Constructing Initial Algebras Using Inflationary Iteration

An old theorem of Adámek constructs initial algebras for sufficiently cocontinuous endofunctors via transfinite iteration over ordinals in classical set theory. We prove a new version that works in constructive logic, using "inflationary" iteration over a notion of size that abstracts from limit ordinals just their transitive, directed and well-founded properties. Borrowing from Taylor's constructive treatment of ordinals, we show that sizes exist with upper bounds for any given signature of indexes. From this it follows that there is a rich class of endofunctors to which the new theorem applies, provided one admits a weak form of choice (WISC) due to Streicher, Moerdijk, van den Berg and Palmgren, and which is known to hold in the internal constructive logic of many kinds of topos.