
Towards a Theory of Packages

Mark Florisson and Alan Mycroft

Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge CB3 0FD, UK

Firstname.Lastname@cl.cam.ac.uk

Abstract. Package managers are programs that manage the installation
of software packages onto the systems of users with the help of repos-
itories and package metadata. This process is complicated by the fact
that packages evolve, and are therefore versioned. Traditional package
managers cause trouble for users by refusing to install a package, or by
failing to compile, load or run programs correctly. We argue that this
is the result of inexpressive package metadata and limitations inherent
in package linkers. We present a package system that ensures installa-
bility and type-safety of packages by using interfaces for package meta-
data, by addressing linker insufficiencies and by imposing restrictions on
repositories. The system manages change flexibly and meaningfully using
names and nominal subtyping to formalize backwards compatibility. Al-
though the system is similar to module systems, we show how versioning
leads to fundamentally different design decisions. The system is appli-
cable to packages written in a single programming language, although
inter-language dependencies are an important direction for future work.

1 Introduction

Large systems are not written monolithically, but are composed of various soft-
ware components. These components (either library code or executable pro-
grams) are usually called packages, often comprised internally of many modules.
Packages are a means of code distribution, so while modules can be modified
in-place, packages are versioned to support their evolution. Package metadata
expresses how packages depend on each other, often through version ranges.
This metadata is used in the management of packages (installation, upgrade or
removal of packages). Packages are shared through (central) repositories, and
dependency resolution decides which packages from the repository need to be
available on a user’s system when installing or upgrading. Due to the inexpres-
siveness of package metadata, two major problems arise.

Dependency hell is the first problem, and arises because traditional package
systems insist on making only a single version of a particular package available
at any given time. This leads to conflicts, as different packages on the system
may require different versions of a dependency.1 Version conflicts are common in

1 We follow common nomenclature: if package P depends on Q (written P → Q), then
both the arrow and Q are called a “dependency” of P on Q.

Wombat

P Q

D

Wombat-v9.2 Wombat-v8.1

P Q

D

Fig. 1. Diamond dependency with a shared Wombat package (left) and with two separate
Wombat packages (right).

repositories that are not carefully audited, because version ranges may be overly
constrained to guard against possible future incompatibilities. Installation prob-
lems are unpredictable, as dependency resolution depends on both the required
software and the already available packages on the system; hence a solution to
an installation problem may exist for one system but not another.

Systems allow only a single version of a package for two reasons. First, pack-
age linkers can often not link multiple versions into a single executable (and
sometimes cannot deal with multiple versions system-wide).2 Second, linking
multiple versions of a package into a program may result in the program passing
values from one version of the library into another version, potentially violating
data abstraction and type safety.

To see this, consider a scenario involving a common dependency Wombat as
shown in Figure 1. As part of their public APIs, Wombat exports an abstract
data type TWombat, P exports a function fun f : TWombat→ Int and Q exports
a function fun g : Int → TWombat. Because TWombat is part of the function
signature we say that P and Q expose TWombat from Wombat. Due to this exposure,
D could now pass values of TWombat between P and Q (e.g. P.f ◦ Q.g). If that
happens, safety mandates that P and Q are linked against the same Wombat

package (Figure 1, left). On the other hand, if D does not wish to share TWombat

values between P and Q, we are entirely free to link P and Q against different
Wombat packages (Figure 1, right).

Portability is the issue of whether a package developed on one machine can
also work correctly on another—even of the same type— and is the second major
problem with existing package systems. During development, packages are linked
against dependencies as if the dependencies were modules (systems comprised
of modules contain only one version of each module). This implicitly presumes
a stable (non-changing) interface between package versions, which is often not
the case. As a result, installing the package on a different system may link it
against different versions of dependencies with perhaps different interfaces. This
effectively delegates the issue of type-safety to the (language-specific) linking
procedure (linkers for languages such as C typically resolve symbols by name,

2 Linking multiple versions of native binaries may cause symbol conflicts, and virtual
machines often simply link the first package found in a path (e.g. PYTHONPATH).

