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ABSTRACT
Grothendieck toposes are studied via the process of taking the associated Sl-enriched category of

relations. It is shown that this process is adjoint to that of taking the topos of sheaves of an abstract
category of relations. As a result, pullback and comma toposes are calculated in a new way. The
calculations are used to give a new characterization of localic morphisms and to derive interpolation
and conceptual completeness properties for a certain class of interpretations between geometric
theories. A simple characterization of internal sup-lattices in terms of external Sl-enriched category
theory is given.
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0. Introduction

This paper introduces and applies a new method of making calculations about
Grothendieck toposes—the categories of sheaves first devised by Grothendieck
and his collaborators [7] in their work in algebraic geometry. To motivate the new
approach of this paper, we first review briefly the reasons for the development of
this kind of sheaf theory and the existing tools that are available to study it.

0.1. Grothendieck toposes
The original motivation for the concept of topos was to have sheaf cohomology

theories for non-topological 'spaces' arising in algebraic geometry. These 'spaces',
or sites as they were called, retain the characteristic feature of topological spaces
of knowing when an (open) part of the space is covered by other parts, but refine
it by allowing the covering to be specified by morphisms which need not just be
inclusions of one part of the space in another. The notion of 'sheaf on a
topological space' (given in terms of a presheaf on the open sets of the space
satisfying unique glueing conditions, rather than in terms of a local homeomor-
phism over the space) extends easily to the notion of 'sheaf on a site'; and a
Grothendieck topos is then the category of such (set-valued) sheaves on a site.
(See [6, Chapter V] for a more detailed general discussion of these concepts.) It is
important to note that it is not the site so much as the topos to which it gives rise
which is claimed to be a new and useful concept of generalized space. This is
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because two quite different looking sites can give rise to equivalent toposes—in
contrast to the situation for topological spaces where, under only very mild
separation assumptions, a space is recoverable from its category of sheaves.

Grothendieck wrote in [7] of the role of toposes as giving a notion of space
(specified indirectly via its sheaves) sufficiently general to allow important
topological ideas to be applied usefully in many new situations. The new situation
at the time was algebraic geometry, where there are many significant Grothen-
dieck toposes (see [27], for example). In the years that have followed, interesting
toposes have been found and used in such fields as differential geometry [22], real
algebraic geometry [3], general topology itself [9], model theory [20, 25], and
recursion theory [23]. Has this allowed important topological ideas to be applied
usefully in new situations, as Grothendieck hoped? The answer is 'yes', but not as
easily or extensively as one would like, because of the difficulties of making
calculations with toposes. There are, for example, interesting results about the
(co)homology and homotopy of toposes [16, 21, 26], but much remains unknown.
Much of what we do know of the properties of toposes is due to the combined use
of three powerful techniques.

The first is the use of locale theory, or 'pointless topology' as Johnstone terms it
in his survey [13]. Locales are a generalization of (sober) topological spaces via
the lattice of open subsets of a space. Compared with toposes, they seem a mild
generalization, and certainly they have a very rich theory closely linked to general
topology; see [12]. However, recent work of Joyal and Tierney [15] shows that
the jump in generality from locales to toposes is not so very great and can be
summed up in the slogan: 'topos = locale + groupoid'. (See [14] for a survey of
this and related results.)

The second important technique for studying toposes lies in the realm of
mathematical logic and has to do with the model theory of a certain class of
theories in infinitary, first-order predicate logic—called geometric theories. These
are the theories which can be axiomatized by statements of the form: 'for all x
satisfying cp(x) there is some y and some i e / such that *//,(*, y) holds', where / is
some set of indices and the q), ipt are finite conjunctions of atomic predicates
asserting equalities or basic relations. Hand in hand with the development of
topos theory over the last 25 years, there has emerged a category-theoretic
treatment of logic. A key part of this treatment is the extension of Tarski's truth
definition to structures valued in categories other than the category of sets; see
[19]. In particular, Grothendieck toposes provide precisely the right structure to
support models of geometric theories. (For example, from this perspective a sheaf
of local rings in the usual sense can be viewed as a model in a topos of sheaves of
the theory of local rings—which is a geometric theory.) It was observed by Joyal
and Makkai and Reyes [19] that the consideration of the models of a particular
geometric theory not just in the category of sets, but in arbitrary Grothendieck
toposes, opens up the possibility of constructing a generic model for the theory.
Thus if T is a geometric theory, one can construct a Grothendieck topos Set[T],
called the classifying topos of T, with the property that there is a natural
correspondence between models of T in a Grothendieck topos E and geometric
morphisms from E into Set[E]. (The latter are the topos-theoretic version of
continuous maps between topological spaces.) The correspondence is mediated
by a particular model G of T in Set[T] (the generic model) with the property that
any other model in any other topos can be obtained uniquely up to unique
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isomorphism as the inverse image of G along a geometric morphism into the
classifying topos. So geometric theories give rise to Grothendieck toposes. The
other half of the story is that any Grothendieck topos is the classifier of some
geometric theory. From this point of view, geometric theories are like sites of
definition in that they give us another means of describing toposes in terms of
'generators and relations'. Indeed there is a very close connection between sites
and geometric theories under which the covers in the site correspond to the
axioms of the theory; see [8, §7.4]. The use of geometric theories rather than
sites for constructing toposes with specified properties represents an advance.
This is because in contrast to the sites, the theories involved are often quite
natural ones with readily apparent properties. (A good example of this occurs in
Joyal's covering theorems, which involve geometric theories of subenumeration;
see [14].)

The third important method used in topos theory has its roots in the seminal
work of Lawvere and Tierney on elementary toposes (of which Grothendieck
toposes are a special case) and the subsequent realization by B6nabou, Mitchell,
and others of the correspondence between toposes and a certain kind of
constructive set theory. (See [8, Introduction] for history and references.) Many
mathematical constructions and arguments can be formalized in this set theory
and hence can be relativized from the category of sets to an arbitrary
Grothendieck topos. For example, a lot of locale theory can be so relativized; and
it is this technique which is used extensively in [15] to develop the close
relationship between locales and toposes mentioned above. Another important
example has an amusing tinge of self-reference: the notion of Grothendieck topos
itself can be relativized! It turns out that specifying a Grothendieck topos (via
some site of definition) in a Grothendieck topos E amounts to specifying a
geometric morphism whose codomain is E. In this way the technique of
relativization allows the proof of certain properties of geometric morphisms to be
reduced to simpler properties of toposes themselves, but in a different set-
theoretic universe. To give a simple illustration of this, suppose we had two
geometric morphisms f: F—»E, g: G—»E and wished to prove things about their
pullback (or 'fibre product'):

E

Relativizing to E, we find that the geometric morphisms f and g correspond to
toposes in the set-theoretic universe determined by E; and the product of those
toposes there is another topos in the world of E whose corresponding geometric
morphism into E turns out to be F x E G - » E . Thus pullbacks are reduced to
products and the latter are easier to deal with in most circumstances.

Unfortunately, not every property of geometric morphisms is reducible to a
property of toposes via the technique of relativization. This is particularly so
when one seriously considers the 'two-dimensional' aspect of the collection
GTOP of all Grothendieck toposes—whose '0-cells' are toposes (generalized
spaces), whose '1-cells' are geometric morphisms (generalized continuous maps),
and whose '2-cells' are given by natural transformations between inverse image
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functors (generalizing the specialization ordering for points in a topological
space). Thus the collection of geometric morphisms from one topos to another
naturally forms a category rather than a set, and, in particular, a geometric
morphism can possess a highly non-trivial automorphism group.

Returning to the idea of relativization, let us give an example of a situation
which will be of concern in the sequel and for which the technique of
relativization described above is of no help. Consider the so-called comma square
formed from two geometric morphisms f: F—»E, g: G—»E:

This is like the pullback square above, except that the square commutes only up
to a 2-cell (and is universal amongst such squares for f and g). Thus there are two
different morphisms into E from the comma topos G < E F (viz. fp and gq) and
they give rise to two different toposes in the world of E. Consequently,
relativization to E does not produce a conceptually simpler description of the
comma topos G < E F in the same way that it did for the pullback topos Fx E G.
Now we know that such a comma topos exists because we can construct it as the
classifying topos of a certain theory of homomorphisms built from theories which
are classified by E, F, and G. (A site of definition could also be given in terms of
sites for E, F, and G.) This is because of the way toposes act as classifiers of
geometric theories, whereby geometric morphisms amount to models of a theory
in a topos; and then a 2-cell between geometric morphisms corresponds to the
usual notion of homomorphism between models. In particular, Grothendieck
toposes can be used to study the model theory of geometric logic and other
related logics: see [24] and [25]. The results in [24], in particular, require an
analysis of properties of comma toposes which existing techniques using locales,
sites or classifying toposes do not seem to provide (mainly because they cannot be
used in combination with relativization). It was these properties of comma
toposes and their applications to model theory which provided the main
motivation for the development of the theory presented in this paper, and to a
description of which we now turn.

0.2. Categories of relations
In this paper we study properties of a Grothendieck topos E via its associated

category of relations, Rel(E), whose objects are just those of E, that is, sheaves,
but whose morphisms from X to Y are subsheaves of the product X x Y. The
study of the calculus of relations between sets has a long history. More recently,
the calculus of relations in various kinds of category (regular, coherent, logos,
topos) has been studied by several people, but particularly by Freyd in his so far
unpublished work on allegories (to appear in a forthcoming book by Freyd and
Scedrov). Recently Carboni and Walters have formulated a notion of cartesian
bicategory which in the locally ordered case led them to an abstract notion of
bicategory of relations [2]. Whilst such structures are closely related to Freyd's
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allegories, they differ in the way that the presence of finite limits is ensured in the
associated categories of maps: they eliminate intersection and involution of
relations as primitive notions in favour of finite products of objects and relations.
This difference is crucial to us here, since it allows us to generalize the treatment
of locales by Joyal and Tierney in [15] using the category SI of sup-lattices, whose
objects are complete lattices and whose morphisms are all sup-preserving maps.
Here we get a treatment of Grothendieck toposes using categories enriched over
SI, as follows.

In op. cit., a locale is characterized as a sup-lattice A together with an
associative, unitary product A ® A^A satisfying some simple conditions which
amongst other things ensure that the product is binary meet in the locale; this
observation is the starting point for a development of locale theory as part of the
'commutative algebra' of sup-lattices. Generalizing this view point, we consider a
sup-lattice enriched category A together with a coherently associative, unitary
product A <8> A-» A satisfying the simple but rather subtle conditions taken from
[2], which amongst other things ensure that the product gives cartesian products
in the associated category of maps. Such an A is termed a distributive category of
relations, or dcr for short. (See Definition 2.1.) It generalizes the notion of locale
in the sense that locales are precisely dcr's with one object.

The connection with topos theory is that the category of relations of a
Grothendieck topos (see 1.1) is a dcr which is both bounded (has a small set of
generators) and complete (has small coproducts and splitting of symmetric
idempotents); conversely, the category of maps (see 1.6) of a bounded, complete
dcr is a Grothendieck topos. These facts are proved by Carboni and Walters in [2]
(and prior to them, similar facts for allegories were proved by Freyd). Here we
show (in Proposition 2.5) that this result extends to a duality between the
2-category GTOP of Grothendieck toposes, geometric morphisms and natural
transformations, and a 2-category whose objects are bounded, complete dcr's. To
do this, first we must formulate (in Definition 2.4) the correct notion of 2-cell
between morphisms of dcr's—which notion involves considering lax natural
transformations between sup-lattice enriched functors. (See Definition 1.3.)

