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Abstract

Traditionally, the theory of abstract interpretation has con-
centrated on the study of when one interpretation is sound
(also safe or correct) with respect to another. We con-
sider the dual notion of when one interpretation is com-
plete with respect to another. Under the usual formulation
of abstract interpretation, undecidability in general implies
that a finitely computable sound abstraction of the stan-
dard interpretation is not complete. (For example, if we
simplify 643 ∗ (−192) to (+) ∗ (−) using the “rule of signs”
we cannot expect to retrieve −123456 from the resulting
(−), even though we are certain that the result is nega-
tive.) Based on the idea that compilers can only depend
on a finite number of program properties, we augment in-
terpretations with predicate symbols specifying properties
of interest (thereby replacing algebraic interpretations with
logic interpretations). Interpretation J being sound (resp.
complete) with respect to I is now phrased as “all questions
(formulae) yielding true for J (resp. I) also yield true for I
(resp. J)”.

The traditional “rule of signs” turns out to be sound and
complete for multiplication but only sound for addition.

Sometimes abstract interpretations have spurious domain
elements. The state minimisation algorithm for finite deter-
ministic automata can be used to produce a canonical (sim-
plest) abstract interpretation which is sound and complete
with respect to any given finite abstract interpretation but
possibly simpler to compute.

A homomorphism always yields a sound and complete
abstraction. Moreover, we show that a sound and complete
abstraction map is not necessarily a homomorphism, but its
composition with the natural map to the canonical interpre-
tation is a homomorphism.

One side-effect of our formulation of abstract interpre-
tation is that it de-emphasises the ordering on the abstract
domain which is relegated to an (optional) proof basis.
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1 Introduction

Currently there are two main systematic frameworks for ob-
taining properties of programs. One is the technique of ab-
stract interpretation created by the Cousots ([5] is a recent
reference). Another is the technique of property inference
which became well-known from the Hindley-Milner-Damas
type reconstruction algorithm for ML.

Abstract interpretation rests on formulating and then
evaluating a non-standard meaning (or approximation there-
to) for a program. The result then enables one to make de-
ductions concerning computation of the standard meaning—
correctness is usually proved by the close connection be-
tween standard and non-standard computations. Abstract
interpretation has an algebraic and domain-theoretic flavour
and has been extensively developed in denotational form by
the Nielsons ([12] is a definitive work). The Cousots have
also been responsible for major developments including re-
cent work [3] which extended the notion of operational se-
mantics so as to enable denotational semantics to be exhib-
ited as an abstraction of operational semantics.

Property inference is based on formulating a set of infer-
ence rules which specify the program property of interest.
Standard program evaluation can be used to specify a no-
tion of validity (in the logical sense) and correctness is then
a matter of showing soundness of the inference rules (i.e.
that provability implies validity).

Actual calculation of properties tends to differ: abstract
interpretation by-and-large proceeds by symbolic evaluation
with construction (or approximation) of fixpoints being used
for loops or recursion. On the other hand property inference
systems tends to use some form of unification as a compu-
tation method. These seemingly disparate notions of cal-
culation can be reconciled by observing that the equation
x = f(x) can either be seen as a request either for a fix-
point iteration or alternatively for a unification (relative to
a system of equalities).

Relatively few works have attempted to reconcile these
two formulations. Mycroft and Jones [10] manage to exhibit
the Hindley-Milner type system as an abstract interpreta-
tion of the untyped λ-calculus but the result is much more
unwieldly to use than the inference rule formulation. Ben-
ton [2] and Jensen [9] independently formulate strictness
properties as logical statements. Finally, the above work of
the Cousots [3] can be seen as using abstract interpretation
to relate inference systems.

The present work was developed as a position paper in
which we argue for an extension of the concept of interpre-



tation from algebraic to logical form. In abstract interpreta-
tion we traditionally see an interpretation as being of alge-
braic form consisting of a domain of discourse and functions
operating thereon; we propose adding interpretable predi-
cates as in the logical notion of interpretation. This has
practical benefits in explaining various phenomena seen in
the literature, some of which are given in section 1.1. More-
over it helps bridge the gap between abstract interpretation
and property inference systems.