2

ignoring types completely). Unfortunately, because there are exponentially many
combinations of dependency versions, checking for incompatibilities in package
metadata beforehand may not be tractable, leaving users with mysterious errors.

A Fresh Approach Existing package managers are pragmatic tools and our
purpose is to provide a theoretical basis for packages and their management. For
this, we introduce a new package system

∏
, that is meant to represent a class

of package systems that solve the aforementioned problems: dependency hell
is eliminated by installing package versions side-by-side. This is made possible
by more expressive package metadata that can express where package versions
must be shared. Portability and type-safety issues are eliminated by writing
packages against interfaces. Packages are type-checked and compiled modularly
and interfaces are used for dependency resolution and linking.

Finally, we address change management, which is especially crucial for pack-
ages because of the distributed nature of their development. Packages do not
evolve in lockstep, and breaking compatibility with respect to previous versions
diminishes the ability to share packages. In the worst case, this can result in the
programmer having to write explicit adaptation layers between package versions.

Contributions include a package system
∏

that:

1. does not suffer from dependency hell, portability or type-safety issues
2. can compile packages separately, and link packages dynamically or statically
3. helps manage change and handles versioning

Further, we show that dependency resolution is decidable in polynomial
time, whereas dependency resolution in traditional package managers is NP-
complete [6] (§5.2).

There are great similarities between module systems such as that of ML [14]
and package systems such as

∏
. Indeed, recent work on Backpack [16] proposes

a package system for Haskell based on mixin modules from the MixML module
calculus [10]. However, we argue that package systems are different from modules
and that we abstraction (such as functors in ML) is used to express sharing of
dependencies, rather than multiple instantiaton. Our presentation differs from
Backpack in that we explicitly address dependency hell and change management.
Further differences are detailed in §7.

2 Package System and Examples

Our package system explicitly handles the two scenarios from Figure 1 by dis-
tinguishing between external dependencies and internal dependencies. A depen-
dency is external when we expose one of its abstract data types as part of our
public API, (e.g. fun f : TWombat→ Int in package P). A dependency is internal
when we do not expose any of its abstract data types.

3

We express external dependencies using abstraction (formal parameters), to
defer linking of the dependency. A dependant such as D from Figure 1 can then
choose a suitable version of Wombat that is compatible with the needs of both
P and Q. Package D is then assured that it can safely share values of TWombat

between P and Q. If P and Q were to link with Wombat individually, D would not
know whether it could safely share values. Internal dependencies are expressed
with an import construct, which loads some compatible version of the depen-
dency. No abstract data types are exposed from internal dependencies, but they
can always be hidden behind a new abstract data type. The grammar and scop-
ing rules of our system automatically ensure this, as interfaces have no way of
referring to internal dependencies. In our system packages can be defined as fol-
lows:

pkg Wombat−v9 . 2 impl IW−v2
type TWombat = . . .
. . .

i face IW−v2 <: IW−v1
type TWombat
. . .

On the left we have a package definition of Wombat of version v9.2 implementing
an interface IW-v2 (shown on the right). It further defines an abstract data type
TWombat, which is declared in IW-v2, making it a part of the public API (i.e.
visible to other packages). Interface IW-v2 declares that it is further a subtype
of IW-v1 (not shown here). Next we have a package P:

pkg P−v9 (W : IW−v1) impl IP−v1 (W)
fun f : W.TWombat → Int = . . .

i face IP−v1 (W : IW−v1)
fun f : W.TWombat → Int

P has a formal parameter W of type IW-v1 to abstract over the Wombat depen-
dency (or indeed any package that implements IW-v1 or a subtype). The package
P (left) defines f and the interface IP-v1 (right) declares f and its function sig-
nature. Because P wants to expose TWombat, interface IP also takes a parameter
of type IW-v1, allowing it to refer to W.TWombat. To show how the W parame-
ter to package P is related to the W parameter of interface IP, P applies IP to
W: pkg P-v9(. . .) impl IP-v1(W). This allows flexibility in how interfaces are
used, to which we return in §4. Package Q is similar to P so we omit it here.
Finally there is package D:

pkg D−v8 impl ID−v2
import W : IW−v2 from Wombat−any
import P : IP−v1 (W) from P−any (W)
import Q : IQ−v6 (W) from Q−any (W)
. . .

i face ID−v2

. . .

