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This document includes additional details that could not
be included in the main paper due to the lack of space.
This comprises: a) manifold assumption validation and vi-
sual comparison with SR-GAN discriminator as compared
to our multi-scale discriminators; b) quantitative results in
terms of average PSNR and LPIPS for all application across
3 benchmark datasets c) qualitative results for the JPEG
artefact removal application; d) ablation study on the num-
ber of seed images and the number of discriminators of the
Multi-Scale Discriminative Feature (MDF) loss; e) hyper-
parameter tuning for the VGG and LPIPS feature-wise loss
functions; and f) performance of loss functions as qual-
ity predictors. Finally, we provide an HTML report which
comprises all the results.

1. Image manifold assumption
The main objective of GANs [3] in image restoration is

to learn a discriminator model that differentiates between
image manifolds [6, 11, 9, 8, 2]. This is based on the hy-
pothesis that input samples (e.g. noisy images) and their
corresponding ground truth samples lie on two different
manifolds. The generator model thereby learns a mapping
function from one manifold to another, resulting in photo-
realistic images closer to the natural image manifold [5, 2].

However, in this paper, we propose that learning the nat-
ural image manifold, which is often the task attributed to
the discriminator, is less important than being able to detect
errors introduced by the generator. Moreover, learning the
natural image manifold requires the GAN to be trained with
thousands of natural and fake images, making the training
process computationally intensive. Here, we show that our
task-specific discriminators, trained on a single image, can
be used as feature extractors for the loss function because
they learn the generator errors rather than the natural image
manifold.

To validate this claim, a multi-scale discriminator trained
on a single image for the task of JPEG artefact removal is
employed as feature extractor. We randomly sample 100
natural images from the ILSVRC validation dataset [10].
From these images we generate a) JPEG compressed im-
ages using a compression quality between 7 and 10, b)

Original image Blur JPEG artefactPermuted

Figure 1: Manifold assumption validation: The figure
shows the 3D t-SNE plots of the latent feature vectors ex-
tracted from diverse sets of images using multi-scale dis-
criminators trained for the JPEG artefact removal task. Our
JPEG-tuned discriminator cannot differentiate between the
original and permuted images (middle plot), yet is a very
effective feature-extractor for a loss function for JPEG task.

blurry image samples by downsampling and upsampling the
images by a factor of 4 using bi-linear filter and c) scram-
bled images by randomly permuting the pixels on each level
of the Laplacian pyramid. Such permutations distort the
second-order statistic, but preserve the composition of the
spatial spectrum. The JPEG trained discriminator is used to
extract the latent feature space of each set of images. The
feature space for each image is the average across the chan-
nels and the resulting feature vector is reduced to a dimen-
sionality of 3 using t-SNE for visualization. Fig. 1 shows
the plot of the features from each set of images. The visual-
ization shows that the discriminator does not learn the natu-
ral image manifold and cannot discriminate between natural
and randomly permuted images. It also cannot discriminate
between blurred and original images, but performs well in
detecting JPEG artifacts regardless of image content.

1.1. Image manifold comparison

In this section, we repeat the experiment conducted
above, instead this time for a fully trained SR-GAN [5] dis-
criminator. This further bolsters our claim that the task-
specific discriminators of our MDF loss function learn to
detect the generator distortions instead of the entire natural

1
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Original image Blur JPEG artefactPermuted

Figure 2: Manifold assumption validation: The figure
shows the 3D t-SNE plots of the latent feature vectors ex-
tracted from diverse sets of images using an SR-GAN dis-
criminator trained on DIV2K dataset [1]. The SR-GAN
discriminator cannot differentiate between the original and
jpeg images (right plot), thereby cannot be used as an effec-
tive feature extractor to detect and remove distortions.

image manifold. This thereby allows our MDF loss func-
tion, trained on a single image, to be used to effective fea-
ture extractors between the generated and the reference im-
age.

