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Introduction

This paper is a sequel to [12). We are here concerned with properties of theories
in full first-order intuitionistic logic; the latter correspond under the identification
of theories with categories provided by categorical logic (cf. [8] or [11]), to Heyting
pretoposes, i.e. pretoposes with universal quantification of subobjects along
morphisms. Using the lattice-theoretic machinery developed in [12], we construct a
contravariant functor @:Pt°® -=Top from the category of pretoposes to the
category of Grothendieck toposes, which sends a morphism of Heyting pretoposes
to an open geometric morphism. This functor aliows us to deduce from the fact that
open geometric surjections are stable under pullback, that conservative morphisms
in the category of Heyting pretoposes are stable under pushout. From this it follows
easily that every pushout square in that category has the ‘interpolation property’.
From the point of view of theories, we thus obtain an essentially very simple,
constructive proof of a general form of Craig’s Interpolation Theorem. At the end
of the paper we make some remarks about the analogues of these properties for the
coherent fragment of intuitionistic logic (i.e. for pretoposes).

There are two important ingredients in the construction of the functor
@ : Pt°® > Top. The first is the use of ‘indexed lattice theory’ as a bridge between
propositional and predicate logic: by indexed lattice theory we mean the pre-order
part of indexed category theory (cf. [2]). Specifically, we make use of particular
kinds of hyperdoctrines which, following Joyal [S], we call polyadic distributive
lattices and polyadic Heyting algebras. The second ingredient is the use of the
constructive theor of locales in toposes other than“the topos of sets (cf. [7] in
particular): in Section 2 we construct locales and (open) continuous maps in various
toposes of presheaves. (Indeed, all the arguments given in this paper can be carried
out over an arbitrary base topos with natural number object; in particular we never
need to resort to the Completeness Theorem or its equivalents.)

0022-4049/83/93.00 © 1983, Tlsevier Science Publishers B.V. (North-Holland)
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1. Polyadic lattice theory

Recall that a category T is a pretopos iff it has finite limits, stable images,
quotients of equivalence relations and stable disjoint finite sums; a morphism of
pretoposes is a functor preserving this structure. Let Pt denote the category of
(small) pretoposes and morphisms. A Heyting pretopos is a pretopos T in which for
each a: X =Y, the operation of pulling back subobjects along &, a~!: Sub(Y)—
Sub,(X), has a right adjoint Va : Sub7(X)—Subs(Y), called ‘universal quantifica-
tion along a’. (Note that this condition implies that each lattice of subobjects
Sub;(X) is a Heyting algebra.) A morphism of Heyting pretoposes is of course a
pretopos morphism which preserves this additional structure. Let HPt denote the
category of (small) Heyting pretoposes.

In {11] it is shown how we may identify theories in first order intuitionistic logic
with Heyting pretoposes and interpretations between theories with morphisms of
such; similarly for the coherent fragment (A, V, 3) of intuitionistic logic and the
category Pt. We can split the passage from theory to category into two stages:

(a) organise the types, terms and formulae into a ‘polyadic Lindenbaum algebra’
of the theory;

(b) given a polyadic algebra, construct its associated ‘syntactic’ category.

The kind of structures that arise at stage (a) are the following:

1.1. Definition. Let C be a (small) cartesian category (i.e. C has finite limits) and
let B! denote the category of distributive lattices. Then a polyadic distributive lattice
over C is a functor 4 : C°° =Dl such that for ¢:/—J in C, Aa: AJ—AI has a left
adjoint 3'a: A1 - AJ satisfying

(FR) Frobenius reciprocity: if ¢ € AI and w € AJ then

e Adaw) = 1 adP)Ay;
(BC) Beck-Chevalley condition: if

J
P

J
,
l

1 K

is a pullback square in C, then 4B c34a=3150¢ Ay.

A is a polyadic Heyting algebra iff in addition to the above, each A/ is a Heyting
algenra and each Aa: AJ—AI has a right adjoint V4« : AI-AJ.

If A and B are polyadic distributive lattices over C, a morphism between them
is a natural transformation f:A—B (in the functor category [C°P,DIl]) which
‘preserves 3’ in the sense that for each a:7/—J in C we have 38¢ °f;=
£, 3'a. A morphism of polyadic Heyting algebras should in addition preserve —
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and V. Let pDI(C) (respectively pHa(C)) denote the category of polyadic
distributive lattices (respectively polyadic Heyting algebras) over C.

