
Automatic Correction to Safety Violations in Programs

Muhammad Umar Janjua Alan Mycroft
Computer Laboratory, Cambridge University, CB3 0FD, UK

{umar.janjua, alan.mycroft }@cl.cam.ac.uk

Abstract
Our goal is an automatic, compile-time and incremental technique
to compute corrections to safety property violations in a program.
For a program P containing a set of violating traces T with respect
to a given safety property, our method incrementally transforms
P into a new correct program Pc such that Pc no longer exhibits
the same behaviour as T . While making these series of Correct-
ing Transformations (CT), we ensure that first, previous correct be-
haviours in the erroneous program are preserved in the corrected
program as well, and second, no new error traces are introduced
with respect to the given property.

In this paper, we address those safety property violations result-
ing from incorrect interleavings of threads in a program. We anal-
yse program computation trees and insert thread blocking primi-
tives in the program in such a way that only erroneous program
paths are pruned.

Categories and Subject Descriptors CR-number [Programming]:
Languages

General Terms Languages, Algorithms, Concurrency

Keywords automatic, program correction, safety property, lock,
multithreading

1. Introduction
When a programmer encounters an error in a program, the next
important tasks are: firstly, to localise the cause of the error, and
secondly, to make a correction to the erroneous program. Current
automatic techniques only provide a certain level of help in this
regard. Generally, when the program is erroneous, these techniques
can report the presence of error during program execution (testing),
or suggest that the program cannot be proved to be correct (theorem
proving) or provide long counterexample traces (model-checking).
These techniques do not provide information on the causes of the
error or the ways of correcting the erroneous programs.

For example, in the case of model checking, the reported coun-
terexamples do not exactly pinpoint the cause of the error. The ex-
ecution path modelled by the counterexample is only known to be
erroneous once the model checker makes a transition (which is of-
ten the last transition) to an erroneous state. Before that, there is a
possibility that it might not be an erroneous execution. Hence, the
exact cause of the error remains elusive with in the entire coun-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Thread Verification ’06 21 Aug 06, Seattle.
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

terexample trace. Also, these counterexamples may be generated
in the more highly abstracted models of the program. Because of
abstraction, it becomes quite a tedious task for the programmer to
relate the transitions in counterexamples to the statements in the
actual source code.

Even after time-consuming model checking, it is still then left
to the programmer alone to identify a possible cause and make a
manual correction in the program. We argue that this very process
of manually fixing or correcting erroneous program is itself cum-
bersome and error prone. For a non-trivial sequential program with
nested conditional and loop statements, it becomes generally diffi-
cult to keep all possible program paths in view. This situation be-
comes annoyingly intractable for multithreaded programs and may
result in the following undesirable consequences.

• Such a restricted view may lead to introduction of new errors in
the program while trying to correct the previous errors.

• Even if no new errors are introduced, there still lurks a pos-
sibility that previous correct execution behaviours might have
changed as a result of new corrections.

In this paper, we present a new automatic way of correcting er-
ror traces in the programs. One can envisage a development cycle
where a programmer first develops a program implementation of
a specification, second, verifies the implementation with a model
checker, and third, if a counterexample is reported, a correction
tool synthesizes a correction to the error, which can be later incor-
porated into the program on programmer’s approval. Such a frame-
work would reduce debugging time, avoid introduction of new er-
rors, and facilitate the understanding the program in general.

These automatic corrections can also be viewed as another form
of error explanation [4] to the error traces. Error explanation is a
way of explaining error traces by pinpointing potential statements
as the cause of the error. Our view is that, rather than highlighting a
few “suspicious” statements to the programmer as a potential cause
of the error, instead, it will be far more useful to iteratively provide
possible corrections to the these error traces.

The contributions of this paper are :

1. Proposing an incremental scheme for automatic correction of
safety violations.

2. Determining corrections/fixes while ensuring
• No new program errors are introduced with respect to the

safety property.
• Previously correct program behaviours are preserved.

The remainder of this paper is structured as follows: Section 2
explores a simple motivating example to illustrate the technique.
Section 3 provides background definitions. Section 4 describes
correcting transformations. Section 5 gives a simple case study with
a prototype tool. Section 6 discusses related work and Section 7
concludes and suggests further work.

