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Abstract This paper introduces an expressive class of quotient-induct-
ive types, called QW-types. We show that in dependent type theory
with uniqueness of identity proofs, even the infinitary case of QW-types
can be encoded using the combination of inductive-inductive definitions
involving strictly positive occurrences of Hofmann-style quotient types,
and Abel’s size types. The latter, which provide a convenient constructive
abstraction of what classically would be accomplished with transfinite
ordinals, are used to prove termination of the recursive definitions of the
elimination and computation properties of our encoding of QW-types.
The development is formalized using the Agda theorem prover.
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1 Introduction

One of the key features of proof assistants based on dependent type theory such
as Agda, Coq and Lean is their support for inductive definitions of families of
types. Homotopy Type Theory [29] introduces a potentially very useful extension
of the notion of inductive definition, the higher inductive types (HITs). To define
an ordinary inductive type one declares how its elements are constructed. To
define a HIT one not only declares element constructors, but also declares
equality constructors in identity types (possibly iterated ones), specifying how
the constructed elements and identities are to be equated. In this paper we work
in a dependent type theory satisfying uniqueness of identity proofs (UIP), so
that identity types are trivial in dimensions higher than one. Nevertheless, as
Altenkirch and Kaposi [5] point out, HITs are still useful in such a one-dimensional
setting. They introduce the term quotient inductive type (QIT) for this truncated
form of HIT.

Figure 1 gives two examples of QITs, using Agda-style notation for dependent
type theory; in particular, Set denotes a universe of types and ≡ denotes the
identity type. The first example specifies the element and equality constructors
for the type BagX of finite multisets of elements from a type X. The second
example, adapted from [5], specifies the element and equality constructors for the
type ωTreeX of trees whose nodes are labelled with elements of X and that have
unordered countably infinite branching. Both examples illustrate the nice feature
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Finite multisets:
data Bag(X : Set) : Set where

[] : BagX

_::_ : X → BagX → BagX

swap : (x y : X)(ys : BagX)→ x :: y :: ys ≡ y :: x :: ys

Unordered countably branching trees (elements of isIso f witness that f is a bijection):
data ωTree(X : Set) : Set where

leaf : ωTreeX

node : X → (N→ ωTreeX)→ ωTreeX

perm : (x : X)(f : N→ N)(_ : isIso f)(g : N→ ωTreeX)→
nodex g ≡ nodex (g ◦ f)

Figure 1. Two examples of QITs

of QITs that users only have to specify the particular identifications between
data needed for their applications. Thus the standard property of equality that it
is an equivalence relation respecting the constructors is inherited by construction
from the usual properties of identity types, without the need to say so in the
declaration of the QIT.

The second example also illustrates a more technical aspect of QITs, that they
enable constructive versions of structures that classically use non-constructive
choice principles. The first example in Figure 1 only involves element constructors
of finite arity ([] is nullary and x :: _ is unary) and consequently BagX is
isomorphic to the type obtained from the ordinary inductive type of finite lists
over X by quotienting by the congruence generated by swap. Of course this
assumes, as we do in this paper, that the type theory comes with Hofmann-style
quotient types [18, Section 3.2.6.1]. By contrast, the second example in the figure
involves an element constructor with countably infinite arity. So if one first forms
the ordinary inductive type of ordered countably branching trees (by dropping
the equality constructor perm from the declaration) and then quotients by a
suitable relation to get the equalities specified by perm, one needs the axiom of
countable choice to be able to lift the node element constructor to the quotient;
see [5, Section 2.2] for a detailed discussion. The construction of the Cauchy
reals as a higher inductive-inductive type [29, Section 11.3] provides a similar,
but more complicated example where use of countable choice is avoided. Such
examples have led to the folklore that as far as constructive type theories go,
infinitary QITs are more expressive than the combination of ordinary inductive (or
inductive-recursive, or inductive-inductive) types with quotient types. In this
paper we use Abel’s sized types [2] to show that, for a wide class of QITs, this
view is not justified. Thus we make two main contributions:

First we define a family of QITs called QW-types and give elimination and
computation rules for them (Section 2). The usual W-types of Martin-Löf [22]
are inductive types giving the algebraic terms over a possibly infinitary signature.
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One specifies a QW-type by giving a family of equations between such terms.
So such QITs give initial algebras for possibly infinitary algebraic theories. As
we indicate in Section 3, they can encode a very wide range of examples of
possibly infinitary quotient-inductive types, namely those that do not involve
constructors taking previously constructed equalities as arguments (so do not
cover the infinitary extension of the very general scheme considered by Dybjer
and Moeneclaey [12]). In set theory with the Axiom of Choice (AC), QW-types
can be constructed simply as Quotients of the underlying W-type—hence the
name.

Secondly, we prove that contrary to expectation, without AC it is still possible
to construct QW-types using quotients, but not simply by quotienting a W-type.
Instead, the type to be quotiented and the relation by which to quotient are given
simultaneously by definitions that refer to each other. Thus our construction (in
Section 4) involves inductive-inductive definitions [15]. The elimination and
computation functions which witness that the quotiented type correctly represents
the required QW-type are defined recursively. In order to prove that our recursive
definitions terminate we combine the use of inductive definitions involving strictly
positive occurrences of quotient types with sized types (currently, we do not know
whether it is possible to avoid sizing in favour of, say, a suitable well-founded
termination ordering). Sized types provide a convenient constructive abstraction
of what classically would be accomplished with sequences of transfinite ordinal
length.