1.2. Remarks. (i) Since Aa: AJ—AI preserves — iff 34q: AI—AJ satisfies (FR),
and since 34 satisfies (BC) iff V* does, we can define a polyadic Heyting algebra
over C to be a contravariant functor A:C°—Ha from C to the category of
Heyting algebras, such that each A« has left and right adjoints, the latter satisfying
(BO).

(ii) The structure and axioms of such polyadic algebras are due to Lawvere and
it is his observation (and no small one) that they embody in a concise, a/gebraic form
exactly the language and rules of first order intuitionistic predicate logic. The types
and terms become the objects and morphisms of C (which for convenience we have
assumed to have equalizers as well as finite products); the formulae (or rather, pro-
vable equivalence classes of them) become the elements of the A7, and the proposi-
tional connectives T, A, L, V, become the lattice-theoretic operations; substitution
of terms in formulae becomes the maps Aa : AJ— Al and quantification appears as
the adjoints to these maps; the distinguished relation of equality at type I is
definable as 34 A(T) (where A :I—Ix1 is the diagonal map); and finally (FR)
and (BC) ensure that substitution and quantification ‘commute’ in thbe correct
manner and that equality has the requisite first order properties. See [9] for more
details.

Let us now consider stage (b) of the transition from theory to category: given a
polyadic algebra A over C, construct a category C[A] in which the abstract
predicates of the lattices AI are realized as actual subobjects in C[A]. If A is a
polyadic distributive lattice then C[A] should be a pretopos, if A a polyadic Heyting
algebra then C[A4] a Heyting pretopos. Let C-HPt denote the 2-category whose
objects are cartesian functors L : C— T from C to a Heyting pretopos 7, and whose
morphisms are triangles

l/ 1
/

C = F

AN

commuting up to a specified isomorphism and with F: T; =7, in HPt. Then there
is a functor Sub : C-H?Pt—pHa(C) which is defined on objects by sending L: C—T
to Sub;o L°P: C°" —Ha. We have the following result (there is a similar proposi-
tion abouvt Sub : C-Pt—pDI(C)):

T,

1.3. Proposition. Sub: C-HPt—pHa(C) has a full and faithful left adjoint
A : pHa(C)— C-HPt whose value at the object A we denote by A 4: C—C[A]. We
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can identifv pHa(C) via this left adjoint with the full subcategory of C-HPt whose
objects are those L : C—T which are dense, in the sense that any object X of T is
the subguotient of a finite sum of objects from C:

£ wX

m

1L L(zy)

k<n

(m is mono and e is epi).

Proof. We give a sketch of the construction of C[A]: the details are analogous to
those in Section 2 of [1], except that we first have to extend C and A to ensure that
the resulting category has (stable, disjoint) finite sums. Accordingly, let C* be the
result of formally adding finite coproducts to C; we extend A to a polyadic Heyting
algebra 4° over C* by defining

A‘(.U.Ik>= T Au»

\k<n k<n

(product of Heyting algebras), and similarly for morphisms of C*. Now decfine
C[A] to be the category of ‘models of equality’ in 4*: the objects are pairs (I, E)
where I is an object of C* and Ee A" (I x I) is symmetric and transitive, whilst a
morphism from (I,, E,) to (I5, E;) is given by an element F of A" (/, x I;) which is
a strict functional relation for the given equalities E, and E,. (From the point of
view of Freyd's ‘allegories’, C[A] is obtained by first splitting the symmetric idem-
potents in the category of relations associated to A* and then taking the cor-
responding category of maps.)

The value of the functor 4 4: C—C[A] at an object I is defined to be I together
with the standard equality relation 34 4(T) (cf. 3.7 of [1]). Subobjects of 4 ,(I)
in C[A] are in correspondence with the elements of A([). Specifically, there is an
isomorphism 7.,: A=Sub(4,), natural in A4, and the assignment F— Sub(F)o#,
gives a natural equivalence of categories

C-HPt(A 4, L)=pHa(C)(A, Sub(L)).

We thus have a left adjoint to Sub in the sense appropriate to 2-categories, which
is full and faithful since the unit # of the adjunction is an isomorphism.