I-load,D-load
var:0,i:*,d:*

I-add,D-load
var:0,i:0,d:*

I-store,D-load
var:0,i:1,d:*

I-exit,D-load
var:1,i:1,d:*

I-exit,D-sub
var:1,i:1,d:1

I-exit,D-store
var:1,i:1,d:0

I-exit,D-exit
var:0,i:1,d:0

I-load,D-sub
var:0,i:*,d:0

I-load,D-exit
var:-1,i:*,d:-1

I-load,D-store
var:0,i:*,d:-1

I-add,D-exit
var:-1,i:-1,d:-1

I-store,D-sub]
var:0,i:1,d:0

I-exit,D-sub]
var:1,i:1,d:0

I-exit,D-store
var:1,i:1,d:-1

I-exit,D-exit
var:-1,i:1,d:-1

I-store,D-store]
var:0,i:1,d:-1

I-store,D-exit]
var:-1,i:1,d:-1

I-exit,D-exit
var:1,i:1,d:-1

I-add,D-sub
var:0,i:0,d:0

I-add,D-store
var:0,i:0,d:-1

I-add,D-exit
var:-1,i:0,d:-1

I-store,D-exit
var:-1,i:0,d:-1

I-exit,D-exit
var:0,i:-1,d:-1

1:

3:

4:

5:

6:

7:

8:

10:

11:

12:

13:

9:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

I-exit,D-sub
var:1,i:1,d:1

5:

6:

7:

8:

I-load,D-load
var:0,i:*,d:*

I-add,D-load
var:0,i:0,d:*

I-store,D-load
var:0,i:1,d:*

I-exit,D-load
var:1,i:1,d:*

I-exit,D-store
var:1,i:1,d:0

I-exit,D-exit
var:0,i:1,d:0

I-load,D-sub
var:0,i:*,d:0

I-load,D-exit
var:-1,i:*,d:-1

I-load,D-store
var:0,i:*,d:-1

I-add,D-exit
var:-1,i:-1,d:-1

I-store,D-exit
var:-1,i:0,d:-1

I-exit,D-exit
var:0,i:-1,d:-1

1:

3:

4:

19:

20:

21:

22:

23:

24:

(A) (B)

CT

E

E

E

E

E

E

E

E

E

E

C

C

C

C

C

C

C

C

E|C

E|C

E|C

E|C

E|C

Figure 1. (A) A program computation tree containing both correct and error traces,w.r.t assert(var == 0). E is an Error node, C a Correct
node, while E/C an E/C node. (B) contains only correct traces as a result of removing error traces. Brackets around two nodes indicate that
these should be enclosed in an atomic block.

2. Motivating Example
Consider two concurrent threads I and D sharing a single proces-
sor, which increment and decrement a shared global variable var
using thread-specific local temporary variables, i and d, respec-
tively, as shown in the Figure 2.

var=0
void increment() { // for thread I

i = load var
i = add i, 1
store i, var
exit() }

void decrement() { // for thread D
d = load var
d = sub d, 1
store d, var
exit() }

Figure 2. An erroneous program with two concurrent threads I
and D

Each instruction is atomic, and threads only interrupt in between
these instructions. The initial value of var is zero. Suppose the pro-
grammer desires that following property holds: After both threads
exit, its value must be zero.

The complete computation tree of this program is shown in part
(A) of Figure 1. State 1 in the Figure 1 says that either the thread
I or D can execute different load instruction of increment and
decrement functions, respectively, when var has value 0, and i,d
have undefined values. The execution of I in any state is shown by
↙, and that of D by ↘.

The correct traces are {1, 3, 4, 5, 6, 7, 8} , {1, 19, 20, 21, 22, 23, 24}.
All other traces lead to a violation of the specified property, because

var=0
void increment() { // for thread I
b i = load var
〈i = add i, 1 c store i, var 〉
exit() }

void decrement() { // for thread D
d = load var
d = sub d, 1
store d, var
exit() }

Figure 3. A semi-correct program (containing fewer error traces
than in Figure 2)

the var gets the value−1 or 1 in final states. Our goal is to preserve
correct traces and remove error traces.