For simplicity and our desire to expose the connection be-
tween notions in abstract interpretation and algebraic con-
cepts such as homomorphism, this version of the paper is
formulated in a first-order algebraic meta-language. This
suffices for first-order (independent attribute) abstract in-
terpretation without a fixpoint operator. However, some
examples are taken from a wider class of situations.

For uses in abstract interpretation, we assume an un-
derlying object language whose phrases are given (deno-
tational) semantics by primitive recursive translation into
meta-language terms. These meta-language terms are then
traditionally interpreted via algebras for standard and ab-
stract semantics which provide a carrier set (possibly with
additional domain structure) and functions on this set. Of-
ten this algebra is many-sorted to reflect multiple syntactic
categories but this adds nothing but complication to the
results herein.

For the rest of this paper we only study these meta-
language terms, their interpretations and relationships be-
tween interpretations. Soundness results carry across to ob-
ject language phrases by structural induction. A sufficient
condition for completeness results to carry across is that the
denotation function allows every meta-language term to be
generated by some object-language phrase. (See section 1.3
for an informal connection with full abstractness.)

Section 2 deals with the traditional formulation of ab-
stract interpretation and section 3 with the new predicate-
based system. Sections 4–6 consider various examples—a
collecting interpretation analogue, projection-based strict-
ness and a group theoretic example.

One practical application of completeness is that of char-
acterising whether two abstract properties of a program have
any mutual dependence—remove the predicate identifying
each of the properties in turn. The properties are fully inde-
pendent or orthogonal if the number of values in the canon-
ical forms of the two reduced interpretations factorise the
number in the joint interpretation. Similarly, one is func-
tionally dependent on another if removing the former does
not affect the number of abstract values.

1.1 Examples

The work we describe can be used to explain the following
examples.

Typically introductions to abstract interpretation start
with the “rule of signs”, whereby integer constants are ab-
stracted by a set S of signs {(+), (−), (=)}. The operation
of integer multiplication then induces an operation on S.
However, the operation of addition requires S to contain a
least upper bound value (±) representing the uncertainty of
(+) + (−). Thus abstraction functions are often referred to
as ‘semi-homomorphisms’. This causes some initial surprise
and a general feeling that this happens by the coincidence
of abstraction being a homomorphism for multiplication but
not for addition. Our framework shows this is not merely
a coincidence, but a consequence of the signs interpretation

being complete for questions involving the sign of expres-
sions only involving multiplication, but incomplete for those
involving addition. Section 6 contains a group-theoretic ho-
mologue.

Moreover, Ernoult and Mycroft [6] observed that the un-
typed higher-order strictness interpretation of Hudak and
Young [7] contained spurious domain points. In particular,
the former demonstrated that strictness domain SEM = 2×
(SEM → SEM ) could provide exactly the same information
as the latter’s domain SHY = (P(X),⊇)× (SHY → SHY ) in
spite of there not being a function γ : SEM → SHY which re-
creates HY-strictness from EM-strictness. The key to under-
standing this situation, which the current work addresses, is
that the strictness information in either domain was only
used in a testing predicate p ⊆ S, (S ∈ {SEM , SHY }), de-
fined by p(v, f) ≡ v = ⊥.

In this work we use abstraction functions which map
from one interpretation’s universe to another’s, although the
ideas appear to extend to abstraction relations. Given this
framework it is standard first to define a collecting interpre-
tation. This is derived by lifting the standard interpretation
to operate on sets of standard values (representing proper-
ties). Here we do not wish to restrict abstraction functions
to act between abstract interpretations including the collect-
ing interpretation but also allow them to map directly from
the standard semantics to an abstract interpretation. In this
we follow Reddy and Kamin’s recent work [13]. Section 4
shows that adjoining a Herbrand-indexed class of predicates
to the set of function symbols can achieve a similar effect
directly in the standard interpretation.

1.2 Related work

Recently, there have been classes of work which use the word
completeness in association with abstract interpretation.