Finally, given L:C—T in C-HPt, the counit of the adjunction at L,
€ 1 C{Sub(L)] =T, is always full and faithful, and is essentially surjective just in
case L is dense in the sense defined. {In fact not only is ¢; full and faithful but also
its image is closed under taking subobjects in 7: the factorization of L as



An application of open maps to categorical logic 317

&1 © Agyyy is entirely analogous to the hyperconnected-localic factorization of a
geometric morphism; cf. [4].) [l

A polyadic Heyting algebra A over C is in particular a Heyting algebra in the
topos [C°P, Set] of presheaves on C. Whilst it is not in general a complete Heyting
algebra, it does have a certain amount of internal completeness. Specifically
a*: AY—AX in [CP, Set] has left and right adjoints when a: X =Y is a morphism
between representable presheaves.

1.4. Proposition. A locale in [C°P,Set] is a funcicr A : C—Loc such that for each
a:1—-Jin C, (Aa)*: AJ—- Al has a left adjoint (Aa),: AI - AJ satisfying the con-
ditions (FR) and (BC) of 1.1.

A continuous map between locales A and B in [C°P, Set] is a natural transforme-
tion f: A-B in [C,Loc] such that f* preserves ()., i.e. (f;)*°(Ba),=(Aa),°(f)*
for a¢:I—J in C. In particular this implies that (f;)«: AI—BI is natural in I, so
that f*:B—A has a (C-indexed) right adjoint fy: A—B. By definition, the con-
tinuous map f: A—B is open iff f* has a left adjoint f,: A— B satisfying (FR), and
this is true just in case f* preserves —, \V and (=)s. L]

A detailed proof of this proposition may be found in Chapter VI of {71. Note that
a polyadic Heyting algebra A over C, is a locale in [C°P, Set] just when each AT is
a complete lattice; in this case we use the notations 34e, Aa, V*a and (Aa),,
(Aa)*, (Au)x interchangeably.

Now recall from [12] the functois ., .# and ¢ =4 © .7 assigning to a distributive
lattice its lattice of filters, the locale of ideals and the locale of ideals of filters. We
noted in Section 2 of that paper that these functors preserve the relationships ot ad-
jointness, (FR) and (BC). It follows that if 4:C°—DI is a polyadic distributive
lattice, then # oA :C° —DI is another such, and # oA and ¢° A are locales in
[C°P, Set]. Similarly, given f: A—B in pDKC), then #f: #°A— #°B is again a
morphism in pDI(C), whilst #f: . c B—.4 ©A4 and ¢f: ¢ °© B—¢ > A are continuous
maps of locales in [C°P,Set]. This is because existential quantification is given in
@A (for example) by ##34 and is thus preserved by (¢f )= 2Hf;), since f;
preserves 3. Moreover if f is a morphism of polyadic Heyting algebras over C,
then since f; preserves ¥4, (@¢f)* prescrves universal quantification in ¢ © 4: hence
by Theorem 2.3 of [12], ¢f:@pB—¢A is an open continuous map of locales in
[C°P,Set]. We thus get a functor

¢ : pHa(C)°® - OLoc[C°P, Set].

Note that just as in the quoted theorem, if f: A—B is a monomorphism in pHa(C)
(i.e. each f; is 2 monomorphism in Ha) then ¢f: #B— @A is a continuous surjec-
tion. Also the natural monomorphism i, mentiored in that theorem gives for each
polyadic Heyting algebra A, a natural monomorphism i : A ¢A which preserves
3 and V (by definiticn of the quantifiers in ¢ © 4) as well as the lattice operations,
and so is a monomorphism in pHa(C), natural in 4.

-
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2. The topos of filters of a pretopos

Suppose that T is a pretopos. Then Subzy: T°°—Dl is a polyadic distributive lat-
tice over T and so from Section 1, # oSuby is a locale in [T°P,Set]. A simple
calculation shows that it is isomorphic to the locale of j-closed sieves for the
precanonical topology on 7. So taking the topos of sheaves on this locale,
sh(.# oSuby), we obtain nothing other than the classifying topos &(T), of T (cf.
[11]). However ¢ © Suby is also a locale in [7°F, Set] and we can consider the topos
of sheaves on that: call it &(T). Since ¢ oSuby is # applied to the polyadic
distributive lattice .# o Suby, if follows that ¢(T) is the classifying topos of the
pretopos T[.# ©Sub;] (notation as in 1.3). Alternatively we can describe it as the
topos of sheaves on the site consisting of the ‘category of filters’ of T as defined
after the proof of Theorem 1.1 in [10], with the precanonical topology. On applying
¢ to the monomorphism T:Sub; .7 oSuby in pDI(T), we obtain a surjective
continuous map of locales ¢ © Suby—.# ©Suby and this induces a (localic) surjec-
tion @(7T)— &(T) between toposes.