Consider the error trace {1, 3, 4, 10, 11, 12, 13}. This violation
occurs because the thread D interrupted thread I by loading var
into d. This particular execution of D at state 4 leading to state 10
in Figure 1 is erroneous and undesirable. To restrict this execution
of D, a correct solution could be to block D simultaneously with
add in state 3 before the program reaches state 4, thereby only
allowing I thread to be able to execute in state 4. Once the program
goes beyond the state 4 to a “safe” state like 5, the D thread
could be simultaneously enabled with store again. This is logically
equivalent to enclosing add and store in an atomic section shown
by 〈 and 〉 in semi-correct program (contains fewer error traces) in
Figure 3. Later, we show how to achieve this with thread blocking
correction primitives as in section 4.3.

Similarly repeating the same procedure for error trace {1, 3, 9,
14, 15, 16, 19} requires blocking thread D in state 1 atomically
with load and enabling it with add in state 3. This is shown by b

and c. The program in Figure 3 is not fully correct because it still
can exhibit the error trace {1, 19, 20, 14, 18, 16, 17}. Analysing the
computation tree of this corrected program, we can incrementally
correct remaining error traces as well. Note that these atomic sec-
tions overlap with each other, so these can be optimised into a sin-
gle atomic section. Performing this optimisation would give a kind
of correction which meets the programmer’s intuition as well.

3. Definitions
3.1 Program Graph
We represent a program P as a union of control flow graphs of all
procedures, assuming that there are only integer global variables,
and no procedure calls. Each thread t executes a distinct procedure
proct. Each thread exit threadexit() call terminates the currently
executing thread.

A control flow graph for each proct is a directed graph Gt =
Nt, Et, entryt, exitt with nodes Nt each containing an instruc-
tion, edges Et representing the flow of control between nodes and
entryt ∈ Nt and exitt ∈ Nt as the start and exit nodes. Then,
P =

S
t Gt.

3.2 Program State
Let S be a set of program states. A program state s ∈ S comprises

• 〈i0, i1, · · · , in−1〉 ∈ N0×N1×· · ·×Nn−1, a vector containing
currently executable instructions for each of n threads.

• 〈l0, · · · , lt, · · · , ln−1〉, where each lt ∈ Z represents the status
of thread t. The condition lt ≥ 1 allows the execution of thread
t, while lt ≤ 0 disallows the execution of thread t.

• V , is a store mapping shared global variable names to their cur-
rent integer values, and also thread-local temporary variables to
their current integer values.

Let s0 ∈ S be the initial program state.

3.3 Program Transition Relation
A Program Transition Relation is a non-deterministic function,
σ : S → 2S ; the non-determinism is used to represent the arbi-
trary interleaving of concurrent threads, while ∅ ∈ 2S represents
termination or deadlock.

3.4 Safety Labelling function
As in model-checking, we assume a predicate on states, SL :
S → bool which indicates whether the state satisfied the user-
safety property or not.

3.5 Program Trace or Path
A program trace T is a sequence of states (s0, s1, · · · , sn) such
that ∀i, si+1 ∈ σ(si). The set of all traces of P is Traces(P),
which depicts the total behaviour of the program.

However, for our purposes, rather than just considering a set of
traces, it is more useful to form these traces into a tree as in the next
section.

3.6 Program Computation Tree
A program computation tree is an unfolding of the program tran-
sition relation σ starting with the initial state s0 ∈ S. Each com-
putation tree node, ctn, contains a state st(ctn), a single parent
node pt(ctn), and a set of possible j successor nodes succj(ctn) ∈
σ(st(ctn)). A root node is a ctn such that st(ctn) = s0, while the
leaf nodes have no successors.

A Full computation tree is a program computation tree where
all possible successors of every node in the tree are included. A

Partial computation tree is a program computation tree which is
not a full computation tree.

Depending upon the given safety property, we classify compu-
tation tree nodes as

Error Node A ctn is an error node, if either its state violates the
property, or all of its successor nodes’ states violate the prop-
erty. i.e ¬SL(st(ctn)) ∨ ∀j,¬SL(st(succj(ctn))). In Figure
1, all those nodes which are enclosed in the polygon are error
nodes.

Correct Node A ctn is a correct node, if it state satisfies the prop-
erty, and all of its successor nodes’ state satisfy the property, i.e
SL(st(ctn)) ∧ ∀j, SL(st(succj(ctn))). In Figure 1, the ctn
5,6,7,8,23,24 are correct nodes.