The type theory in which we work

To present our results we need a version of Martin-Löf Type Theory with
(1) uniqueness of identity proofs, (2) quotient types and hence also function ex-
tensionality, (3) inductive-inductive datatypes (with strictly positive occurrences
of quotient types) and (4) sized types. Lean 3 provides (1) and (2) out of the
box, but also the Axiom of Choice, unfortunately. Neither it, nor Coq provide (3)
and (4). Agda provides (1) via unrestricted dependent pattern-matching, (2) via
a combination of postulates and the rewriting mechanism of Cockx and Abel
[8], (3) via its very liberal mechanism for mutual definitions and (4) thanks to
the work of Abel [2]. Therefore we make use of the type theory implemented by
Agda (version 2.6.0.1) to give formal proofs of our results. The Agda code can
be found at doi: 10.17863/CAM.48187. In this paper we describe the results
informally, using Agda-style notation for dependent type theory. In particular
we use Set to denote the universe at the lowest level of a countable hierarchy of
(Russell-style) universes. We also use Agda’s convention that an implicit argument
of an operation can be made explicit by enclosing it in {braces}.

Acknowledgement We would like to acknowledge the contribution Ian Orton made
to the initial development of the work described here. He and the first author
supervised the third author’s Master’s dissertation Quotient Inductive Types: A
Schema, Encoding and Interpretation, in which the notion of QW-type (there
called a W+-type) was introduced.

https://doi.org/10.17863/CAM.48187


4 M. Fiore, A. M. Pitts and S. C. Steenkamp

2 QW-types

We begin by recalling some facts about types of well-founded trees, the W-types
of Martin-Löf [22]. We take signatures to be elements of the dependent product

Sig =
∑
A : Set, (A→ Set) (1)

So a signature is given by a pair Σ = (A,B) consisting of a type A : Set and
a family of types B : A → Set. Each such signature determines a polynomial
endofunctor [1, 16] S{Σ} : Set → Set whose value at X : Set is the following
dependent product

S{Σ}X =
∑
a : A, (B a→ X) (2)

An S-algebra is by definition an element of the dependent product

Alg{Σ} =
∑
X : Set, (SX → X) (3)

S-algebra morphisms (X, s) → (X ′, s′) are given by functions h : X → X ′

together with an element of the type

isHomh = (a : A)(b : B a→ X)→ s′(a, h ◦ b) ≡ h(s(a, b)) (4)

Then the W-type W{Σ} determined by Σ is the underlying type of an initial
S-algebra. More generally, Dybjer [11] shows that the initial algebra of any non-
nested, strictly positive endofunctor on Set is given by a W-type; and Abbott,
Altenkirch, and Ghani [1] extend this to the case with nested uses of W-types as
part of their work on containers. (These proofs take place in extensional type
theory [22], but work just as well in the intensional type theory with uniqueness
of identity proofs and function extensionality that we are using here.)

More concretely, given a signature Σ = (A,B), if one thinks of elements a : A
as names of operation symbols whose (not necessarily finite) arity is given by
the type B a : Set, then the elements of W{Σ} represent the closed algebraic
terms (i.e. well-founded trees) over the signature. From this point of view it is
natural to consider not only closed terms solely built up from operations, but
also open terms additionally built up with variables drawn from some type X. As
well as allowing operators of possibly infinite arity, we also allow terms involving
possibly infinitely many variables (the second example in Figure 1 involves such
terms). Categorically, the type T{Σ}X of such open terms is the free S-algebra
on X and is another W-type, for the signature obtained from Σ by adding the
elements of X as nullary operations. Nevertheless, it is convenient to give a direct
inductive definition:

data : T{Σ : Sig}(X : Set) : Set where
η : X → TX
σ : S(TX)→ TX

(5)

Given an S-algebra (Y, s) : Alg{Σ} and a function f : X → Y , the unique
morphism of S-algebras from the free S-algebra (TX,σ) on X to (Y, s) has
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underlying function TX → Y mapping each t : TX to the element t�= f in Y
defined1 by recursion on the structure of t:

η x�= f = f x
σ(a, b)�= f = s(a, λx→ b x�= f)

(6)

As the notation suggests, �= is the Kleisli lifting operation (“bind”) for a monad
structure on T; indeed, it is the free monad on the endofunctor S.

The notion of “QW-type” that we introduce in this section is obtained from
that of W-type by considering not only the algebraic terms over a given signature,
but also equations between terms. To code equations we use a type-theoretic
rendering of a categorical notion of equational system introduced by Fiore and Hur,
referred to as term equational system [14, Section 2] and as monadic equational
system [13, Section 5], here instantiated to free monads on signatures.

Definition 1. A system of equations over a signature Σ : Sig is specified by

– a type E : Set (whose elements e : E name the equations)
– a family of types V : E → Set (V e : Set contains the variables used in the
equation named e : E)

– for each e : E, elements l e and r e of type T(V e), the free S-algebra on V e
(the terms with variables from V e that are equated by the equation named e).

Thus a system of equations over Σ is an element of the dependent product

Syseq{Σ} =
∑
E : Set,

∑
V : (E → Set),

((e : E)→ T(V e))× ((e : E)→ T(V e))
(7)

An S{Σ}-algebra SX → X satisfies the system of equations ε = (E, V, l, r) :
Syseq{Σ} if there is an element of type

Sat{ε}X = (e : E)(ρ : V e→ X)→ ((l e)�= ρ) ≡ ((r e)�= ρ) (8)

The category-theoretic view of QW-types is that they are simply S-algebras that
are initial among those satisfying a given system of equations:

Definition 2. A QW-type for a signature Σ = (A,B) : Sig and system of
equations ε = (E, V, l, r) : Syseq{Σ} is given by a type QW{Σ}{ε} : Set equipped
with an S-algebra structure and a proof that it satisfies the equations

qwintro : S(QW)→ QW (9)
qwequ : Sat{ε}(QW) (10)

together with functions that witness that it is the initial such algebra:

qwrec : (X : Set)(s : SX → X)→ SatX → QW→ X (11)
qwrechom : (X : Set)(s : SX → X)(p : SatX)→ isHom(qwrecX sp) (12)

qwuniq : (X : Set)(s : SX → X)(p : SatX)(f : QW→ X)→
isHom f → qwrecX sp ≡ f

(13)

1 Note that the definition of �= depends on the S-algebra structure s; in Agda we use
instance arguments to hide this dependence.
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Given the definitions of S{Σ} in (2) and Sat{ε} in (8), properties (9) and (10)
suggest that a QW-type is an instance of the notion of quotient-inductive type [5]
with element constructor qwintro and equality constructor qwequ. For this to
be so, QW{Σ}{ε} needs to have the requisite dependently-typed elimination
and computation2 properties for these element and equality constructors. As
Proposition 1 below shows, these follow from (11)–(13), because we are working
in a type theory with function extensionality (by virtue of assuming quotient
types). To state the proposition we need a dependent version of (6). For each

P : QW→ Set
p : (a : A)(b : B a→ QW)→ ((x : B a)→ P (b x))→ P (qwintro(a, b))

(14)

type X : Set, function f : X →
∑
x : QW, P x and term t : T(X), we get an

element liftP p f t : P (t�= fst ◦ f) defined by recursion on the structure of t:

liftP p f (η x) = snd(f x)
liftP p f (σ(a, b)) = p a (λx→ b x�= (fst ◦ f))(liftP p f ◦ b) (15)

Proposition 1. For a QW-type as in the above definition, given P and p as in
(14) and a term of type

(e : E)(f : V e→
∑
x : QW, P x)→ liftP p f (l e) ≡≡ liftP p f (r e) (16)

there are elimination and computation terms:

qwelim : (x : QW)→ P x

qwcomp : (a : A)(b : B a→ QW)→ qwelim(qwintro(a, b)) ≡ p a b (qwelim ◦ b)

(Note that (16) uses McBride’s heterogeneous equality type [23], which we denote
by ≡≡, because liftP p f (l e) and liftP p f (r e) inhabit different types, namely
P (l e�= fst ◦ f) and P (r e�= fst ◦ f) respectively.) ut

The proof of the proposition can be found in the accompanying Agda code
(doi: 10.17863/CAM.48187).

So QW-types are in particular quotient-inductive types (QITs). Conversely, in
the next section we show that a wide range of QITs can be encoded as QW-types.
Then in Section 4 we prove:

Theorem 1. In constructive dependent type theory with uniqueness of identity
proofs (or equivalently the Axiom K of Streicher [27]) and universes with induct-
ive-inductive datatypes [15] permitting strictly positive occurrences of quotient
types [18] and sized types [2], for every signature and system of equations (Defin-
ition 1) there is a QW-type as in Definition 2.
2 We only establish the computation property up to propositional rather than defini-
tional equality; so, using the terminology of Shulman [25], these are typal quotient-in-
ductive types.

https://doi.org/10.17863/CAM.48187
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Remark 1 (Free algebras). Definition 2 defines QW-types as initial algebras. A
corollary of Theorem 1 is that free-algebras also exist. In other words, given a
signature Σ and a type X : Set, there is an S-algebra

(F{Σ}{ε}X , S{Σ}(F{Σ}{ε}X)→ F{Σ}{ε}X)

satisfying a system of equations ε and equipped with a function X → F{Σ}{ε}X,
and which is universal among such S-algebras. Thus QW{Σ}{ε} is isomorphic to
F{Σ}{ε}∅, where ∅ is the empty datatype.

To see that such free algebras can be constructed as QW-types, given a
signature Σ = (A,B), let ΣX be the signature (X ]A,B′), where X ]A is the
coproduct datatype (with constructors inl : X → X ] A and inr : A → X ] A)
and where B′ : X ]A→ Set maps each inlx to ∅ and each inr a to B a. Given
a system of equations ε = (E, V, l, r), let εX be the system (E, V, lX , rX) where
for each e : E, lX e = l e�= η and rX e = r e�= η (using η : V e→ T{ΣX}(V e)
as in (5) and the S{Σ}-algebra structure s on T{ΣX}(V e) given by s(a, b) =
σ(inr a, b)). Then one can show that the QW-type QW{ΣX}{εX} is the free
algebra F{Σ}{ε}X, with the function X → F{Σ}{ε}X sending each x : X to
qwintro(inlx,_) : QW{ΣX}{εX}, and the S{Σ}-algebra structure on F{Σ}{ε}X
being given by the function sending (a, b) : S(QW{ΣX}{εX}) to qwintro(inr a, b).

Remark 2 (Strictly positive equational systems). A very general, categorical
notion of equational system was introduced by Fiore and Hur [14, Section 3].
They regard any endofunctor S : Set → Set as a functorial signature. A functorial
term over such a signature, SBG ` L, is specified by another functorial signature
G : Set → Set (the term’s context) together with a functor L from S-algebras to
G-algebras that commutes with the forgetful functors to Set. Then an equational
system is given by a pair of such terms in the same context, S B G ` L and
S B G ` R say. An S-algebra s : S X → X satisfies the equational system if
L(X, s) and R(X, s) are equal G-algebras.