However, as a tool for making calculations in GTOP, it is not so much the
above duality that is important, but rather an associated (bi)adjunction between
GTOP and the 2-category of dcr's which are bounded but not necessarily
complete. This involves the process of completion of a dcr (whose explicit
description and well-behaved properties were developed by Freyd in the context
of allegories). Starting from a bounded dcr A, taking the category of maps of its
completion yields a Grothendieck topos which we denote by Sh(A) and call the
topos of sheaves on A. This terminology is justified by the fact that when A has
just one object, i.e. is a locale, then Sh(A) is just Higg's category of A-valued
sets, well known to be equivalent to the topos of sheaves in the usual sense. (See
[5].) Passing from the 'one object' case to the more general 'many object' one, we
see (in Theorem 2.9) that forming toposes of sheaves (on bounded dcr's) is
biadjoint to taking categories of relations (of Grothendieck toposes).

It is this description of Grothendieck toposes as categories of sheaves on
bounded dcr's which is the key aspect of the theory presented in this paper and it
is worth comparing it with the traditional ways of describing toposes mentioned in
0.1. As for sites and geometric theories, bounded dcr's do not give a canonical
means of presenting a topos—several different bounded dcr's may yield equiv-
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alent categories of sheaves. However, unlike sites or theories, bounded dcr's are
algebraic gadgets and—as we will demonstrate—are susceptible to algebraic
methods. We mean something very specific here, namely the analogue of
commutative algebra initiated by Joyal and Tierney in [15], where the role of
additivity is played by (infinitary) sups, abelian groups are replaced by sup-lattices
and rings by locales. The step we are taking here is then like that from abelian
groups to additive categories. It is tempting to speculate that some of the methods
of homological algebra would have analogues in this setting, with useful
consequences for the geometric (rather than logical) applications of topos theory.

Our aims here are somewhat more modest. We exploit the fundamental and
elegant adjunction between taking sheaves and taking categories of relations
mentioned above. It is a simple consequence of the existence of such an
adjunction that limits in GTOP can be described in terms of colimits of dcr's. But
the latter can be calculated using the 'commutative algebra' of sup-lattice
enriched categories in a way that extends the calculations in [15]. Specifically in
§ 3 we calculate pushout and cocomma dcr's in terms of tensor products and 'lax
tensor products' of modules over dcr's. On taking sheaves, this yields a
description of pullback and comma squares in GTOP quite different in character
from that afforded by using sites of definition or classifying toposes. As a result
we obtain (in Theorem 4.5) the following property of a comma square

in GTOP which was used in [24] to derive an interpolation property of pretoposes
(which in turn was the key tool of the analysis in op. cit. of the Makkai-Reyes
'conceptual completeness' theorem for pretoposes):

Suppose in the above comma square that f* preserves arbitrary intersections of
subobjects. Then q is open; moreover, for any Xe E and subobjects B>-*f*(X),

if

in Sub(p*rZ), then there is A>^>X with

and

We also show (in Proposition 4.9) that:

f: F—> E is localic if and only if the associated diagonal
geometric morphism d: F—»(F<EF) is an inclusion.

Combining these properties of comma toposes, we derive a 'conceptual com-
pleteness' result (Corollary 4.11) for certain kinds of geometric morphism and tie
it in with the infinitary generalizations of pretopos conceptual completeness
considered by Makkai and Reyes in §§7.3 and 7.4 of [19].

Finally, in § 5, we give a strikingly simple characterization (Proposition 5.2)
of internal sup-lattices in a Grothendieck topos E as Sl-enriched functors
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Rel(E)—»S1. This allows a reformulation of the description of comma and
pullback toposes of § 3 in terms of composition and 'lax composition' of
Sl-enriched profunctors.
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1. S\-enriched categories

1.1. Relations
Let E be a Grothendieck topos. For X and Y objects of E, a relation from X to

Y is a subobject ^ ^ Z x Y j w e shall use the notation R: X+* Y to indicate this.
Relations are composed using pullbacks and image factorizations in E, and the
identity on X for this composition is the diagonal subobject A: X>^XxX. In
this way one gets a category, denoted by Rel(E), with the same objects as E, but
with relations for morphisms.

Given R: X++Y, the reciprocal relation R°>-*XxY = YxX will be
denoted R°: Y++X. The topos E becomes a subcategory of Rel(E) if we identify
a morphism / : X-+Y in E with the relation X++Y given by its graph
(1 , / ) : X>-+X x Y. Evidently each relation can be decomposed as R = ba° with
a and b morphisms in E, for example, by choosing a monomorphism (a, b)
representing the subobject R.

Of course there is more structure present in Rel(E) than just that of being a
category: each horn set Rel(E)(Jf, Y) has a partial order (the inclusion relation
for subobjects) which is complete (since E is a Grothendieck topos); and the
operations of pre- and post-composition by a relation are sup-preserving maps
between the horn sets of Rel(E) (but not in general inf-preserving ones). Thus we
see that Rel(E) is enriched over the category of complete posets and sup-
preserving maps. Following Joyal and Tierney [15], we name the latter category
after its morphisms as the category of sup-lattices and denote it SI.

1.2. Sup-lattices
We refer the reader to Chapter I of [15] for a development of the properties of

SI relevant to us here. In particular, one can build objects in SI in terms of
generators and relations. For example, the tensor product M<8)N of two



440 ANDREW M. PITTS

sup-lattices can be described as freely generated by pairs meM, neN, denoted
m ® n, subject to the relations

\/mi)<8>n = \/(mi®n)
and

Thus sup-lattice morphisms M®N—>L are in natural bijection with maps
M x N-+ L preserving sups in each variable separately. They are then also in
natural bijection with morphisms M-»Hom(Af, L), where Hom(N, L) is the
sup-lattice of morphisms N->L partially ordered pointwise from L.

The free sup-lattice on a set X is just its powerset P(X) partially ordered by
subset inclusion. In particular, P(l) is a unit for <8>. In this way SI becomes a
symmetric monoidal closed category and one can consider categories enriched
over SI, using the general theory set out in [17], for example. However, we will
need to go a little bit outside the usual context of enriched category theory, since
the 2-category structure of SI (which it has by virtue of the partial orders on its
horn sets) will play an important role. (It is involved in the definition of lax
natural transformation given below, for example.)

1.3. DEFINITIONS, (i) A ^-category is a locally small category C whose horn
sets are sup-lattices and whose composition preserves sups in each variable
separately:

and

(ii) A Sl-functor F: C—>D between Sl-categories is a functor between the
underlying categories which preserves sups of morphisms:

(iii) A lax natural transformation p: F—>G between Sl-functors C—»D is
specified by a family of morphisms in D,

px: F(X)-+G{X) (XeC),

such that, for each r: X->X' in C,

Px> ° F(r) s= G(r) ° px

in D(FX, GX').
(iv) For Sl-categories C and D, let

SI-CAT<(C, D)

denote the category whose objects are Sl-functors C—»D and whose morphisms
are lax natural transformations (composition and identities being as for ordinary
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natural transformations). Note that a lax natural transformation with a lax natural
inverse is necessarily natural; thus the isomorphisms in S1-CAT<(C, D) are just
natural isomorphisms between the underlying functors.

Warning. Sl-categories, Sl-functors and lax natural transformations do not
form a 2-category. This is because whenever one has o: F-+G in
S1-CAT<(A, B) and p: / / -> K in S1-CAT<(B, C), then, for each XeA,

HF(X) ^ KF(X)
ox^ ss \KOX

HG{X) j£ KG(X)

only commutes up to an inequality (since p is only lax natural): choosing either
way round the above square to define the 'horizontal' composition p*o: HF—> KG
gives an associative operation, but the 'interchange law' connecting * and °
is, in either case, only an inequality ((<5 ° y) * (/J ° a) ^ (8 * j8) ° (y * a), if one
defines p * o to be pG ° Ho).

1.4. EXAMPLES. We record the kind of Sl-categories, Sl-functors and lax natural
transformations that concern us here.

(i) If E is a Grothendieck topos, we noted above that Rel(E) is a Sl-category.
(ii) Suppose that f: F-^E is a geometric morphism between Grothendieck

toposes. For X, X' e E, the operation sending a relation R^-^X x X' to

X X') = f*(X) X f*(X')

is a sup-lattice morphism

Rel(E)(Ar, X')-»Rel(F)(r(X), t*(X')).

In this way one gets a Si-functor Rel(E)—»Rel(F) which we shall also denote
byf*.

(iii) Now suppose that f, g: F—»E are geometric morphisms and that
<p: V—>g* is a natural transformation. Given R: X++X' in Rel(E), since

f*(R) > > t*(X x X') = f*(X) x f*(X')

< P R ^ |<PAT X Vx-

g*(R) > > g*(* x X') ^ g*{X) x g*(X')

commutes in F, one has q)x'of*(R)^g*(R)° cpx *n Rel(F). Thus <p is a lax
natural transformation from f* to g* regarded as Sl-functors as in (ii). (Indeed a
simple calculation shows that conversely, a collection (<px'- f*(X)-* f**(X)\ X e E)
is natural for morphisms in E if it is lax natural for relations in E.)

1.5. Tensor of Sl-categories
As usual for enriched categories, the tensor product C ® D of two Sl-categories

is the Sl-category whose objects are pairs XeC, Y e D , denoted X<8)Y, and
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whose horn sup-lattices are given by the tensor product of sup-lattices:

(C <8> D)(Z <8> Y, X' <8> y ) = C(X, X') 0 D(Y, y ) .

The usual universal property of C ® D extends to one involving lax natural
transformations as follows.

For any Sl-category B, let [C, D; B]< denote the category whose objects are
functors C x D - » B which preserve sups of morphisms in each variable separ-
ately, and whose morphisms are lax natural transformations. Then, composition
with the evident functor <8>: C x D-> C <8> D induces a functor

S1-CAT<(C ® D, B)-» [C, D; B]<,

which is an isomorphism of categories for each B.

1.6. Maps
A map in a Sl-category C is a morphism f: X-+Y which possesses a right

adjoint, i.e. for which there exists a morphism /*: Y->X with ff*^lY and
1* **/*/• The collection of maps contains the identity morphisms (and more
generally, all isomorphisms) and is closed under composition, there is thus a
category, denoted Map(C), whose objects are those of C and whose morphisms
are the maps in C.

For a Grothendieck topos E (or more generally, just a regular category), it is
easily verified that the maps in Rel(E) are precisely the (graphs of) morphisms
from E, with the right adjoint being given by the reciprocal relation. Thus
Map(Rel(E)) and E are isomorphic categories.

If F: C—»D is a Sl-functor, it necessarily preserves adjoint pairs of morphisms
and hence yields a functor

F: Map(C)-*Map(D).

If p: F—> G is a lax natural transformation between Sl-functors from C to D,
then for any map/: X—>X' in C, using the lax naturality condition for both/and
/* together with their adjointness, one has

Px- ° Ff Gf
Gf

Gf
PX'

°Px
° Px°

°G/*
°Ff.

Ff*°

°PX'

Ff
°Ff

Therefore the px: F(X)-+ G(X) are actually natural for maps in C.

1.7. Bounded Sl-categories
We shall say that a collection G of objects of a Sl-category C is Sl-generating for

C if, for each X e C,

1A- = V is ° r\ cod(r) = dom(.s) e G and s ° r ̂  \x}

(from which it follows that every morphism in C can be expressed as a sup of
morphisms which factor through some object in G). Then say that C is bounded if
it possesses a small collection of Sl-generators.

Evidently a small Sl-category is automatically bounded. The large Sl-categories
by which we are motivated (i.e. those of the form Rel(E) for E a Grothendieck
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topos) are bounded, as the following result shows:

1.8. LEMMA. Let E be a Grothendieck topos and G a collection of objects ofE.
Then the following are equivalent:

(i) the objects of G are ^-generators for Rel(E);
(ii) each X eE can be expressed as the subquotient of a small coproduct of

objects ofG, that is, there is a diagram of the form

m
iel

with U(eG, m mono and e epi;
(iii) the collection G of subobjects of objects of G generates the topos E in the

usual sense, that is, a parallel pair of morphisms of E are equal just when
they have equal compositions with any morphism whose domain is in G.