E/C Node A ctn is an E/C node, if at least one of its successor
is an Error Node, and at least one of its successor is a Correct
Node. In Figure 1, the ctn 3,4,1 are E/C nodes. Note that leaves
cannot be E/C nodes.

3.6.1 Error Trace
An error trace is a path in the computation tree starting from the
root node to the leaf such that the final node is an error node. In
Figure 1, {1, 3, 9, 10, 11, 12, 13} is an error trace.

3.6.2 MCP:Maximal Correct Prefix /MEP:Minimal
Erroneous Postfix of Trace

A maximally correct prefix (MCP) of an error trace T is a prefix
of T beginning with the root node to the last E/C node in T . A
maximal erroneous postfix (MEP) of the error trace T is a postfix
of T starting with the first error node and ending with the last error
node. In Figure 1, for error trace {1, 3, 9, 10, 11, 12, 13}, the MCP
is {1, 3} and MEP is {9, 10, 11, 12, 13}. Note that, our approach
is to preserve MCP of the trace and eliminate MEP as a result of
automatic correction.

3.6.3 Error Lattice
We define an error lattice in Figure 4 with abstract values {⊥,
Correct, Error, E/C} having order ⊥ v Correct v E/C and
⊥ v Error v E/C, where > = E/C,⊥ = bot. The abstract
value E/C shows that the node has both erroneous and correct
behaviour.

Created with aiSee V2.2 (ERP-Version) (c) AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 4. Error Lattice

3.7 Correction Primitives
Our focus is to correct errors which result from undesired interleav-
ings of threads in the program. To control thread interleavings, lan-
guages and libraries provide synchronization primitives like moni-
tors in Java and locks in the Posix thread library. Rather than using
a particular language/library synchronization scheme, we use fol-
lowing simple but effective primitives and show how to prune off a
maximal erroneous postfix of an erroneous trace.

A block operation on thread t is equivalent to lt = lt−1 and an
unblock operation on thread t is equivalent to lt = lt + 1

CT0 CT1

T0 T1 T2wC

Traces

TK

P0 P1 P2 Pk

wC

CTk-1

wC

Figure 5. Correcting Transforms

BlockAll() blocks all threads except the currently executing one.

Block(t) only blocks the thread t.

UnBlockAll() unblocks all threads.

UnBlock(t) only unblocks the thread t.

UnBlockIf(t,cond) unblocks the thread t if condition cond is true.

4. Correcting Transformation (CT)
The correcting transformation reduces the original erroneous pro-
gram Pe to Pc such that (∀k ∈ Traces(Pc))erase(k) ∈ Traces(Pe),
where erase(k) is the trace obtained by removing correction prim-
itives from trace k. When such a relation holds between program
traces, we write it as Traces(Pe) wc Traces(Pc) as shown in
Figure 5. Our interest is not to completely re-engineer Pc. Instead,
we insert correction primitives in a way that only MEP of the error
trace is removed while preserving its MCP.

In Figure 6, consider the top level algorithm for automatic
correction on P with safety labelling function SL. The function
findError returns a partial computation tree rooted at ctn only
if it contains an error trace. The function CorrectTrans attempts
a correction. If a correction succeeds, P is transformed into newP
using correction primitives and the entire process is repeated again.
If a correction cannot be enacted, the algorithm terminates. The
reason CorrectTrans could fail is that if by inserting correction
primitives, the program could enter a deadlock state. (See Section
4.4).

procedure autoCorrect(var P)
while(true) {

ctn = findError(P,SL);
if(ctn == null) break; // No error
newP=CorrectTrans(ctn,P);
if(newP == P) break; //no change introduced
else P=newP; // correction succeeded

}

Figure 6. Incremental Algorithm for automatic correction

4.1 Building and classifying Computation Tree nodes
We modify the traditional model-checking algorithm [5] to build
and classify the computation tree nodes. In the forward phase, the
algorithm explores unseen states in a depth-first manner and adds
these to the computation tree with the default bot value. If an old
state is visited again, or if there are no successor states from the
current ctn, it is assigned Correct. While backtracking from the
correct nodes, the parent computation tree nodes are marked as
Correct.

When an error state is encountered, the current ctn is marked
with Error value. On backtracking from the error state, the error
lattice value is propagated to the parent nodes by taking the least
upper bound of all the successor nodes.