Sekar, Mishra and Ramakrishnan [14] defined a weaker
notion of completeness from that discussed in this paper.
They showed that Mycroft’s original strictness analysis was
complete with respect to a standard interpretation involv-
ing flat domains in the sense that Mycroft’s strictness in-
terpretation identified functions which remain strict under
chaotic replacement of any integer value by any other dur-
ing evaluation under the standard interpretation. Reddy
and Kamin [13] develop this idea in a denotational form by
defining two functions to be similar in the standard inter-
pretation if, when applied to identical argument sequences,
they have equal abstractions. This is a finer equivalence
than “have equal abstractions”. An abstract interpretation
said to be complete if, letting f , g be functions and fα,
gα their abstractions under abstraction function α, we have
that any information loss in α ◦ f ◦ g ❁ fα ◦ gα ◦ α can be
removed by replacing f or g by a similar function.

Benton [2] and Jensen [9] independently formulated strict-
ness properties as logical statements by adapting Abram-
sky’s idea of ‘domain logic’. Jensen provides strictness logic
rules and shows these to be sound and complete with respect
to Burn, Hankin and Abramsky strictness inference. Ben-
ton shows his strictness logic rules soundly and completely
axiomatise strictness properties when interpreted as ideals
of the standard semantics. Moreover he then gives rules
for strictness formula assignment which are sound, but not
complete, with respect to the standard semantics.

Steffen [15] and together with Jay and Mendler [16] define1

1I am grateful to an anonymous referee for these references.



a very similar notion of completeness to ours—instead of
using interpretable predicates they use (algebraic-style) in-
terpretations. Two such interpretations I1 and I2 are com-
pared via an observation interpretation K whose values are
observed with sound abstraction functions αi : Ii → K.
I1 and I2 are then K-observationally equivalent if, for all
meta-language terms e, α1(e

I1) = α2(e
I2) where eI yields

the meaning of e under I . Our notion of sound and com-
plete can be seen as essentially the same as their notion
of observationally equivalent with our predicates replacing
their observation domains.

However, some natural properties (such as projection-
based strictness—see section 5) are not convex properties
of the standard interpretation. This leads to a dilemma—
either the abstraction function from the standard interpre-
tation to the observation interpretation needs to be gen-
eralised to be possibly non-monotonic; or the problematic
construction of a non-convex collecting interpretation needs
to be resolved. Our use of predicates (which need not be
convex-closed sets) sidesteps this issue.

1.3 Nomenclature

There is a large and overlapping variety of terminology, both
in abstract interpretation and in related subject areas, used
to describe notions corresponding to soundness and com-
pleteness. A good deal of this variety probably arose from
the slow unification of ideas from logic and programming
language semantics.

In abstract interpretation the words correctness, sound-
ness and safety are used equivalently by various authors.
Such words naturally evoke their duals completeness and
liveness.

In logic, soundness and completeness are used to relate
proof-based validity with semantics-based truth. This tradi-
tion is followed (possibly with relative completeness replac-
ing completeness) in program logics (e.g. Hoare logic).

In abstract interpretation Nielson’s terminology is prob-
ably the most careful: he uses safety for the relation be-
tween abstract interpretations and correctness for relations
to the standard semantics. Indeed, it appears odd at first
sight to claim one interpretation is sound with respect to
another as logical soundness reflects a property holding over
all interpretations. However, in type inference, the standard
semantics of a programming language is used to set up a no-
tion of truth, and other (type-valued) semantics (typically
specified by rules) are then shown to be sound. Against this
backdrop, it is then natural to say that one interpretation
(or type system) is sound with respect to another.

The phrases computationally adequate and fully abstract
are used to describe analogous ideas relating operational and
denotational semantics at the object-language level where no-
tions of substitution or composition may be lacking or may
mismatch the corresponding semantic ideas.2

The concept of conservative extension, is used in logic to
describe the situation when augmenting a set of inference
rules R with further rules R′ results in no change to the
set of theorems. Indeed one could reasonably alternatively
express that R is complete for R ∪ R′.

2Note also the parallel between logical validity and denotational
semantics and between provability and operational semantics.

2 Formalism

We assume a set of variables X, ranged over by x, and a set
~F , ranged over by Fi, of function symbols each with their

arity ki. ~F is called the functional signature. The set of
terms, E ranged over by e, is given by

e ::= x | Fi(e1, . . . , eki
).