Proof. The equivalence of (ii) and (iii) follows from standard properties of
Grothendieck toposes. The equivalence of (i) and (ii) follows from two facts
about relations in a Grothendieck topos E:

(a) X is a subquotient of Y in E if and only if AT is a retract of Y in Rel(E) (see
[11, Lemma 2.5]);

(b) given relations Rt: X++ ty and 5,: U,,-*-* Y in E, and letting

be the coproduct of the U{ with coproduct insertions mt\ Ĉ >-* U, one has
that

v%))(\/
jel I \kel

in Re\(E)(X, Y).
(a) holds merely because E is a regular category and (b) holds because moreover,
small coproducts in E are disjoint and stable under pullback.

2. Distributive categories of relations

We noted in the previous section that if C = Rel(E) with E a Grothendieck
topos, then Map(C) = E. What kind of Sl-categories C are such that Map(C) is a
Grothendieck topos? Freyd has given an answer in terms of his theory of
'allegories' (unpublished, but an account of which will appear in the forthcoming
book by Freyd and Scedrov): these abstract the ability to form reciprocals and
finite meets of relations, together with certain properties they possess with respect
to composition. With this structure it is possible to ensure that Map(C) has
pullbacks by stipulating that every morphism in C has a 'tabulation' (which is a
particular kind of factorization of the morphism as the reciprocal of a map
followed by a map: see [2, 3.4]). Furthermore, the existence of a terminal object
in Map(C) translates in a straightforward way into a condition on C. Next, Freyd
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has shown that with these hypotheses on C, the presence of pullback stable,
effective coequalizers of equivalence relations in Map(C) is equivalent to the
splitting in C of all symmetric (i.e. equal to their own reciprocal) monads; and the
presence of pullback stable, disjoint coproducts in Map(C) is equivalent simply to
C having coproducts. Boundedness of C in the sense of 1.7 gives the existence of
a small set of generators in Map(C). With all these conditions on C, we can apply
Giraud's Theorem (see [8, 0.4]) to see that Map(C) is a Grothendieck topos.

The work of Carboni and Walters in [2] provides, amongst other things, an
analysis of when Map(C) is a Grothendieck topos which differs from the one
indicated above in the way that it ensures that Map(C) has finite limits. They
analyse the requirement of having finite limits into the equivalent one of having
both finite meets of subobjects and finite products: they impose a simple, global
'product' structure on C (see Definition 2.1(i) below) which is equivalent to
Map(C) having these two properties. Moreover, a certain axiom for this structure
(that of 'discreteness'; see Definition 2.1(ii)) makes reciprocals of relations
definable and one can then proceed as above with further requirements on C to
ensure that Map(C) is a Grothendieck topos.

We are going to combine the Carboni-Walters approach to categories of
relations with the work of Joyal and Tierney in [15] on sup-lattices and locales.
By forgetting about reciprocation and hiding meets of relations in a global
product structure on a Sl-category C, one has a direct generalization, from
sup-lattices (which can be regarded as one-object Sl-categories) to arbitrary
Sl-categories, of Joyal and Tierney's analysis of locales as certain monoids in
(SI, ®, P(l))- The analogue of a locale in the 'many-object' case is what Carboni
and Walters term a distributive (bi)category of relations and is defined as follows:

2.1. DEFINITIONS (cf. [2]). (i) A Sl-category C is cartesian if there is a
Si-functor

x: C ® C - » C

and an object / of C, together with isomorphisms

axvz- Xx(YxZ) = {XxY)xZ,

SxY: X x Y = Y x X,

rx\ X = XxI,

and morphisms
A*: X >XxX,
tx: X >I,

in C satisfying the following axioms:
(a) the isomorphisms aXYz, $XY>

 rx are natural in X, Y, Z e C and satisfy the
classical symmetric, monoidal coherence conditions (see [17, 1.4], for
example);

(b) the morphisms A^, tx are maps (in the sense of 1.6) and lax natural in
XeC;

(c) for each X e C, {X, Ax, tx) is a commutative comonoid object for
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(C, x, / ) ; that is, the diagrams

¥ ^
XxX XXX

1 x AJ IA x 1

Xx(XxX)=a(XxX)xX

X

V \A

XxX=sXxX
and

X =r Xx I
commute.

(ii) If C is a cartesian Sl-category, an object X of C is called discrete by
Carboni and Walters if

X x (X x X) = (X x X) x X
1 x A/» \A* x 1

XxX XxX

commutes (where A* is the right adjoint to A provided by Axiom (b) above). A
cartesian Sl-category in which every object is discrete will be called a distributive
category of relations, or dcr for short.

2.2. REMARKS. In [2] the following facts about the above definitions are
proved.

(i) If C is a cartesian Sl-category, then Map(C) has finite products: the terminal
object is / and the binary product of X and Y is X x Y with product projections

nx: Xx

n2: Xx
(And the isomorphisms a, s, r are then the canonical ones associated to products
in Map(C).) Moreover, each horn sup-lattice C(X, Y) is actually a locale, with the
binary meet of r,s: X-+Y being

rAs: X >X
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and the top element being

T: X-^I-^Y.

In particular, the top element of C(/, /) is the identity on /.
Conversely, if a Sl-category C is such that
(a) Map(C) has finite products,
(b) each C(X, Y) is a locale, with 1: I->I the top element of C(/, / ) , and
(b) the assignment X, Y*->XxY extends functorially to morphisms in C via

the formula

then C is cartesian. (So in particular, being cartesian is a categorical property of
Sl-categories.)

(ii) If now C is a dcr, one can define a Sl-functor ( - ) 0 : C-»C which is the
identity on objects and is given on morphisms r: X^> Y by

r° = (Y=YxI lxA'*) YxXxX1XrXl> YxYxX

This Si-functor is an involution (r00 = r), preserves finite meets of morphisms, and
satisfies Freyd's 'law of modularity':

fa o s) A r2 ss fa A (r2 ° s
0)) ° s.

(iii) If C is a dcr, then / : X-+ Y in C is a map if and only if/0 is right adjoint
to /. More importantly, the property of being a map can be expressed in a dcr by
equations involving the cartesian structure of C. For one has that / : X—* Y is a
map if and only if

and

(Regarding each of the above equalities as given by two inequalities, note that in
each case one of the inequalities is automatic, being the lax naturality of A or f.)
When C = Rel(E) (with E a Grothendieck topos), the first of these equations says
of a relation F: X++Y that it is 'single-valued' (F(x, y) AF(X, y')-*y =y')
whilst the second says that it is 'entire' (3xF(x, y)).

(iv) If C is a dcr, then

is a product diagram in Map(C) if and only if

qp°=T and (p°p) A (q°p) = 1.

2.3. EXAMPLES, (i) Suppose that E is a Grothendieck topos (or more gene-
rally, a regular category with stable sups of subobjects) and that C is a full
subcategory of Rel(E) whose objects are closed under finite (including empty)
products in E: then C is a dcr. We shall see below that every dcr arises in this
way.

(ii) Distributive categories of relations with just one object (which is neces-
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sarily /) correspond precisely to locales: given a locale A, the corresponding
one-object dcr A has A(7,1) = A, with the operations of composition and x on
morphisms both being given by binary meet in A.

2.4. DEFINITIONS, (i) A morphism of dcr's, F: C-»D, is a Sl-functor which
preserves x, / (up to coherent isomorphisms), A, and t. However, by 2.2(i) this is
the same as requiring the induced functor F: Map(C)-»Map(D) to preserve
finite products (in the usual, up to isomorphism sense). Note that by 2.2(iv) this is
also the same as requiring the Sl-functor F: C—»D to preserve finite meets of
morphisms and preserve / up to isomorphism.

(ii) Given dcr's C and D, let DCR(C, D) denote the category whose objects
are the morphisms F: C—»D of (i) and whose arrows cp: F—>G are lax natural
transformations whose components cpx: F(X)~* G{X) are maps in D.

Unlike the situation for the categories S1-CAT<(C, D) noted in 1.3(iv), here it
is the case that the DCR(C, D) are the horn categories of a 2-category DCR. This
is because, given cp: F -»G in DCR(A,B) and \J>: H^K'm DCR(B,C), then,
for each XeA,

ipFX

HF(X) - ^ KF{X)

HG(X) * KG{X)

commutes, since, by 1.6, ip is natural for maps in B and, by hypothesis, cpx is
such. Therefore, defining the horizontal composition in DCR by

ip * g) = y G o Hep = Kcp © %I)F,

the interchange law holds:

(<5 © y) * ( £ o or) = (<5 * /3) ° ( y * a).

If E is a Grothendieck topos, then, as noted in 2.3(i), Rel(E) is a dcr. But now
if f: F—» E is a geometric morphism, then

f*: Rel(E)->Rel(F)

is a morphism in DCR. And if <p: f*-» g* is a natural transformation between the
inverse image parts of two geometric morphisms, then it is necessarily also a
2-cell in DCR. In this way one gets a contravariant 2-functor

Rel: GTOPop-»DCR

from the 2-category of Grothendieck toposes to the 2-category of distributive
categories of relations.

Given Grothendieck toposes E and F, suppose that F: Rel(E)—»Rel(F) is a
morphism in DCR. Then F restricts to a functor on maps and hence gives a
functor

f*: E = Map(Rel(E)) - ^ Map(Rel(F)) = F

which preserves finite products. But f* also preserves finite meets of subobjects
(since F preserves finite meets of relations) and hence it preserves all finite limits.
It also preserves sups of subobjects (since F preserves sups) and preserves
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epimorphisms (since q: X^X' is an epi in E if and only if qq° = 1 and 1 =s q°q in
Rel(E)). Therefore f* is the inverse image part of a geometric morphism
f: F-» E. By construction it is sent by Rel to F, and is the unique such geometric
morphism. Moreover, given two morphisms F,G: Rel(E)—»Rel(F) in DCR, with
corresponding geometric morphisms f, g: F—> E, our choice of 2-cells for DCR
means that specifying a 2-cell F—>G amounts to specifying a collection of
morphisms (px' f*(Ar)->g*(Ar) in F which are lax natural for relations in E, or
equivalently, natural for morphisms in E (see 1.4(iii)). Thus the 2-functor
Rel: GTOPop->DCR is full and faithful. Adapting the work of Freyd to their
cartesian bicategories, Carboni and Walters [2] have identified the essential image
of this 2-functor. Say that a dcr C is complete if it has small coproducts (as a
category) and if all symmetric idempotents (those e: X—> X with e° = e = ee) in C
split (that is, e =sr for some r, s with rs = 1; in which case, necessarily s = r°).
Then:

2.5. PROPOSITION. A dcr is isomorphic to one in the image of the full and
faithful 2-functor Rel: GTOPop->DCR if and only if it is both bounded (in the
sense of 1.1) and complete. Thus Rel gives an equivalence of 2-categories between
GTOPop and the full sub-2-category bcDCR of DCR comprising the bounded,
complete dcr's:

GTOPop^bcDCR.

The inverse equivalence is given by taking categories of maps (1.6): when C is
bounded and complete, Map(C) is a Grothendieck topos and Rel(Map(C)) = C.

Proof. See Theorem 6.3 of [2]. The above condition of 'completeness' for C
includes the splitting of both 'coreflexives' (e: X-*X with e*£ 1) and symmetric
monads in C. The former implies that C is 'functionally complete' (morphisms
X—> / in C correspond to subobjects of X in Map(C)) and the latter that C is
'effective' (equivalence relations in Map(C) have quotients).

We now consider the process of completing a dcr by adding coproducts and
splitting the symmetric idempotents. With the definition of 2-cells for dcr's given
above, this process enjoys a fully bicategorical universal property:

2.6. PROPOSITION. Let cDCR denote the full sub-2-category of DCR whose
objects are complete (as defined in 2.5). Then the inclusion

cDCR^DCR

has a left biadjoint: for each C e DCR there is a morphism rj: C ^ C i n DCR with
C complete, and such that for each complete dcr D the functor

rj*: DCR(C,D)-*DCR(C,D)

is an equivalence of categories.
Moreover, r/: C—>C is full and faithful and the objects in the image of r] are

Si-generators for C (see 1.7). Hence in particular, C is bounded when C is.