4.2 Determining Maximal Erroneous Postfix of Error Trace
There are two options:

1 One can fully explore the entire computation tree, and then prop-
agate the error information upward by taking the least upper
bound of all successor nodes. But for constraints of memory
and speed,this is not practically feasible.

2 On the other hand, as in our case also, one can terminate state
exploration after the first error state is reached. This only pro-
vides a partial computation tree which under-approximates the
actual program behaviour. In the case where all of the ctn in
the MEP of the error trace are fully explored, we have exactly
determined MEP. However, this best case is not always achie-
veable. For partially explored ctn in the error trace, it is safe to
assume a Correct value for the unexplored successors of ctn.
This is safe, because, our algorithm works incrementally. In the
subsequent iteration, any error, if present, will be discovered.

4.3 Transformation
First, we explain the intuition behind our transformation. The anal-
ysis in Section 4.2 divides the error trace into its MEP and MCP.
The goal of the transformation is to remove MEP while preserving
MCP in the corrected program by inserting locking primitives. The
transformation procedure centers around the E/C node. An execu-
tion of a thread in E/C node that leads to an error node is erroneous
and undesirable. As an example, consider the execution of thread
D from the state 4 to state 10 in 1. This thread D should be dis-
allowed to execute before the program reaches state 4. However,
once the program transits from state 4 to state 5, thread D should
be allowed to execute again.

In Figure 7, we use the label e for an erroneous thread on the
edge from E/C node to error node for the convenience of expla-
nation. A correcting transformation should first block erroneous
thread e beforehand in the parent state of E/C node, so that when
program reaches state st(ctnE/C), thread e is unable to execute in
the E/C node, thereby eliminating MEP from this error trace. The
Block(e) should be only executed by the active thread which tran-
sits the program from the pt(ctnE/C) to ctnE/C . In Figure 7, we
use the label A for an active thread on the edge to E/C node from
its parent for the convenience of explanation.

The blocked thread e should not remain blocked forever. Once
the program is about to transit from E/C node to any of its correct
successor nodes, the thread e should be “freed” to execute again in
the successor nodes. This is achieved by inserting UnBlock(e) after
each instruction of correct threads in E/C node.

The Block/UnBlock should execute for the particular valuation
of store. To compare the stores, we have a predicate comp : Vg →
Vcur → bool which compares given store Vg with the current store
Vcur .

< j0, j1, .., jA, ..., jt >, < m0, m1, .., mA, ..., mt >, Vpt

A
E/C

< ic0, ic1, .., ie, ..., ict >, < lc0, lc1, .., le, ..., lct >, VE/C

< it >, < lt >, VE< it >, < lt >, VE< it >, < lt >, VE

ec0c1ck
E/CCC

Figure 7. Transformation

In Figure 7, consider ctnE/C with its state st(ctnE/C) = {<
ic0 , ic1 , .., ie, ..., icn−1 >, < lc0 , lc1 , .., le, ..., lcn−1 >, VE/C}. A
thread e is a single erroneous thread that executes ie in st(ctnE/C)
and transits the program to the error state st(ctnE). The threads

ck,∀k, ck 6= e, are threads which lead to correct successor nodes
when executed in st(ctnE/C). Also consider st(pt(ctnE/C)) =
{< j0, .., jA, .., jn−1 >, < m0, ..., mA, ..., mn−1 >, Vpt} where
A is an active thread that executes jA in st(pt(ctnE/C)) and
transits program to st(ctnE/C).

To block thread e atomically with jA, instruction jA is replaced
with

BlockAll()

if(comp(Vpt, Vcur)) { jA; Block(e);}
else jA;

UnBlockAll()

To unblock thread e atomically with all ick ,∀k, ck 6= e, all
instructions ick ,∀k, ck 6= e in st(ctnE/C) are replaced with

BlockAll()

if(comp(VE/C , Vcur)) { ick ; UnBlock(e); }
else ick ;

UnBlockAll()

4.4 Avoiding Deadlock
If erroneous thread e is also an active thread A, then performing
transformation in Section 4.3 would result in a deadlock because
thread A will block itself. Our analysis detects such a case and
reports its inability to correct rather than producing a program
which deadlocks.