Taking the strictly positive endofunctors Set → Set to be the smallest collec-
tion containing the identity and constant endofunctors and closed under forming
dependent products and dependent functions over fixed types then, as in [11]
(and also in the type theory in which we work), up to isomorphism every such
endofunctor is of the form S{Σ} for some signature Σ : Sig. If we restrict atten-
tion to equational systems S B G ` L,R with S and G strictly positive, then
it turns out that such equational systems are in bijection with the systems of
equations from Definition 1, and the two notions of satisfaction for an algebra
coincide in that case. (See our Agda development for a proof of this.) So Dybjer’s
characterisation of W-types as initial algebras for strictly positive endofunctors
generalises to the fact that QW-types are initial among the algebras satisfying
strictly positive equational systems in the sense of Fiore and Hur.

3 Quotient-inductive types

Higher inductive types (HITs) are originally motivated by their use in homotopy
type theory to construct homotopical cell complexes, such as spheres, tori, and
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so on [29]. Intuitively, a higher inductive type is an inductive type with point
constructors also allowing for path constructors, surface constructors, etc., which
are represented as elements of (iterated) identity types. For example, the sphere
is given by the HIT3:

data S2 : Set where

base : S2

surf : refl ≡base≡S2base refl

(17)

In the presence of the UIP axiom we will refer to HITs as quotient inductive
types (QITs) [5], since all paths beyond the first level are trivial and any HIT
is truncated to an h-set. We use the terms element constructor and equality
constructor to refer to the point constructors and the only non-trivial level of
path constructors.

We believe that QW-types can be used to encode a wide range of QITs: see
Conjecture 1 below. As evidence, we give several examples of QITs encoded
as QW-types, beginning with the two examples of QITs in Figure 1, giving
the corresponding signature (A,B) and system of equations (E, V, l, r) as in
Definition 2.

Example 1 (Finite multisets). The element constructors for finite multisets are
encoded exactly as with a W-type: the constructors are [] and x :: _ for each
x : X. So we take A to be 1 ]X, the coproduct of the unit type 1 (whose single
constructor is denoted tt) with X. The arity of [] is zero, and the arity of each
x ::_ is one, represented by the empty type ∅ and unit type 1 respectively; so we
take B : A→ Set to be the function [λ_→0 | λ_→1] : 1 ]X → Set mapping
inl tt to ∅ and each inrx to 1.

The swap equality constructor is parameterised by elements of E = X ×X.
For each (x, y) : E, swapx y yields an equation involving a single free vari-
able (called ys : BagX in Figure 1); so we take V : E → Set to be λ_→1.
Each side of the equation named by swapx y is coded by an element of
T{Σ}(V (x, y)) = T{Σ}(1). Recalling the definition of T from (5), the single
free variable corresponds to η tt : T{Σ}(1) and then the left-hand side of
the equation is σ(inrx, (λ_→σ(inr y, (λ_→ η tt)))) and the right-hand side is
σ(inr y, (λ_→σ(inrx, (λ_→ η tt)))).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the first example in Figure 1 is:

A = 1 ]X E = X ×X
B = [λ_→∅ | λ_→1] V = λ_→1

l = λ (x, y)→ σ(inrx, (λ_→σ(inr y, (λ_→ η tt))))
r = λ (x, y)→ σ(inr y, (λ_→σ(inrx, (λ_→ η tt))))

3 The subscript on ≡ will be treated as an implicit argument and omitted when clear.
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Example 2 (Unordered countably-branching trees). Here the element constructors
are leaf of arity zero and, for each x : X, nodex of arity N. So we use the signature
with A = 1 ]X and B = [λ_→∅ | λ_→N].

The perm equality constructor is parameterised by elements of

E = X ×
∑

f : (N→ N), isIso f

For each element (x, f, i) of that type, permx f i yields an equation involving
an N-indexed family of variables (called g : N → ωTreeX in Figure 1); so we
take V : E → Set to be λ_→N. Each side of the equation named by permx f i
is coded by an element of T{Σ}(V (x, f, i)) = T{Σ}(N). The N-indexed family
of variables is represented by the function η : N→ T{Σ}(N) and its permuted
version by η ◦ f . Thus the left- and right-hand sides of the equation named by
permx f i are coded respectively by the elements σ(inrx, η) and σ(inrx, η ◦ f) of
T{Σ}(N).

So, altogether, the signature and system of equations for the QW-type corres-
ponding to the second example in Figure 1 is:

A = 1 ]X E = X ×
∑
f : (N→ N), isIso f

B = [λ_→∅ | λ_→N] V = λ_→N

l = λ (x,_,_)→ σ(inrx, η)

r = λ (x, f,_)→ σ(inrx, η ◦ f)

That unordered countably-branching trees are a QW-type is significant since no
previous work on various subclasses of QITs (or indeed QIITs [19, 10]) supports
infinitary QITs [6, 26, 28, 12, 19, 10]. See Example 5 for another, more substantial
infinitary QW-type. So this extension represents one of our main contributions.
QW-types generalise prior developments; the internal encodings for particular
subclasses of 1-HITs given by Sojakova [26] and Swan [28] are direct instances of
QW-types, as the next two examples show.

Example 3. W-suspensions [26] are an instance of QW-types. The data for
a W-suspension is: A′, C ′ : Set, a type family B′ : A′ → Set and functions
l′, r′ : C ′ → A′. The equivalent QW-type is:

A = A′ E = C ′ l = λ c→ σ((l′ c), η)

B = B′ V = λ c→ (B′ (l′ c))× (B′ (r′ c)) r = λ c→ σ((r′ c), η)

Example 4. The non-indexed case of W-types with reductions [28] are QW-types.
The data of such a type is: Y : Set, X : Y → Set and a reindexing map
R : (y : Y ) → Xy. The reindexing map identifies a term σ (y, α) with some
α (R y) used to construct it. The equivalent QW-type is given by:

A = Y E = Y l = λy → σ (y, η)

B = X V = X r = λy → η (R i)



10 M. Fiore, A. M. Pitts and S. C. Steenkamp

Example 5. Lumsdaine and Shulman [21, Section 9] give an example of a HIT
not constructible in type theory from only pushouts and N. Their HIT F can
be thought of as a set of notations for countable ordinals. It consists of three
point constructors: 0 : F , S : F → F , and sup : (N → F ) → F , and five path
constructors which are omitted here for brevity. It is inspired by the infinitary
algebraic theory of Blass [7, Section 9] and hence it is not surprising that it can
be encoded by a QW-type; the details can be found in our Agda code.

