
Towards a Theory of Packages

Mark Florisson and Alan Mycroft

Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge CB3 0FD, UK

Firstname.Lastname@cl.cam.ac.uk

Abstract. Package managers are programs that manage the installation
of software packages onto the systems of users with the help of repos-
itories and package metadata. This process is complicated by the fact
that packages evolve, and are therefore versioned. Traditional package
managers cause trouble for users by refusing to install a package, or by
failing to compile, load or run programs correctly. We argue that this is
the result of inexpressive package metadata and limitations inherent in
package linkers. We present a package system that ensures installability
and type-safety of packages by using interfaces for package metadata, by
addressing linker insufficiencies and by imposing restrictions on reposito-
ries. The system manages change flexibly and meaningfully using names
and nominal subtyping (instead of version ranges) to formalize back-
wards compatibility. Although the system is similar to module systems,
we show how versioning leads to fundamentally different design decisions.
The system is applicable to decentralized package systems administered
through a centralized but unaudited package repository (e.g. hackage,
opam, pypi, npm, etc).

1 Introduction

Large systems are not written monolithically, but are composed of various soft-
ware components. These components (either library code or executable pro-
grams) are usually called packages, often comprised internally of many modules.
Packages are a means of code distribution, so while modules can be modified
in-place, packages are versioned to support their evolution. Package metadata
expresses how packages depend on each other, often through version ranges.
This metadata is used in the management of packages (installation, upgrade or
removal of packages). Packages are shared through (central) repositories, and
dependency resolution decides which packages from the repository need to be
available on a user’s system when installing or upgrading. Due to the inexpres-
siveness of package metadata, two major problems arise.

Dependency hell is the first problem, and arises because traditional package
systems insist on making only a single version of a particular package available

Wombat

P Q

D

Wombat-v9.2 Wombat-v8.1

P Q

D

Fig. 1. Diamond dependency with a shared Wombat package (left) and with two separate
Wombat packages (right).

at any given time. This leads to conflicts, as different packages on the system
may require different versions of a dependency1.

Systems allow only a single version of a package for two reasons. First, pack-
age linkers often cannot link multiple versions into a single executable (and
sometimes cannot deal with multiple versions system-wide).2 Second, linking
multiple versions of a package into a program may result in the program passing
values from one version of the library into another version, potentially violating
data abstraction and type safety.

To see this, consider a scenario involving a common dependency Wombat as
shown in Figure 1. As part of their public APIs, Wombat exports an abstract
data type TWombat, P exports a function fun f : TWombat→ Int and Q exports
a function fun g : Int → TWombat. Because TWombat is part of the function
signature we say that P and Q expose TWombat from Wombat. Due to this exposure,
D could now pass values of TWombat between P and Q (e.g. P.f ◦ Q.g). If that
happens, safety mandates that P and Q are linked against the same Wombat

package (Figure 1, left). On the other hand, if D does not wish to share TWombat

values between P and Q, we are entirely free to link P and Q against different
Wombat packages (Figure 1, right).

Unfortunately, installation problems are unpredictable, as dependency res-
olution is influenced by both the required software and the already available
packages on the system; hence a solution to an installation problem may ex-
ist for one system but not another. Versions conflicts are common in certain
systems, as version ranges may be overly constrained to guard against possible
future incompatibilities. Conflicts are a necessary result of the decentralised na-
ture of package systems and the modular definitions of packages, as not every
package may be fully “up-to-date” with its dependencies. To compose packages
into correct systems we must establish consensus on package versions. 3

1 We follow common nomenclature: if package P depends on Q (written P → Q), then
both the arrow and Q are called a “dependency” of P on Q.

2 Linking multiple versions of native binaries may cause symbol conflicts, and virtual
machines often simply link the first package found in a path (e.g. PYTHONPATH).

3 In centrally audited package systems such as Debian, conflicts may also arise due to
genuine system-level incompatibility (e.g. two competing window managers). How-
ever, we focus on unaudited systems that typically have no way of expressing such
type of conflicts.

2

Portability is the issue of whether a package developed on one machine can
also work correctly on another—even of the same type— and is the second major
problem with existing package systems. During development, packages are linked
against dependencies as if the dependencies were modules (systems comprised
of modules contain only one version of each module). This implicitly assumes
a stable (non-changing) interface between package versions, which is often not
the case. As a result, installing the package on a different system may link it
against different versions of dependencies with perhaps different interfaces. This
effectively delegates the issue of type-safety to the (language-specific) linking
procedure (linkers for languages such as C typically resolve symbols by name,
ignoring types completely). Unfortunately, because there are exponentially many
combinations of dependency versions, checking for incompatibilities in package
metadata beforehand may not be tractable, leaving users with mysterious errors.

A Fresh Approach Existing package managers are pragmatic tools and our
purpose is to provide a theoretical basis for packages and their management. For
this, we introduce a new package system Π, that is meant to represent a class
of package systems that solve the aforementioned problems: dependency hell
is eliminated by installing package versions side-by-side. This is made possible
by more expressive package metadata that can express where package versions
must be shared. Portability and type-safety issues are eliminated by writing
packages against interfaces. Packages are type-checked and compiled modularly
and interfaces are used for dependency resolution and linking.

Finally, we address change management, which is especially crucial for pack-
ages because of the distributed nature of their development. Packages do not
evolve in lockstep, and breaking compatibility with respect to previous versions
diminishes the ability to share packages. In the worst case, this can result in the
programmer having to write explicit adaptation layers between package versions.

Contributions include a package system Π that:

1. does not suffer from dependency hell, portability or type-safety issues
2. can compile packages separately, and link packages statically or dynamically
3. helps manage change and handles versioning

Further, we show that dependency resolution is decidable in polynomial
time, whereas dependency resolution in traditional package managers is NP-
complete [10] (§4.1).

There are great similarities between module systems such as that of ML [18]
and package systems such as Π. Indeed, recent work on Backpack [20] proposes
a package system for Haskell based on mixin modules from the MixML mod-
ule calculus [15]. However, we argue that package systems are different from
modules, and we use abstraction (such as functors in ML) to express sharing of
dependencies, rather than multiple instantiation. Our presentation differs from
Backpack in that we explicitly address dependency hell and change management.
Further differences are detailed in §9.

3

2 Package System and Examples

Our package system explicitly handles the two scenarios from Figure 1 by dis-
tinguishing between external (public) dependencies and internal (private) de-
pendencies. A dependency is external when we expose one of its abstract data
types as part of our public API, (e.g. fun f : TWombat → Int in package P). A
dependency is internal when we do not expose any of its abstract data types.

External Dependencies We express external dependencies using abstraction
(formal parameters), to defer linking of the dependency. A dependent such as D
from Figure 1 can then choose a suitable version of Wombat that is compatible
with the needs of both P and Q. This effectively shifts compatibility constraints
from package systems to the package language itself. Package D is now assured
that it can safely share values of TWombat between P and Q. If P and Q were to
link with Wombat individually, D would not know whether it could safely share
values, as P and Q could choose different versions of Wombat.

