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Abstract. Silicon chip design has passed a threshold whereby expo-
nentially increasing transistor density (Moore’s Law) no longer trans-
lates into increased processing power for single-processor architectures.
Moore’s Law now expresses itself as an exponentially increasing number
of processing cores per fixed-size chip.

We survey this process and its implications on programming language
design and static analysis. Particular aspects addressed include the re-
duced reliability of ever-smaller components, the problems of physical
distribution of programs and the growing problems of providing shared
memory.

1 Hardware Background

Twenty years ago (1985 to be more precise) it was all so easy—processors and
matching implementation languages were straightforward. The 5-stage pipeline
of MIPS or SPARC was well established, the 80386 meant that the x86 archi-
tecture was now also 32-bit, and memory (DRAM) took 1–2 cycles to access.
Moreover ANSI were in the process of standardising C which provided a near-
perfect match to these architectures.

– Each primitive operation in C roughly1 corresponded to one machine oper-
ator and took unit time.

– Virtual memory complicated the picture, but we largely took the view this
was an “operating systems” rather than “application programmer” problem.

– C provided a convenient treaty point telling the programmer what the lan-
guage did and did not guarantee; and a compiler could safely optimise based
on this information. Classical dataflow optimisations (e.g. register allocation
and global common sub-expression elimination) became common. A GCC
port became a ‘tick list requirement’ for a new processor.

1 The main wart was that a struct of arbitrary size could be copied with an innocent-
looking ‘=’ assignment.



Moore’s Law (the self-fulfilling guide that the number of transistors per unit
area doubles every 18 months) continued to apply: a typical 1985 processor
had a feature size of 1.5 µm, today’s use 65 nm. The reduction in component
size caused consequent (so called ‘scaling’) changes: speed increased and voltage
was reduced. However, the power dissipated by a typical 2 cm2 chip continued
to increase—we saw this in the ever-increasing heat sinks on CPUs. Around
2005 it became clear that Moore’s law would not continue to apply sensibly to
x86 class processors. Going faster just dissipates too much power: the power
needed to distribute a synchronous clock increases with clock speed—a typical
uni-processor x86-style processor could spend 30% of its power merely doing
this. Equally there are speed-of-light issues: even light in vacuo takes 100 ps (≡
10 GHz) for the round trip across a 15 mm chip; real transistors driving real
capacitive wires take far longer. For example the ITRS2 works on the basis that
the delay down 1 mm of copper on-chip wire (111 ps in 2006) will rise to 977 ps by
2013; this represents a cross-chip round-trip of nearly 30 ns—or 75 clock cycles
even at a pedestrian 2.5GHz—on a 15mm chip. Of course, off chip-access to
external memory will be far worse!

However, while Moore’s Law cannot continue forever3 it is still very much
active: the architectural design space merely changed to multi-core processors.
Instead of fighting technology to build a 5 GHz Pentium we build two or four
2.4GHz processors (‘cores’) on a single chip and deem them ‘better’. The indi-
vidual cores shrink, and their largely independent nature means that we need
to worry less about cross-the-whole-chip delays. However, making a four-core
2.4GHz processor be more useful than a single-core 3 GHz processor requires
significant program modification (either by programmer or by program analysis
and optimisation); this point is a central issue to this paper and we return to it
later.

Slightly surprisingly, over the past 20 years, the size of a typical chip has not
changed significantly (making a chip much bigger tends to cause an unacceptable
increase in manufacturing defects and costs) merely the density of components
on it. This is one source of non-uniformity of scaling—and such non-uniformity
may favour one architecture over another.