Proof. The explicit construction of C has been given by Freyd in the context of
his 'allegories': it can be constructed as a category by first adjoining small
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coproducts and then by splitting the class of symmetric idempotents. Thus the
objects of C are triples (/, X, e) where / is a (small) set, X= {X(i)\ iel) is an
/-indexed collection of objects of C and

(ij)elxl)

is a collection of morphisms in C satisfying

for all i, k el. Morphisms r: (/, X, e)—»(/', X', e') in C are collections

r = {r(i,V): X(i)^X'(i')\ iel.i'el')

satisfying

V r(j, i') • e(i, j) = r(i, i')= \J e{j', V) • r{i, / ' ) ,

for all i e / and V e /'. The composition of r with s: (/', X', e')^> (/", X", e") is
given by

(so r)(i,i")= V s(i ' , iVr(i , i ' ) ,
i'el'

whilst the identity on (/, X, e) is just e itself. The sup of morphisms in C is given
componentwise by the sup in C. With these definitions C becomes a Sl-category.
The proof that it is moreover a complete dcr can be extracted from [2]. The dcr
morphism rj: C-»C sends X to r](X) = (1, X, \x) and r: X^>X' to itself,
regarded as a 1 x 1-indexed family. (Here 1 denotes any one-element set.)
Evidently t] is full and faithful. The image of C under 77 is Sl-generating in the
sense of 1.7 since the identity on an object (/, X, e) in C can be expressed as the
sup

where r;: (/, X, e)-* r)(X(j)) has components

for i e / and * e 1.
If now D is a complete dcr, each morphism F: C—>D extends to F: C—>D

with F ° T)=F\ here F is given on objects (/, X, e) by splitting the symmetric
idempotent on

JLJ HX(i))
given by the F(e(i,j)). Similarly, given G, H: C-»D and a 2-cell <p: Gri^>Hr)
in DCR(C, D), for each (/, X, e) in C define cp{It x< e) to be

iel

(where r, is as defined above); then one can show that (py.x.e) is lax natural in
(/, X, e), that it is a map in D (because the components of <p are), that (pr) = q>,
and that cp is uniquely determined by these properties.
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2.7. REMARK. Underlying the proof of 2.6 are properties of DCR which are
worth stating explicitly. Let us say that a morphism F: A-» B in DCR is dense if
the objects in the image of F are Sl-generators for B. For any C in DCR consider
the functor 'precomposition with F\ F*: DCR(B, C)-»DCR(A, C). Then:

(i) if F is dense, F* is faithful;
(ii) if F is dense and full (as a functor), then F* is full and faithful;
(iii) if F is dense, full and faithful and if C is complete, then F* is an

equivalence.

If A is the one-object dcr corresponding as in Example 2.3(ii) to a locale A,
then A is just the category of lA-valued sets' and lA-valued relations', so that
Map(A) is the category of A -valued sets and A -valued functional relations of
Higgs (cf. [5]): this is well known to be equivalent to the topos of sheaves on the
locale A. Generalizing from the 'one-object' to the 'many-object' case, we make
the following definition:

2.8. DEFINITION. Let A be a bounded dcr. Then by 2.7, A is both bounded and
complete; hence by Proposition 2.5, Map(A) is a Grothendieck topos: we shall
call it the topos of sheaves on A and write

Sh(A) = Map(A).

By Proposition 2.5 again, Rel(Sh(A)) = Rel(Map(A)) = A. Combining this iso-
morphism with the morphism rj: A-» A of 2.6, yields a morphism

yA: A^Rel(Sh(A))

which is full, faithful and dense (in the sense of 2.7). Combining Propositions 2.5
and 2.6 yields the following universal property of yA:

2.9. THEOREM. Let A be a bounded dcr. Then for any Grothendieck topos E,

there is an equivalence of categories

GTOP(E, Sh(A)) = DCR(A, Rel(E)),

given on objects by sending f: E—>Sh(A) to the composition

A ^ S Rel(Sh(A)) > Rel(E)

and given on morphisms similarly. Thus, forming toposes of sheaves on bounded
dcfs (gives a homomorphism of bicategories which) is biadjoint to taking
categories of relations on Grothendieck toposes.

2.10. REMARKS, (i) By Proposition 2.5, for each Grothendieck topos E there
is, up to equivalence, a unique complete bounded dcrC with Sh(C) —E, namely
C = Rel(E). Indeed the counit of the biadjunction in 2.9 is an equivalence

eE: Sh(Rel(E)) = E

(which, in particular, is pseudonatural in E).
(ii) Dropping the condition of completeness, we note that there are many

bounded, indeed small, C with Sh(C) — E. In particular, let C be any small, full
subcategory of Rel(E) whose objects are closed under finite products in E and
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satisfy any of the equivalent conditions of Lemma 1.8. Then C is a small dcr, the
inclusion C^Re^E) is a morphism in DCR which is full, faithful and dense, and
Rel(E) is complete; hence by 2.7(iii), C = Rel(E) and thus Sh(C)« E.

It is immediate from Theorem 2.9 that the process of taking sheaves sends
(indexed) colimits in DCR to (indexed) limits in GTOP. Combining this with
Remark 2.10(i), one sees that the calculation of limits in GTOP can be reduced
to that of colimits of (bounded) dcr's: given a diagram in GTOP apply the
2-functor Rel, calculate the colimit in DCR (which will remain bounded) and
then take sheaves. The point is that the 'linear algebra' of sup-lattices developed
by Joyal and Tierney in [15] can readily be extended to the wider context of
Sl-enriched categories and used to make colimit calculations about dcr's. In the
next section we will calculate pushouts and cocomma squares in DCR using this
method. We conclude this section by giving the simple case of coproducts.

2.11. EXAMPLE. The coproduct of two locales coincides with their tensor
product as sup-lattices. More generally, given two dcr's A and B, their tensor
product as Sl-categories A<8>B (as defined in 1.5) is easily seen to be a dcr with
product given on objects by

(X<8>Y)x {X' <g> Y') = (Xx X') ® (Y x Y').

The Sl-functors /> = ( - ) <g> / : A - A <8> B,

are morphisms in DCR and make A x B into the coproduct of A and B in DCR,
in the sense that for each C e DCR the functor

DCR(A <g> B, C)-> DCR(A, C) x DCR(B, C),

given by F >-* (FP, FQ), is an equivalence of categories.
Evidently A <8> B is bounded if A and B are; therefore Theorem 2.9 implies

that for such A and B, Sh(A <8> B) is the product in GTOP of the toposes Sh(A)
andSh(B): Sh(A® B)-Sh(A) x Sh(B).

Thus given Grothendieck toposes E and F, and putting A = Rel(E) and
B = Rel(F), we see that Sh(A) =- E and Sh(B)« F, and hence

E x F = Sh(Rel(E) <g> Rel(F))
and

Rel(E x F) - (Rel(E) <8> Rel(F))*

(where E x F denotes the product of E and F in GTOP).

3. Comma and pullback constructions

Recall from [15] that the pushout of locale homomorphisms

A -*-+ C

r\
B
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is given by the tensor product C ®AB of C and B as A -modules (via g* and /*
respectively). Thus C®AB is given as a coequalizer in SI of the pair of
morphisms induced by the actions of A on C and on B:

1(8).

A minor modification of this construction yields the construction of cocomma
squares of locales: let

be a 'lax coequalizer' in SI of the morphisms

•<8>1
C®A®B =3 C®B

1<8>-

in the sense that

and ©,4 is universal with this property. Explicitly, C©AB is the sup-lattice
generated by pairs

c©Ab (ceC,beB)

subject to the relations

(V o) ©A b = y (c, © » , c ©̂  (y *>,) = Y (c ©A bt),

and

c©A(f*(a) Ab)^ (g*(a) A c)©^b.

Then C©^ fl is a locale, the maps

p*(b)=T©Ab (beB),

q*{c) = c©AJ (ceC)

are locale homomorphisms (where T denotes the top element of a locale),
P*f* =s q*g*, and p*, q* are universal with this property. In other words

A -£-> C

is a cocomma square of locales.
We shall see that the above constructions for locales generalize to give

constructions for pushout and cocomma squares of bounded distributive cate-
gories of relations via tensor products and 'lax' tensor products of 'modules' over
dcr's. The methods of § 2 then allow us to express pullback and comma squares of
Grothendieck toposes in terms of these tensor products on the associated
categories of relations.
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3.1. DEFINITION. Let A be a dcr. An A-module is a Sl-category M together
with a Sl-functor A®M-*M (whose action on objects we shall denote by
X <8> M *-*X - M and similarly for morphisms), and isomorphisms

CxYM: { X x Y ) - M = X - { Y - M ) , u M : I M = M,

which are natural in X, Y e A, M e M and satisfy the coherence conditions that

fl-1
(Xx(Yx Z)) • M > {{X xY)xZ)-M

X-((YxZ)-M) (XxY)-(Z-M)

X-(Y-(Z'M))

and

X • M ^—I {Xxl)' M

commute.

3.2. EXAMPLE. If F: A—>B is a morphism in DCR, then B can be given the
structure of an A-module by defining

( A - - ^ X') • ( Y - ^ Y') = F(X) x y F ( r ) X 5 > F{X') x Y.

3.3. Lax tensor product of modules
Let A be a bounded dcr and let M and N be A-modules. We shall describe a

certain A-module M©AN, to be called the lax tensor product of M and N (over
A). The underlying Sl-category of M©AN is defined as follows.

(i) The objects of M©AN are pairs of objects MeM,iVeN, and such a pair
will be denoted M©N.

(ii) The horn sup-lattices of M©AN will be defined in terms of generators and
relations. Since A is bounded, there is a set G of objects which are Sl-generators
for A in the sense of 1.7. Then the generators of (M©AN)(Af ©N, M'©N')
comprise the set of triples X eG, me M(X • M, M'), n e N(Af, X • N'), and such
a triple will be denoted m©xn. The relations on these generators are of three
forms:

( ^ (1)

@xn,), (2)

m©Y(r • lN.)n ^m(r • lM)©xn (3)
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(where in (3), r: X^> Y in A, m: Y • M->M' in M, and n: N^>X • AT in N).
The resulting sup-lattice contains elements m©xn where X is any object of A
(and where m: X • M-» A/' in M and n: N^>X • N' in N), which are defined as
follows: since G is Sl-generating, one can find

with U,-e G and

then define

h^X\i

- V * .
iel

- V .
iel

It is easily checked, using (1), (2), and (3), that this definition of m©xn is
independent of which representation is taken for \ x as a sup of morphisms
factoring through objects in G. Moreover, the elements m©xn with
X unrestricted also satisfy (1), (2), and (3). Thus the horn sup-lattice
(M©AN)(Af ©N, M' ©N') is, in an evident sense, freely generated by this
(possibly large) collection of elements m©xn subject to the above relations. In
particular, it is independent (up to isomorphism) of which set of Sl-generators G
is chosen for A.

(iii) Composition in M©AN is defined on generators

m©xn 6 (M©AN)(M ©N, M' ©AT),

ro'@y/i'e(M€>AN)(Af'€>Ar, M"©N")

by defining

where m" is

and n" is

(m' ©Yn') ° {m©xn) - m"©YxXn",

(YxX)-M^Y-(X-M) YM' M"

X - (Y • N") i(X x Y) - N" S^ (Y x X) • N".

One checks that this operation preserves the relations (1), (2), (3) in each
variable separately; hence it induces a composition on the morphisms of M©AN
preserving sups in each variable separately. That the composition is associative
follows using the observation that (3) becomes an equality,

m©Y{r- \N.)n = m{r • 1M)©xn, (4)

when r: X^>Y is a map in A (and hence, in particular, when it is an
isomorphism). (This follows because

m(r -1) ©xn ^ m{r • 1) ©x(r*r • \)n (by (2))
*s m{rr* • 1) ©y(r • \)n (by (3))
^m©Y(r-l)n (by (1)).)
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(iv) Using (4), we see that the identity on M © N in M©AN is

where uM: I • M = M and uN\ I • N = N are as given in Definition 3.1.
Thus M©AN is a Sl-category. (Indeed it is an A-module, with the action of A

given on objects by X • (M © N) = (X • M) © N, but we will not need to use this
fact.)