Internal Dependencies Internal dependencies are expressed through an im-
port operator, which loads some compatible version of the dependency. Abstract
data types from internal dependencies cannot be exposed by the importing pack-
age, but can be hidden behind new abstract data types defined by the importing
package. The grammar and scoping rules of our system automatically ensure
this, as interfaces have no way of referring to internal dependencies (there is no
import construct at the interface level).

Example In our system packages are defined as follows:

pkg Wombat−v9 . 2 impl IW−v2
type TWombat = . . .
. . .

i face IW−v2 <: IW−v1
type TWombat
. . .

On the left we have a package definition Wombat of version v9.2 implementing
an interface IW-v2 (shown on the right). It further defines an abstract data type
TWombat, which is declared in IW-v2, making it a part of the public API (i.e.
visible to other packages). Interface IW-v2 declares that it is further a subtype
of IW-v1 (not shown here). Next we have a package P:

pkg P−v9 (W : IW−v1) impl IP−v1
fun f : W.TWombat → Int = . . .

i face IP−v1 (W : IW−v1)
fun f : W.TWombat → Int

P has a formal parameter W of type IW-v1 to abstract over the Wombat depen-
dency (or indeed any package that implements IW-v1 or a subtype). The pack-
age P (left) defines f and the interface IP-v1 (right) declares f and its function
signature. The interface must take the same parameters as the package, and
functions declared in the interface must have the same type signatures as in the
implementing package. This way interfaces fully describe the public API of the
package (specifically, the type of the package must be a subtype of the imple-
mented interface, covered in §6). Now IP-v1 can expose TWombat through its
W parameter. In §7 we shall argue for the use of multiple interfaces and more

4

flexible management of interface parameters. Package Q is similar to P so we omit
it here. Finally there is package D:

pkg D−v8 impl ID−v2
import Wombat−any : IW−v2 as W
import P−any : IP−v1 as P(W)
import Q−any : IQ−v6 as Q(W)
. . .

i face ID−v2

. . .

D first imports Wombat, and then instantiates (or links) P and Q with Wombat.
Only D is in a position to say which Wombat P and Q must be linked with, and
it could also choose to link P and Q with different packages, which would pre-
vent sharing of the TWombat type. This is useful whenever there is no version of
Wombat compatible with both P and Q. This can happen if for example P requires
an older version of Wombat’s API, but Q requires the latest version of the API
which is backwards-incompatible with older versions.

Note further that in our example interface IW-v2 is a subtype (<:) of IW-v1,
allowing us to exploit subsumption when linking P against Wombat.

3 Package Language

We now introduce the grammar of our package system. In our system, a package
is an opaque unit of code, perhaps internally comprised of modules, but for
simplicity our packages export only flat namespaces.

3.1 Naming Convention

In Π both packages and interfaces are versioned (Wombat-v9.2 and IW-v2 re-
spectively). Packages are resolved by requesting some version (Wombat-any) im-
plementing a particular interface (hence we write package versions when defining
a package but not when importing a package). Importing a package binds to a
local package variable (like a let-binding), and abstraction to a local parameter
(like a formal parameter to a λ).

While names are disambiguated by syntax, we find it helpful to define sepa-
rate syntactic categories and naming conventions for them:

Category Example Use
P Wombat-v9.2 a package name in a repository (versioned or unversioned)
I IWombat-v3 a concrete interface in a repository
X , Y Wombat a package parameter or local name for an imported package
T TWombat an abstract data type name
f f, g a function name
x x, y a core-language variable

In examples we use lower-case for variable and functions, upper case starting with
‘T ’ for types, upper case beginning with ‘I ’ for interfaces and other upper case

5

for packages (both concrete and abstract). The format of the ‘version’ part of a
name plays no semantic role other than to distinguish packages and interfaces;
however we assume there is a partial order ≤ on the string after the ‘-v’ in P
and I to define backwards compatibility later.

Syntactic meta-notation: given a string ω of terminal and non-terminal sym-
bols we write ω to to mean zero or more repetitions, and [ω] to mean zero or one
repetition of ω. Here, rather abusively, we assume such abstract-syntax repeti-
tion includes appropriate concrete separators such as commas in argument lists
and semicolons for declarations.

3.2 Grammar

Package definitions Pdef and interface definitions Idef have largely parallel syn-
tax; their bodies consist of (type and function) definitions and declarations re-
spectively. The impl clause serves to seal the package body behind the given
interface, so that only the contents listed by the interface are exposed from the
package. Typing rules defined in §6 ensure that the type of the package body is
a subtype of the interface body. Interfaces may optionally declare themselves a
subtype of another interface through the <: clause in interface definitions.

Packages may be parameterised over external dependencies, constrained by
interfaces—which must be fully applied to appropriate arguments.

Pdef ::= pkg P(X : I(Y)) impl I {PImport ; def } (pkg definition)

Idef ::= iface I(X : I(Y)) [<: I] {decl} (interface definition)

In our core language, code consists of abstract data types and functions that
operate over such types. Abstract data types can only be exported abstractly in
interfaces, but are concrete within the package (i.e. their definition is visible to
the code in the package). Hence packages contain definitions (def), and interfaces
contain corresponding declarations (decl).

def ::= type T = τ | fun f : τ = e (definition)
decl ::= type T | fun f : τ (declaration)

Terms and types consist of the simply-typed lambda calculus with projec-
tions of functions and abstract data type components (using standard “dot”
notation) and abstract data types. However, just as the ML module system [23],
the package language is largely agnostic of the core language.

e ::= f | X.f | wrapT (e) | unwrapT (e) | λx : τ.e | e e | x (terms)
τ ::= T | X.T | τ → τ | Unit | Int | . . . (types)

We assume the core language also contains wrapT and unwrapT operators,
necessary for showing that types are preserved during evaluation. Consider the
following example of a function f defined in some package P :

fun f : Int → T = λx : Int .x

6

Here P.f is evaluated by extracting λx : Int .x, but this term is of type Int → Int ,
and not of type Int → T . In other words, the type of the expression depends
on which package it is typed in. To handle such scenarios, wrapT wraps a
value into an abstract data type value, and unwrapT unwraps it (such that
unwrapT (wrapT (v)) = v). We can now update the function definition for f :

fun f : Int → T = λx : Int .wrapT (x)

In package definitions we saw a non-terminal Pimport for package imports:

Pimport ::= import P-any : I as X(Y) (pkg import)

As mentioned in §2, package imports are only allowed in package definitions,
and not in interface definitions. This ensures that internal dependencies cannot
be referred to at the interface level, and hence abstract data types defined by
internal dependencies cannot be exported by the importing package. An import
has the effect of loading a package dependency by looking up the dependency
from a repository of locally available packages (covered in §4.1). Any package
named P satisfying interface I can be used for this purpose.

Finally, we need to be able to define programs. We define programs as pack-
ages that take no parameters and export a main function definition in their
interface, of the form fun main : Unit → τ . Programs are then evaluated by
first linking the program package (covered in §5.1) and subsequently evaluating
the expression P.main() (covered in §5.2).