D first imports Wombat, and then instantiates (or links) P and Q with Wombat,
applying both packages (P and Q) and interfaces (IP-v1 and IQ-v6) to Wombat.
Only D is in a position to say which Wombat P and Q must be linked with, and it
could also choose to link P and Q with different packages, which would prevent
sharing of the TWombat type. Here interface IW-v2 is a subtype (<:) of IW-v1,
allowing us to exploit subsumption when linking P against Wombat.

4

3 Package Language

We now introduce the grammar of our package system. In our system, a package
is an opaque unit of code, perhaps internally comprised of modules. For simplicity
our packages export only flat namespaces. In our core language, code consists
of abstract data types and functions that operate over such types. Abstract
data types can only be exported abstractly in interfaces, but are concrete within
the package (i.e. their definition is visible to the code in the package). Hence
interfaces contain declarations and packages contain definitions.

3.1 Package Grammar

In this section we formalise the syntax of package constructs. As mentioned
we version both packages (Wombat-v9.2) and interfaces (IW-v2). Packages are
resolved by requesting some version (Wombat-any) implementing a particular
interface (hence we write package versions when defining a package but not when
importing a package). Importing a package binds to a local package variable (like
a let-binding), and abstraction to a local parameter (like a formal parameter to
a λ).

While names are disambiguated by syntax, we find it helpful to define sepa-
rate syntactic categories and naming conventions for them:

Category Example Use
PVname Wombat-v9.2 a concrete package in a repository
Pname Wombat-any a request for some version of a package
Pvar P a package parameter or local name for an imported package

IVname IWombat-v3 a concrete interface in a repository
Ipar I an interface parameter name

T TWombat a core-language type
Uvar x, f a core-language variable or function.

In examples we use lower-case for variable and functions, upper case starting
with ‘T ’ for types, upper case beginning with ‘I ’ for interfaces and other upper
case for package names (both concrete and abstract). The format of the ‘version’
part of a name plays no semantic role other than to distinguish packages and
interfaces; however we assume there is a partial order ≤ on the string after the
‘-v’ in PVname and IVname to define backwards compatibility later.

Names in category Ipar range over interface parameters, which are used to
specify external dependencies at the interface level. Similarly, Pvar ranges over
package variables, which represent either internal or external dependencies (i.e.
parameters or local imports).

Syntactic meta-notation: given a string ω of terminal and non-terminal sym-
bols we write ω to to mean zero or more repetitions, and [ω] to mean zero or one
repetition of ω. Here, rather abusively, we assume such abstract-syntax repeti-
tion includes appropriate concrete separators such as commas in argument lists
and semicolons for declarations.

5

Types and Terms As in the ML module system [19], the (core-language) type
and term language is largely independent of the package system. However, we
assume the language has abstract data types T and functions f over such types.3

We support functions and corresponding arrow types τ1 → τ2, and projection of
type and term components from Pvar and Ipar using standard “dot” notation
(e.g. W.TWombat).

e ::= f | Pvar .f | . . . (terms)
τ ::= T | τ → τ | Pvar .T | Ipar .T | Unit | Int | Bool | ldots (types)

Tdecl ::= type T (abstract data type declaration)
Tdef ::= type T = τ (abstract data type definition)

FunDecl ::= fun f : τ (function declaration)
FunDef ::= fun f : τ = e (function definition)