4.5 Locking Policy
The transformation in the above section is based on the locking
policy where thread A, A 6= e is responsible for blocking thread e,
and threads ck, ∀k,∧ck 6= e are responsible for unblocking e. This
strategy has the drawback that it fails to apply the correcting trans-
formation when there is a risk of introducing deadlock. Another
strategy could be to let the erroneous thread block itself, and assign
responsibility to threads ck, ∀k,∧ck 6= e to unblock e. Comparing
different locking policies is included in the future work.

5. Example Case Study

int var=0;
my_pthread_t incr;
my_pthread_t decr;
void increment(void) {

var=var+1;
my_pthread_exit();

}
void decrement(void) {

var=var-1;
my_pthread_exit();

}
int main() {

//creating incr and decr threads and waiting for exit
...
ASSERT(var == 0);

}

Figure 8. C program containing violations to assertion (var==0)

We have implemented a prototype tool for a restricted subset
of C language allowing only global variables, thread creation and
exit, and disallowing function calls, stack and heap variables. The
tool incrementally generates automatic corrections in the interme-
diate code representation [7] of the program. Consider a simple C
program implementation in Figure 8 of the pseudocode in Figure

void %increment() {
%i.0 = load int* %var
%i.1 = add int %i.0, 1
store int %i.1, int* %var
thread_exit()
}
void %decrement() {
%d.0 = load int* %var
%d.1 = sub int %d.0, 1
store int %d.1, int* %var
thread_exit()

}
int %main() { //code omitted
}

Figure 9. Initial erroneous intermediate program representation
with race condition

2 containing two threads, incr, decr. The unoptimised interme-
diate code in static single assignment form is shown in Figure 9.
Here, i.0, i.1 and d.0,d.1 are thread-specific local temporary
variables in increment and decrement function and each instruc-
tion is atomic.

For the purpose of understanding, the thread blocking primi-
tives have been labelled on the LHS of the equality as ”#–PEC” or
”#–EC”, where # gives the iteration number of correcting transfor-
mation, while PEC refers to the parent of EC node, and EC refers
to EC node as depicted in the Figure 7.

void %increment() {
%i.0 = load int* %var

//atomically block decr with add instruction
"1--PEC"=BlockAll()
%i.1 = add int %i.0, 1
"1--PEC"=Block(uint* %decr)
"1--PEC"=UnBlockAll()

//atomically unblock decr with store instruction
"1--EC"=BlockAll()
store int %i.1, int* %var
"1--EC"=UnBlock(uint* %decr)
"1--EC"=UnBlockAll()
thread_exit()

}
void %decrement() {

%d.0 = load int* %var
%d.1 = sub int %d.0, 1
store int %d.1, int* %var
thread_exit()

}

Figure 10. After first correcting transformation

Figure 10 shows the result of applying first CT on the program
in Figure 9. This correction eliminates the undesired interleaving
of thread decr in between add and store instructions in the
increment method only.

Figure 11 shows the result of applying second CT on the pro-
gram in Figure 10. This correction further eliminates the undesired
interleaving of thread decr in between load and "1--PEC"=BlockAll()
instructions in the increment method. As a result of these two
correcting transformations, the incr thread executes all three in-
structions atomically.

The result of applying third and fourth CT on the program in
Figure 11 is collectively shown in fully corrected program in Fig-
ure 12. These subsequent corrections eliminate undesired interleav-
ings of thread incr in between the instructions of the decrement
method. As a result of these two correcting transformations, the
decr thread executes all three instructions atomically.

void %increment() {
"2--PEC" = BlockAll()
%i.0 = load int* %var
"2--PEC" = Block(uint* %decr)
"2--PEC" = UnBlockAll()
"2--EC" = BlockAll()
"1--PEC" = BlockAll()
"2--EC" = UnBlock(uint* %decr)
"2--EC" = UnBlockAll()
%i.1 = add int %i.0, 1 ;
"1--PEC" = Block(uint* %decr)
"1--PEC" = UnBlockAll()
"1--EC" = BlockAll()
store int %i.1, int* %var
"1--EC" = UnBlock(uint* %decr)
"1--EC" = UnBlockAll()
thread_exit()