3.3 Extended Syntax

In this section we extend our syntax with package expressions and package types.
Package expressions are needed in our small-step operational semantics, to rep-
resent part-evaluated phrases (cf. using closures when reducing the λ-calculus).
Package expressions evaluate to package values, which are the ML equivalent of
structures. Package types are needed to represent interface applications in our
static semantics. Packages types are the ML equivalent of signatures.

Package Expressions and Package Values The semantics of a package vari-
able X is conceptually the package body to which it is bound—but where any
imports have been recursively replaced—in other words a Pbody of the form
{def }. In our small-step semantics §5.2 we require a syntax for intermediate
forms during reduction—package expressions, which are like Pbody terms, but
may contain other package expressions representing part-complete resolution of
imports. Package expressions have the following syntax:

Pexpr ::= {Pexpr ; Pimport ; def }XI (package expressions)

The annotations I and X are needed to assign package types to package ex-
pressions: the interface name I is used to properly define a nominal subtyping
relation (§6.3), and the package variable X is used to reason about type equiv-
alence (§6.2). This is covered in more detail below.

7

Our semantics uses a depth-first left-right traversal strategy for import reso-
lution, meaning that a Pexpr contains at most one internal Pexpr representing
a part-resolved import. Package values are now the special case of Pexpr of the
form {def }XI .

Our semantics substitutes package values (and not arbitrary package ex-
pressions) for package variables. There are three syntactic forms where package
variables may occur: type projections, term projections, and package applica-
tions in import statements. To allow for this substitution we augment the syn-
tax of expressions e, types τ and imports Pimport to allow their package name
components X to be package expressions. In particular, during reduction type
projections X.T may be of the form {def }XI .T and term projections X.f may
be of the form {def }XI .f . During reduction imports may be of the form

import P-any : I ′ as Y ({def }XI).

Package Types To represent interface applications, and to assign types to
package expressions, we use package types:

Ptype ::= {decl}XI (package types)

Note that package types, like package values, include not only the signature decl ,
but also the package name X being being used and the declared interface I it
implements.

The interface annotation I is required by the definition of our nominal sub-
typing relation. We use this in particular check whether interface and package
applications are properly typed.

The package variable label X is needed to preserve the access paths to the
abstract data types defined in the package. Such paths are important in our
definition of type equivalence (written ≈): X.T ≈ Y.T iff X = Y . Hence access
paths help us distinguish abstract data types with the same name, but defined
by different imported packages. Imports in Π are essentially generative, which
means that each imported package contains fresh abstract data types — separate
from any other abstract data types in the system. Distinguishing abstract data
types by access path is a technique known as manifest types [22]. However,
because we do not support hierarchical packages or modules (e.g. P1.P2) our
access paths are simpler and consist of a single package variable name (e.g. P1).

4 Dependency Resolution and Linking

In this section we cover how repositories are constructed, and the restrictions that
make dependency resolution a simple and efficient (polynomial-time) depth-first
traversal. This is an improvement over existing package systems, which often do
not have polynomial-time algorithms for dependency resolution [10]. The restric-
tions further ensure that dependency hell (unsatisfiability errors) cannot occur.
Repositories are also an essential part of our small-step operational semantics
for packages, developed in §5.1: repositories ensure that all package dependencies
are available and that linking terminates by restricting cyclic dependencies.

8

4.1 Satisfiability

Repositories are a collection of packages and interfaces, subject to certain restric-
tions (to make this explicit, we sometimes call such repositories well-formed). We
define repositories R to be a sequence of package definitions Pdef and interface
definitions Idef :

R ::= Pdef Idef

We further say that P : I ∈ R (for some versioned or unversioned P) if
pkg P impl I {. . .} ∈ R, or if R ` I ′ <:nom I and P : I ′ ∈ R. That is,
either P directly implements I, or P implements some nominal subtype I ′ of I
(see §6.3 for our definition of subtyping). Finally, we say that I ∈ R whenever
iface I [<: I ′] {. . .} ∈ R.

The main restriction on package repositories is the satisfiability restriction,
which states that our dependency resolution algorithm can determine a suitable
set of well-typed package dependency versions for any package in the repos-
itory. For users of the package systems this means any package in R can be
installed onto their system. We formalise this with inference rules that define
well-formedness. We start by defining well-formedness for repository extension,
and for simplicity assume that each package takes a single parameter and has a
single import:

R WF I ∈ R IX ∈ R PY : IY ∈ R R ` P WF

R[pkg P(X : IX) impl I {import PY : IY as Y (X); body}] WF
(Repo-Pkg)

The rule ensures that any interfaces mentioned by the package are available in
R, and further than any of its internal dependencies (imports) are satisfiable in
R. Finally, the rule requires that the package itself is well-formed (see below).

Adding interfaces to a repository is similar: any interfaces that are mentioned
must already be available in the repository, and the interface itself must be well-
formed with respect to R:

R WF IX ∈ R R ` I WF

R[iface I(X : IX) <: I ′ {decl}] WF
(Repo-IFace)

Well-formedness of packages and interfaces is covered in §6.4. Briefly, for
packages it requires that they are well-typed, and a subtype of the interface
they claim to implement. Well-formedness of interfaces also requires that the
nominal subtyping relation holds structurally. An additional restriction is that
package dependencies may not be circular, as this poses some problems for our
operational semantics and proofs. For example, if a package Foo imports a pack-
age Bar, then Bar may not also import Foo. We reject such cycles conservatively
with the help of an conservative package dependency graph G = (V,E), where:

V = {P : I | P : I ∈ R}

E = {(A : IA, B : IB) | A-vX : IA ∈ R ∧A imports B : IB}

9

Cycles within this graph then indicate that there is a particular combination
of package versions which would contain a dependency cycle, and we treat all
such cycles as errors (indicating ill-formedness of the repository). There are sim-
ilar restrictions on circularity between interfaces, where the nodes are interface
constructors I, and there is an edge between two nodes I1 and I2 whenever I1
mentions I2.

We can now prove that dependency hell does not exist in our system, by
proving that any P : I ∈ R has all its dependencies recursively satisfied whenever
R WF (Theorem 1).

Theorem 1. Let P be a package pkg P impl I {. . .} in a repository R. Then
P is satisfiable in R whenever R WF.

Proof. Since P : I ∈ R, we know from (Repo-Pkg) that there exists a well-
formed repository R′ containing a subset of package and interface definitions
such that R′[P] WF. From (Repo-Pkg) we also know that P ′ ∈ R′ for any
immediate dependee P ′ of P . By assumption each P ′ is itself satisfiable in R′,
and hence P is satisfiable in R′[P]. Therefore P is also satisfiable in R.