Restricting attention to Heyting pretoposes, we have:

2.1. Theorem. The assignment T— ®(T) extends to a contravariant functor
@ HPt°" = OTop from the categorv of Heyting pretoposes to the category of
Grothendieck toposes and open geometric morphisms. This functor takes conser-
vative morphisms in HPt to geometric surjections.

Moreover, for each object T of HPt there is a conservative morphism
I;: T—®(T) of Heyting pretoposes which is natural in T.

Remarks. (i) Recall that a geometric morphism f:.» —=¢ between Grothendieck
toposes is open iff when we take its hyperconnected-localic factorization
# =sh (fuR )= ¢, [, is an open locale in ¢, i.e. the unique continuous map
S8 ,—-Q. is open; cf. [7]. Equivalently, f is open iff f*: ¢ —.# preserves uni-
versal quantification and hence is in particular a morphism of Heyting pretoposes;
cf. [3].

(i) A morphism L:S—=T in Pt is conservative iff whenever we have
A, BeSubg(/) with LA<LB in Suby(LI), then A< B in Subg(/). This accords with
the usual notion of conservative extension of theories. Of course L is conservative
ift it reflects isomorphisms iff it is faithful. When L is in HPt, we only have to check
that

LU)=1T = U=T, all UeSubg(l)

for it to be conservative.

Proof of 2.1. Given L :S—T in HPT, regardirg it as a morphism Idg—L in S-HPt
and applying the functor Sub: S-HPt—pHa(S), we obtain a morphism A : Subg—
Sub(L) =Sub; - LF whose component at an object / of S sends a subobject A1
to LA LI. Then ¢4 :@Sub(L)—@Subg is an open continuous map of locales in
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[S°P, Set]. Now L also induces a geometric morphism / : [7°P, Set] = [S°F, Set] where
ls is precomposition with L°? and /* is left Kan extension along L°P. Then since
l«(@Suby) = ¢ ©Subyo L°P =g o Sub(L),
it follows that the hyperconnected-localic factorization of
&(T)—[T°P, Set] ——> [S, Set]
is of the form
o(T) sh(¢ o Sub(L))—[S°P, Set].
We define &(L): &(T)— d(S) to be the composite
&(T) sh(g © Sub(L)) —22—> sh(¢ o Subg) = &(S).

h

Since A is hyperconnected and ¢A open, &(L) is an upen geometric morphism. This
definition does indeed make @ into a (pseudo)iunctor HPt°®® = OTop. If L is con-
servative, then by definition A is a monomorphism, so ¢4 is a surjection of locales
and hence @(L) is a geometric surjection.

Define Ir: T—®(T) to be the composition of the Yoneda embedding with the
constant sheaf functor:

Ir: T—2— [T, Set] —2— sh(p o Suby) = &(T).

Since I is cartesian we can form the polyadic Heyting algebra A = Sub(/7) over T.
For each object X of T we have

A(X)=S(TYAH, 2)= [T, Set](Hy, ¢ © Subr) = ¢ °Subr(X),

giving an isomorphism ¢ °Subr=A in pHa(7). Under this isomorphism the
natural transformation Suby—A sending UeSubp(X) to I(U)eA(X) is
(necessarily) identified with the monomorphism i:Suby>*¢°Subs in pHa(T)
defined at the end of Section 1. It follows that I is a conservative morphism of
Heyting pretoposes. The naturality of I is a simple calculation which we
omit. [J

2.2. Corollary. Conservative morphisms are stable under pushout in HPt.

Proof. The proof in [12] that monomorphisms in Ha are stable under pushout
hinged on the fact that the pullback in Loc of an open (surjective) continuous map
is again open (surjective). Here we use the corresponding property of geometric
morphisms between Grothendieck toposes, for a proof of which see [7] or [3].