Later, we will wish to consider logical formulae and hence

assume a set ~P , ranged over by Pk, of predicate symbols

each with their arity ri. ~P is called the predicate signature.
The set of formulae, Φ ranged over by φ, is given by

φ ::= Pi(e1, . . . , eri).

For this paper, we only consider atomic formulae—the jus-
tification being that in abstract interpretation we are typi-
cally interested in safety (implicational) properties. There is
a simple extension to monotonic logical connectives but non-
monotonicity of (e.g.) implication rules out simple extension
to all logical connectives. For example, φ (respectively ψ)
may safely approximate φ′ (resp. ψ′) but φ ⇒ ψ not safely
approximate φ′ ⇒ ψ′.

A classical interpretation, I , is a pair (U, fi) which pro-
vides a set U (possibly with domain structure) as domain of

discourse and functions fi ∈ Uki → U interpreting the Fi.
When we relate interpretations by abstraction, the more ab-
stract interpretation requires a partial order structure on U
and this to be preserved by the fi. Although we start by con-
sidering such interpretations, we soon generalise by requir-
ing an interpretation to be a triple (U, fi, pi) where pi ⊆ Uri

interprets predicate symbol Pi. In this case we will not re-
quire any a priori ordering on U as implications between
formulae play the rôle of orderings. We use J = (V, gi, qi)
as an alternative interpretation.

Given an interpretation I = (U, fi, pi) we write UX for
the space of environments X → U so that a term e induces
a function eI ∈ UX → U . Similarly a formula φ induces a
predicate φI ⊆ UX .

Given an (abstraction) map α : U → V and n ∈ IN we
write αn : Un → V n and αX : UX → V X for its pointwise
extension to tuples and environments. We sometimes write
〈α, . . . , α〉 for either of these.

2.1 Abstract interpretation

Given two interpretations (U, fi) and (V, gi) we traditionally
(see for example Abramsky and Hankin’s book) say that
α : U → V is a (sound) abstraction function if, for all i, we
have

α ◦ fi ⊑ gi ◦ 〈α, . . . , α〉.

By induction, and the assumptions that V is partially or-
dered by ⊑ and the gi are ⊑-monotonic, we have that, for
all terms e,

α ◦ eI ⊑ eJ ◦ αX

which is the traditional soundness result.
In the above we allow the possibility of I being the stan-

dard interpretation.3 If we define Γ : V → P(U) and

3In this case Nielson would use β : I → J for such an abstraction
map, reserving α for A and γ for Γ above.



A : P(U) → V (here P(·) denotes the powerset) by

A(S) =
⊔

{α(u) | u ∈ S}

Γ(v) = {u ∈ U | α(u) ⊑ v}

then we have the traditional galois connection view, includ-
ing the equivalent formulation of soundness via the collecting
semantics:

A ◦ eCOLL ⊑ eJ ◦ 〈A, . . . ,A〉.

Here COLL is the (independent attribute) collecting inter-
pretation for I given by

(P(U);λ(S1, . . . Ski
).{fi(~x) | ~x ∈ S1 × · · · × Ski

}).

Note that the trivial interpretation ({∗}, λ~x.∗) is a sound
abstraction of any interpretation. In a sense we now start
to make formal, we wish to say that it is incomplete.

2.2 An inadequate definition of completeness

It is tempting to define an abstract interpretation J to be
complete for an interpretation I under an abstraction map
α : I → J if there is a function γ : J → I which satisfies, for
all terms e, that

eI = γ ◦ eJ ◦ 〈α, . . . , α〉.

Indeed, this ensures the collecting interpretation is a com-
plete abstraction of the standard semantics via the embed-
ding α(x) = {x}.

However, this results in a trivial theory in that, in gen-
eral, it requires γ to be a surjective map of J onto I . This
requires that J be at least as large in cardinality as I which is
unfortunately the opposite of what we expect of most other
abstractions.

The rest of this paper builds a notion of abstraction (and
hence completeness) induced from a notion of observability.