We chose the same sample of 100 natural images from
the ILSVRC validation dataset [10]. From these images we
generated a) JPEG compressed images using a compres-
sion quality between 7 and 10, b) blurry image samples
by downsampling and upsampling the images by a factor
of 4 using bi-linear filter and c) scrambled images by ran-
domly permuting the pixels on each level of the Laplacian
pyramid. Such permutations distort the second-order statis-
tic, but preserve the composition of the spatial spectrum.
A trained SR-GAN discriminator is used to extract the la-
tent feature space of each set of images. The feature space
for each image is chosen after the Global Average Pooling
(GAP) layer of the network. We used t-SNE to reduce the
dimensionality of the feature vector to 3 for visualization.
Fig. 2 shows the plot of the features from each set of im-
ages. The visualization shows that the discriminator of SR-
GAN learns the natural image manifold (unlike our multi-
scale discriminator) and can discriminate between natural
and randomly permuted images. However, it cannot dis-
criminate between the JPEG compressed and original im-
ages, making it an inferior feature extractor to detect and
remove distortions.

2. Quantitative results
The quantitative results for all four applications are

shown as distributions in Fig. 3 for real world mobile phone
captured images from DPED dataset [4]. The differences
in means (magenta dots in Fig. 3) are small but statistically
significant for most comparisons (one-tailed t-test with H1

show that the quality score is higher for our method, red ∗
symbols are shown if the difference is significant at α =

0.05). The means, however, are not the best indicator of
performance of different losses. This is because the differ-
ences in loss functions are mostly visible in smooth or flat
parts of the images, which occupy only small percentage of
all pixels but have a substantial impact on the perceived im-
age quality (as demonstrated in Sec. 4.3 of the main paper).
The advantage of our loss is better visible for the worst-case
results, shown in Fig. 3 as the lower 5th percentile of values
(black asterisks). In majority of the comparison, MDF loss
produces fewer images with low quality values, especially
in terms of LPIPS. We also report the quantitative results in
terms of average PSNR and LPIPS in Table. 2.

3. JPEG artefact removal results
In this section, we provide qualitative results show-

ing comparison between three sample reconstructed images
from the BSD Test Set using our (MDF) loss with various
other loss functions for the task of JPEG artefact removal
application. The test images are compressed with a quality
factor of 10 and a more challenging factor of 7. Fig. 5 shows
the results for the compression quality factor 7. The perfor-
mance of the various loss functions seems to be comparable
for the quality factor of 10, however, our model substan-
tially provides artefact removal, especially in the uniform
areas of the image for a much challenging codec quality of
7. The same was also observed in the subjective experiment
conducted (see Sec. 4.3 of the main paper). Additional qual-
itative results can be seen in the HTML report attached to
the Supplementary Material.

4. Ablation study
4.1. Scales of Discriminators

Since our MDF loss function comprises a series of dis-
criminators trained on a single image at various scales, we
need to select the optimal number of scales (the hyper-
parameterK in Equation 2 of the main paper) to achieve the
best performance. We perform an ablation study on training
the EDSR model [7] using only the coarsest scale discrim-
inator and subsequently adding finer scales. We observe a
significant increase in quality of the images generated with
the increase in the number of discriminators. As shown in
Table 1, our loss performs the best when all 8 scales are
employed.

Number of seed images Next we investigate the impact
of increasing the number of seed images while training the
MDF loss function. The plot in Fig. 4 shows that the per-
formance of EDSR increases by only 0.03 dB when trained
on 4 images and then it saturates. We did not observe any
improvement in visual quality. Because the increase in per-
formance in negligible when adding more seed images, we
used a single image for training in our results.
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Figure 3: Additional violin plots illustrating the distribution of the PSNR [dB] ↑ and LPIPS ↓ values for DPED dataset [4] for
all applications. Note that the y-axis is reversed for LPIPS so that the quality improves towards the top of each plot. The error
bars show the 95% confidence intervals for the mean (magenta) and the 5th percentile (black). The latter CIs were computed
by bootstrapping. The red asterisks indicate that one-tailed t-test on the means gives statistically significant difference at
α = 0.05. It is worth noting that our loss produced fewer images with low quality values.