320 A.M. Pitts

Suppose we have morphisms K : R—S and L : R— T in HPt. Applying the functor
@ : HPt°® = O0Top, let

¢ —L— 0T

p o(L)

MK
os =X, sr

be a pullback square in Top. Since ¢(K) and @(L) are open, so are p and g, and
we therefore obtain a square of Heyting pretopos morphisms

s —5 o5 2 4
-

K T
Iy

R L T

which commutes up to isomorphism by the naturality of 7. Then if K is conservative,
by 2.1 &(K) is an open surjection and hence so is g; therefore g*° I is conser-
vative. But since the pushout of K along L in HPt factors through g*o I, that
pushout is conservative. (¢ is a ‘large’ Heyting pretopos, but this creates no
difficulty.) ]

3. The interpolation property

The Interpolation Theorem for the intuitionistic predicate calculus (IPC) states
that if ¢ and y are sentences in some (many-sorted) language ¢ such that
IPC+ ¢y, then there is a sentence @ of ¥ involving only the sorts, relation and
function symbols common to both ¢ and y with IPC+¢—0 and IPC+8—y. More
generally we make the following definition:

3.1. Definition. Suppose that
M

S P
|
|
T

R
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is a square of morphisms in HPt commuting up to isomorphism. We say that it has
the interpolation property at an object X of R iff given V'eSubg(KX) and
WeSubpr(LX) with MV<NW as subobjects of MKX=NLX, there is
U € Subg (X) with V<KU in Subg(KX) and LU< W in Suby(LX). The square has
the interpolation property iff it has it at each object X of R.

Denotin

o
) e~

he free Heyting pretopos on a language ¥ by F(¥), we can interpiet
T

Atraee Thaneame 2o cnzrisens ¢hhnd n smsroliarsd amsrman ~L sl Lo
11ICUITIL ad daYlilg Lllal a pPudiivul djuaic Ul LK 1

F(AVU %)

F(£,N %)

F(%£)

has the interpolation property (at 1). We shall show below that in fact every pushout
square in HPt has the interpolation property. To do this we nezd some facts about
quotients of Heyting pretoposes. At the level of theories, quotienting corresponds
to adding some new axioms without changing the language; at the level of
categories, it corresponds to forcing a collection of monomorphisms to be isomor-
phisms. Which monomorphisms in S are sent by a morphism L :S—T7 to isomor-
phisms in 7, is completely determined by the filter of subobiects of 1

ker(L)={Ue Subg(1)| L(U)»1 iso}

(since S has and L preserves V). Conversely, if g is a filter of subobjects of 1 in S,
there is a morphism Q:S—S/og in HPt with the property that

Q*:HPt(S/0, T)~>HPH(S, T)

is full and faithful and has essential image the full subcategory whose objects are
those functors L :S— T with o C ker(L). We can construct Q as 4,4:S—S[A] (cf.
1.3), where A is the polyadic Heyting algebra over S with

A(X)=Subg(X)/ox (quotient of Heyting algebras)
and
ox={UeSubg(X)|VYx(U)ea}.

Alternatively we can think of S/o as the filtered colimit of slice categories: S/o=
li_r’nUE‘,(S/ U). Call morphisms of the form Q:S—S/0 quotient morphisms: they
are characterised by the two properties

(a) Q is full on subobjects, i.e. given V' —>Q(X), there is U X with QU= V;

(b) every object Y of the codomain is covered by one in the domain via Q, i.e.
there is an epimorphism Q(X)—>Y.

Since a morphism L:S—T in HPt is conservative iff ker(L) is trivial, any L
factors as a quotient followed by a conservative morphism, viz. L : § »S/ker(L)—~T.
Moreover the class of quotient morphisms is orthogonal to the class of conservative
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morphisms; cf. [4]. (Taking (a) and (b) above as the definition of quotient mor-
phism, this is also true of the category of pretoposes, although quotients there cor-
respond not to filters but to more complicated sets of monomorphisms: see [6].) The
behaviour of quotients in HPt under factorization and pushout is precisely
analogous to that for Heyting algebra quotients noted in 3.1 of [12].

3.2. Theorem. Every pushout square in HPt has the interpolation property.

Proof. First note that a pushout square

has the interpolation property at an object X of R iff the pushout square obtained
by slicing

5/KX — P/MKX

R/ X — T/LX

has it at 1. It therefore suffices to prove that every pushout square has the interpola-
tion property at 1.