3 Abstract interpretation with predicates

We wish to criticise the above view of abstract interpretation
as a little oversimplistic. The exact domain elements in V
are unimportant: what matters is the information they give
us for optimising a program.4

So here we augment the traditional view of abstract in-
terpretation by requiring an interpretation to specify a mean-
ing for each predicate symbol.5 For example in the “rule of
signs” we might typically have an abstract interpretation
with lattice {(+), (−), (=), (±)} with the obvious interpre-
tations for meta-language function symbols (and constants).
Moreover, we might further wish to have predicate symbols
mustbezero, maybepos, whose truth sets are {0}, {1, 2, 3, . . .}
in the standard interpretation and {(=)}, {(+), (±)} in the
“rule of signs” interpretation. Soundness now does not de-
pend on the absolute notion of set membership but on the
relative notion of predicate interpretation which we now for-
malise.

4A fine analogy is that of state-reduction in finite state machines.
The exact details of the internal states are unimportant: what matters
is the observable output which is used to merge equivalent states.

5There is a slight infelicity here in that we might have two predi-
cate symbols, one of which is implied by the other in all interpreta-
tions, thereby giving rise to only three rather than four possibilities.
We might wish to avoid this by considering integer-valued predicates
but here we merely ignore it as the theory is unaffected.

3.1 Soundness and completeness

Given predicate-based interpretations I = (U, fi, pi) and
J = (V, gi, qi), we say an abstraction map α : I → J is
sound if, for all formulae φ, we have6 that φJ ◦ αX ⇒ φI .
Similarly we say it is complete if φI ⇒ φJ ◦ αX .

Observe that there are two trivial interpretation schemas
FF = ({∗}, λ~x.∗, {}) and TT = ({∗}, λ~x.∗, {(∗, . . . , ∗)}) with
one value, functions which always return this value and pred-
icates which constantly yield false (resp. true). Any abstrac-
tion map α : I → FF is sound, but not complete in general
whereas α : I → TT is complete, but not sound in general.

Note that the previous definition of abstract interpre-
tation fits neatly within this scheme and the embedding is
illuminating—for each abstract value v ∈ V we have a unary
predicate symbol Pv with interpretations pv(x) ⇔ α(x) ⊑ v
and qv(x) ⇔ x = v. (Recall that traditional abstract in-
terpretations require an ordering ⊑ on the abstract space
reflecting property implication.) Our soundness criterion
(∀φ) (φJ ◦ αX ⇒ φI) now reduces to

(∀v ∈ V ) (eJ ◦ αX = v ⇒ α ◦ eI ⊑ v)

for all terms e which simplifies to the traditional formulation
α ◦ eI ⊑ eJ ◦ αX .

The above soundness and completeness criteria are rather
global and non-compositional so we look for local formula-
tions.

First considering soundness, meta-language terms solely
consisting of variables show it is necessary to have

1. qi ◦ α
ri ⇒ pi.

Now, suppose we do in fact have a reflexive and transitive
relation ⊑ on V , then a sufficiency condition for soundness
is that, additionally, we have

2. The gi are ⊑-monotonic.

3. α ◦ fi ⊑ gi ◦ 〈α, . . . , α〉. (†)

4. (∀~x, ~y ∈ V ri) (~x ⊑ ~y ⇒ qi(~y) ⇒ qi(~x)).

(Conditions 2 and 3 ensure that α◦eI ⊑ eJ◦αX as before and
the final point converts the order relation into implication.)

For completeness, a necessary condition is

1. pi ⇒ qi ◦ α
ri .

Again, supposing we have a (possibly different) reflexive and
transitive relation ⊑ on V , the following additional condi-
tions suffice for completeness:

2. The gi are ⊑-monotonic.

3. gi ◦ 〈α, . . . , α〉 ⊑ α ◦ fi. (‡)

4. (∀~x, ~y ∈ V ri) (~x ⊑ ~y ⇒ qi(~y) ⇒ qi(~x)).

There is a connection between α being a sound and com-
plete abstraction and it being a homomorphism in that if
the two ⊑ relations coincide and are antisymmetric then (†)
and (‡) require α to be a homomorphism between (U, fi)

6This notation is a natural abbreviatation for

(∀ρ ∈ U
X ) (φJ (αX

◦ ρ) ⇒ φ
I(ρ)).



and (V, gi) seen as algebras. In this case α is a sound and
complete abstraction.