Table 1: Ablation study on training the SISR model (EDSR)
using different scales of our loss. The scale number repre-
sents the number of scales included in the MDF loss. The
inference results are reported for the BSD dataset.

Scales 1 2 3 5 7 8

PSNR ↑ 22.55 23.89 24.43 24.89 25.27 25.70
LPIPS ↓ 0.392 0.357 0.354 0.311 0.305 0.286

5. Hyper-parameter tuning for VGG and
LPIPS

In Fig. 6 we show the qualitative results for the trade-off
between the MSE and LPIPS/VGG network components in
the joint loss function. For fair comparison, we conducted
a hyper-parameter search over the scalar λ controlling the
weight of the feature-wise loss function. We searched over
the values in {λ : λ = 10k, k = −3, .., 3}. The greater
λ parameter is, the more LPIPS/VGG components contri-
bution is. In our experiments across all image restoration
applications, we found the best results are produced when
λ = 1 for VGG and λ = 0.1 for LPIPS loss. Additional
qualitative results are provided in the HTML report.

6. Image quality metrics and loss functions

To further investigate the performance of loss functions
as quality predictors, we generated a set of images that were
distorted by blur, noise, added sinusoidal grating, contrast
and brightness changes. The distortions were generated so

1 2 3 4 5 100 1k 10k
Number of Seed Images

25.5

25.6

25.7

25.8

25.9

26.0

PS
NR

 (d
B)

Figure 4: Performance of EDSR model with the increasing
the number of seed images used for training the MDF loss
function. Note that PSNR increases only by 0.03 dB and
saturates for larger number of images. The inference results
are reported for the BSD dataset.

that they degraded the image in equal steps of PSNR. Fig. 7
presents an example of images with introduced distortions
at three PSNR levels. The experiment shows a failure case
of PSNR, predicting the same quality even though the dis-
tortions due to contrast and brightness are much less objec-
tionable than the others to a human observer.

In Fig. 8, we show the loss values computed for the in-
creasing amount of distortions of different types for differ-
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Table 2: Comparison of our proposed Multi-Scale Discriminative Feature (MDF) loss function with other losses on 3 public
benchmark datasets for four tested applications. Results show PSNR [dB] ↑ / LPIPS ↓. The numbers in red indicate the best
performance and the ones in blue the second best.

Dataset L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours
Single Image Super-Resolution (EDSR [7])

DIV2K 28.70 / 0.342 29.22 / 0.315 29.21 / 0.293 28.70 / 0.342 28.10 / 0.278 28.34 / 0.283 28.87 / 0.283 29.51 / 0.276
DPED 26.99 / 0.415 27.26 / 0.394 27.22 / 0.369 27.00 / 0.367 26.54 / 0.361 26.76 / 0.366 26.88 / 0.368 27.48 / 0.351
BSD 25.28 / 0.320 25.66 / 0.304 25.52 / 0.309 24.70 / 0.301 24.44 / 0.298 24.49 / 0.296 25.08 / 0.306 25.70 / 0.286

Single Image Super-Resolution (SR-ResNet [5])
DIV2K 27.57 / 0.343 27.76 / 0.321 27.05 / 0.325 27.20 / 0.320 26.83 / 0.301 27.00 / 0.307 27.49 / 0.313 27.95 / 0.295
DPED 27.03 / 0.428 27.41 / 0.403 26.54 / 0.381 26.89 / 0.380 26.34 / 0.372 26.45 / 0.372 27.32 / 0.385 27.50 / 0.367
BSD 24.56 / 0.337 24.68 / 0.328 24.07 / 0.370 24.18 / 0.364 23.19 / 0.315 23.42 / 0.310 24.48 / 0.336 25.07 / 0.293