}
void %decrement() {
//same code as in Figure 10.
}

Figure 11. After second correcting transformation

6. Related Work
Griesmayer et. al. [2] have used game-theoretic setting to sug-
gest local repairs to boolean programs(push-down models of pro-
grams). These repairs include corrections to incorrect variable as-
signments in the expressions.However, this strategy has not been
shown to work for errors in concurrent programs. Earlier, there has
been significant work on localising the error cause within coun-
terexamples. Ball et. al [1] compare correct and incorrect execu-
tion traces in the program to identify culprit statements. Groce et.
al [4] improve comparison by using distance-metrices. Choi and
Zeller [3] use automated tests to pinpoint failure inducing thread
interleavings. All these error explanation approaches are limited
to merely highlighting suspicious statements/interleaving in the er-
ror traces and do not suggest corrections to the error, unlike our
technique. The Autolocker tool [6] converts atomic sections spec-
ified in C programs to traditional lock-based code with the help
of programmer annotations describing a link between shared data
and protecting locks. Our approach does not require programmer
to tediously specify these annotations, rather it automatically in-
fers code instructions which should execute atomically to satisfy
the desired safety property.

7. Conclusions and Further Work
This paper presents an incremental and compile-time technique to
determine automatic corrections to safety property violations in re-
stricted multithreaded programs. By appropriately inserting lock-
ing primitives in the program, only error traces resulting from un-
desired thread interleavings are removed while preserving previ-
ous correct behaviours. This is still a work in progress. Some im-
portant future directions include combining local automatic correc-
tions into global corrections, comparing different locking schemes
for granularity and determining suitable ways of comparing pro-
gram state (global variable and stack variables) in corrected pro-
gram. We would also like to observe how speed up techniques for
model checking can improve our correction technique. We believe
that writing and correcting concurrent programs are significantly
difficult tasks, and in this context, to complement model-checking
and error explanation techniques, our approach of proposing auto-
matic corrections to errors will be very useful.

void %increment() {
"2--PEC" = BlockAll()
%i.0 = load int* %var
"2--PEC" = Block(uint* %decr)
"2--PEC" = UnBlockAll()
"2--EC" = BlockAll()
"1--PEC" = BlockAll()
"2--EC" = UnBlock(uint* %decr)
"2--EC" = UnBlockAll()
%i.1 = add int %i.0, 1
"1--PEC" = Block(uint* %decr)
"1--PEC" = UnBlockAll()
"1--EC" = BlockAll()
store int %i.1, int* %var
"1--EC" = UnBlock(uint* %decr)
"1--EC" = UnBlockAll()

thread_exit()
}
void %decrement() {
"3--PEC" = BlockAll()
%d.0 = load int* %var
"3--PEC" = Block(uint* %incr)
"3--PEC" = UnBlockAll()
"3--EC" = BlockAll()
%d.1 = sub int %d.0, 1
"3--EC" = UnBlock(uint* %incr)
"4--PEC" = BlockAll()
"3--EC" = UnBlockAll()
"4--PEC" = Block(uint* %incr)
"4--PEC" = UnBlockAll()
"4--EC" = BlockAll()
store int %d.1, int* %var
"4--EC" = UnBlock(uint* %incr)
"4--EC" = UnBlockAll()

thread_exit()
}

Figure 12. After fourth correcting transformation

Acknowledgments
The first author gratefully acknowledges funding from the Associa-
tion of Commonwealth Universities and from Intel Research (Cam-
bridge, UK) and useful comments from Hasan Amjad and Tom
Harke.

References
[1] T. Ball and M. Naik and S. Rajamani. “From Symptom to Cause:

Localizing Errors in Counterexample Traces”, POPL, 2003.

[2] Andreas Griesmayer, Roderick Bloem, and Byron Cook. “Repair of
Boolean Programs with an Application to C”, CAV’06, (Seattle).

[3] Jong-Deok Choi and Andreas Zeller. “Isolating Failure-Inducing
Thread Schedules”, (ISSTA 2002), Rome.

[4] Groce, Alex and Chaki, Sagar and Kroening, Daniel and Strichman,
Ofer. “Error Explanation with Distance Metrics”, 2005, Springer Verlag,
Software Tools for Technology Transfer (STTT).

[5] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model checking, MIT
Press, 1999.

[6] Bill McCloskey, Feng Zhou, David Gay and Eric Brewer. “Autolocker:
Synchronization Inference for Atomic Sections” POPL, Charleston,
South Carolina, January 2006.

[7] Chris Lattner and Vikram Adve. ”LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation” Proc. of the 2004
International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar. 2004.