The above theorem is our argument that dependency hell does not arise in
our system. Intuitively, this makes sense, because we have expressed dependen-
cies in terms of interfaces, and have expressed sharing of dependencies through
abstraction. So when we see an import we are free to choose any compatible
version from R, without regard for other packages or the current state of the
system. Conflicts, and therefore dependency hell, are simply not possible. When
conflicts are not possible, satisfiability checking and dependency resolution be-
come trivial operations.

Next we turn to the idea of installation plans that shows more practically
how users can install packages onto their system.

Plans Repositories are used for sharing packages with others, and may consist
of many packages. The point of an installation plan is to install some P ∈ R
and all of its dependencies. Such installation plans are always computable (from
Theorem 1 we know that we can always choose R itself), but R may be very
large, so we wish to compute some repository R′ that is preferably smaller than
R:

Definition 1. An installation plan for a package P, with respect to a package
repository R, is some well-formed repository R′[P] containing a subset of the
package and interface definitions of R.

First, we note that nominal subtyping is used for package dependency resolu-
tion. Nominal subtyping can be decided in polynomial time as it is just a relation
between names defined explicitly by the interface definitions in the repository.

Theorem 2. A (best-effort) installation plan R′ can be computed in polynomial
time for any package P ∈ R.

10

Proof. We can compute a plan by taking the transitive closure of our package
dependence relation, starting with only the desired package. Finding a package
is a linear scan over R at worst, and interface subtyping consists of a member-
ship check over a simple relation between interface names. Since cycles are not
permitted, this process halts in polynomial time.

Our installation theorem and its PTIME complexity trivially follow from
the removal of version conflicts, a fact well known for version-based systems [7].
However, as we showed in §2, version-based package managers generally do not
know when it is safe to install multiple versions, because their metadata cannot
distinguish shared from non-shared dependencies. Hence our contribution is not
stating a well-known complexity, but rather unlocking it with more expressive
metadata.

Heuristics and Installation We can further minimize the size of the plan
through a simple heuristic: we can reuse packages from the (partial) solution
R′ when resolving a dependence. With this heuristic we can in fact compute a
plan for any P ∈ R by taking the initial solution to be the repository S that
represents the user system. The result is then a new system S ′ that contains P .

So far our rules have relied on a well-formedness condition, which relies
on type-checking packages (and hence on the complexity and soundness of our
rules). We state soundness in §6.7, but do not provide a proof that type-checking
is decidable in polynomial time. But since we have made no assumption on the
core language besides the use of abstract data types and manifest types (both
employed by OCaml), we think this is a reasonable assumption.

5 Dynamic Semantics

In this section we develop our dynamic semantics, for package linking and pro-
gram evaluation. We use two forms of reduction— the first are the linking steps,

written
L−→, which transform package definitions into package values without any

remaining imports. Second are the evaluation steps, written
E−→, which evaluate

projections on package values and core-language expressions.

5.1 Linking rules

In Π linking can be done statically (at compile time) or dynamically (at run-
time). There is a further choice between resolving packages eagerly or lazily at
runtime, which is analogous to the difference between call-by-value and call-
by-need (conceptually call-by-name is also possible, but would break for non-
deterministic package loaders or when side-effects or mutable state are permitted
at the package level). For simplicity we assume call-by-value.

11

Below we give a small-step linking semantics. As mentioned in §3.3, during
linking packages reduce to package expressions, which in turn reduce to package
values until no more imports are left. Intermediate package expressions may
contain further imports, which are evaluated before proceeding to evaluate the
remainder of the package expression that contained the import. This means that
packages are recursively linked in a depth-first order.

We represent linking with the relation
L−→, and we start evaluating the main

program package to a package expression:

X fresh

R ` pkg P impl I {body} L−→ {body}XI
(Link-Prog)

Next we need to resolve imports within package expressions. For simplicity of
presentation we assume that package abstractions (and hence imports) have
only a single argument. Imports proceed by looking up a suitable version of the
dependency, and then applying the package to its argument by substituting the
argument package value for the formal parameter of the package abstraction.
The result of package application is a package expression, perhaps containing
further import statements. The rule for imports is shown below (Link-Import):

pkg P1(Z : IZ) impl I ′1 {body2} ∈ R I ′1 <:nom I1
R ` {import P1 : I1 as Y (P); body1}XI

L−→ {[Z 7→ P]{body2}YI1
; body1}XI

Since imports reduce to package expressions, we now need to reduce package
expressions to package values before we can evaluate the remaining body:

R ` pexpr
L−→ pexpr ′

R ` {pexpr ; body}XI
L−→ {pexpr ′; body}XI

(Link-Pkg-Expr)

R ` {{def}YIY
; body}XI

L−→ {[Y 7→ {def}YIY
]body}XI

(Link-Pkg-Value)

Rule (Link-Pkg-Expr) reduces package expressions to packages values, while
(Link-Pkg-Value) substitutes the package expression when it has been fully
reduced to a package value (i.e. when it has no more imports).

Linking thus has the effect of “inlining” all dependencies, which proceeds
recursively by first looking up the package, substituting the argument package
value for its formal parameter, and evaluating any remaining imports in the
package before substituting it for the package variable name from the import.
This type of linking can be done statically (for example after type-checking), or
dynamically (i.e. before program evaluation).

12

5.2 Evaluation rules

In our evaluation rules we assume that linking has already been performed. The
linking rules reduce package definitions to package values, without any remain-
ing imports or package applications. All that is left are then projections and
(extended) core-language expressions. Evaluation starts with an expression of
the form ({body}XI).main (), and the first thing we evaluate is the projection of
the main function:

({body1; fun f : τ = e; body2; }XI).f
E−→ [ξ 7→ ({. . .}XI).ξ | ξ ∈ dom(body1)] e

(E-Proj-Fun)

When we project a function we need to handle any references to abstract data
types and functions defined in the same package as f — otherwise we may
end up with an ill-formed term. For example we may have e = λx : T.g x, in
which case we want transform T and g into projections on the package value,
i.e. λ(x : {. . .}XI .T).{. . .}XI .g x.

To do this we use ξ to range over both functions f and type names T , and
we write dom(body) for the set of names ξ bound within body . This way we
can rewrite any free variables in the function body e of f to projections on the
package value.

Now our entire program consists of a closed expression, which may contain
applications, further projections and wrappings and unwrappings. The (stan-
dard) rules for function application are shown below.

e1
E−→ e′1

e1 e2
E−→ e′1 e2

(E-App-Left)

e2
E−→ e′2

(λx.e1) e2
E−→ (λx.e1) e′2

(E-App-Right)

(λx.e) v
E−→ [x 7→ v]e

(E-App)

Finally, we must be able to handle wrappings and unwrappings of abstract data
type terms:

e
E−→ e′

wrapT (e)
E−→ wrapT (e′)

(E-Wrap)

e
E−→ e′

unwrapT (e)
E−→ unwrapT (e′)

(E-Unwrap)

13

unwrapT (wrapT (e))
E−→ e

(E-UnwrapWrap)

The fact that values of abstract data types can only be wrapped (introduced)
and unwrapped (eliminated) inside the package they are defined is our argument
that evaluation preserves data abstraction, as there are no evaluation rules that
work on wrapped terms other than the (E-UnwrapWrap).