3.4. REMARKS, (i) Given a category C and a functor F: Cop x C-»S1, one can
weaken the usual notion of coend of F (see [18, IX.6]) to that of a 'lax coend':

f fXeC

€\F = €\ F{X,X).

It is a sup-lattice equipped with SI morphisms

vx:

satisfying 'lax dinaturality' conditions,

vY o F(l, / ) *s vx o F(f, 1) (for all / : X^ Y in C),

and universal amongst such. Then one can summarize the definition of M©AN
by saying that its objects are pairs M©N (MeM,NeN) and that its horn
sup-lattices are given by lax coends:

rXeA

(M©AN)(Af ©N,M'©N') = e\ M(X • M, AT) <g>N(W, X • N').

(ii) For m: M-^M' in M and n: N->N' in N, define

m©n: M©N->M'©N'

in M©AN to be muM©IuJ,1n. Being functorial and sup-preserving in each
variable separately, this gives a Si-functor,

©: M®N->M©AN.

For M e M, X e A, and AfeN, define

to be ^XM©X^XN\ it is easily checked to be lax natural in M, X, and N. Then
M©AN is the 'lax coequalizer' of the Sl-functors

(10-)>(-®l) : M®A<g)N->M<g>N

in the sense that ©, A enjoy a universal property with respect to Sl-functors F out
of M ® N equipped with a lax natural transformation cp: F(l <8> •)-> F(- <8> 1).

(iii) From the definitions of © and A in (ii), together with the definition of
composition in M©AN, it follows that each m©xn: M©N—>M' ©N' can be
expressed as the composition

m ©xn = (m © 1) ° XMXN~ ° (1 © n).
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3.5. LEMMA. Suppose that F: A—»B and G: A—>C are morphisms in DCR
and that A is bounded. Regarding B and C as X-modules via F and G, as in
Example 3.2, form the lax tensor product C©AB. Then:

(i) C©AB is a distributive category of relations;
(ii) the S\-functor © o/3.4(ii) gives S\-functors

P = I©(-): B-*C©AB,

Q = (-)©I: C->C©AB,

which are morphisms in DCR;
(iii) the lax natural transformation A o/3.4(ii) gives morphisms

<px: PF(X) = I © F(X) = I © X • I-^> X I © / = G(X)© I = QG(X)

for each XeA, which are the components of a 2-cell cp: PF^>QG in
DCR.

Proof (i) The cartesian structure on C©AB is defined as follows: for objects
Zj © Yx and Zj © Y2 of C ©AB define

{zx © yx) x (z2 © y2) = {zx x z2) © ( Y, x y2). (5)

To extend this product to the morphisms of C©AB, given

c,: X( - Z^ (Z,)', bt: Y^X, • (Y,)' (« = 1, 2),

define

(Ci ©AT, 61) X (c2©^2 fe2) = c©Xl*x2b, (6)

where c is

(Xx x Z2) • (Zx x Z2) s ( ^ • ZJ x (Z2 • Z2) - i i ^ (Z,)' x (Z2)'

and 6 is

ya x y 2 _ ^ 4 ( ^ • (yo') x (x2 • (y2)') = ( ^ x x2) • ((y t)' x (Y2)').

This operation x preserves the relations (1), (2), (3) in each variable separately;
moreover, from the definition of composition and identities given in 3.3(iii) and
(iv), one checks that it is functorial. Therefore (5) and (6) give rise to a Sl-functor

x: (C©AB)(g>(C©AB)->C©AB. (7)

The definition (6) of x on morphisms implies that, for

bt: Yt^> {¥,)', ct: %-+(&)' 0 = 1,2),

one has

(ex © bx) x (c2 © b2) = (ca x c2) © (bx x b2), (8)

where © is defined for morphisms as in 3.4(ii). Similarly, one calculates that the
lax natural transformation
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of 3.4(ii) is such that

(Z, x Z2) © ((*, x X2) • {Yx x y2)) -^> ( ( ^ x X2) • (Zi x Z2)) © (Yx x y2)

| = | (9)
A x A

(z1xz2)©(x1-y1xz2-y2) - ^
commutes (where the K are the evident canonical isomorphisms). The transfor-
mation A also satisfies

(M /©1)°A7 / /=(1©M /) , (10)

where u is as in Definition 3.1.
The isomorphisms showing that (7) is a symmetric monoidal functor with unit

/ © / are a = a©a, s =s ©s, and r = r©r, their naturality for morphisms in
C©AB following from (8), (9), (10), and 3.4(iii). Similarly, Axioms (b) and (c)
of Definition 2.1(i) hold for A = A©A and t = t©t (whose right adjoints are
necessarily A* ©A* and t*©t* respectively): the only requirement on them
which is not immediate is their lax naturality for all morphisms in C©AB (and
not just for morphisms of the form c © b), and once more this follows from (8),
(9), (10), and 3.4(iii). Finally, each object of C©AB is discrete in the sense of
2.1(ii), since all the objects of C and B are. Thus C©AB is a dcr.

(ii) By 2.4(i), to see that the Sl-functors P and Q are morphisms in DCR, one
has to check that they induce finite product-preserving functors between the
associated categories of objects and maps. Now P(7) = Q(/) = / © / is terminal;
and for Y, Y' e B, by (8) and using the definitions of A and t given in (i), one
finds that

{PjiuPn2): P(YxY')^>P(Y)xP(Y')

is the isomorphism

A © 1 : / © ( y x y ) - » ( / x / ) © ( y x y ) ,

and similarly for Q.
(iii) Since A is lax natural, so is cp. Therefore one just has to check that for

each X e A, cpx is a map in C ©AB. In fact each

is a map; for, using (9), (10), and the naturality of A for maps, one has

(t©t)°k = t©t and (A©A)°A = (AxA)°(A©A),

so that, by Remark 2.2(iii), A is a map.

3.6. PROPOSITION. Suppose that F: A—»B and G: A-»C are morphisms in
DCR and that A is bounded. Then with notation as in 3.5, one has that

A - ^ C
0\

B —>C©AB
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is a cocomma square in DCR, in the sense that for each D e DCR precomposition
with P, cp, Q induces an equivalence of categories from DCR(C©AB,D) to
the comma category (F*, G*) whose objects are triples (H, xp, K) where
H: B-+D,K: C-»D, and V- HF^KG in DCR, and whose morphisms
{H, V, K)->(H', V', K') are pairs {h, k) where h: / / - • / / ' , k: K-^K' in DCR
and V' ° hF = kG ° ip.

Proof We first show that the functor

DCR(C©AB,D)^(F*, G*),

L»(LP,L(p,LQ)

is essentially surjective. Suppose we are given an object (H, V, K) of (F*, G*).
For each object Z © Y of C©AB, define

= K(Z)xH(Y);

and for each c: X • Z-> Z' and b: Y^X- Y' define

L(c©xb): L(Z©Y)->L(Z'©Y')

to be the composition

KZ x HY KZ' x HY'

KZ x H(X • y) /c(^r • z ) x
t

l IlXt/^A-Xl
x HFX x / / y — > KZ x KGX x //Y'

The facts that H and iC are Sl-functors and that \j> is lax natural imply that this
definition respects the relations (1), (2), (3), and hence induces sup-lattice
morphisms

L: (C©AB)(Z ©Y,Z'© Y')^>D(L(Z © Y), L{Z' © Y')).

Now L preserves composition in C©AB because for X, X' e A, the diagram

HF{X x A") = HF{X) x HF{X')

^A-xAT'l Ufx X V>A" ( 1 1 )

KG(X x A") = KG(X) x KG{X')

in Map(D) commutes (since \\)\ HF-*KG: Map(A)-»Map(B) is a natural
transformation between product-preserving functors). Similarly, L preserves
identity morphisms in C©AB because the diagram

HF(I) = 1

V/| jl (12)
KG(I) = I

commutes.
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Therefore we have a Sl-functor L: C©AB-»D. It preserves / and x because
H and K do, and thus gives a morphism in DCR. For Y e B and Z e C, there are
isomorphisms

LP(Y) = K(I) x H(Y) = H(Y),

= K(Z)XH{I) =

which are easily checked to be natural in Y and Z. Moreover, by definition of cpx

and the action of L on morphisms,

LPF(X) = HF(X)
Lcpx[
LQG(X) = KG(X)

commutes for each XeA. Hence (LP, Lf, LQ) = (H, ip, K) in (F*,G*), as
required.

Finally, we show that the functor

DCR(C©AB,D)-*(F*, G*),

L^(LP,L<p,LQ)

is full and faithful. Suppose we are given L, M eDCR(C©AB, D) and
(h, k): (LP, Lcp, LQ)-+(MP, M<p, MQ) in (F*, G*). If there is a 0: L->M in
DCR(C©AB,D) with (6P, 0G) = (h,k), then it is the unique such, since, for
each Z©YeC©AB,

L(Z © Y) = LQ(Z) x LP(Y)

0z@y 0 Q Z X Vpy = «Z X hy

+ i
M(Z © Y) = MQ(Z) x MP(Y)

commutes (because 0 is a natural transformation between product-preserving
functors on categories of maps). Conversely, using the above square to define
0 z @ y in terms of kz and hY, we see immediately that each 6Z&Y is a map, that
OQZ = kz> QPY — hy> and that 6Z©Y is lax natural for morphisms of the form
c ©b (since k and h are lax natural). The lax naturality of 0 for all morphisms
then follows by Remark 3.4(iii), once one verifies that

L(X)
L(Z©X- Y) - ^ L(X-Z©Y)

e{ \e
M(Z©X> Y) — • M(X-Z©Y)

M(A)

commutes, and this in turn follows from the hypothesis on (h, k) that

LPF(X) - ^ LQG(X)
\kGX

commutes.

MPF(X) - — MQG(X)
Mcpx
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This completes the proof of Proposition 3.6.

Given geometric morphisms f: F-»E and g: G-»E between Grothendieck
toposes, let G© E F denote the comma topos formed from f and g. Thus there is a
diagram

G< E F-^UG
(13)

in GTOP with the property that for each Grothendieck topos H, composition
with p, (p, q induces an equivalence of categories from GTOP(H, G<EF) to the
comma category (f, g) whose objects are triples (h, xjj, k), where h: H-*F,
k: H-»G, and ty\ fh-»gk in GTOP, and whose morphisms (h, ip, k)-»
(h', ty', k') are pairs (a, )3) where a: h-»h' , j8: k-»k', and ty' ° far = g/J ° V-

Combining Proposition 3.6 with Theorem 2.9 yields the following repre-
sentation of comma toposes in terms of the lax tensor product of dcr's:

3.7. THEOREM. Given f: F->E and g: G-»E in GTOP, regarding Rel(F) and
Rel(G) as Re\(E)-modules via f* and g* respectively, form the lax tensor product
Rel(G)©Rei(E)Rel(F) (which one can do since Rel(E) is bounded). It is a
bounded dcr whose associated topos of sheaves is equivalent to the comma topos
formed from f and g, that is,

Sh(Rel(G) ©Rel(E)Rel(F)) - G< E F.

Proof. Referring to the construction of M©AN given in 3.3, it is clear that
M©AN is a bounded Si-category when M and N are. (Indeed {A/f©A^| iel,
ye /} is Sl-generating for M©AN if {M,| iel} and {Nj\ y e / } are Sl-generating
for M and N respectively.) Hence, by Proposition 3.6,

Rel(E) -?U Rel(G)

\Q

Rel(F) -y* Rel(G)©Rel(E)Rel(F)

is a cocomma square in DCR whose corners are each bounded. Therefore
Theorem 2.9, combined with the fact (2.10(i)) that Sh(Rel(E)) =* E naturally in E,
implies that on taking toposes of sheaves one has a comma square

E < G

I
F< Sh(Rel(G)©Rel(E)Rel(F))

in GTOP, as required.