The current state of commercial research-art is Intel’s 2006 announcement of
their Tera-scale [11] Research Prototype Chips (2.75 cm2, operating at 3.1GHz).
Rattner (Intel’s CTO) is quoted4 as saying:

“. . . this chip’s design consists of 80 tiles laid out in an 8x10 block ar-
ray. Each tile includes a small core, or compute element, with a simple
instruction set for processing floating-point data, . . . . The tile also in-
cludes a router connecting the core to an on-chip network that links all
the cores to each other and gives them access to memory.
“The second major innovation is a 20 megabyte SRAM memory chip
that is stacked on and bonded to the processor die. Stacking the die

2 International Technology Roadmap for Semiconductors, www.itrs.net
3 It is hard to see how a computing device can be smaller than an atom.
4 http://www.intel.com/pressroom/archive/releases/20060926corp b.htm
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makes possible thousands of interconnects and provides more than a
terabyte-per-second of bandwidth between memory and the cores.”

MIT has been a major player in more academic consideration of processor
designs which can be used to tile a chip. The RAW processor [21] made on-chip
latencies visible to the assembly code processor to give predictable behaviour;
the recent SCALE processor [2] addresses similar aims: “The Scale project is
developing a new all-purpose programmable computing architecture for future
system designs. Scale provides efficient support for all kinds of parallelism in-
cluding data, thread, and instruction-level parallelism.”

The RAMP (Research Accelerator for Multiple Processors) consortium de-
scribe [24] an FPGA emulator for a range of new processors, and Asanovic et
al. [2] summarise the “Landscape of Parallel Computing Research” from both
hardware and software archetype (so-called ‘dwarfs’) perspectives.

1.1 Hidden architectural changes

The evolution, and particularly speed increase, from early single-chip CPUs
to modern processors has not happened merely as a result of technology scal-
ing. Much of the speed increase has been achieved (at significant cost in power
dissipation) by spending additional transistors on components such as branch-
prediction units, multiple-issue units and caches to compensate for non-uniform-
ities in scaling.

The original RISC (‘Reduced Instruction Set Computer’) design philosophy
of throwing away rarely-used instructions to allow faster execution of common
instructions became re-written to a revisionist form “make each transistor pay
its way in performance terms”. Certainly modern processors, particularly the
x86, are hardly ‘reduced’ however, they do largely conform to this revised view.
Thus, while originally it might have been seen as RISC (say) “to remove a
division instruction limiting the critical timing path to allow the clock-speed
to be increased”, later this came to be seen as “re-allocating transistors which
have little overall performance effect (e.g. division) to rôles which have greater
performance impact (e.g. pipeline, caches, branch prediction hardware, etc)”.

Another effect is that speed scaling has happened at very different rates.
Processor speeds have increased rather faster than off-chip DRAM speeds. Many
programmers are unaware that reading main memory on a typical PC takes
hundreds of processor cycles. Data caches hide this effect for software which
behaves ‘nicely’ which means not accessing memory as randomly as the acronym
RAM would suggest. (Interestingly, modern cache designs seem to be starting
to fail on the “make each transistor pay its way in performance terms” measure.
Caches often exceed 50% of a chip area, but recent measurements show that
typically on SPEC benchmarks that 80% of their content is dead data.)

The result is that the performance of the modern processors depends far more
critically on the exact instruction mix being executed than was historically the
case; gone are the days when a load took 1–2 cycles.
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Addressing such issues of timing is also a source of programming language
design and program analysis interest. However it may be that this problem might
diminish if, once multi-core is fully accepted, the fashion moved towards a greater
number of simpler (and hence more predictable) processors rather than fewer
complex processors.

1.2 Other Hardware Effects

As mentioned above, technology scaling reduces the size of components and
increases switching speed even though voltage is also reduced. Propagating a
signal over a wire whose length is in terms of feature size scales roughly (but
not quite as well) as the switching speed of components. However, propagating a
signal over a wire whose length is in terms of chip size gets exponentially worse in
terms of gate delays. This can be counteracted by using larger driver transistors,
or more effectively by placing additional gates (buffering) along the path. But
doing computation within these buffers adds very little to the total delay. Two
slogans can summarise this situation:

– (the expanding universe): communication with neighbouring components
scales well, but every year more components appear between you and the
edge of the chip and communicating with these requires either exponentially
more delay, or exponentially bigger driver transistors. Thus local computa-
tion wins over communication.