The converse does not hold in that we can abstract (ZZ,×)
with a perverted “rule of signs” with ({(−), (=), (ǫ), (+)},⊗)
where

α











(−∞,−1] 7→ (−),
{0} 7→ (=),
[1, 9] 7→ (ǫ),

[10,∞) 7→ (+)

and abstract multiplication ⊗ is given by the table

⊗ (−) (=) (ǫ) (+)
(−) (+) (=) (−) (−)
(=) (=) (=) (=) (=)
(ǫ) (−) (=) (+) (+)
(+) (−) (=) (+) (+)

Now, although α is not a homomorphism, it is sound and
complete with respect to the question “is the result of a com-
putation negative”. In other words it is a homomorphism
relative to predicate P (·) with interpretations p(z) ⇔ z < 0
and q(z) ⇔ z = (−). The next section shows that this
situation is quite general in that we can quotient this ab-
stract interpretation by identifying (ǫ) and (+) yielding a
homomorphism which giving exactly the same information
via P .

3.2 Canonical abstract interpretation

Taking our cue from Burstall’s slogan that implementations
of algebraic specifications should have “no junk and no con-
fusion”, given an abstract interpretation, we may wish to
remove unreachable elements from our abstract domain and
quotient together indistinguishable elements (the latter is
strongly desirable so that concretisation maps can be injec-
tive).

Hence suppose that we have two interpretations, I =
(U, fi, pi) and J = (V, gi, qi), as before and a sound abstrac-
tion map α : I → J . Define the equivalence relation ∼ on
V by

v ∼ v′ ⇔ (∀φ ∈ Φ, ∀ρ ∈ UX) (φJ (αX ◦ ρ)[v/x] ⇔
φJ (αX ◦ ρ)[v′/x]).

Informally, this construction states that two abstract values
(v, v′) are indistinguishable if no formula can tell them apart
(by associating their value with a given variable x ∈ X)
provided that any other free variables of φ are restricted to
have values in the image α(U) ⊆ V .

Almost by construction, the quotient algebra (actually

logic interpretation) K = J/∼
∆
= (V/∼, gi/∼, qi/∼) with

associated natural abstraction map η : V → V/∼ is sound
and complete with respect to J . This generalises the usual
construction for state-reducing an automaton.

Proposition If α : I → J is a sound and complete abstrac-
tion then η ◦ α : I → J/∼ is a homomorphism.

Proof This is messy because of need to keep careful track of
meta-language terms and their two interpretations as func-
tions. Soundness and completeness enables us to write

(∀φ) (φI ⇔ φJ ◦ αX )

or, more precisely

(∀φ,∀ρ ∈ UX) (φI(ρ) ⇔ φJ(αX ◦ ρ)).

We now specialise this to the case φ ≡ ψ[F (y1, . . . , yk)/x]
substituting any occurrences of x in ψ with application of
the function symbol F to distinct variables. Now, letting
the interpretations of F in I be f and in J be g, we have

φI(ρ) ⇔ ψI(ρ[F (y1, . . . , yk)
Iρ/x])

⇔ ψJ(αX ◦ (ρ[F (y1, . . . , yk)
Iρ/x]))

⇔ ψJ(αX ◦ ρ)[α ◦ f(ρy1, . . . , ρyk)/x]

Similarly we have

φJ(αX ◦ ρ) ⇔ · · ·

⇔ ψJ (αX ◦ ρ)[g(α(ρy1), . . . , α(ρyk))/x].

Now, since ψ is an arbitrary formula and the ρyi are arbi-
trary values in U , this is exactly the criterion that

α ◦ f ∼ g ◦ αk

and ∼ is, of course, the equality relation on J/∼.

Remark. If we define the reachable values V ∗ of V by V ∗ =
{v ∈ V | (∃closed e)eJ = v}, then the set of relevant values
in V can be seen as the the smallest set W such that

W ⊇ V ∗ ∪ {α(u) | u ∈ U} ∪ {gi(w1, . . . , wki
) | wj ∈ W }.

Removing irrelevant values corresponds to having “no junk”
and quotienting away observably equivalent values as above
corresponds to having “no confusion”. Irrelevant values do
not damage the theorem above, but should be removed to
ensure the uniqueness of the canonical form of a given ab-
stract interpretation.