On taking categories of relations, the equivalence of 3.7 becomes

(Rel(G) ©Re,(E)Rel(F))~ - Rel(G ©EF).
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This equivalence corresponds via 2.6 to a full, faithful and dense morphism

L: Rel(G)@Rel(E)Rel(F)->Rel(G<EF)

in DCR, which by construction is derived from

<P- fflp)*->(gq)*: Rel(E)^Rel(G<EF)

as in the proof of 3.6. In particular, for Y e F and Z e G,

L: (Rel(G)@Rel(E)Rel(F))(/© Y, Z©/)^Rel(G<EF)(p*Y, q*Z)

sends C©XB to

p*(Y) J ^ > p*(t*X X /) a (fpyX-^U (gq)*Z^ q*(g*Z X / ) £ £ q*(Z).

This map is an isomorphism since L is full and faithful. Employing the 'lax coend'
notation of 3.4(i), one also has

(Rel (G) ©Rel(E)Rel(F))(/ ©Y,Z©I)
/•A'eRel(E)

= e\ ReKGX* • /, Z) ® Rel(F)(y, X • /)

= i\ Rel(G)(g*X, Z)(g)Rel(F)(Y>rAr).

Composing this isomorphism with that induced by L gives:

3.8. COROLLARY. For the comma square (13), given YeF and Z e G , consider
the sup-lattice

el(E)
Rel(G)(g**, Z) (8) Rel(F)(Y, f*X),

which is generated by triples

C©XB (XeE,B: Y^rXin Rel(E) and C: %*X+*Z in Rel(G))

subject to the relations

C©x.(FA °B)^(C°g*A)©xB (A: X*->X' in Rel(E)),

(As in 3.3, the above definition is legitimate despite the possibly large number of
generators, because Rel(E) is bounded.) Then the sup-preserving map

Rel(G)(g*X, Z) <g> Rel(F)(Y, f*X)^ Rel(G<EF)(p* Y, q*Z),

which is given on generators by

is an isomorphism.
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3.9. REMARK. Corollary 3.8 shows that each element of

Rel(G<EF)(p*y,q*Z)

is a sup of elements of the form q*(C) ° q)x° p*(B)> where XeE, B: Y++f*X,
and C: g*X++Z. However, using the disjoint coproducts of E, we see that any
such sup

V
16/

can be expressed as a single element q*(C) ° <px ° V*(B), where

with coproduct insertions ut:
!€/

V
«€/

and
V
16/

(Cf. (b) in the proof of Lemma 1.8.)

A simple modification of the constructions we have made so far in this section
yields a description of pullbacks in GTOP via tensor products.

3.10. Tensor product of modules
Given a bounded dcr A and A-modules M and N, the tensor product of M and

N over A, M<8>AN, is constructed in exactly the same way as the lax tensor
product except that the relation (3) in 3.3 is changed to an equality. We shall
denote a pair M e M , iVeN by Af ® Af when it is regarded as an object of
M®AN; similarly, we shall denote the generators of its hom sup-lattices by

m®xn (m: X-M-+M', n: N^X-N').

These hom sup-lattices are now given by coend formulae:
rXeA

(M ® AN)(M ® N, M' <8> AT) = I M(X • M, M') <g> N(N, X • AT)-

As before, there is a Sl-functor

<8>:

and a lax natural transformation

which is now an isomorphism (its inverse being m®X2n, where m is

X - (X • M) = (X2) . M
 ( r A*5 ) ' \ I -M =

and n is

Then <8> and A make M®AN into the 'pseudo-coequalizer' of the Sl-functors

>('®1); M<g>A<g>N-»M<g>N.
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If now F: A-»B and G: A-»C are morphisms in DCR, then, arguing just as
in Lemma 3.5, we see that C®AB is a dcr, that there are morphisms

and a natural isomorphism <p: PF = QG. Then one proves in exactly the same
way as for 3.6 that:

3.11. PROPOSITION. The square

A-^-> C

B _ * c<8>AB

is a pushout square in DCR, in the sense that, for each D e DCR, precomposition
with P, q>, Q induces an equivalence of categories from DCR(C®AB,D) to the
pullback category whose objects are triples (H, ip, K) with H: B-»D, K: C-»D,
and y: HF = KG in DCR, and whose morphisms (H, ip, K)^{H', xjj', K') are
pairs (h, k) with h: H^>H', k: K^> K' in DCR and i//' ° hF = kG ° t/;.

From this one obtains the analogues of 3.7 and 3.8 for pullback squares in
GTOP.

3.12. THEOREM. For a pullback square in GTOP

Gx E F >G

one has that

G x E F - Sh(Rel(G) ®Rel(E)Rel(F)).

In particular, forYeF and Z e G, Rel(G xEF)(p* Y, q*Z) is freely generated as a
sup-lattice by the elements

q*(C)°(px°p*(B) (XeE,B: Y++f*X, C: g*X++Z)

subject to the relations
q*(V Q) • <px • p*(fi) = V (q*(Q) • <px • p*(B))f

q*(C) o <px o p*(V Bt) = V (q*(C) « <px °

and

q*(C) o <px o p*(r (A) • 5) = q*(C » g*(A)) • <px

/•A'eRel(E)

Rel(G xEF)(p*Y, q*Z) = I Rel(G)(g*Ar, Z) ® Rel(F)(Y,
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4. Applications

We are going to use the results of the previous section to derive properties,
with respect to the formation of comma squares in GTOP, of geometric
morphisms whose inverse image functors preserve arbitrary intersections of
subobjects. The results we obtain are applied in [24] to derive interpolation and
conceptual completeness results for pretoposes. They are also related to the
infinitary generalizations of conceptual completeness considered by Makkai and
Reyes in §§7.3 and 7.4 of [19]. (Specializing from the preservation of intersec-
tions to open geometric morphisms, we see that the results of the previous section
also yield (new) proofs of known properties of such geometric morphisms with
respect to formation of pullbacks in GTOP.)

4.1. DEFINITIONS. Let F: A—»B be a morphism of distributive categories of
relations,

(i) The map F will be called meet if for all X, X' e A the sup-preserving maps

F: A(X,X')^B(F(X),F(X'))

also preserve arbitrary infs:

In this case these maps have left adjoints, which will be denoted by

Fr. B(F(X), F(X'))-+A(X, X'). (14)

A geometric morphism f: F-»E between Grothendieck toposes will be called
meet when f*: Rel(E) -* Rel(F) is meet, which is to say that f* preserves arbitrary
infs of subobjects.

(ii) The map F will be called open if it is meet and the left adjoints (14) are
natural in X and X'\

E{Fa °b) = a<> E(b),
and (15)

E(bF) E(b)

(Note that the second of these equations is implied by the first, since one can
show for meet F that F,(b°) = (fib)0.)

4.2. REMARK. Every dcr A has right (Kan) extensions: for any a: X-* Y and Z
in A, the map

preserves sups and hence has a right adjoint, which, following Freyd, we shall
denote by

(-)la:

The right extension b/a of b along a is thus given by

bla = \J {c\ (c°a)^b)

and satisfies

c s* (b/a) if and only if (c°a)^ b.
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The condition (15) in 4.1(ii) is easily seen to be equivalent to requiring that, for
all a and b,

F(b/a) = Fb/Fa.

Thus F: A—> B is open if and only if it is meet and preserves right extensions. In
the case that A has small coproducts, preservation of right extensions actually
implies that F is meet, since given (a,: X-*Y\ i eI), we have

where a = Vifli(v«)°» ^ = V« (v/)°> an(^ t n e vt a r e t n e insertions X-> II i X of X
into its copower by /.

4.3. LEMMA. Let F: A—>B be a morphism of bounded dor's and let
f: Sh(B)—»Sh(A) be the corresponding geometric morphism between toposes of
sheaves. Then:

(i) f is meet if and only if F is;
(ii) f is an open geometric morphism if and only if F is open;
(iii) f is a surjection if and only if F is faithful (as a functor).

Proof, (i) It suffices to show that F is meet if and only if the induced morphism
between completions, F: A—»B is meet. One implication is immediate since F is
the restriction of F to the full subcategories A and B. The converse implication is
a consequence of the following properties of infs with respect to coproducts and
splitting of symmetric idempotents in a dcr A.

(a) Suppose that

and we have some morphisms ak: X-+Y. Since coproducts are also products in a
dcr (see [2, §6]), each ak corresponds to a matrix of components akif. Xt—>Yj.
Then /\k ak: X-* Y has components f\k akij: Xi—> Yj.

(b) Suppose e: X-*Xandf: Y—> Y are symmetric idempotents with splittings

e — [A. > A > A

and

Given ak: X—>Y satisfying f ° ak = ak = ak° e, one has that /\k(qakp°) =
°

(ii) Recall that a geometric morphism f: F—>E is open if f*: E—»F preserves
universal quantification of subobjects along morphisms in E, and hence also
preserves Heyting implication and infs of subobjects. (See [10]. Equivalently, f is
open if and only if its localic reflection is an open locale in E, which is so if and
only if there is a site of definition for F in E with inhabited covers; see [15].) Since
universal quantification of subobjects in E and right extensions in Rel(E) are
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interdefinable, by Remark 4.2, f is open if and only if f*: Rel(E)->Rel(F) is an
open morphism in DCR. Thus for (ii) it suffices to show that F: A-» B is open if
and only if P: A-» B is.

If P is open, so is

A c_L A A BA c—> A > B

(since r/, being full and faithful, necessarily preserves infs and right extensions).
Hence rj ° F ( = F ° rj) is open and thus F is also.

Conversely, if F is open, P is meet by (i) and it also preserves right extensions
because of the following properties which the latter have with respect to
coproducts and splitting of symmetric idempotents in a dcr A.

(c) Suppose that

and we have a: X—> Y and b: X—>Z with components
aij: Xt—*Yj, bik: Xt—>Zk.

Then bla: Y-+Z has components

(d) Suppose e: X—>X, / : Y^>Y, and g: Z-*Z are symmetric idempotents
with splittings

•0

r = r°

Given a: Z - » Y and b: X^> Z with / ° a = a = a o e a n d g o f r = fr = fr°e, then

(iii) A geometric morphism f: F—»E is a surjection if and only if f : E - * F
reflects isomorphisms, which is so if and only if f*: Rel(E)-»Rel(F) is faithful.
So it suffices to prove that P: A - » B is faithful if and only if F: A - » B is. But
this follows directly from the construction of the completion A.

4.4. PROPOSITION. Let A be a bounded dcr and F: A—»B, G: A—»C be
morphisms in DCR. Form the cocomma square

F

B —> C©AB
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as in Proposition 3.6. Then if F is meet, Q is open. In this case one also has
(i) for all b: F(X)^>F(X') in B (with X, X' e A),

o Pb • <p°x) = G(Eb): G(f l -> G(X') (16)

in C;
(ii) given X, X' e A, b: F(X)-*F(X') in B, and c: G(X)-+ G(X') in C, if

(px. °Pb^Qc° cpx,

then there is a: X^>X' in A with b^Fa and Ga =sc;
(iii) Q is faithful if F is.

Proof We first show that Q is meet by exhibiting left adjoints to the sup-lattice
morphisms

Q: C(Z, Z')-»(C@AB)(G(Z), Q(Z')). (17)

Recall that Q(Z) = Z©I and that the sup-lattice (C©AB)(Z©/, Z ' © / ) is
generated by elements

c©xb whereZeA, c: XZ-*Z' and b\ I^XI,

subject to the relations (1), (2), (3) of 3.3. Now from b we get

F(I) LI > Xl = F(X) X I S F(X)

and hence

Then define Q\(c©xb) to be

Routine calculations show that this definition respects the relations (1), (2), (3) of
3.3 and hence induces a sup-preserving map

Qu (C@AB)(<2(Z), G(Z'))->C(Z, Z'). (18)

(For (3) one uses the fact that E(Fa o b)^EFa °Eb^aoEb.) Similar calcula-
tions give c©xb ^ QQ\(c©xb) and Q\Qc^c, so that (18) is indeed a left
adjoint for (17).