6 Static Semantics

Now that we have covered linking and evaluation, we present our static seman-
tics, inspired by manifest types [22].

6.1 Typing

In our typing rules we use a context Γ that keeps track of package and core-
language types, as well of type definitions:

Γ ::= X 7→ {decl}XI x 7→ τ T = τ

We have previously used package expressions in our linking rules. During type-
checking, we use corresponding package types of the form {decl}XI , which are
constructed from interface applications. While package application substitutes
package values for package variables, interface application has the effect of sub-
stituting access paths (i.e. package variable names). For clarity of presentation
we use a separate interface application rule:

iface I(Z : IZ) {decl} ∈ R R;Γ ` Y : IY R;Γ ` IY <: IZ

R;Γ ` I(Y)X {[Z 7→ Y]decl}XI
(T-IfaceApp)

That is, we substitute access path Y (the path of the argument) for the access
path Z (the path of the parameter). Besides looking up the interface name
in the repository and performing substitution, the rule also checks that the
argument package has the type required for the interface parameter (IY <: IZ).
Resolving interface application is a recursive process, which terminates because
of restrictions on circularity imposed on repositories (both for packages and
interfaces).

Interface application is perhaps the most interesting part of our typing rules,
and is used in particular to reduce interface applications used to define package
parameters, package imports and interface parameters. We start with package
definitions (which for simplicity of presentation take only a single argument):

X fresh R; [X : I] ` body : B

R; • ` pkg P(X : I) impl I {body} : {B}XI
(T-Pdef)

14

We require that the body implemented by the package is a (structural) subtype of
the body of the implemented interface, which is checked by the well-formedness
rule for packages (see §6.4). Packages are used by importing them, in which case
context Γ is augmented with the package types corresponding to the import:

P : I ∈ R R;Γ ` I(Y)X IX R;Γ [X 7→ IX] ` body : B

R;Γ ` (import P : I as X(Y); body) : B
(T-Pimport)

First we check that there exists a suitable package definition for the import
(which may implement a subtype I ′ of I). We then add the package definition
to Γ and type-check the package body. The resulting package types are useful
in particular for resolving projections of functions from package variables:

Γ ` X : {type T . . . fun f : τ . . .}XI
Γ ` X.f : [T 7→ X.T]τ

(T-Proj)

Although we have already rewritten the paths of interface parameters with the
paths of their arguments, we also need to handle references to abstract data
types within the interface itself. We do this by prefixing such references with the
package variable name under which the package was imported. For example, in
a projection X.f where f : τ → T , we have X.f : τ → X.T .

Next we need to assign types to definitions, which are simply transformed
to corresponding declarations. When typing a type definition we check that T
is not already defined in the package body, and then add it to core-language
context Γ :

T 6∈ dom(Γ) R;Γ [T = τ] ` body : B

R;Γ ` (type T = τ ; body) : (type T = τ ;B)
(T-Type-Def)

Function definitions are similar: we check that f is not already defined in the
package body, and then add it to core-language context Γ :

f 6∈ dom(Γ) Γ ` e : τ R;Γ [f : τ] ` body : B

R;Γ ` (fun f : τ = e; body) : (fun f : τ = e;B)
(T-Fun-Def)

Rules for type and function declarations are nearly identical, except for the
omission of the type definition τ and the term definition e.

Core-language rules are the standard typing rules for the simply-typed lambda
calculus, and are omitted. We also have to type wrap and unwrap operations:

T = τ ∈ Γ Γ ` e : τ

Γ ` wrapT (e) : T
(T-Wrap)

15

T = τ ∈ Γ Γ ` e : T

Γ ` unwrapT (e) : τ
(T-Unwrap)

The side condition T = τ ∈ Γ ensures that wrap and unwrap operations are only
possible within the context of the packages that defines T . This is our argument
that our semantics properly enforces data abstraction.

Typing the Extended Grammar The above rules suffice to type-check pro-
grams and packages. We also need additional rules to type-check the extended
syntax, in order to argue that linking reduction steps preserve types. We show
this informally without proving soundness of the linking operations.

To start, we need to assign types to package values. Fortunately, this is
straightforward, as we can first check the package body and use this to assign
the package type:

R, Γ ` body : B

R, Γ ` {body}XI : {B}XI
(T-PkgVal)

Since linking has substituted package values for term-level package variables, we
need to update our typing rule for imports and for projections. The rules are
essentially the same as their variable-based counterparts, and involve extracting
the access path:

R;Γ ` {body}XI : {type T . . . fun f : τ . . .}XI
R;Γ ` ({body}XI).f : [T 7→ X.T]τ

(T-ProjPkgVal)

The rule above is a straightforward adjustment of (T-Proj), employing package
values {body}XI instead of package variables X. The rule for imports is a similar
adjustment of the (T-Import), and omitted.

6.2 Type Equivalence

Crucial to our system is preserving data abstraction, for which we need to reason
about equality of abstract data types using a generative type semantics. To
do this, we need to distinguish abstract data types with the same name, that
originate from different packages or package instantiations.

Following [22] we use manifest types and base type equality, written ≈, on
paths. Paths are manipulated by interface application, by updating the access
path for type projections. Two abstract type names are equivalent if and only if
they have the same path:

X = Y

X.T ≈ Y.T
(Eq-Abs-Type)

16

In our extended syntax we have also substituted package values for package
variables, so we need an addition type equality rule for type projections:

X.T ≈ ({def }XI).T
(Eq-Abs-Proj)

This finally reveals why tracking package variables as part of package values was
useful.

6.3 Subtyping

So far we have used two forms of subtyping rules, namely a nominal relation
<:nom⊆ I × I, and a more traditional relation <: ⊆ τ × τ . Nominal subtyping
is used to look up package definitions in a repository, either to link a dependency
into a program or during dependency resolution to compute installation plans
(see §4.1). The more traditional subtyping relation is used to check that pack-
ages properly implement their interfaces (T-Pdef), for type-checking package
applications (R-TyApp) and for checking interface well-formedness (§6.4).

Nominal Subtyping is defined explicitly in interface definitions, and the nom-
inal subtyping relation is reflexive transitive closure of this explicit declaration:

iface I(X : IX) <: I ′ {decl} ∈ R
R ` I <:nom I ′

(NomSub-IFace)

Traditional Subtyping is defined as the reflexive transitive closure of the
rules for package types, package type bodies and declarations below. Subtyping
for package types relies only on the nominal subtyping relation. This works
because interface and repository well-formedness have already ensured us that
the interface body is also a subtype (according to this relation).