Suppose then that we have V>>1in S in S and W1 in T with MV<NW in P.
Define filters

o=T(V)={V'eSubs(1)| V= V'},
0=K"'(a)={UeSubg(l)|KUea},
t=7L(@)={W'eSubr(1)|IVepo LUS W'},
7 =1MV).

Just as in Theorem B of [12], quotienting by these filters we obtain a pushout square

M
S/6 — P/n

K N

L
R/g — T/t
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with K conservative. So by 2.2, N is conservative. Then since NWe n, we have
Wert, i.e. there is U1 in R with V=<KU and LU< W, as required. [

Corollary. The Beth Definability Theorem. Given an interpretation of one theory
in another, that is a morphism 1:S—T in HPt, the generic pair of models M,, M,
of T which are isomorphic when restricted along I, I*M,=1*M,, is given by the
pushout of I along itself:

Then Beth’s theorem says that this pushout square has the property: given
V—-KX) in T, if M\(V)=M,y(V) as subokjects of M\IX=M,IX, then there is
U—Xin S with KU)=V in Suby(IX).

This is of course a direct corollary of 3.2.
We conclude with some examples to show that the analogues of 2.2 anu 3.2 fail
for the category of pretoposes, Pt.

3.3. Example. Let P be a pretopos with an uncomplemented subobject of 1,
U»r1 say. Let P—P[+ U] and P—P[U+r] be the quotients forcing U to be true
and false respectively. Then the pushout square

PlUW] 1

P P{+ U]
(where 1 is the trivial pretopos) fails to have the interpolation property. The argu-
ment is just as in Section 4, (a) of [12].
3.4. Example. Let R be the coherent theory with two sorts X and Y and axioms
Ive X(x=x)-+3Iye Y(y=y).

Let S be the coherent theory v ith two sorts and one function symb-! f: XY
together with the axiom

-, I(fx=y).

There is an obvious interpretation K : R— S and it is conservative since the induced
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geometric morphism between the classifying toposes, which are both toposes of
presheaves on the opposites of the categories of finite models, is (essential and) a
surjection. Now let L:R—T be the quotient in which the sort X is forced to be
terminal. Form a pushout square in Pt.

M

§—— P
{k'
R

In the theory P, X is terminal and covers Y; therefore Y is also terminal. Hence
P is the initial theory and N is no. conservative.

N
L
T

This shows that conservative morphisms are not stable under pushout in Pt.
However we can do better than this. The final example (which generalises one
suggested to the author by G.E. Reyes) shows that the pushout of a conservative
morphism in Pt along another such can fail to be conservative, i.e. Pt fails to have
the ‘amalgamation property’ for conservative morphisms.

3.5. Example. Let BPt denote the full subcategory of Pt whose objects are Boolean
pretoposes, i.e. those in which each subobject lattice is a Boolean algebra. let
(=), : Pt—=BPt denote the left adjoint to the inclusicn BPtcPt. Thus 7 is the
classical theory generated by the coherent theory 7. The unit of the adjunction at
T gives a morphism (=): T—T. in Pt which is conservative (since for example,
every topos is covered by a Boolean topos).

Now suppose we have a pretopos 7T such that

(@) T is well-pointed, i.e. it is non-trivial and its terminal object is a generator;

(b) T, contains a proper subobject of 1, i.e. U>>1 such that U# L, T.

(In Reyes’ example T was the pretopos whose objects are the recursively
enuinerable subsets of N and whose morphisms are (restrictions of) partial recursive
functions.) Given subobjects 4> X, B X in T, if A £ B then by (a) we can find
x:1—=X with ve A and x¢ B. So if we had

X (U)AA<B in Suby(X),
then pulling back along x:1—X we would get
UhT=1,

contradicting (b). Thus distinct subobjects are sent to distinct subobjects by the
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morphism T — 7. T./U, which is therefore conservative. Similarly T 7, - 7./-U
is conservative. However, if ~

T » T » T./U
T,
T./~U » P
is a pushout square in Pt, then
T. = T./U
P
L 2 L 2
T./~U > P — P,

commutes up to isomorphism in BPt and therefore P.=1, and hence P is also
trivial (since P -P, is conservative). Thus T./U—P and T./~U-—P are not
conservative.
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