To verify that Q is open, it is sufficient to show for c©xb: Q(Z)-^> Q(Z') in
C©AB and c': Z'^Z" in C that one has

Q\(Qc' ° (c©xb)) = c' o Q,(c©xb).
But since

Qc' o (c©xb) = (cf © 1) o (c©xb) = (c'c) ©xb,

this is immediate from the definition of Qu
We now turn to the proofs of (i), (ii), and (iii).
(i) Calculating (px°Pb0<px'- G(X)©I->G(X')©I, one finds that it is

c'©XxXb' where

1 * f A 0

c' = ((X' x X) • GX = GX' x (GX x GX) L ia > GX' x / = GX')
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and

b' = (I M+ FX x FX ^ i FX' xFX = (X' xX)I).

Then the corresponding 6' = E{jiib't) is

b' = (Eb x 1) o At0: I^X'xX,

and hence Q\(c' ©Xxxb') is

GX = I- G Z - ^ - i (X' x X) • GX—^ GX',

which on substituting the above values of 5' and c' simplifies to G(Eb).
(ii) If (pX' ° Pb^Qc° q)x, then

since (p^ H q)x- Hence

since Qi H Q. Thus by (i), G(Eb) ^ c; and 6 *£ F(F,b), since is HF. Hence one can
take a = E(b) in (ii).

(iii) To see that Q is faithful, it suffices to show, for any c: Z—>Z', that

where

Hence

= 1/
since F is faithful. Thus

as required.

On taking toposes of sheaves, we find that the above result about dcr's yields a
corresponding result for Grothendieck toposes:

4.5. THEOREM. Given geometric morphisms f: F-»E and g: G—>E, form the
comma square in GTOP:

n

G

g

E
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Then iffis meet, q is open. In this case q is a surjection when f is and the comma
square has the following interpolation property: given XeE and subobjects

in ¥ and C>-*g*(X) in G, if

as subobjects of$*f*(X), then there is a subobject A>^>X in E with

B^f*(A) in SubF(f*X)

and
C in SubG(g*Z).

Proof. By hypothesis, f*: Rel(E)-»Rel(F) is meet and hence, by Proposition
4.4,

Q: Rel(G) -* Rel(G) ©Rel(E) Rel(F)

is open. But by Theorem 3.7, the geometric morphism induced by Q between
toposes of sheaves is

Sh(Rel(G)) - G 3 - (G <EF) - Sh(Rel(G) ©Rel(E)Rel(F)).

Hence, by Lemma 4.3(ii), q is also open. Similarly, if f is a surjection, then
f*: Rel(E)—»Rel(F) is faithful, and hence by 4.4(iii) so is Q and thus q is a
surjection by Lemma 4.3(iii). Finally, the interpolation property of the comma
square becomes, under the equivalence of Theorem 3.7, a special case of 4.4(ii)
(by taking X' = I).

4.6. REMARKS, (i) The interpolation property 4.4(ii) was deduced from the
equation (16) and is in fact equivalent to it. Similarly the interpolation property in
Theorem 4.5 is equivalent to assuming that, for B>-^f*(X),

where
f,:

and

are the left adjoints of f* and q* applied to subobjects.
(ii) Theorem 4.5 should be compared with the fact that open (surjective)

geometric morphisms are stable under pullback. (See [10, § 4] and [15, Chapter
VII].) Such pullback squares in GTOP also enjoy an interpolation property; see
Proposition 3.3 of [25]. Clearly these properties of open geometric morphisms
under pullback correspond by Theorem 3.12 to properties of open morphisms in
DCR under formation of tensor products; and the latter can be proved directly by
arguments like those in 4.4.

In [24] the property of cocomma squares of pretoposes analogous to the
interpolation property in Theorem 4.5 was used to deduce a version of the
Makkai-Reyes 'conceptual completeness' theorem for pretopos morphisms. Here
we shall derive similar results for certain kinds of geometric morphisms. These
results closely parallel the infinitary generalizations of conceptual completeness
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considered by Makkai and Reyes in §§7.3 and 7.4 of [19], except that we only
consider the limiting, fully infinitary case. (However, the method by which we
obtain the results appears to be quite different from theirs.)

Let us fix a collection B of Grothendieck toposes with the following property:
for all E e GTOP, the collection of functors

f*: Rel(E)->Rel(B) (B e B, f: B-»E in GTOP) (19)

is jointly faithful, so that a ̂  a': X++X' in Rel(E) if and only if f*(a) =£ t*(a') for
all such f. (By a theorem of Barr [8,7.57],

B = {Sh(£)| B a complete Boolean algebra}

is an example of such a collection.) The following result should be compared with
Theorem 7.3.5 of [19]:

4.7. PROPOSITION. Let f: F—» E be a meet geometric morphism between Grothen-
dieck toposes. Suppose that B is as above and that for allEeB the functor

/ o ( - ) : GTOP(B,F)->GTOP(B,E)

is full. Thent*: Rel(E)-»Rel(F) is full.

Proof. Form the comma square

F<EF-!L>F

To see that f*; Rel(E)-> Rel(F) is full, it suffices to show that for each X e E and
B>^V{X) in F, there is A>^>X in E with V(A) = B in Sub^rA'), that is, that
B =s f*(A) and f*(A) =s B for some A. By Theorem 4.4, for this it suffices to show
that p*(B) =s (^(q*/?); and by hypothesis on B, the latter holds just in the case
where, for all B e B and all g € GTOP(B, F),

But by assumption, <pg: f(pg)—»f(qg) is of the form q>% = tip for some
v>: pg-^qg- T h u s

commutes and hence

as required.

Next we consider the hypothesis on f: F-» E that the functors

f o ( - ) : GTOP(B,F)->GTOP(B,E) (BeB)



SUP-LATTICE ENRICHED CATEGORY THEORY 4 7 1

are faithful, and its relation to the property of f that it be localic. Recall (from
[11] and [15, VI.5]) that f is localic if for all Y e F there is an X e E and a diagram
of the form

e v

m

V(X)

in F with m mono and e epi. As remarked in (a) of the proof of Lemma 1.8, the
existence of such a diagram in F is equivalent to the existence in Rel(F) of a
retraction

Indeed, given such m and e, we can take B = m°e° and C = e ° m°; and
conversely, given such B and C, we can take

//2 — yD A l_/ /~~* I yA) / \ J: * I -̂A ^

a n d JTo

e = (5°AC>->f*(Ar)xy-^> y).
Thus the geometric morphism f: F—»E is localic if and only if the functor
f: Rel(E) —> Rel(F) has the property that each object in the codomain is a retract
of one in the image of the functor. More generally, one has:

4.8. LEMMA. Let F: A—»B be a morphism of bounded dcr's and let
f: Sh(B)—»Sh(A) be the corresponding geometric morphisms between toposes of
sheaves. Then:

(i) f is localic if and only if F is dense, that is, the objects in the image of F are
S\-generating in B (see 1.7);

(ii) f is an inclusion if and only if F is both dense and full (as a functor).

Proof, (i) Since the inclusions A<-*A and B<-»B are dense, evidently
F: A—»B is dense if and only if F is. But since A has, and F preserves,
coproducts, the density of F reduces to asserting that each object of B is a retract
of one in the image of F (because Y is a retract of U X( if and only if there is a
family

with ly = V/ ci ° bt). But by the remark above, this is equivalent to asserting that
f is localic.

(ii) It is easily verified that a geometric morphism f: F—» E is an inclusion (that
is, f*: F-> E is a full and faithful functor) if and only if both f is localic and f* is
full on subobjects (that is, for all By+f*(X) there is A>+X with f*(A) = B in
SubF(f*A')); evidently the latter condition is equivalent to asserting that
f": Rel(E)-»Rel(F) is full. Thus f: Sh(B)->Sh(A) is an inclusion if and only if
F: A-»B is both dense and full, which is so if and only if (by (i)) F is dense and
P full. But the construction of the completion ensures that F is full if and only
if F is.
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4.9. PROPOSITION. Given f: F-» E in GTOP, form the comma square

F < E F -?-». F

and the diagonal geometric morphism d: F—• (F<EF) (satisfying pd = 1F s qd

f £s localic if and only if d is an inclusion.

Proof Since d is split by p (and q), it is necessarily localic. Hence by 4.8(ii), d
is an inclusion if and only if d*: Rel(F<EF)-*Rel(F) is full, and for this it is
necessary and sufficient that the maps

be surjective for any collection of objects W which are Sl-generating in
Rel(F<EF). Now (p*(Y) x q*(Z)| Y, Z e F } is such a collection. By 3.8 each
element of

SubF<EF(p*7 x q*Z) = Rel(F<EF)(p*y, q*Z)

is of the form

for some AT, e E and Bt: Y^f*(Xi), Q: t*(Xt)++Z in Rel(F). The map

Rel(F<EF)(p*Y, q * Z ) - ^ Rel(F)((pd)*7, (qd)*Z) = Rel(F)(y, Z)

sends q*(C.) ° <px, ° P*(Bt) to C, ° Bt. Hence d is an inclusion if and only if, for all
y, Z e F , every relation Y *-> Z is of the form \Jt Q ° B{ for some Bh C, as above.
But this is just the condition that f*: Rel(E)^ Rel(F) be dense, which by 4.8(i) is
equivalent to f being localic, as required.

If f: F-» E in GTOP is localic, then for any B e GTOP the functor

f o ( - ) : GTOP(B,F)^GTOP(B,E)

is faithful. (In view of 4.8(i), this fact is equivalent to 2.7(i).) But the converse
does not hold: it is possible for all the induced functors f ° (—) to be faithful
without f being localic. An example of this due to Makkai is given in 2.11 of [24].
The following result gives a sufficient condition on f for the faithfulness of the
induced functors between categories of points to imply f localic:

4.10. PROPOSITION. Given f: F-»E in GTOP, suppose that the associated
diagonal geometric morphism d: F—»(F<EF) is meet. Let B be a collection of
Grothendieck toposes satisfying the condition (19) (see Proposition 4.7). Then f is
localic if and only if for all B e IB,

f o ( - ) : GTOP(B,F)-*GTOP(B,E)

is faithful.
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Proof. Using the universal property of the comma topos F< E F, the fact that
each f ° ( - ) is faithful implies that each

d o ( - ) : GTOP(B,F)-»GTOP(B,F<EF)

is full. Hence by Proposition 4.7, d*: Rel(F<EF)->Rel(F) is full. Since the
latter is automatically dense (being split), it follows as in 4.8(ii) that d is an
inclusion. Hence f is localic by Proposition 4.9.

Propositions 4.7 and 4.10 together give a 'conceptual completeness' result for
geometric morphisms f: F-»E for which both f and d: F-» (F<EF) are meet:

4.11. COROLLARY. Given f: F->E in GTOP, suppose that both f and
d: F—»(F<EF) are meet. Let B be as in Propositions 4.7 and 4.10. Then:

(i) f is an inclusion if and only if, for all B e B,

f o ( - ) : GTOP(B,F)->GTOP(B,E)

is full and faithful;
(ii) f is an equivalence if and only if, for all B e B,

f ° ( - ):GTOP(B, F)->GTOP(B, E)
is an equivalence.

Proof, (i) Combine 4.7 and 4.10.
(ii) If each f ° ( - ) is essentially surjective, then by hypothesis on B, f is a

surjection. (Cf. Theorem 2.13 of [24].) Since by (i) it is also an inclusion, it is an
equivalence.

