta-constants are given in Table 3. Note the

di�erence between the last three rules in this table and the corresponding last

three rules in Table 1.

4.5.2 Axioms

The intended meaning of the term cond(M

1

;M

2

;M

3

):� is a conditional branch-

ing on whether M

1

:Z is equal to 0 or not. The intended meaning of the term

rec

�

0

(E

0

;M):T�

0

is the computation of the value at M :� of the function recur-

sively de�ned by the declaration

f(x)

def

= E

0

(f; x)

c � c

(c canonical)

e

1

� 0 e

2

� c

if e

1

= 0 then e

2

else e

3

� c

e

1

� n e

3

� c

if e

1

= 0 then e

2

else e

3

� c

(if n 6= 0)

e

1

� n

1

e

2

� n

2

op(e

1

; e

2

) � n

(if op(n

1

; n

2

) = n)

e

1

� fn x:�) e e

2

� c e(c=x) � c

0

e

1

e

2

� c

0

e

2

� c e

1

((fn x:�) letrec f(x

0

) = e

1

:�

0

in f(x) end)=f ; c=x) � c

0

letrec f(x) = e

1

:�

0

in f(e

2

) end� c

0

s; e � s

0

; n

s; ` := e � s

0

(` 7! n); () s; !` � s; n

(if n = s(`))

Table 2: Rules for the dynamic semantics of Tiny-ML

(The type subscript on rec

�

0

is there to retain the uniqueness of type property

mentioned in Remark 2.0.1.) The intended meaning of the term up

`

(M):T1 is the

`program' (i.e. computation of unit type|cf. Remark 3.2.10) which assigns value

M :Z to location `. The intended meaning of the term ct

`

:TZ is the computation

which just returns the contents of location `.

With these intended interpretations in mind, Table 4 formalizes certain ex-

pected properties: these are the axioms of the particular Evaluation Logic theory

we wish to consider, and which are added to the rules for generating entailment

judgements given in Sections 2 and 3. Some of the axioms employ a derived form

of sequential composition

E;E

0

def

= let x(E inE

0

in which the second computation is independent of the parameter x. Thus the

derived rule of formation is

� ` E : T� � ` E

0

: T�

0

� ` E;E

0

: T�

0

and from the equational properties of let given in Section 2.1 one can derive

e:T�; e

0

:T�

0

; e

00

:T�

00

` (e; e

0

); e

00

= e; (e

0

; e

00

)

e:T� ` skip; e = e

e:T1 ` e; skip = e

where by de�nition, skip is [h i].

4.5.3 Translation

The basic idea is that Tiny-ML expressions e:� are translated into terms of

computation type, [[e]]:T[[�]], in the computational lambda calculus. Further-

more, since the dynamic semantics of Tiny-ML is strict (`call-by-value'), if e

depends on some variables x

1

:�

1

; : : : ; x:�

n

, then [[e]] should depend on variables

ranging over the values of the translated types, x

1

:[[�

1

]]; : : : ; x

n

:[[�

n

]] (rather than

on variables ranging over computations). Thus at the heart of the translation is

Moggi's [11] call-by-value translation of lambda calculus into his computational

lambda calculus (see also Plotkin [16]).

The translation is de�ned by induction on the structure of Tiny-ML types

and expressions by the clauses in Table 5. Note that for a canonical Tiny-ML

expression c (as de�ned in Section 4.4.1), the translation takes the form

[[c]] = [jcj]

(where jcj is of type [[�]] when c is of type �). Thus jcj is the translation of the

canonical term c as a value rather than as a computation.

4.6 Adequacy of the translation

The translation given by Table 5 is adequate for both the static and dynamic

semantics of Tiny-ML. For the static semantics this means

Proposition 4.6.1 (Static Adequacy) x

1

:�

1

; : : : ; x

n

:�

n

` e : � is derivable

from the rules in Table 1 if and only if

x

1

:[[�

1

]]; : : : ; x

n

:[[�

n

]] ` [[e]] : T[[�]]

is derivable from the type assignment rules of the computational lambda calculus

augmented by the rules in Table 3.

The triviality of the type system of Tiny-ML makes this proposition easy to

prove by induction on the structure of e.

For the dynamic semantics, we �rst have to translate the operational evalua-

tion relation

s; e � s

0

; c (2)

into a corresponding judgement in Evaluation Logic. Taking into account Re-

mark 4.4.1, we may suppose that e and c have the same type and that s and s

0

have equal domain. Supposing the states are

s = f`

1

7! n

1

; : : : ; `

k

7! n

k

g

s

0

= f`

1

7! n

0

1

; : : : ; `

k

7! n

0

k

g

then we will translate this instance of the evaluation relation into the Evaluation

Logic judgement

` h ~up(~n)ihx([[e]]ih

~

x

0

(

~

cti

x = jcj ^

k

^

i=1

x

0

i

= n

0

i

!