4 Collecting interpretation

This section is more speculative than the rest of the pa-
per and attempts to show how predicate-based interpreta-
tions form a bridge between abstract interpretation and rule-
based property inference formulations of static analysis.

Given a function signature F̂ of function symbols (con-
sisting of at least one nullary function symbol), we can form
the Herbrand UniverseHF̂ of all variable-free meta-language

terms built from function symbols in F̂ . We now define the

Herbrand unary predicate signature P̂1 = {PS | S ⊆ HF̂}.

Given an (algebraic) interpretation I = (U, fi) for F̂ , we
may extend it to a (logic) interpretation I ′ = (U, fi, pS) for

F̂ ∪ P̂1 by defining

pS(x) ⇔ x ∈ {eI | e ∈ S}

⇔ (∃e ∈ S) x = eI .

(We have taken the liberty of writing eI for eI〈〉 since e is
closed.) Taking I to be the standard interpretation results
in I ′ becoming a natural correspondent of the independent
attribute collecting interpretation in that we have one pred-
icate for each property.

Given an interpretation function signature F̂ and a stan-
dard interpretation STD = (U, fi), the independent attribute



collecting interpretation COLL is given by (P(U);P(fi))
where

P(fi) = λ(S1, . . . Ski
).{fi(~x) | ~x ∈ S1 × · · · × Ski

}

as in section 2.1. Observe that P(fi)(S1, . . . , Ski
) ⊆ S0 holds

precisely when the (Herbrant unary) sequent

PS1
(x1), . . . , PSki

(xki
) ⊢ PS0

(F (x1, . . . , xki
))

holds under STD′ defined above. This result holds because
there is a bijection between subsets (properties) in the col-
lecting interpretation COLL and predicates in the (Her-
brand) predicate-augmented standard interpretation STD′.
Recall that having descriptions for every property is the
distinguishing feature of the collecting interpretation. The
Cousots study similar notions under the name “predicate
transformers” but the sequent form is more directly appli-
cable as a link to rule-based property inference.

For the relational attribute collecting interpretation the
natural correspondent is to use predicate signature P̂ω =
⋃

n
{Pn

S | S ⊆ Hn

F̂
}. Again supposing I = (U, fi) is the

standard algebraic interpretation, the logic interpretation is
then I ′′ = (U, fi, p

n
S) where P

n
S is interpreted by

pnS(~x) ⇔ (∃~e ∈ S)(∀1 ≤ i ≤ n) xi = ei
I .

5 Projection-based strictness

Wadler and Hughes [17] introduced the notion of projection-
based strictness. Let D be a cpo. A subset S of a cpo D is
convex if (∀s, s′ ∈ S,∀d ∈ D) (s ⊑ d ⊑ s′ ⇒ d ∈ S).

A continuous map π : D → D is a projection if it is
idempotent (π ◦ π = π) and less than identity (π ⊑ 1D→D).
A function f : D → E is π-strict if f ◦ π = π. Given
a projection π, let Sπ be the set of π-strict functions in
D → D. In general Sπ is not a convex subset of D → D
which results in problems in expressing it within a collect-
ing interpretation. Hunt [8] showed how a ternary logical
relation ⊆ (STD × STD × I) generalising the abstraction
relation approach to abstract interpretation could side-step
this problem.

Predicate-based interpretations offer an attractive alter-
native possibility: given a prescribed set of projections, con-
sider an interpretation whose predicate signature has one
element for each projection. In the standard interpretation
such a predicate Pπ is interpreted by pπ(f) ⇔ f ◦ π = π.
In an abstract interpretation Pπ may be interpreted by a
computable qπ predicate, for example by an equality test on
an abstract value aπ, e.g. qπ(x) ⇔ x = aπ.

6 A group-theoretic example

The following example is intended to show that the ideas of
abstract interpretation and semi-homomorphism naturally
appear in other algebraic models, here group theory. It gen-
eralises example 2.3 in [4].

Let G = (G; 1, · × ·, ·−1) be a group. Let S ⊆ G be a
subset. Suppose we wish solve problems of the form “is e ∈
S” where e is a term involving elements of G with operators
(functions) {1, · × ·, ·−1).