4.12. REMARK. Since being open is a special case of being meet, the condition
on f in 4.11 is reminiscent of the condition in Chapter VII of [15] which Joyal and
Tierney show characterizes the atomic toposes of Barr and Diaconescu [1], viz.
the condition that both f and the diagonal F - * F x E F be open.

Proposition 4.10 should be compared with Theorem 7.4.2 in [19], which draws
a similar conclusion, but from different hypotheses: Makkai and Reyes use a
choice principle [19, 7.4.1(ii)] which in our context becomes the following
assumption on a morphism f: F—» E in GTOP:

4.13. ASSUMPTION. For any small family (Xt\ iel) of objects in E, there is a
family (/?,: X—>X(\ i e I) of morphisms in E with the following property:

for all families (Bi>-^f*(Xi) xY\ i e I) of subobjects in F, the sentence
ty e Y [Aiel {3Xi e r(*i)*,(x,f y)} -* Bx e f* (x){ A , € , *,(r (/>,)(*), y))]
is satisfied by F.

We show that this assumption on f is stronger than the hypothesis of 4.10:

4.14. PROPOSITION. / / f: F-»E satisfies Assumption 4.13, then the diagonal
d: F-»(F<EF) is meet.

Proof. The condition on (p(\ i e I) is 4.13 is equivalent to asserting that for all
y, Z e F and for any
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in Rel(F), that

A Q o B, = [ A CJ O P(py)l o [ A f*(p°k)(Bk)l (20)

By naturality of q>, one has

q*(A Cyf*py

so that

*[ A cyrPy]<^[ A f*P0***] ̂  A hr(Q)v*p*(*/)]- (21)
Now d* sends a relation of the form q*C ° (px° p*5 to C°B. Hence (20) and
(21) give

A d'[

Since by Remark 3.9 every element of Rel(F<EF)(p*Y, q*Z) is of the form
q*C ° (px ° p*B, we have that d* preserves infs of subobjects of all objects of the
form p*(y) x q*(Z); but such objects are Sl-generating in Rel(F<EF), and hence
(as in 4.3(i)) d is meet.

The implication in Proposition 4.14 is not reversible, since when f = 1E: E-* E,
then d: E-» (E<EE) is meet (since in this case p*: E-> (E<EE) is left adjoint to
d*), but Assumption 4.13 is still a non-trivial requirement on the topos E
(implying, for example, that the infinite product of inhabited objects is inhabited
in E).

5. Internal sup-lattices

In this section we give a strikingly simple characterization of internal sup-
lattices in a Grothendieck topos, in terms of (external) sup-lattice enriched
category theory. Using this characterization, we will reformulate Theorems 3.12
and 3.7 on pullback and comma toposes in terms of composition and 'lax
composition' of Sl-enriched profunctors.

In VI.2 of [15], Joyal and Tierney give a characterization of internal sup-lattices
in a presheaf topos [Cop, Set) (with C finitely complete). They correspond to
functors M: C o p ^S l with the property that for each / : X-+ Y in C,
M(/): M(Y)-+M(X) has a left adjoint 2 / : M(X)^>M{Y) and that these left
adjoints satisfy the equation

whenever

X' - ^ Y'

•1 ,
X -£+ Y
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is a pullback square in C. (Moreover, a morphism of internal sup-lattices in
[Cop, Set] corresponds to a natural transformation between such functors Cop-»S1
which commutes with the left adjoints.)

This characterization is a special case of the explanation of cocompleteness in
fibred categories (and indexed categories) given by B6nabou (and Pare"-
Schumacher). Thus for a general Grothendieck topos E one has the following:

Specifying an internal sup-lattice structure on an object M in E is equivalent
to giving a lifting of the representable functor E ( - ,M) : Eop-»Set to a functor
Eop->S1 in such a way that each /*: E(Y, M)-+E(X, M) has a left adjoint
2 / : E(X, M)-+E{Y, M) and so that these adjoints satisfy the Beck-Chevalley
condition

S*'WW'(gT (22)
whenever

XY

4 , I
is a pullback square in E. Moreover, if TV is another such internal sup-lattice, then
a morphism cp: M-^NinE preserves internal sups if and only if, for each XeE,
q>*\ E(X, M)—> E{X, N) is a morphism in SI and for each/: X—> Y in E,

E{X, hi) - ^ E{X, N)
24 I *

E(Y, M) - ^ E(Y, AO

commutes.

We can improve on the above description by taking account of the behaviour
of such an M eE with respect to not just the morphisms in E, but also the
relations. Thus, given a relation R: X++Y, choose any monomorphism
(a, b): Ry^XxY representing it and define a map

/ ? • ( - ) : E(X,M)-+E{Y,M)

by R'm=Xb(a*(m)). (23)

This definition is independent of the choice of mono representing R and gives a
sup-preserving map (since both Zb and a* preserve sups). These maps / ? • ( - )
are both functorial and sup-preserving:

5.1. LEMMA, (i) For all m e E(X, M), \ x - m = m.

(ii) Given R: X^YandS: Y+*Zin Rel(E) and m e E{X, M), then

(S°R)m = S-(R -m).

(iii) Given (/?,-: X++ Y\ iel) in Rel(E) and m e E{X, M), then

j J
iel / iel
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Proof, (i) By definition

(ii) The composition S ° R is defined in terms of pullback and image
factorization in E. Correspondingly, the identity (ii) follows from the
Beck-Chevalley condition (22) and the fact that if/: X-* Y is an epi in E, then
/*: E(Y, M)->E(AT, Af) is injective and hence 2 / ° /* = 1.

(iii) The domain of a mono representing V {Ri\ ' € I) ls t n e target of a jointly
epimorphic family of morphisms from the domains of the mono's representing the
Rf. It suffices to show that for any epimorphic family (fr. X{—>X\ i e /) in E, one
has

V OS)') = 1: E(*, M)-> E(Z, M).
i

But consider the map

\ iel).

It is injective (since the f are jointly epi) and has a left adjoint given by

( )V
iel

Hence Vi€/2/W)*m = m, as required.

The preceding lemma shows that each internal sup-lattice M in E determines
via (23) a Sl-functor

Note also that if <p: M—>N is an internal sup-preserving morphism, then since
q v E ( - , M)->>E(-, N) commutes with both (-)* and 2, one has

<p*(R • m) = R • (<p*m),

so that (p* is a natural transformation between the Sl-functors E( - ,M) ,
E(- ,A0: Rel(E)^Sl.

In this way, for each Grothendieck topos E, we obtain a functor

S1(E) ̂  Sl-CAT(Rel(E), SI) (24)

from the category of internal sup-lattices and internal sup-preserving maps in E to
the category of Sl-functors and natural transformations from Rel(E) to SI.

5.2. THEOREM. The functor (24) is an equivalence of categories:

S1(E) - Sl-CAT(Rel(E), SI).

Proof. Identifying morphisms in E with maps in Rel(E), by definition one has
for M e S1(E) and / : X^> Y in E, that

/ ° - ( - ) = / * : E(Y,A#)->E(*,Af) (25)
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and
/ • ( - ) = 2 / : E(Z, JJ#)-> E(Y, M). (26)

In view of (25), a natural transformation

restricts along the inclusion E o p^Rel(E) (sending/: X-+Y t o / 0 : Y+-»Z), to
give a natural transformation between representable functors, which by Yoneda's
lemma is of the form <p* for a unique cp: M—>N; and moreover by (26), <p*
commutes with 2, so that <p is a morphism in S1(E). Thus the functor in (24) is
full and faithful.

To see that it is also essentially surjective, suppose we are given a Sl-functor
F: Rel(E)-»SI. Restricting along Eop -̂> Rel(E) gives a functor

F: Eop->S1 (27)

sending/: X-+ Y in E to F(f°): F(Y)^>F(X) in SI. Each such map has a left
adjoint F(f): F(X)-*F(Y) (since/ H/° in Rel(E)); and these adjoints satisfy the
Beck-Chevalley condition for pullback squares in E, since if

f I

is such a square, then

X' -J-+ Y'

commutes in Rel(E) and hence F(f') ° F((g')°) = F(g°) ° F(f). Consequently, we
just have to show that (27) is representable, i.e. that for some M eE,
F(-) = E(-,M): Eop-»Set. For then M inherits an internal sup-lattice structure
from F and F = E(-,M) in Sl-CAT(Rel(E), SI).

To see that F: Eop—>Set is representable, it is sufficient to check that it is a
sheaf for the canonical topology on E. Suppose then that (/: Xt—>X\ i el) is a
jointly epimorphic family in E, and that we have m, e F(Xi) satisfying

for all /, y e I, where

Xij

M
x, -r

Ji
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are pullback squares in E. Putting m = V {F(fd(mi)\ * e /} e F(X), for each i e I
we have

And m e F(X) is the unique such element, since if m' also satisfies F(fi)°(m') =
m, for all i e I, then

m' = F(lx)m' = F(y Md^m' = y F{f^mt) = m.

Thus F is a sheaf and hence is representable.

Reciprocation of relations gives an isomorphism of Sl-categories, Rel(E)op =
Rel(E). Hence Proposition 5.2 also gives an equivalence

Sl(E) = Sl.CAT(Rel(Er,SI).
More generally, the arguments given above easily extend to give an equivalence

S1(F x G) - Sl-PROF(Rel(F), Rel(G)), (28)

where F x G denotes the product of F and G in GTOP and Sl-
PROF(Rel(F),Rel(G)) is the category of Sl-enriched profunctors which has
Sl-functors Rel(F)op <8> Rel(G)-» SI for its objects and natural transformations for
its morphisms. The equivalence (28) is given by sending M e S1(F x G) to the
Sl-profunctor

F:

defined as follows. For objects Y <8> Z (Y e F, Z e G) it is given by

F(Y0Z) = (Fx G)(jrf(Y) x n\{Z), M)

(where ¥<—-FxG—^*G are the product projections). For morphisms, it is
given by sending the generator R®S: Y®Z-*Y'®Z' (where R: Y++Y' in
Rel(F) and 5: Z^Z' in Rel(G)) to

x

Returning to the considerations of § 3, given geometric morphisms
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in GTOP, we see that the standard construction of the pullback

GxEF -5U G

"I * J«
- • E

in terms of sites of definition for E, F, and G shows that

l=<p,q>: G x E F ^ F x G

is a localic geometric morphism. Thus G x E F is equivalent to the topos of
sheaves in F x G on the internal locale 1*(Q) (where Q is the subobject classifier
of G XEF). This internal locale is, in particular, an object of SI(F x G) and by the
remarks above, it corresponds under the equivalence (28) to the Sl-profunctor

Rel(G xEF)(p*(-), q*(-)): Rel(F)^ ® Rel(G)^ SI.

Exactly the same considerations apply to the comma topos G < E F which is localic
over F x G with internal locale in F x G corresponding to the Sl-profunctor

Rel(G<EF)(p*(-),q*(-)): Rel(F)* ®Rel(G)->SI.

Now 3.8 and 3.12 analyse these Sl-profunctors in terms of the Sl-profunctors

f* = Rel(F)(-, f*(-)): Re\(¥)op <g> Rel(E)-+ SI

and

g# = Rel(G)(g*(-), - ) : R e l ( E r ® Rel(G)-> SI.

In general, given Si-categories A, B, C with A bounded, and Sl-profunctors
F e S1-PROF(B, A) and G e S1-PROF(A, C), their composition is the Sl-
profunctor

G®FeSI-PROF(B,C)

given by the coend formula:
rAeA

(G <8> F){B, C) = J G(A, C) ® F(B, A)

(which exists since A is bounded). One also has a 'lax composition':

G©F e S1-PROF(B, C)

given by lax coends (see 3.4(i)):

(G © F)(B, C) = tf € G(A, C) ® F(B, A).

With these definitions, Theorem 3.12 and Corollary 3.8 give:

Rel(G xEF)(p*(-), q*(-)) - g# ® f#
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and
Rel(G<EF)(p*(-),q*(-))-g#@r

in Sl-PROF(Rel(F), Rel(G)).
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