– (use gzip at sender and gunzip at receiver); it is worth spending increasing
amounts of computation to reduce the number of bits being sent because this
allows greater delays between each transition in turn which allows smaller
transistors to drive the wire.

Once a long wire has gates on it, then we may as well do something useful
with them. This fortuitously overlaps the question of how we enable the many
processors on a multi-core chip to communicate with one another. The answer to
use is some form of on-chip network. This can be fast (if big driver transistors are
used) and compare favourably with communication achieved by random point-
to-point links.

Reducing the feature size of a chip generally requires its operating voltage
to be reduced. However, this reduces noise margins and also increases the ‘leak-
age current’ (the classical CMOS assumption is that transistors on a chip only
consume one unit of energy when switching); below 65 nm or so leakage current
can exceed power consumption due to computation. This gives two effects:

– it is beneficial to turn off the power supply to areas of the chip which are
not currently active;

– the reduced noise margin increases the error rate on longer wires—sometimes
it is only half-jokingly suggested that TCP/IP might be a good protocol for
on-chip networks.

A further effect of feature size reduction is that as transistors become smaller,
their state (on/off) is expressed as a small number of electrons. This makes the
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transistors more susceptible to damage by charged particles e.g. cosmic rays,
natural radiation. Charged particles may permanently damage a device, but it
is far more common for it to produce a transient event, also known as Single
Event Transient (SET). For example the electrons liberated by a charged par-
ticle may enable a transistor whose input demands it be off (non-conducting)
to conduct for a short period of time (600 ps is quoted). Some DRAM memory
chips (‘ECC’) are equipped with redundant memory cells and error-detecting
or error-correcting codes generated during write cycles and applied during read
cycles; similarly aerospace often uses multiple independent devices and majority
voting circuits. It is notable that a standard aircraft ‘autopilot’ function is im-
plemented using five 80386 processors; the larger feature size of the 80386 makes
it less susceptible to SET events, and the multiple processors give significant
redundancy.

1.3 Summary: Hardware Evolution Effects on Programming

The hardware changes discussed above can be summarised in the following
points:

– computation is increasingly cheap compared to communication;
– making effective use of the hardware requires more and more parallelism;
– the idea of global shared memory (and with it notions like semaphores and

locking) is becoming less sustainable; on-chip networks increasingly connect
components on chip;

– to keep chips cool enough we may have to move CPU-intensive processes
around, and (because of leakage current) to disable parts of the chip when
they are not being used;

– because of smaller feature sizes, transient hardware errors (leading to errors
in data) will become more common.

One additional effect is:

– the time taken for a computation has become much less predictable due
to the complexity of uni-processor designs, caches and the like. However,
this may reduce in the future were individual processors to become simpler
and the idea of a uniform memory space were to be less of a programming
language assumption.

The rest of the paper considers programming language consequences.

2 Programming Language Mismatch to Hardware

Most current mainstream programming languages are pretty much stuck in the
1985 model. It is true that C has been superseded by the Object-Oriented
paradigm (C++, Java, C#) and this is certainly useful for software engineering
as it facilitates larger systems being created by programming teams. However,
in many ways very little has changed from C.
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Perhaps the critical observation is that the current OO fashion coincided
with the period of steady evolution of the (single-processor) x86 architecture.
The current pressures for revolutionary change may (and I argue should) lead to
matching language change. Let us examine some particular problems with the
OO paradigm (many are inherited from C).