If S is a normal subgroup N , or indeed a coset s×N
∆
=

{s × n | n ∈ N} of a normal subgroup, then we have a
short-cut calculation: replace each element g ∈ G occurring

in e with its coset g × N and perform the calculation in
the quotient group G/N to yield a coset S′. The original
problem “is e ∈ S” is then true iff S′ = S. The abstraction
map of G to G/N mapping elements their N-cosets is sound
and complete.

Now suppose that S may now be an arbitrary subset of
G, but instead we are only interested in one-way implica-
tions whereby the question “is e ∈ S” is answered by no or
maybe. (The converse question for yes or maybe is obtained
by replacing S with G \ S. The choice of no or maybe iden-
tifies ⊑ with ⊆ rather that ⊇ and so appears more natural.)
Moreover, suppose computational or other reasons limit the
size of calculation to be performed.

So, choose a suitable sublattice L ⊆ P(G), with l ranging
over L, satisfying the requirement that

α(g) = least l ∈ L such that g ∈ l

and

l.l′ = least l′′ ∈ L such that {g × g′ | g ∈ l, g′ ∈ l′} ⊆ l′′

be well-defined. There typically many such sublattices of
varying levels of approximation. Let this interpretation be
called J .

Now the question “is e ∈ S” can be answered as maybe
or no according to whether eJ ⊇ α(S) or not.

If S is a coset of a normal subgroup N then such ques-
tions are precisely (no or yes) answered using the (discrete)
sublattice of P(G) consisting of the set of all cosets of N—
this is a consequence of the remark above about the abstrac-
tion map G→ G/N being sound and complete.

7 Higher-order meta-language terms

The above description kept to a first-order meta-language so
we could exploit the conventional notion of homomorphism.

Unfortunately, while the notion of homomorphism lifts
from base types to sum and product types, it does not lift
to function spaces. I.e., given φ : A → A′ and ψ : B → B′

we can define

(φ× ψ) : (A×B) → (A′ ×B′), (a, b) 7→ (φa,ψb)

(φ+ ψ) : (A+B) → (A′ +B′), in1a 7→ in1(φa)
in2b 7→ in2(ψb)

but there is no corresponding definition for

(φ→ ψ) : (A→ B) → (A′ → B′)

One solution (the relational approach, for example [11, 10,
1]) is to replace the concept of homomorphism in A →
A′ (structure-preserving function) with that of structure-
preserving relation in R(A,A′) and another to replace it
with a pair of functions in (A→ A′)× (A′ → A). In the for-
mer approach we define, at base types, u< v ⇔ α(u) ⊑ v. In
the latter we use pairs, e.g. φ = (φ1 : A→ A′, φ2 : A′ → A)
so that

(φ→ ψ) : (A→ B) → (A′ → B′), f 7→ (ψ1 ◦ f ◦ φ2).

8 Conclusions and further work

We have shown the possibility of augmenting traditional
‘universe-of-discourse and functions’ abstract interpretations



with an explicit ‘predicates’ component. This was used to
define a notion of completeness between interpretations and
then to relate sound complete abstractions to homomor-
phisms. Moreover, the separation of predicates (for observa-
tion) and functions (for manipulation) naturally allows con-
tinuous functions and discontinous predicates. Note that
the separation of predicates and functions proves necessary
in many logics (in very few logical systems is it possible to
view predicates as functions to a two-valued space).

However, this work is very much a first step in explor-
ing the idea of predicate-based interpretations and much
remains to be done. The works of Steffen et al. and Kamin
and Reddy on related notions of completeness need to be
related with each other and with the current work.

High on the agenda is the addition of higher order func-
tions (using logical relations instead of homomorphism) and
the fixpoint operator. The Cousots’ widening and narrowing
operators need to be considered in this framework.

Moreover, the framework invites various ideas from logic
to be used within abstract interpretation. Section 4 sug-
gested that certain Herbrand-inspired predicates could model
some facets of collecting semantics. Further developments
of this idea could either use fragments of higher-order logic
or use such sequents to represent assumptions. Variants of
sequent forms might naturally express relational and inde-
pendent attribute ideas.
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