R ` I <:nom I ′

R;Γ ` {B1}I <: {B2}I′
(Sub-IFace)

In addition to simply deferring to the nominal subtype relation, we need to
handle subtyping of package type bodies and declarations, in order to define
well-formedness. Subtyping for bodies includes width, depth and permutation
subtyping:

R;Γ ` Bσ(i) <: B′
i (1 ≤ i ≤ m) σ : {1, . . . ,m} 7→ {1, . . . , n} m ≤ n
R;Γ ` {B1; . . . ;Bn} <: {B′

1; . . . ;B′
m}

(Sub-Body)

We define subtyping of declarations in terms of syntactic equality. However, in
a serious implementation we may wish to enrich the definition, for example if
subtyping is defined on core language types, or to allow scenarios such as the
following:

R;Γ [T = τ] ` fun f : Int → τ <: fun f : Int → T

17

6.4 Well-Formedness

Well-formedness is used by repositories to check for correctness of package and
interface definitions. We say packages are well-formed if they are well-typed (first
line) and a proper subtype of their interface (second line):

R; • ` pkg P(X : I) impl I {body} : {B}YI for some Y
R; • ` I(X) {B′}I R; [X : I] ` B <: B′

R; • ` pkg P(X : I) impl I {body} WF
(WF-Pdef)

We say interfaces are well-typed if they are well-scoped and a proper subtype of
their supertype interface. We omit scoping rules for interfaces, as they provide
no useful insights, but in brief it checks that any referenced abstract data types
and any projections are valid. To check that an interface is a proper subtype of
its declared supertype, we check that it is contra-variant in its parameter types
(line 1) and covariant in its return type/body (line 2):

R; • ` iface I ′(Y : IY) {B′} ∈ R R; • ` IY <: IX
R; [X 7→ IY] ` {B} <: {[Y 7→ X]B′}
R; • ` (iface I(X : IX) <: I ′ {B}) WF

(WF-IFace)

6.5 Separate Type-Checking and Compilation

Our system supports separate type-checking, as the type-checker looks up in-
terfaces in repository R, but not package implementations P. We would argue
that our system could also support separate compilation of packages. One way
of doing this would be to treat package values as records of function pointers
(type definitions were needed in our operational semantics only to show type
preservation, but not not needed in a real implementation). Then imports could
be compiled into code that finds a suitable package in R, and evaluates it recur-
sively (e.g. through a package initialisation routine). This initialisation routine
could further take package values (i.e. records of function pointers) as arguments,
which initialises local package variable pointers with the supplied arguments.
Projection of functions is then compiled as accesses to members of the package
record values.

6.6 Implementation

We have implemented our package system in Haskell, which can be accessed
from [3]. Repositories are specified within a single file as a sequence of interface
and package definitions. Each new definition “extends” the repository and is
type-checked with respect to previous definitions. The repository may contain a
program (a package taking no arguments and defining a main function), which
can be evaluated. During evaluation imports are resolved dynamically by finding
a suitable definition in R. Our implementation comes with various example
repositories, accessible here: [2] [5].

18

6.7 Soundness

We have covered linking (
L−→), evaluation (

E−→) and typing. We are now in a
position to state progress and preservation theorems. We use the relation −→ to
stand for either linking or core-language evaluation. That is, whenever we write

R ` e −→ e′ we mean either R ` e L−→ e′ or e
E−→ e′ (core-language evaluation

does not need a repository R). The purpose is to show that both linking and
evaluation preserve types, and that neither gets stuck on well-typed terms. We
use e to range over all terms (package or core-language), and τ to range over all
types (interface or core-language):

Theorem 3 (Type Preservation). If R;Γ ` e : τ and R ` e −→ e′, then
R;Γ ` e′ : τ .

Theorem 4 (Progress). If R; • ` e : τ (e is closed and well-typed), then either
e is a value or there is some e′ such that R ` e −→ e′.

Values include package values and core-language values (lambdas, primitive
integers, etc).

7 Design and Change Management

In the design of a package system there are a number of considerations that are
different from module systems, which arise because of versioning. Evolution of
packages must be managed in order to remain backwards compatible as much
as possible with importing packages. This is useful because breaking changes
(changes that are backwards incompatible) force others to adapt to those changes
in newer versions of their code, and may further prevent sharing of dependencies
due to conflicting interface requirements (e.g. P and Q from Figure 1 may have
conflicting requirements of Wombat).

Flexibility in package compatibility is desired, but only in a semantically
meaningful way, as opposed to a structurally meaningful way, which would allow
for “spurious subsumption” [24]. First, we argue that interfaces should be named
and reusable to this end. Second we can exploit these meaningful names to reason
formally (and explicitly) about backwards compatibility, so that more caution
can be taken when changing APIs. Third, we argue that semantically named and
reusable interfaces are incompatible with structural typing, because one cannot
resolve a dependency with a name only to then treat the package as its structural
contents. Finally, we argue that interfaces capture concerns in packages that deal
with specific aspects on the public API, which are best separated according to
the “separation of concerns” principle [12].

7.1 Change Management

Change in the interface of a package can be either semantic or structural. A
semantic change is a change in the higher-level semantics of an interface, while

19

a structural change is a change to the structure (or signature) of the interface
(e.g. removing a type, changing a function signature, etc). While incompatible
changes to structure are detected automatically by a type-checker, the higher-
level semantics are meaningful to humans but not the type-checker. To distin-
guish between an (incompatible) change of semantics we use interface names
I.

While removing or changing components in interfaces are breaking changes,
adding components is not. To support compatibility with packages that have
more components exposed in their public interface, we add subtyping to our
system.4 Because interface names carry meaning, our subtyping relation is also
nominal (i.e. explicitly defined between interface names). This allows us to rea-
son about backwards compatibility of interfaces by relying on subtyping:

Definition 2. An interface I-vN is backwards compatible with an interface
I-vM if N ≥M and I-vN <: I-vM.

Similarly, we can say a package is backwards compatible with respect to
a previous version whenever its implemented interface is backwards compatible
with the interface of the previous version. Subtyping is defined in such a way that
packages/interfaces are contravariant in their parameters and covariant in the
package/interface body. This corresponds to subtyping for functors in Standard
ML [18] and standard subtyping for function types [24]. Imported packages can
be ignored, because they are not part of the exposed interface of a package.

Structural Typing and Names Standard ML and OCaml (among others)
use structural typing for signatures (the structural equivalent of our interfaces).
We have argued for the use of interface names to import packages, which is in-
compatible with structural typing because we can import a package with a name,
say I-v2, but subsequently use the package as a I-v1 where I-v2 <: I-v1. How-
ever, the package may implement I-v2 but not I-v1, and the relation between
I-v2 and I-v1 is not explicitly defined. Hence a system based on structural sub-
typing that wishes to have separately defined and named interfaces must treat
them purely in a structural fashion both for type-checking and dependency res-
olution.

Multiple Interfaces Packages are more heavyweight than modules (they
are often comprised of many modules), and typically handle multiple concerns.
For example, we could have a package pkg Wombat-v1 impl IFeedAndGroom-v1
that handles both feeding and grooming of wombats. Any incompatible change to
wombat grooming results in a pkg Wombat-v2 impl IFeedAndGroom-v2, break-
ing backwards compatibility even with packages looking to feed their wombats.
Concerns should be separated by implementing multiple interfaces, isolating
change in different interfaces. Although we could argue that packages should

4 Note that superficially this can be modelled by implementing multiple interfaces.
However, in dependency structures such as Figure 1 the bottom of the diamond D

would have to import Wombat twice. This then raises the question of whether the
type TWombat is shared between those two imports.