Consider a function (or method) foo which takes an element of class C
as a parameter. In C++, merely to declare foo (e.g. as part of an interface
specification before any code has been written) we have to choose between three
possible declarations:

extern void foo(C x);
extern void foo(C *x);
extern void foo(C &x);

The first one says call-by-value, the last two provide syntactic variants on call-
by-reference. While on a single-processor architecture we might discuss these in
terms of minor efficiency considerations (e.g. whether class C is small enough
that its copying involved in call-by-value makes up for additional memory ac-
cesses to its fields implied by call-by-reference), on a multi-core architecture the
difference is much more fundamental. If call-by-reference is used then the caller
of foo and the body of foo must by executed on processors both of which have
access to the memory pointed to by x. While call-by-value might therefore seem
attractive, when used without care it breaks typical OO assumptions (‘object
identity’). E.g. toggling one switch twice may well have a different effect from
toggling both a switch and its clone.

It might be suggested that Java avoids this issue; however it avoids it in
the way that in ‘1984’ Orwell’s totalitarian government encourages ‘Newspeak’
to avoid thought-crime by making it inexpressible in the language. In Java all
calls are by reference; therefore caller and callee must execute on processors
sharing access to passed data. Call-by-value is at best clumsily expressed via
remote method invocation (RMI); moreover, any suggestion that RMI can be
introduced “where necessary” to distribute a Java system is doomed to fail due to
the very different syntax and semantics of local and remote method invocation.

Incidentally, the restrict qualifier found in C99 does not help significantly
here in that it keeps the assumption of global shared memory, but merely allows
the compiler to make various (non-)aliasing assumptions.

We will return to this topic below, but I would like to argue that it is inap-
propriate to have interface specification syntax which places restrictions (‘early
binding’) on physical distribution of methods; one suggestion is that of a C++
variant declaration

extern void foo(C @x);

with meaning “I’ve not yet decided whether to pass x by value or by reference,
so fault my program if I do an operation which would have differing semantics
under the two regimes.”
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This would allow late binding of physical distribution: all uses of ‘@’ can be
treated as copy (if caller and callee do not share a memory space at reasonable
cost) or by alias (if caller and callee execute on the same address space).

2.1 What Should This Community Learn?

We will return to topics below in more detail, but we list them here to motivate
the topics we choose below.

Processor developments expose the fact that C-like languages do not capture
important properties of system design and implementation for such architectures.
Important issues which we might want to expose to aid writing software for such
architectures include:

– late binding of physical distribution;
– more expressive, but concise interface specifications;
– systematic treatment of transient errors.

2.2 Why not stick with C++/Java/C#?

For many traditional applications this will suffice, e.g. editors, compilers, spread-
sheets and the like will continue to work well on a single core of a multi-core
processor. But current and future applications (e.g. weather forecasting, sophis-
ticated modelling5) will continue to demand effective exploitation of hardware—
and this means exploiting concurrency.

Remember also that one particular challenge will be to execute programs
written for packages—such as Matlab—effectively.

3 Programming Language Design or Program Analysis

A great deal of work in this community concerns program analysis. While I
have personally worked on program analysis, and continue to believe in it for
local analysis, I now have significant doubts as regards whole-program (inter-
module) analyses and their software engineering impact. The problem is that of
discontinuity: such a large-scale analysis may enable some optimisation which
gains a large speed-up, for example by enabling physical distribution. However,
a programmer may then make a seemingly minor change (perhaps one of a long
sequence of changes) to a program only to find that it now runs many times
slower. This real problem is that it is hard to formulate what the programmer
‘did wrong’ and to enable understanding of how to make a similar change without
suffering this penalty.

Type systems and properties expressed by type-like systems seem to provide
a better answer: properties of interest are then explicitly represented within a
5 One might wonder how our community might exploit large-scale concurrency. Do

our programs match any of the software dwarfs of Asanovic et al. [2]? Or will we
merely continue to use use one core of our multi-core chips as we do at the moment?
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programming language at interface points. For example, the interface to a pro-
cedure may express the property that its parameter will be consumed (logically
de-allocated); then callers of the procedure can check that no use is made of the
parameter after the call. This means that violating important assumptions will
result in errors which have human-comprehensible explanations.

Of course, there is no problem with local inference—a tasteful mechanism al-
ways avoids pointless specification—the advantage is that programmer-specified
invariants can be used to anchor local reasoning and to break down a global
analysis into many smaller independent analyses.