(3)

Here h ~up(~n)i and h

~

x

0

(

~

cti stand for iterated modalities, viz

h ~up(~n)i

def

= hup

`

1

(n

1

)i � � � hup

`

k

(n

k

)i

h

~

x

0

(

~

cti

def

= hx

0

1

(ct

`

1

i � � � hx

0

k

(ct

`

k

i

where we are using the abbreviation mentioned in Remark 3.2.10 to write hx(Ei�

as

hEi�

when E is a term of type T1 (such as up

`

i

(n

i

)) and � does not depend upon x.

We hope the reader will agree that (modulo the unfamiliar formalism) the

judgement (3) is a natural rendering of the operational evaluation relation into

our logic, since it says something like: `it is possible to make the assignments to

`

1

; : : : ; `

k

to create the state s, then possible to evaluate [[e]] to a value equal to

jcj and have those locations contain the values of state s

0

as a result'. In any

case, one can prove

Proposition 4.6.2 (Dynamic Adequacy) If the evaluation relation (2) is de-

rivable from the rules in Table 2, then the corresponding jugdgement (3) is deriv-

able in Evaluation Logic from the theory described by Tables 3 and 4. The con-

verse holds when c is of ground type (int or unit).

Proof The proof of the �rst sentence is by induction on the derivation of (2).

For the second sentence we use the fact that Example 3.4.2 yields a model of the

Evaluation Logic theory we are considering. Since it is a model, derivability of

(3) in the logic implies its satisfaction in the model. Assuming e is of (ground)

type gnd, satisfaction in this model amount to requiring that

[[e]](s) = (jcj; s

0

) 2 T

S

([[gnd]])

where now [[]] is essentially the standard domain-theoretic semantics of Tiny-

ML (see Mosses [14] for example)|from which it is known that we can recover

the operational relation (2).

2

Concluding remarks

Evaluation Logic, we would claim, is a good medium in which to formulate logi-

cal principles reecting the kind of operational behaviour expressible in Natural

Semantics. The Tiny-ML example we have given here is certainly too simple

to really test this claim. However, note that even here the logic allows us to

reason about the behaviour of expressions-with-state without having to specify a

global state explicitly|unlike the traditional domain-theoretic approach (and its

formalizations). This becomes much more important for forms of computation

where a domain-theoretic modelling of global state is very complicated (or not

known). Computation involving dynamically allocated resources is an example

of this, and an appropriate Evaluation Logic is currently under development. (Of

course, one still has to �nd concrete models of the logical theories which arise

: : :)

Another aspect of the over-simplicity of the Tiny-ML example is that it is in

fact possible to eliminate the use of evaluation modalities and give a version of

the above `dynamic adequacy' result purely within an equational theory over the

computational lambda calculus. Indeed one can equate the evaluation relation

(2) with satisfaction of the equation

` (up

`

1

(n

1

); � � � ;up

`

k

(n

k

); [[e]]) = (up

`

1

(n

0

1

); � � � ;up

`

k

(n

0

k

); [[c]])

in the theory we have given in Table 4, minus the last two axioms. However,

the full modal logic should come into its own when devising computationally

adequate theories for languages with non-deterministic features, for example.

Even for purely deterministic languages, evaluation modalities appear useful when

we go beyond simple computational adequacy results and address the question

of �nding logical principles for reasoning about the behaviour of programs in all

(observable) contexts. The rules of Evaluation Logic and the axioms in Table 4

are more than adequate for Proposition 4.6.2 (not all of them are used in its

proof), but are not exhaustive for reasoning about observable equivalence (since

the latter is not recursively axiomatizable). An interesting example of the need

for the evaluation modalities can be found in [1, 2], where the necessity modality

is used to express an induction principle for �xpoint computations.

References

[1] R. L. Crole and A. M. Pitts, New Foundations for Fixpoint Computations,

Proc. 5th Annual Symposium on Logic in Computer Science, Philadelphia

(IEEE Computer Society Press, Washington, 1990) 489{497.

[2] R. L. Crole and A. M. Pitts, New Foundations for Fixpoint Computations:

FIX-Hyperdoctrines and the FIX-Logic, University of Cambridge Computer

Laboratory Technical Report No. 204, August 1990.

[3] M. Dummett, Elements of Intuitionism (Oxford University Press, 1977).

[4] C. Gunter and D. S. Scott, Semantic Domains. Chapter in Handbook of

Theoretical Computer Science (North-Holland, Amsterdam, 1990).

[5] G. Kahn, Natural Semantics. In K. Fuchi and M. Nivat (eds), Programming

of Future Generation Computers (Elsevier Science Publishers B.V. (North-

Holland), Amsterdam, 1988) 237{258.

[6] J. W. Klop, Combinatory Reduction Systems, Amsterdam Mathematical

Center Tracts 129 (1980).

[7] D. Kozen and J. Tiuryn, Logics of Programs. Chapter in Handbook of The-

oretical Computer Science (North-Holland, Amsterdam, 1990).