3.1 General QIT schemas

Basold, Geuvers, and van der Weide [6] present a schema (though not a model)
for infinitary QITs that do not support conditional path equations. Constructors
are defined by arbitrary polynomial endofunctors built up using (non-dependent)
products and sums, which means in particular that parameters and arguments
can occur in any order. They require constructors to be in uncurried form.

Dybjer and Moeneclaey [12, Sections 3.1 and 3.2] present a schema for finitary
QITs that supports conditional path equations, where constructors are allowed
to take inductive arguments not just of the datatype being declared, but also
of its identity type. This schema can be generalised to infinitary QITs with
conditional path equations. We believe this extension of their schema to be the
most general schema for QITs. The schema requires all parameters to appear
before all arguments, whereas the schema for regular inductive types in Agda is
more flexible, allowing parameters and arguments in any order.

We wish to combine the schema for infinitary QITs of Basold, Geuvers, and
van der Weide [6] with the schema for QITs with conditional path equations of
Dybjer and Moeneclaey [12] to provide a general schema. Moreover, we would
like to combine the arbitrarily ordered parameters and arguments of the former
with the curried constructors of the latter in order to support flexible pattern
matching.

For consistency with the definition of inductive types in Agda [9, equation (25)
and figure 1] we will define strictly positive (i.e. polynomial) endofunctors in
terms of strictly positive telescopes.

A telescope is given by the grammar:

∆ ::= ε empty telescope
| (x : A)∆ (x /∈ dom(∆)) non-empty telescope (18)

A telescope extension (x : A)∆ binds (free) occurrences of x inside the tail ∆.
The type A may contain free variables that are later bound by further telescope
extensions on the left. A telescope can also exist in a context which binds any
free variables not already bound in the telescope. Such a context is implicit in
the following definitions. A function type ∆→ C from a telescope ∆ to a type C
is defined as an iterated dependent function type by:

ε→ C
def
= C

(x : A)∆→ C
def
= (x : A)→ (∆→ C)

(19)
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A strictly positive endofunctor on a variable Y is presented by a strictly positive
telescope

∆ = (x1 : Φ1(Y ))(x2 : Φ2(Y )) · · · (xn : Φn(Y ))ε (20)

where each type scheme Φi is described by a expression on Y made up of Π-types,
Σ-types, and any (previously defined “constant”) types A not containing Y ,
according to the grammar:

Φ(Y ),Ψ(Y ) ::= (y : A)→ Φ(Y ) | Σ p : Φ(Y ),Ψ(Y ) | A | Y (21)

For example, ∆
def
= (x : X)(f : N→ Y )ε is the strictly positive telescope for the

node constructor in Figure 1. In this instance, reordering x and f is permitted by
exchange. Note that the variable Y can never appear in the argument position of
a Π-type.

Now it is possible to define the form of the endpoints of an equality (within
the context of a strictly positive telescope), corresponding to the notion of an
abstract syntax tree with free variables. With this intuition in mind, we can take
the definition in Dybjer and Moeneclaey’s presentation [12] of endpoints given
by point constructor patterns:

l, r, p ::= ci k | y (22)

Where y : Y is in the context of the telescope for the equality constructor, and k
is a term built without any rule for Y , but which may use other point constructor
patterns p : Y . (That is, any sub-term of type Y must either be a variable y : Y
found in the telescope, or a constructor for Y applied to further point constructor
patterns and earlier defined constants. It could not, for instance, use the function
application rule for Y with some function g : M → Y , not least since such
functions cannot be defined before defining Y .) Note that this exactly matches
the type T in (5).

Basold, Geuvers, and van der Weide’s presentation has a sightly more general
notion of constructor term [6, Definition 6] (Dybjer and Moeneclaey’s presentation
[12] has more restricted telescopes). It is defined by rules which operate in the
context of a strictly positive (polynomial) telescope and permit use of its bound
variables, and the use of constructors ci, but not any other rules for Y . We take
the dependent form of their rules for products and functions. Note that these
rules do not allow the use of terms of type ≡Y in the endpoints.

As with inductive types, the element constructors of QITs are specified by
strictly positive telescopes. The equality constructors also permit conditions
to appear in strictly positive positions, where l and r are constructor terms
according to grammar (22):

Φ(Y ),Ψ(Y ) ::= (same grammar as in (21)) | l ≡Y r (23)
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Definition 3. A QIT is defined by a list of named element constructors and
equality constructors:

data Y : Set where
c1 : ∆1 → Y
...
cn : ∆n → Y
p1 : Θ1 → l1 ≡Y r1
...
pm : Θm → lm ≡Y rm

where ∆i are strictly positive telescopes on Y according to (21), and Θj are
strictly positive telescopes on Y and ≡Y in which conditions may also occur in
strictly positive positions according to (23).