For various aspects of multi-core programming (e.g. running two blocks of
code concurrently), it is important to know whether two pointers may alias.
Much important work has been done on alias analysis (which is undecidable
in theory and for which achieving good approximations is problematic in prac-
tice). However, we still lack designs for programming languages in which aliasing
information can be expressed within the language rather than as a mere analysis.

This situation can be compared with the two ways of adding types to a
dynamically-typed language. Method 1 is to analyse the program determining
which variables have known type (and optimising their accesses) and which have
to adopt a fall-back ‘could be anything’ treatment. Method 2 is to add a manda-
tory type system for the language which allows all variable accesses to be opti-
mised and which rejects as few programs as possible. Lisp (with Soft Typing)
and ML might serve as good templates here.

An implementation language in which programmer knowledge of known alias-
ing (and non-aliasing) can be expressed in interface specifications succinctly, and
acceptably to an ordinary programmer, would be a particular success here.

4 Programming Languages: High-Level and
Implementation Level

Some might be surprised at my focus on C in the introduction, when there were
arguably many more ‘interesting’ language features being explored in 1985. I
focused on C because it corresponded directly to hardware features in 1985 (it
was a good implementation language), and indeed could (and did) usefully serve
as an intermediate language for compilers from higher-level languages.

The same motivation was also present in the design of Occam [10] which was
a well-matched implementation language for an early multi-core computer6—
the ‘transputer’.7 Occam was modelled on Hoare’s CSP so naturally supported
message passing (separate transputers had no shared memory), and represented
concurrency directly. Sadly, in many ways it was ahead of its time, and we would
have perhaps been in a better position with respect to higher-level language
6 The ‘cores’ here were actually separate chips containing 16-bit (later 32-bit) proces-

sors with their own memory and four fast I/O ports (e.g. with nearest neighbours
on a rectangular grid).

7 http://en.wikipedia.org/wiki/INMOS transputer seems the best reference nowa-
days.
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for multi-core had more work been done then on novel higher-level features to
compile to Occam!

My feeling here is that we need both sorts of language; we need a good
implementation language which is well-matched to hardware, and this exhibits
the ‘sharp end’ of many challenges. However, high-level languages may also need
to change somewhat, and this is taken up in the next section with “pointers
considered harmful” and Section 5.7 explores the desire to have late binding of
store-versus-recompute decisions. Some form of structuring beyond “everything
is an object (or value) which can be used anywhere at any time” appears likely
to be useful.

5 Some Interesting Directions

This section discusses work or possible future projects (inevitably biased towards
my own interests) which could be useful in addressing the mismatch between
current languages and future hardware.

5.1 (Simple) Pointers Considered Harmful

We have already identified how the ubiquitous use of call-by-reference for objects
causes two forms of problems. Firstly in practice it becomes almost impossible
to determine whether two object references point to the same object or not, this
inhibits parallelisation since code as simple as

for (i=0; i<NCHANS; i++) process_channel(i);

is often not parallelisable because of the possibility of aliasing of some reference
in process_channel(0) with a reference in process_channel(1). Secondly,
pointers inhibit physical distribution in situations where memory access is not
uniform, e.g. if a caller and callee are on different physical processors then we
need to ensure that any call-by-reference parameter lives in memory accessible
to both—and this may not exist or may be much slower to access than fast local
memory. C99’s restrict qualifier can sometimes help with the former problem
but not with the latter.

Shape Analysis [16], Uniqueness types [13] and Ownership Types [3] pro-
vide some purchase on this problem. They identify a similar theme: unrestricted
pointers are too powerful. In many ways they are like the unrestricted use of
labels and gotos which Dijkstra railed against in “goto considered harmful”.
Given that a pointer to local data on one processor is not necessarily even valid
on another processor, we need some way to tame pointers. This can happen in
more than one way: either we wish to control the number of aliases to a given
object, or we wish to ascribe an address space to a pointer, so that dereferencing
a pointer is only valid on processors which have a capability to do so.