Image Denoising [12]
DIV2K 29.75 / 0.233 29.55 / 0.236 29.47 / 0.275 29.62 / 0.263 30.80 / 0.215 29.61 / 0.215 30.05 / 0.225 31.25 / 0.192
DPED 30.24 / 0.218 29.87 / 0.230 29.48 / 0.261 29.60 / 0.255 31.23 / 0.195 30.09 / 0.191 31.15 / 0.203 31.36 / 0.181
BSD 29.92 / 0.240 29.71 / 0.248 29.39 / 0.285 29.55 / 0.262 30.40 / 0.203 29.81 / 0.203 30.39 / 0.214 30.42 / 0.192

JPEG Artefact Removal [12]
DIV2K 26.50 / 0.303 26.71 / 0.295 26.32 / 0.295 26.37 / 0.301 26.48 / 0.315 26.27 / 0.281 26.50 / 0.299 26.77 / 0.261
DPED 26.20 / 0.305 26.15 / 0.301 25.95 / 0.298 26.05 / 0.305 26.01 / 0.307 25.87 / 0.296 26.12 / 0.305 26.53 / 0.276
BSD 25.64 / 0.316 25.71 / 0.310 25.43 / 0.309 25.49 / 0.313 25.54 / 0.308 25.39 / 0.308 25.52 / 0.312 25.75 / 0.293

Ground Truth L2 L1 SSIM MS-SSIM VGG LPIPS MS-SSIM + L1 Ours

Figure 5: Results for JPEG artefact removal (compression quality = 7) using DnCNN model [12] trained using different
losses. Our loss improves artefact reduction, especially in the uniform areas of an image. Qualitative results in terms of
PSNR and LPIPS are reported in Table 2. Best viewed when zoomed.

ent loss functions. Despite the same PSNR value, the dis-
tortions due to noise, blur and added sinusoidal wave are
much more noticeable than those due to contrast and bright-
ness change (refer to Fig. 7). The loss functions derived
from quality metrics (SSIM, MS-SSIM) and also feature-
wise losses (VGG, LPIPS) penalize more the distortions
that result in higher degradation of quality. In contrast,
MDF losses penalize the most the distortions that are rel-
evant for a given task: blur in case of SISR (MDF SR), blur
and noise in case of denoising, and contrast followed by the
mixture of all distortions in case of JPEG artifact removal.
This is another example demonstrating that an effective loss
(MDF) function does not need to predict image quality.

7. HTML report

In the Supplementary Material, we provide a compre-
hensive HTML report, showing the results for each loss
function across different image reconstruction applications
for various datasets. We further provide results for the
ablation study and the hyper-parameter selection. The
HTML report, including all the inference images, are at-
tached with the supplementary material. Please visit the
URL HTML_Report_Paper_ID_784.html inside the
folder named “Report 784”.

Due to size limitations for the supplementary material,
we include the first 30 images from each test set. Images are
stored as JPEGs with a quality of 90 to ensure that coding

HTML_Report_Paper_ID_784.html
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Ground Truth 𝛌=0 𝛌=0.01 𝛌=0.1 𝛌=1

Average PSNR 25.28 dB 25.03 dB 24.30 dB 24.44 dB 21.21 dB

𝛌=10 𝛌=100

16.34 dB

V
G

G
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S

Average PSNR 25.28 dB 25.16 dB 25.35 dB 24.11 dB 23.21 dB 21.01 dB

Figure 6: Comparison of the single-image super resolution (SISR) results (EDSR) when trained using a weighted sum of
VGG/LPIPS and MSE feature-wise losses: MSE + λVGG/LPIPS. The average PSNR is reported for the entire test set.
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Figure 7: Examples of images used to test the sensitivity of loss functions to different types of distortions. We introduced
artifacts so that the each distortion results in the same PSNR level (across each row). Here we provide examples of images at
20 dB, 30 dB and 40 dB. Note that the perceived quality differs between the columns despite the same PSNR level.

distortions do not distort the results. Upon acceptance, the
code and the complete set of inference outputs will be made
public for the research community.
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