QITs without equality constructors are inductive types. If none of the equality
constructors contain Y in an argument position then it is called non-recursive,
otherwise it is called recursive [6]. If none of the equality constructors contain an
equality in Y then we call it a non-conditional, or equational, QIT, otherwise it is
called a conditional [12], or quasi-equational, QIT. If all of the constant types A in
any of the constructors are finite (isomorphic to Fin n for n : N) then it is called
a finitary QIT [12]. Otherwise, it is called a generalised [12], or infinitary, QIT.
We are not aware of any existing examples in the literature of HITs which allow
the point constructors to be conditional (though it is not difficult to imagine),
nor any schemes for HITs that allow such definitions. However, we do believe
this is worth investigating further.

Conjecture 1. Any equational QIT can be encoded as a QW-type.

We believe this can be proved analogously to the approach of Dybjer [11] for
inductive types, though the endpoints still need to be considered and we have
not yet translated the schema in definition 3 into Agda.

Remark 3. Assuming Conjecture 1, Basold, Geuvers, and van der Weide’s schema
[6], being an equational (non-conditional) instance of Definition 3, can be encoded
as a QW-type.

4 Construction of QW-types

In Section 2 we defined a QW-type to be initial among algebras over a given
(possibly infinitary) signature satisfying a given systems of equations (Definition 2).
If one interprets these notions in classical Zermelo-Fraenkel set theory with the
axiom of Choice (ZFC), one regains the usual notion from universal algebra
of initial algebras for infinitary equational theories. Since in the set-theoretic
interpretation there is an upper bound on the cardinality of arities of operators
in a given signature Σ, the ordinal-indexed sequence Sα(∅) of iterations of the
functor in (2) starting from the empty set eventually becomes stationary; and
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so the sequence has a small colimit, namely the set W{Σ} of well-founded trees
over Σ. A system of equations ε (Definition 1) over Σ generates a Σ-congruence
relation ∼ on W{Σ}. The quotient set W{Σ}/∼ yields the desired initial algebra
for (Σ, ε) provided the S-algebra structure on W{Σ} induces one on the quotient
set. It does so, because for each operator, using AC one can pick representatives
of the (possibly infinitely many) equivalence classes that are the arguments of
the operator, apply the interpretation of the operator in W{Σ} and then take
the equivalence class of that. So the set-theoretic model of type theory in ZFC
models QW-types.

Is this use of choice really necessary? Blass [7, Section 9] shows that if one
drops AC and just works in ZF, then provided a certain large cardinal axiom is
consistent with ZFC, it is consistent with ZF that there is an infinitary equational
theory with no initial algebra. He shows this by first exhibiting a countably
presented equational theory whose initial algebra has to be an uncountable
regular cardinal; and secondly appealing to the construction of Gitik [17] of a
model of ZF with no uncountable regular cardinals (assuming a certain large
cardinal axiom). Lumsdaine and Shulman [21] turn the infinitary equational
theory of Blass into a higher-inductive type that cannot be proved to exist in
ZF (and hence cannot be constructed in type theory just using pushouts and the
natural numbers). We noted in Example 5 that this higher inductive type can be
presented as a QW-type.

So one cannot hope to construct QW-types using a type theory which is
interpretable in just ZF. However, the type theory in which we work, with its
universes closed under inductive-inductive definitions, already requires going
beyond ZF to be able to give it a naive, classical set-theoretic interpretation (by
assuming the existence of enough strongly inaccessible cardinals, for example). So
the above considerations about initial algebras for infinitary equational theories
in classical set theory do not rule out the construction of QW-types in the type
theory in which we work. However, something more than just quotienting a
W-type is needed in order to prove Theorem 1.

Figure 2 gives a first attempt to do this (which later we will modify using sized
types to get around a termination problem). The definition is relative to a given
signature Σ : Sig and system of equations ε = (E, V, l, r) : SyseqΣ. It makes use
of quotient types, which we add to Agda via postulates, as shown in Figure 3.4
The REWRITE pragma makes elimRB f e (mkRx) definitionally equal to f x
and is not merely a computational convenience—this is what allows function
extensionality to be proved from these postulated quotient types. The POLARITY
pragmas enable the postulated quotients to be used in datatype declarations
at positions that Adga deems to be strictly positive; a case in point being the
definitions of Q0 and Q1 in Figure 2. Agda’s test for strict positivity is sound
with respect to a set-theoretic semantics of inductively defined datatypes that
are built up using strictly positive uses of dependent functions; the semantics of
such datatypes uses initial algebras for endofunctors possessing a rank. Here we

4 The actual implementation is polymorphic in universe levels, but for simplicity here
we just give the level-zero version.
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mutual
data Q0 : Set where

sq : TQ→ Q0

data Q1 : Q0 → Q0 → Set where
sqeq : (e : E)(ρ : V e→ Q)→ Q1 (sq(T'ρ (l e))) (sq(T'ρ (r e)))
sqη : (x : Q0)→ Q1 (sq(η(qux))) x
sqσ : (s : S(TQ))→ Q1 (sq(σ s)) (sq(ι(S'(qu ◦ sq) s)))

Q : Set
Q = Q0/Q1

qu : Q0 → Q
qu = quot.mkQ1

QW{Σ}{ε} = Q

Figure 2. First attempt at constructing QW-types

are allowing the inductively defined datatypes to be built up using quotients as
well, but this is semantically unproblematic, since quotienting does not increase
rank. (Later we need to combine the use of POLARITY with sized types; the
semantics of this has been studied for System Fω [3], but needs to be explored
further for Agda.)

We build up the underlying inductive type Q0 to be quotiented using a
constructor sq that takes well-founded trees T(Q0/Q1) of whole equivalence
classes with respect to a relation Q1 that is mutually inductively defined with
Q0—an instance of an inductive-inductive definition [15]. The definition of Q1

makes use of the actions on functions of the signature endofunctor S and its
associated free monad T (Section 2); those actions are defined as follows:

S' : {X Y : Set} → (X → Y )→ SX → SY
S' f (a, b) = (a, f ◦ b) (24)

T' : {X Y : Set} → (X → Y )→ TX → TY
T' f t = t�= (η ◦ f)

(25)

The definition of Q1 also uses the natural transformation ι : {X : Set} → SX →
TX defined by ι = σ ◦ S' η.