In our work on PacLang [4] we showed how a quasi-linear8 type system allows
one to write code naturally in which an object could move between processors
8 A linear type system requires each object to have a single active pointer and when

that pointer is assigned or passed to a function then it may no longer be used to
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with compile time checking of linearity assumptions. A purely linear type system
tends to require rather uncomfortable passing of values back and forth; a quasi-
linear system enhances this with limited-lifetime second-class pointers which
make local call-by-reference possible in a natural programming style. It turns
out that linear (or quasi-linear) knowledge of pointers helps [5] in refactoring
code from sequential to concurrent by telling a compiler that certain aliasing—
which would lead to a race condition—cannot happen. A particular noteworthy
point was the concept of an “Architecture Mapping Script (AMS)” which spec-
ified architecture details so that late binding of processes to processors could be
achieved.

Microsoft’s Singularity OS (Fähndrich et al. [6]) project further develops this
idea to a message-passing operating system—linear data buffers (allocated in
ExHeap) can be transferred from process to process by merely passing a pointer
since linearity ensures that the sender no longer has access to the data after
transfer.

Region-based type systems [19] distinguish pointer types with the region
(think ‘address space’) into which they may legitimately point. They provide a
good basis for providing syntax to describe situations in which a pointer to local
memory in one processor is being passed via a second processor (on which it is
not valid to dereference it) onto a third which can dereference it. However, as
Fähndrich et al. observe, the original lexical nesting structure of regions cannot
be retained as-is.

5.2 The Actor Model

In the Actor Model of computation, all inter-process communication is achieved
by message passing; actors only access disjoint memory. Given that architectural
developments mean that communication is becoming the dominant cost rather
than computation, actor-based languages are appealing for their explicit repre-
sentation of non-local communication. A notable commercial example is that of
Erlang [1].

5.3 Theoretical Models of Restricted Re-Use

We can see all the above models as attempts to control how and when value might
validly be accessed—contrast this with traditional shared memory in which any
value may be accessed at any time so long as it has not been overwritten.

While models based on linear types have been mentioned several times above
(Wadler [20] is the seminal explanation of this), Separation Logic [14] has recently
attracted rapidly growing interest. Separation logic at its simplest expresses
assertions that an address space is split into two or more disjoint areas—not

reference the object; only the new copy may be so used. In C++ a dynamic version
of this concept is enshrined as the auto ptr class and invalidation of old pointers is
achieved by overriding the assignment operator.

10



only can this model the sort of situations we have seen above, but it can also
model dynamic change of ownership and shared-memory systems very effectively.

Both linear types and separation logic provide mechanisms for describing
values which are not freely accessible from the whole program. However, they
describe overlapping rather than identical phenomena and a formal connection
between them would be highly desirable for inspiring work on concise program-
ming language representations of restricted re-use.

5.4 More on Interface specifications

We have already seen that providing interface specification on pointers can pro-
vide compile-time to programs to enable them to be better mapped onto multi-
core hardware.

However, there are other ways in which interfaces are often inexpressive and
we give a hardware example.9 Consider the Verilog encoding of a two-stage shift
register: the input byte on ‘in’ appears on the output ‘out’ two clock ticks later:

module two_stage (in, out, clock);
input [7:0] in;
output [7:0] out;
input clock;

reg [7:0] state1;
reg [7:0] state2;
assign out = state2; // or out = state1
always @(posedge clock)

begin
state1 <= in;
state2 <= state1;

end
endmodule

In this example the module specification contains the classical programming
language knowledge that in, out, and clock are wires of given width and which
of them are outputs. However, suppose we change the commented line to

assign out = state1;

then the code behaves as a one-stage delay instead. In an ideal world, we would
like this timing information, or indeed information that one signal is only valid
after another goes high, to be part of the type information in the module spec-
ification so that if part of a circuit is retimed—say to equalise computation
9 It is admitted that HDLs (Hardware Description Languages) are moving towards

using FIFO “channels” to add flexibility in the time domain to ease this sort of
problem, particularly for crossing clock domain boundaries, but the example given
illustrates another way in which classical programming language “names and types”
interface formalism can be seen as lacking.
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delays—then type-checking errors can be raised for places in the code which
have not taken this retiming into account.