20

address a single concern, this may be incompatible with their course-grained
nature (leading users to ignore the separation principle and write monolithic
interfaces anyway).

8 Expressiveness

Since our system is meant to address problems in decentralized package sys-
tems based on version ranges (for example cabal, opam or pypi), we compare
the expressiveness our Π with that of traditional systems. We do this by (infor-
mally) exploring the expressiveness through possible encodings of our system into
version-based systems, and vice-versa. Although encodings are always possible
through (whole-program) restructurings, as discussed below such restructurings
may not be computationally tractable.

8.1 Encoding Π into Version-Based Systems

Dependency Hell Encoding Π into a system based on versions may be non-
trivial if we want to avoid dependency hell, as version-based systems would falsely
assume sharing of our internal dependencies. This assumption is based on pack-
age names, and avoiding this may require renaming internal dependencies and
duplicating them in the repository. However, duplication has to proceed recur-
sively, as a duplicated/copied package will have the same imports as the original,
and may otherwise generate a conflict on one of its internal dependencies. How-
ever, such duplication grows exponentially in the depth of the dependency graph,
and may generate unnecessarily large package repositories.

Further, our abstraction mechanism allows for packages to be linked against
different packages or package versions in different contexts, a construct not nor-
mally supported by many programming languages. Emulating such constructs
in a version-based system may require further duplications and renamings of
package definitions.

Interfaces and Semantic Versioning Packages in Π can express depen-
dencies on future versions of a dependency if that dependency implements (a sub-
type of) the required interface. In some decentralized package system this is mod-
elled by semantic versioning, which places compatibility assumptions on future
package versions encoded within the versioning name MAJOR.MINOR.PATCH
[4]:

– MAJOR is bumped whenever the API is changed in a backwards-incompatible
way

– MINOR is bumped when the API is changed in a backwards-compatible
– PATCH is bumped for changes that don’t affect the API (e.g. bug fixes)

However, this cannot (directly) deal with backwards compatibility with respect
to different subsets of a public API (i.e. packages implementing multiple inter-
faces).

21

8.2 Encoding Versions into Π

Decentralized package system are often developed for a particular programming
language, to manage the packages written in that language. Package systems
such as Debian on the other hand have a community that centrally audits
packages and maintains package metadata for entire operating systems. Such
systems have to support a variety of dependency types, such as dependency
on a package written in different language, dependency on configuration data,
command-line programs or dependency on a service. So far we have only looked
at API-dependencies of program libraries written in the same language. 5

For our system to be applicable to such type of package systems we believe
a long list of extensions are in order. This list is necessarily long because we
provide strong guarantees: installation always works and package linking does
not give errors, and preserves type-safety and data abstraction. Further, the
system can efficiently check that new package submissions to the repository do
not violate any of these conditions. Verifying such properties would require ways
of expressing types in the first place. For example, to express dependence on
a communicating service may require the use of session types [11] or a similar
typing discipline.

Although this is an important direction for future work, we believe that a
system of this variety will be hard or impractical to apply to existing ecosys-
tems such as Debian. Instead, we think our system is particularly applicable to
decentralized package systems for new, clean-slate, programming languages, or
perhaps for existing statically-typed programming languages for API dependen-
cies. Below we compare Π to similar package systems based on versions.

Version Restrictions Traditional package systems based on version ranges
can restrict package versions, which is especially useful to rule out buggy or
vulnerable implementations. We can incorporate such functionality into Π by
adding version restrictions on imports in addition to the interface restriction.
This then restricts import resolution without sacrificing any guarantees or sim-
plicity of dependency resolution. This is because we are free to choose any com-
patible version of the package without restrictions from outside (i.e. the con-
straints are local). Adding version restrictions to external dependencies (formal
parameters) would however require non-trivial extensions to our system, with a
question around whether the version restrictions on packages should be part of
the interface annotations.

Conflicts Traditional package systems can often express conflicts between
packages [10], e.g. because they both provide a service that binds to the same
port. We can extend our system to deal with such cases (e.g. pkg FastHTTP impl
IHTTP-v1 conflicts HTTP), with corresponding changes to the dependency reso-
lution algorithm. Conflicts might be enforced (efficiently) in a similar way as our

5 Many languages already have Foreign Function Interfaces (FFIs) for calling into
other languages. Perhaps foreign functions declarations could be defined as as part
of “foreign interfaces”, assuming appropriate compiler extensions.

22

restrictions on package circularity, covered in §4.1. Such an extension of course
does mean that we can no longer guarantee to install any package from a repos-
itory. However, we may ask ourselves if such conflicts are not better expressed
at a “whole systems”-level, rather than at the level of individual packages.

Platforms Some packages may be platform-specific, which we could sup-
port through an import “disjunction”: import P : IP-v1 from PLinux or
PWindows. Disjunctions that depend on user preferences or configuration data
may prove useful in general.

Circularity Our system does not support circular dependencies or recursive
linking. However, our system can in principle be extended to include fixpoints of
package applications, similar to the functor fixpoints based on the ML module
system detailed in [19]. For example, we could write:

import Foo−any : IFoo−v1 as F(B)
import Bar−any : IBar−v1 as B(F)

Recursive modules, and the interplay with mutable variables and circular defi-
nitions have been extensively studied in [14][13][25][19][16] and others.

9 Discussion and Related Work

Module Systems As alluded to earlier, our package system is much like module
systems such as that of Standard ML [18] or OCaml, MixML [15], Units [17] or
component-based systems [21]. This is because the purpose of module systems
is to support modular development and a way of linking modular code units
into larger ones. All these systems have an abstraction mechanism in common
that uses types or interfaces to express how modules may be composed. Our
presentation differs in that we focus on packages instead of modules, which have
different dependency relations than modules (hence our import operator). For
example, both module systems and package systems need a (typed) abstrac-
tion mechanism, but their motivation is rather different: module abstraction is
used for multiple instantiation (as well as separate compilation), while pack-
age abstraction is used primarily to reason about package equality for common
dependencies, necessary because of versioning.

We further support separate compilation of packages, which is not possible
in module systems which use bare names M to identify modules. We argue that
these differences are substantial enough to re-evaluate common design decisions,
in particular with regard to how packages and interface are identified, how sub-
typing is done, and when sealing occurs.

Although component systems often feature repositories of components and
sometimes automatic matching (similar to what our import operator does), we
are not aware of any component system that covers component versioning and
dependency hell.

Backpack is a package system for Haskell [20], based on the module calculus
MixML. The main difference in our presentation is that we handle versioning, a

23

defining aspect that sets packages apart from modules. With versioning in place,
we can reason about dependency hell and the constructs required to absolve it.
This leads us to think about change management and backwards compatibility,
where we place increased importance on names and the use of nominal instead
of structural typing.