Turning to the proof of Theorem 1 using the definitions in Figure 2, the
S-algebra structure (9) is easy to define without using any form of choice, because
of the type of Q0’s constructor sq. Indeed, we can just take qwintro to be
qu◦ sq◦ ι : S(QW)→ QW.5 The first constructor sqeq of the data type Q1 ensures
that the quotient Q0/Q1 satisfies the equations in ε, so that we get qwequ as
in (10); and the other two constructors, sqη and sqσ make identifications that

5 The use of the free monad T{Σ} in the domain of sq, rather than just S{Σ}, seems
necessary in order to define Q1 with the properties needed for (10)–(13).
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module quot where
postulate

ty : {A : Set}(R : A→ A→ Set)→ Set
mk : {A : Set}(R : A→ A→ Set)→ A→ tyR
eq : {A : Set}(R : A→ A→ Set){x y : A} → Rxy → mkRx≡mkRy
elim : {A : Set}(R : A→ A→ Set)(B : tyR→ Set)(f : (x : A)→ B(mkRx))

(e : {x y : A} → Rxy → f x≡≡ f y)(z : tyR)→ B z
comp : {A : Set}(R : A→ A→ Set)(B : tyR→ Set)(f : (x : A)→ B(mkRx))

(e : {x y : A} → Rxy → f x≡≡ f y)(x : A)→ elimRB f e (mkRx)≡ f x
{-# REWRITE comp -#}
{-# POLARITY ty ++ ++ -#}
{-# POLARITY mk _ _ * -#}

_/_ : (A : Set)(R : A→ A→ Set)→ Set
A/R = quot.tyR

Figure 3. Quotient types

enable the construction of functions qwrec, qwrechom and qwuniq as in (11)–(13).
However, there is a problem. Given X : Set, s : SX → X and e : SatX, for
qwrecX se we have to construct a function r : Q → X. Since Q = Q0/Q1 is a
quotient, we will have to use the eliminator quot.elim from Figure 3 to define r.
The following is an obvious candidate definition

mutual
r : Q→ X
r = quot.elimQ1 (λ_→ X) r0 r1

r0 : Q0 → X
r0(sq t) = t�= r

r1 : {x y : Q0} → Q1 x y → r0 x≡ r0 y
r1 = · · ·

(26)

(where we have elided the details of the invariance proof r1). The problem with
this mutually recursive definition is that it is not clear to us (and certainly not
to Agda) whether it gives totally defined functions: although the value of r0 at a
typical element sq t is explained in terms of the structurally smaller element t, the
explanation involves r, whose definition uses the whole function r0 rather than
some application of it at a structurally smaller argument. Agda’s termination
checker rejects the definition.

We get around this problem by using a type-based termination method,
namely Agda’s implementation of sized types [2]. Intuitively, this provides a type
Size of “sizes” which give a constructive abstraction of features of ordinals in ZF
when they are used to index sequences of sets that eventually become stationary,
such as in various transfinite constructions of free algebras [20, 14]. In Agda,
the type Size comes equipped with various relations and functions: given sizes
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mutual
data Q0(i : Size) : Set where

sq : {j : Size< i} → T(Q j)→ Q0 i

data Q1(i : Size) : Q0 i→ Q0 i→ Set where
sqeq : {j : Size< i}(e : E)(ρ : V e→ Q j)→ Q1 i (sq(T'ρ (l e))) (sq(T'ρ (r e)))
sqη : {j : Size< i}(x : Q0 j)→ Q1 i (sq(η(qu j x))) (φ0 i x)
sqσ : {j : Size< i}{k : Size< j}(s : S(T(Q k)))→

Q1 i (sq(σ s)) (sq(ι(S'(qu j ◦ sq) s)))
Q : Size→ Set
Q i = (Q0 i)/Q1 i

qu : (i : Size)→ Q0 i→ Q i
qu i = quot.mk (Q1 i)

φ0 : (i : Size){j : Size< i} → Q0 j → Q0 i
φ0 i (sq z) = sq z

QW{Σ}{ε} = Q∞

Figure 4. Construction of QW-types using sized types

i, j : Size, there is a relation i : Size< j to indicate strictly increasing size (so
the type Size< j is treated as a subtype of Size); there is a successor operation
↑ : Size → Size (and also a join operation _ts_ : Size → Size → Size, but we
do not need it here); and a size ∞ : Size to indicate where a sequence becomes
stationary. Thus we construct the QW-type QW{Σ}{ε} as Q∞ for a suitable
size-indexed sequence of types Q : Size→ Set, shown in Figure 4.

For each size i : Size, the type Q i is a quotient Q0 i/Q1 i, where the construct-
ors of the data types Q0 i and Q1 i take arguments of smaller sizes j : Size< i.
Consequently in the following sized version of (26)

mutual
r : {i : Size} → Q i→ X
r{i} = quot.elim (Q1 i) (λ_→ X) (r0 {i}) (r1 {i})

r0 : {i : Size} → Q0 i→ X
r0{i}(sq {j} t) = t�= r {j}

r1 : {i : Size}{x y : Q0 i} → Q1 i x y → r0 x≡ r0 y
r1 = · · ·

(27)

the definition of r0{i} involves a recursive call via r to the whole function r0, but
at a size j which is smaller than i. So now Agda accepts that the definition of
qwrecX se as r∞, with r as in (27), is terminating.