Does such information have a place in future programming languages?

5.5 Fractals in Programming and Architecture

Rent’s Rule (Stroobandt [17] gives a good overview) enshrines the empirical
observation that the number of pins T on a chip tends to follow a power law
T = T0g

p where g is the number of internal components (gates) and T0 and p
are constants. Donath noted that Rent’s Rule could also be be used to estimate
wire-length distribution in VLSI chips.

Power laws tend to suggest that there is an underlying self-similarity (also
known as the system being fractal). Of course, the very basis of top-down engi-
neering (software or otherwise) is that each component is hierarchically built of
a number of smaller components. This also is self-similar.

It is intriguing to consider whether these two observations could be exploited
to improve our understanding of how to map complex systems to hardware. With
the exception of references to global memory (heap-allocated data structures—
recall the “pointers considered harmful” slogan above) data flow follows design
decomposition which is very encouraging. Do global-memory-free programs have
a better mapping to hardware? Can such programs be expressive enough?

Of course, global memory breaks this assumption because it provides a way
to move data from any part of the system to another in a relatively uncontrolled
manner; in general memory access requires some form of serialisation which
slows down processing elements. One question is whether designs like Intel’s
‘Tera-scale’ (bonding the memory directly on top of the processor die essentially
exploits a scale-free short-path access in the third dimension, see Section 1) will
provide enough bandwidth to (and cache-coherency of!) global memory so that
shared-memory models are still valid or whether the concept of global memory
is still ultimately problematical.

5.6 Limits for Speed-ups

In seminal work Wall [23] analyses instruction traces for various benchmarks
including an early version of the SPEC10 benchmark suite. He calculated lim-
its to speed-up based on instruction-level parallelism under various models of
behaviour of caches and branch prediction. Redux [12] constructed a more ab-
stract “Dynamic Data Flow Graph (DDFG)” from a computation which re-
flected merely the computations necessary to compute the result. The depth of
the DDFG therefore represents the computation given unbounded parallelism
(not necessarily limited to instruction-level parallelism).

An interesting research direction might be to explore more whether DDFGs
for various benchmarks might fit (or be made to fit by source-level adjustment)
a world in which parallel computation is cheap, but communication is expensive.
To what extent to DDFGs express fractal structure inherent in programs?
10 www.spec.org
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5.7 Store versus Re-compute

Traditionally, the sequential nature of computers has generally made program-
mers aware that re-computation takes time and the way to solve this is to store
values for later re-use. However, as memory becomes more distributed then lo-
cal re-computation of some values (especially data structures in memory) may
become cheaper than accessing remote memory.

We have already seen a small version of this in optimising compilers: if a small
common sub-expression (e.g. x+1), which would normally held in a register, has
to be spilled to memory, then it is better to rematerialise it (i.e. recompute it,
thereby undoing the CSE optimisation) rather than accept the cost of a store
followed by a re-load.

Again it would be desirable to to have language features which allow pro-
grams to be designed and developed more neutrally with respect to store versus
recompute (‘late binding on the store/recompute axis’) than is currently the
case. This would also facilitate porting to multiple architectures.

5.8 Opportunistic Concurrency and Related Techniques

While the status of global memory in multi-processor systems is unclear, there
is much scope for examining alternatives to today’s ubiquitous semaphore-based
locking and unlocking mechanisms which can be expensive due both to the cost
of memory synchronisation for atomic test-and-set or compare-and-swap instruc-
tions and also to the fact that programmers often find it easier to take a coarse-
grain lock instead of reasoning about the correctness of fine-grain locking.