Backpack is applied to an existing language, and is therefore more practi-
cally motivated. Backpack, building on MixML, further supports recursive and
more flexible linking with an applicative semantics. Applicativity is not of great
concern in the design of our system for two reasons: first, packages cannot ex-
port internal dependencies, which means that applicativity of imports would
only work locally within the package body. Second, our package abstractions
are first-order, so we cannot export types from an abstraction passed in as an
argument.

Functional Package Managers such as Nix [9] manage packages functionally
by never removing or mutating them explicitly during upgrade or installation.
Instead packages are only ever added to the system, allowing seamless rollback
to earlier versions of the system. Packages are then garbage collected to free
diskspace. In Nix the user describes a complete system, making systems repro-
ducible. Our system differs in that we compose packages modularly, without
requiring a description of a complete system. Systems can then be automatically
generated by a dependency resolution procedure. Further, we use interfaces for
modular compilation, while Nix can only verify a package composition once all
dependencies have been satisfied (requiring intricate knowledge of package com-
patibility). We also support type-safety at the package level, and support runtime
linking. The concept of functional package management is a powerful one, which
implementations of our system almost invariably would adopt. Reproducibility
in our system would be supported by generating a list of package versions for a
particular user system S.

Virtual Package Environments such as virtualenv [8] or Cabal sandboxes
provide a fresh environment for packages to be installed (often including core
components such as a compiler or interpreter). Although this can help reduce ver-
sion conflicts, the same problem still exists within the individual environments.
Tools such as Vagrant [6] or Docker [1] solve woes around code deployment, by
isolating the entire operating system (or large parts of it) from the host system
by sandboxing a virtual image. Although powerful for code deployment, creat-
ing an image still relies on traditional package systems and type-safety is not
addressed.

Traditional Package Systems We have already covered traditional package
systems based on version ranges. Often such package managers employ advanced
SAT-solvers to compute which package versions are required. By now we hope
that the advantage of Π over version-based systems have become clearer. These
systems have seen great advances over time, to a point where packaging problems
may seem like a problem on systems such as Debian. However, we would like to
point out once more that this is to a large extent because of the involvement of

24

communities that work hard to make sure that upgrades for user systems work
properly. In decentralized systems this model often breaks: Cabal frequently
fails with compile errors due to Haskell’s strong type system, and in Python or
Javascript runtime exceptions (when lucky) or “mysterious runtime behaviour”
(when unlucky) are not uncommon. For example, although the npm package
manager for Javascript installs packages side-by-side, it has no notion of when
it is safe to do so. Hence mutable state that must be shared may be erroneously
duplicated, and data abstraction may be violated.

We note however that our internal dependencies aren’t suitable for all sce-
narios. For example, for security reasons we may wish to only link in a single
TLS library into our programs — instead of an old version with known security
vulnerabilities. Although an interesting direction for future work, enforcing such
properties system-wide (perhaps influenced by user-defined policies), is beyond
the scope of this work.

10 Conclusions

We have introduced a package system based on interfaces with strong safety
guarantees: any package contained in a shared repository of packages can be
installed onto a user system, and the resulting libraries and programs defined by
those packages are type-safe. A defining aspect has been change management,
so that packages can be flexibly updated with minimal effects to the package
ecosystem (and the need for others to adapt to change in other packages).

We hope to have shown that there are real problems in package management,
which are not a mere result of buggy or incapable package managers. Dependency
hell is a direct result arising from the limitations of linkers and inexpressiveness
of package metadata. Package systems for Linux and other systems work as well
as they do because of extensive community involvement, which includes testing
and auditing of a centralized package repository. With our approach packages
can be developed in a distributed way, and composed in a type-safe way.

An important direction for future work is to apply package systems such
as ours to existing languages, and study the interplay with different language
features such as subtyping, dynamic typing, unsafe language features, and so on.
To be practically applicable to new programming languages, it may make sense to
incorporate more features from module systems (such as more sophisticated type
sharing constraints), to create a unified system for both packages and modules.
Other directions of future work may include increasing the expressiveness of
the language to include other forms of dependency (communicating programs,
cross-language support, command-line tools, and so on).

Acknowledgements Omitted for review version.

References

1. Build, ship, and run any app, anywhere, https://www.docker.com/

25

2. Evaluation examples of the package system,
https://github.com/markflorisson/packages/blob/master/Test/Eval/EvalDiamond.pkg

3. Implementation of the package system, https://github.com/markflorisson/packages
4. Semantic versioning, http://semver.org/
5. Type-checking examples of the package system,

https://github.com/markflorisson/packages/tree/master/Test/TypeCheck
6. Vagrant, https://www.vagrantup.com/
7. Abate, P., Cosmo, R.D., Treinen, R., Zacchiroli, S.: Dependency solving: A separate

concern in component evolution management. Journal of Systems and Software
85(10), 2228–2240 (2012)

8. Bicking, I.: Virtualenv, https://virtualenv.pypa.io/en/latest/
9. van der Burg, S.: A Reference Architecture for Distributed Software Deployment.

Ph.D. thesis (2013)
10. di Cosmo, R.: Report on formal management of software dependencies (05 2012)
11. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An overview.

Lecture Notes in Computer Science pp. 1–28 (2010)
12. Dijkstra, E.W.: On the role of scientific thought. Selected Writings on Computing:

A personal Perspective pp. 60–66 (1982)
13. Dreyer, D.: A type system for well-founded recursion. ACM SIGPLAN Notices

39(1), 293–305 (2004)
14. Dreyer, D.: Understanding and evolving the ML module system (05 2005)
15. Dreyer, D., Rossberg, A.: Mixin’ up the ML module system (09 2008),

http://dx.doi.org/10.1145/1411203.1411248
16. Duggan, D.: Type-safe linking with recursive DLLs and shared libraries. ACM

Transactions on Programming Languages and Systems 24(6), 711–804 (2002)
17. Flatt, M., Felleisen, M.: Units: Cool modules for hot languages. ACM SIGPLAN

Notices 33(5), 236–248 (1998)
18. Harper, R.: Programming in Standard ML (2011)
19. Im, H., Nakata, K., Garrigue, J., Park, S.: A syntactic type system for recursive

modules. Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications – OOPSLA ’11 (2011)

20. Kilpatrick, S., Dreyer, D., Jones, S.P., Marlow, S.: Backpack: Retrofitting haskell
with interfaces. Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages – POPL ’14 (2014)

21. Lau, K.K., Wang, Z.: Software component models. Proceeding of the 28th inter-
national conference on Software engineering – ICSE ’06 (2006)

22. Leroy, X.: Manifest types, modules, and separate compilation. Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages - POPL ’94 (1994)

23. Leroy, X.: Applicative functors and fully transparent higher-order modules. Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages – POPL ’95 (1995)

24. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA (12
2002)

25. Russo, C.V.: Recursive structures for Standard ML. ACM SIGPLAN Notices
36(10) (2001)

26