Thus we get a function qwrec for (11). We still have (9), but now with
qwintro = qu∞◦ sq {∞}◦ ι; and as before, the constructor sqeq of Q1 in Figure 4
ensures that QW = (Q0∞)/Q1∞ satisfies the equations ε. With these definitions
it turns out that each qwrecX se is an S-algebra morphism up to definitional
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equality, so that the function qwrechom needed for (12) is straightforward to
define. Finally, the function qwuniq needed for (13) can be constructed via a
sequence of lemmas making use of the other two constructors of the data type
Q1, namely sqη, which makes use of an auxiliary function for coercing between
different size instances of Q0, and sqσ. We refer the reader to the accompanying
Agda code (doi: 10.17863/CAM.48187) for the details of the construction of
qwuniq. Altogether, the sized definitions in Figure 4 allow us to complete a proof
of Theorem 1.

5 Conclusion

QW-types are a general form of QIT that capture many examples, including simple
1-cell complexes and non-recursive QITs [6], non-structural QITs [26], W-types
with reductions [28], and also infinitary QITs (e.g. unordered infinitely branching
trees [5], and ordinals [21]). They also capture the notion of initial (and free)
algebras for strictly positive equational systems [14], analogously to how W-types
capture the notion of initial (and free) algebras for strictly positive endofunctors
(see Remark 2). Using Agda to formalise our results, we have shown that it
is possible to construct any QW-type, even infinitary ones, in intensional type
theory satisfying UIP, using inductive-inductive definitions permitting strictly
positive occurrences of quotients and sized types (see Theorem 1 and Section 4).
We conclude by mentioning related work and some possible directions for future
work.

Quotients of monads. In view of Remark 2, Section 4 gives a construction of
initial algebras for equational systems [14] on the free monad T{Σ} generated by
a signature Σ. By a suitable change of signature (see Remark 1) this extends to
a construction of free algebras, rather than just initial ones. We can show that
the construction works for an arbitrary strictly positive monad and not just for
free ones. Given such a construction one gets a quotient monad morphism from
the base monad to the quotient monad. This contravariantly induces a forgetful
functor from the algebras of the latter to that of the former. Using the adjoint
triangle theorem, one should be able to construct a left adjoint. This would then
cover examples such as the free group over a monoid, free ring over a group, etc.

Quotient inductive-inductive types. The notion of QW-type generalises to indexed
QW-types, analogously to the generalisation of W-types to Petersson-Synek trees
for inductively defined indexed families of types [24, Chapter 16], and we will
consider it in subsequent work. More generally, we wonder whether our analysis
of QITs using quotients, inductive-inductive and sized types can be extended to
cover the notion of quotient inductive-inductive type (QIIT) [4, 19]. Dijkstra [10]
studies such types in depth and in Chapter 6 of his thesis gives a construction
for finitary ones in terms of countable colimits, and hence in terms of countable
coproducts and quotients. One could hope to pass to the infinitary case by using
sized types as we have done, provided an analogue for QIITs can be found of

https://doi.org/10.17863/CAM.48187
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the monadic construction in Section 4 for our class of QITs, the QW-types.
Kaposi, Kovács, and Altenkirch [19] give a specification of finitary QIITs using a
domain-specific type theory called the theory of signatures and prove existence of
QIITs matching this specification. It might be possible to encode their theory of
signatures using QW-types (it can already be encoded as a QIIT), or to extend
QW-types making this possible. This would allow infinitary QIITs.

Schemas for QITs. We have shown by example that QW-types can encode a wide
range of QITs. However, we have yet to extend this to a proof of Conjecture 1
that every instance of the schema for QITs considered in Section 3 can be so
encoded.

Conditional path equations. In Section 3 we mentioned the fact that Dybjer and
Moeneclaey [12] give a model for finitary 1-HITs and 2-HITs in which constructors
are allowed to take arguments involving the identity type of the datatype being
declared. On the face of it, QW-types are not able to encode such conditional
QITs. We plan to consider whether it is possible to extend the notion of QW-type
to allow encoding of infinitary QITs with such conditional equations.

Homotopy Type Theory (HoTT). Our development makes use of UIP (and het-
erogeneous equality), which is well-known to be incompatible with the Univalence
Axiom [29, Example 3.1.9]. Given the interest in HoTT, it is certainly worth
investigating whether a result like Theorem 1 holds in univalent foundations for a
suitably coherent version of QW-types. We are currently investigating this using
set-truncation.

Pattern matching for QITs and HITs. Our reduction of QITs to induction-
induction, strictly positive quotients and sized types is of theoretical interest, but
in practice one could wish for more direct support in systems like Agda, Lean and
Coq for the very useful notion of quotient inductive types (or more generally, for
higher inductive types). Even having better support for the special case of quotient
types would be welcome. It is not hard to envisage the addition of a general schema
for declaring QITs; but when it comes to defining functions on them, having
to do that with eliminator forms rapidly becomes cumbersome (for example,
for functions of several QIT arguments). Some extension of dependently typed
pattern matching to cover equality constructors as well as element constructors
is needed and the third author has begun work on that based on the approach of
Cockx and Abel [9].6

6 In this context it is worth mentioning that the cubical features of recent versions
of Agda give access to cubical type theory [30]. This allows for easy declaration of
HITs and hence in particular QITs (and quotients avoiding the need for POLARITY
pragmas) and a certain amount of pattern matching when it comes to defining
functions on them: the value of a function on a path constructor can be specified by
using generic elements of the interval type in point-level patterns; but currently the
user is given little mechanised assistance to solve the definitional equality constraints
on end-points of paths that are generated by this method.
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