One of these is Software Transactional Memory (STM) [7], in which lock and
unlock are replaced by an atomic block. Atomic blocks execute speculatively in
that either they execute to completion without interference from other processes
able to access given memory, or such interference is detected and the atomic
block (repeatedly) re-tried. This idea is already familiar from databases. Software
Transactional Memory represents an interesting mid-point between the notion
of lockable global memory and the notion of message-passing.

Worth grouping with STM is Rundberg and Stenstrom’s Data Dependence
Speculation System [15] in which ambiguities in compile-time alias analysis are
resolved at run time by speculatively executing threads concurrently but with
a dynamic test which effectively suppresses writes occurring out of order and
restarts the threads from a suitable point.

Lokhmotov et al. [9] describe Codeplay’s sieve construct which side-steps
many of the problems with alias analysis. A sieve block has writes with the block
delayed until the block exit. This allows a programmer to express the absence of
read-after-write dependencies (which often have to be assumed present due to
inaccuracy of alias analysis); the effect is to allow C-like code to be optimised
into a “DMA-in, process in parallel, then DMA-out” form.

Finally, there has been significant work on pre-fetch- or turbo-threads in
which two versions of code are compiled. The second one is the normal code,
and the first one is a cut-down version which is intended to execute in advance
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of the second one; it does reduced computation with no stores to global memory
and all loads from local memory replaced by pre-fetch instructions (start load
into cache but do not wait for result).

5.9 Programming against Hazards and Transient Errors

This is a relatively new topic for our community. We probably are all aware
that highly safety-critical (usually for aerospace applications) electronics is of-
ten duplicated and a majority-voting circuit avoids any single processor crashing
(temporarily or even permanently) causing mission failure. Embedded systems
programmers have for years used ‘watchdog timers’ to ensure that systems suf-
fering temporary failure (e.g. an infinite loop caused by data being corrupted by
a cosmic ray), can be restarted relatively quickly. The idea is that the ‘watchdog’
has to be sent a message periodically confirming the sender is still alive; if this
does not happen then the watchdog (hardware) timer causes a system reset. Of
course, there have been research groups focusing on overall system reliability for
decades, but recently there has been several novel approaches which intersect
our community’s interests more directly.

Some work which springs to mind includes:

– Sarah Thompson’s thesis [18] showing not only that hazards (narrow pulses
on an otherwise clean signal or transition) can be modelled by abstract inter-
pretation, but also that majority voting circuits are theoretically incapable
of removing them without resorting to timing.

– Walker et al. describe lambda-zap [22] whose reduction both inserts faults
and also duplicates computations to be resolved by majority voting. There is
also a type system that guarantees well-typed programs can tolerate a single
error.

– Hillston’s PEPA [8] (Performance Evaluation Process Algebra) which can
model quantitative aspects of systems, originally reaction rates, but hope-
fully also failure rates.

Finally, there is idea that performance and reliability can be traded, for exam-
ple we might eventually require some form of redundant computation—perhaps
merely at the hardware level—to give enough reliability for (say) a spreadsheet,
but be tolerant of errors during some applications (e.g. rendering graphics for
display where the human eye either would not notice errors or would ignore
them).

6 Conclusions

We have seen that forces in hardware design are increasing the mismatch be-
tween traditional programming languages and future processor designs. I argue
that languages have to evolve to take into account the new emphasis on concur-
rency and the reduced ability to view an object as a simple pointer—and more
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expressive interface specifications are pivotal. Program analysis techniques can
provide inspiration for these future designs.

In Addition, there remains scope for language features designed to address
issues directly concerning hardware; for example, how is unreliability best ex-
pressed? Can we improve the expressivity of hardware and software interfaces
to document better their behaviour?

In the bigger picture, there is still much scope for higher-level language de-
signs which encourage programmers to think in a way which naturally encodes
effectively on coming architectures—and even for new architectural features cor-
responding to programming innovations. Can we return to the comfort of 1985
when implementation languages and computer architecture matched?
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