
Axioms for univalence

Ian Orton and Andrew Pitts

Cambridge University
Ian.Orton@cl.cam.ac.uk

Andrew.Pitts@cl.cam.ac.uk

We show that, within Martin-Löf Type Theory, the univalence axiom [4] is equivalent to function
extensionality [4] and axioms (1) to (5) given in Table 1. When constructing a model satisfying
univalence, experience shows that verifying these axioms is often simpler than verifying the full
univalence axiom directly. We show that this is the case for cubical sets [1].

Axiom Premise(s) Equality

(1) unit : A =
∑

a:A 1

(2) flip :
∑

a:A

∑
b:B C a b =

∑
b:B

∑
a:A C a b

(3) contract : isContr A → A = 1

(4) unitβ : coerce unit a = (a, ∗)
(5) flipβ : coerce flip (a, b, c) = (b, a, c)

Table 1: (A,B : U , C : A→ B → U , a : A, b : B and c : C a b, for some universe U)

First recall some standard definitions/results in Homotopy Type Theory (HoTT). A type A is
said to be contractible if the type isContr(A) :≡

∑
a0:A

∏
a:A(a0 = a) is inhabited, where = is

propositional equality. It is a standard result that singletons are contractible: for every type
A and element a : A the type sing(a) :≡

∑
x:A(a = x) is contractible. We say that a function

f : A→ B is an equivalence if for every b : B the fiber fibf (b) :≡
∑

a:A(f a = b) is contractible.
Finally, we can define a function coerce : (A = B)→ A→ B which, given a proof that A = B,
will coerce values of type A into values of type B.

A =
∑
a:A

1 by (1)

=
∑
a:A

∑
b:B

f a = b by (3) on sing(fa)

=
∑
b:B

∑
a:A

f a = b by (2)

=
∑
b:B

1 by (3) on fibf (b)

= B by (1)

The axioms in Table 1 all follow from the univa-
lence axiom. The converse is also true. The cal-
culation on the right shows how to construct an
equality between types A and B from an equiva-
lence f : A → B. This proof, and many other
results described in this paper, have been for-
malised in the proof assistant Agda [3]. De-
tails can be found at http://www.cl.cam.ac.

uk/~rio22/agda/axi-univ.

The univalence axiom is not simply the ability to
convert an equivalence into an equality, but also
the fact that this operation itself forms one half of an equivalence. It can be shown (e.g. [2])
that this requirement is satisfied whenever coerce (ua(f, e)) = f for every (f, e) : Equiv A B,
where ua : Equiv A B → A = B is the process outlined above. In order to prove this we use
axioms unitβ and flipβ. Had we derived unit and flip from univalence, these properties would
both hold. Note that we need no assumption about contract since, in the presence of function
extensionality, all functions between contractible types are propositionally equal.

http://www.cl.cam.ac.uk/~rio22/agda/axi-univ
http://www.cl.cam.ac.uk/~rio22/agda/axi-univ
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It is easily shown that coerce is compositional, and so we can track the result of coerce at each
stage to see that coercion along the composite equality ua(f, e) gives us the following:

a 7→ (a, ∗) 7→ (a, f a, refl) 7→ (f a, a, refl) 7→ (f a, ∗) 7→ f a

Experience shows that the first two axioms are simple to verify in many potential models
of univalent type theory. To understand why, it is useful to consider the interpretation of
Equiv A B in a model of intensional type theory. Propositional equality in the type theory is
not interpreted as equality in the model’s metatheory, but rather as a construction on types
e.g. path spaces in models of HoTT. Therefore, writing JXK for the interpretation of a type X,
an equivalence in the type theory will give rise to morphisms f : JAK→ JBK and g : JBK→ JAK
which are not exact inverses, but rather are inverses modulo the interpretation of propositional
equality, e.g. the existence of a path connecting x and g(f x). However, in many models
the interpretations of A and

∑
a:A 1, and of

∑
a:A

∑
b:B C a b and

∑
b:B

∑
a:A C a b will be

isomorphic, i.e. there will be morphisms going back and forth which are inverses up to equality
in the model’s metatheory. This means that we can satisfy unit and flip by proving that this
stronger notion of isomorphism gives rise to a propositional equality between types.

We also assume function extensionality. Every model of univalence must satisfy function ex-
tensionality [4, Section 4.9], but it is often easier to check function extensionality than the full
univalence axiom. This leaves the contract axiom, which captures the homotopical condition
that every contractible space is equivalent to a point. The hope is that the previous axioms
should come almost “for free”, leaving this as the only non-trivial condition to check.

As an example, consider the cubical sets model presented in [1]. In this setting function ex-
tensionality holds trivially [1, Section 3.2]. There is a simple way to construct paths between
strictly isomorphic types Γ ` A,B in the presheaf semantics by defining a new type PA,B :

PA,B(ρ, i) :≡
{
A(ρ) if i = 0
B(ρ) if i 6= 0

(where ρ ∈ Γ(I), i ∈ I(I) for I ∈ C)

The action of PA,B on morphisms is inherited from A and B, using the isomorphism where
necessary. PA,B has a composition structure [1, Section 8.2] whenever A and B do, whose
associated coerce function is equal to the isomophism. This construction is related to the use of
a case split on ϕρ = 1 in [1, Definition 15]. Finally, given a type Γ ` A and using the terminology
from [1, Section 4.2], the contract axiom can be satisfied by taking Γ, i : I ` contract A i to be
the type of partial elements of A of extent i = 0. The type contract A i has a composition
structure whenever A does. This construction is much simpler than the glueing construction
that is currently used to prove univalence, and perhaps makes it clearer why the closure of
cofibrant propositions under ∀ is required [1, Section 4.1].
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