[8] J. Lambek and P. J. Scott, Introduction to Higher Order Categorical Logic,

Cambridge Studies in Advanced Mathematics 7 (Cambridge University

Press, 1986).

[9] F. W. Lawvere, Equality in Hyperdoctrines and the Comprehension Schema

as an Adjoint Functor. In A. Heller (ed.), Applications of Categorical Algebra

(Amer. Math. Soc., Providence RI, 1970) 1{14.

[10] R. Milner, M. Tofte and R. Harper, The De�nition of Standard ML (The

MIT Press, Cambridge Massachussetts, 1990).

[11] E. Moggi, Computational lambda-calculus and monads, Proc. 4th Annual

Symposium on Logic in Computer Science, Asilomar CA (IEEE Computer

Society Press, Washington, 1989) 14{23.

[12] E. Moggi, Notions of Computations and Monads, preprint, 1989.

[13] E. Moggi, Lecture notes on An Abstract View of Programming Languages,

July 1989.

[14] P. D. Mosses, Denotational Semantics. Chapter in Handbook of Theoretical

Computer Science (North-Holland, Amsterdam, 1990).

[15] B. Nordstr�om, K. Petersson and J. M. Smith, Programming in Martin-L�of's

Type Theory, An Introduction (Oxford University Press, 1990).

[16] G. D. Plotkin, Call-by-Name, Call-by-Value and the �-Calculus, Theoretical

Computer Science 1(1977) 125{159.

[17] G. D. Plotkin, LCF considered as a programming language, Theoretical Com-

puter Science 5(1977) 223{255.

[18] G. D. Plotkin, A Structural Approach to Operational Semantics, Aarhus

University Computer Science Department Report DAIMI FN-19, 1981.

[19] G. D. Plotkin, Denotational semantics with partial functions, unpublished

lecture notes from CSLI Summer School, 1985.

[20] D. S. Scott, A type-theoretic alternative to CUCH, ISWIM, OWHY, unpub-

lished manuscript, University of Oxford, 1969.

[21] R. A. G. Seely, Hyperdoctrines, Natural Deduction and the Beck Condition,

Zeitschr. f. math. Logik und Grundlagen d. Math. 29 (1983) 505{542.

` n : Z

� `M : Z � ` M

0

: Z

� ` op(M;M

0

) : Z

� `M

1

: Z � `M

2

: � � `M

3

: �

� ` cond(M

1

;M

2

;M

3

) : �

�; f :�!T�

0

; x:� ` E

0

(f; x) : T�

0

� `M : �

� ` rec

�

0

(E

0

;M) : T�

0

� ` M : Z

� ` up

`

(M) : T1 ` ct

`

: TZ

Table 3: The signature of the theory

x:�; x

0

:� ` cond(0; x; x

0

) = x

x:�; x

0

:� ` cond(n; x; x

0

) = x

0

(if n 6= 0)

` op(n

1

;n

2

) = n

(if op(n

1

; n

2

) = n)

�; f :�!T�

0

; x:� ` E

0

(f; x) : T�

0

�; x:� ` rec

�

0

(E

0

; x) = E

0

(�x:�:rec

�

0

(E

0

; x) ; x)

x:Z; x

0

:Z ` up

`

(x);up

`

(x

0

) = up

`

(x

0

)

x:Z; x

0

:Z ` up

`

(x);up

`

0

(x

0

) = up

`

0

(x

0

);up

`

(x)

(if ` 6= `

0

)

x:Z ` up

`

(x); ct

`

= up

`

(x); [x]

x:Z ` up

`

(x); ct

`

0

= let x

0

(ct

`

0

in (up

`

(x); [x

0

])

(if ` 6= `

0

)

` let x(ct

`

in (let x

0

(ct

`

0

in [hx; x

0

i]) = letx

0

(ct

`

0

in (let x(ct

`

in [hx; x

0

i])

x:Z ` up

`

(x)+

Table 4: Theory axioms

Types

[[int]]

def

= Z

[[unit]]

def

= 1

[[�!�

0

]]

def

= [[�]]!T[[�

0

]]

Expressions

[[x]]

def

= [x]

[[()]]

def

= [h i]

[[n]]

def

= [n]

[[op(e

1

; e

2

)]]

def

= letx

1

([[e

1

]] in

(letx

2

([[e

2

]] in [op(x

1

; x

2

)])

[[if e

1

= 0 then e

2

else e

3

]]

def

= letx([[e

1

]] in cond(x; [[e

2

]]; [[e

3

]])

[[fn x:�) e]]

def

= [�x:[[�]]:[[e]]]

[[e

1

e

2

]]

def

= let f([[e

1

]] in (letx([[e

2

]] infx)

[[letrec f(x) = e

1

:�

0

in f(e

2

) end]]

def

= letx

0

([[e

2

]] in rec

[[�

0

]]

((f)(x)[[e

1

]] ; x

0

)

[[` := e]]

def

= letx([[e]] in up

`

(x)

[[!`]]

def

= ct

`

Table 5: Translation of Tiny-ML types and expressions