Packages and Interfaces Interface and package definitions Idef and Pdef have
largely parallel syntax; their bodies Ibody and Pbody consist of (type and func-
tion) declarations and definitions respectively. Both interfaces and packages may
be parameterised—interfaces by named interface parameters Ipar and packages
by named package parameters Pvar . Such parameters are constrained by inter-
face expressions Iexpr using a colon. In ML parlance, the “impl” clause serves
the role of sealing when defining the package. Adding interfaces to parameters
and imports is what allows separate type-checking or compilation. Adding inter-
faces to package definitions explicitly allows us to use interfaces as semantically
meaningful contracts between a defining and importing package. Hence Pimport
serves to both identify a package and seal it behind an interface (called signa-
tures in ML, which are the structural equivalent of our interfaces). Sealing is a
form of hiding, exposing only those components listed in the interface definition.
Finally, “<:” in Idef defines a nominal subtype relation (§4)

Idef ::= iface IVname (Ipar : Iexpr) [<: Iexpr] Ibody (interface def.)

Ibody ::= {Tdecl ; FunDecl} (interface body)

Iexpr ::= Ipar | Pvar | IVname(Iexpr) (interface expr/app.)

Pdef ::= pkg PVname (Pvar : Iexpr) impl Iexpr Pbody (pkg def.)

Pbody ::= {PImport ; Tdef ; FunDef } (pkg body)

Pimport ::= import (Pvar : Iexpr) from Pname(Pvar) (pkg import/app.)

Note that scoping means that Iexpr in package definitions cannot contain
Ipar and that Iexpr in interface definitions cannot contain Pvar . Further, Pvar
defined by Pimport cannot be used in the impl clause, so that no types from
internal dependencies can be exposed in the exported interface. The following
restrictions apply: the outermost Iexpr expression cannot be a Pvar or Ipar .
Second, all Iexpr arguments in the impl and <: clauses must be respectively
Pvars and Ipars (which simplifies our presentation).

3 Providing non-function values is simple, but is omitted as it adds no expressive power
here.

6

In examples we relax the syntax for clarity in the following ways: Iexpr fol-
lows a first-order expression syntax and we shorten (e.g.) IVname() to IVname.
Similarly we write “fun f(x) = e” instead of the more formal “fun f : τ = λx.e”
and omit braces { } around package and interface bodies in favour of indentation.

4 Design and Change Management

In the design of a package system there are a number of considerations that are
different from module systems, which arise because of versioning. Evolution of
packages must be managed in order to remain backwards compatible as much
as possible with importing packages. This is useful because breaking changes
(changes that are backwards incompatible) force others to adapt to those changes
in newer versions of their code, and may further prevent sharing of dependencies
due to conflicting interface requirements (e.g. P and Q from Figure 1 may have
conflicting requirements of Wombat).

Flexibility in package compatibility is desired, but only in a semantically
meaningful way, as opposed to a structurally meaningful way, which would allow
for “spurious subsumption” [20]. First, we argue that interfaces should be named
and reusable to this end. Second we can exploit these meaningful names to reason
formally (and explicitly) about backwards compatibility, so that more caution
can be taken when changing APIs. Third, we argue that semantically named and
reusable interfaces are incompatible with structural typing, because one cannot
resolve a dependency with a name only to then treat the package as its structural
contents. Finally, we argue that interfaces capture concerns in packages that deal
with specific aspects on the public API, which are best separated according to
the “separation of concerns” principle [7].

4.1 Change Management

Change in the interface of a package can be either semantic or structural. A
semantic change is a change in the higher-level semantics of an interface, while
a structural change is a change to the structure (or signature) of the interface
(e.g. removing a type, changing a function signature, etc). While incompatible
changes to structure are detected automatically by a type-checker, the higher-
level semantics are meaningful to humans but not the type-checker. To distin-
guish between an (incompatible) change of semantics we use interface names
(IVname).

While removing or changing components in interfaces are breaking changes,
adding components is not. To support compatibility with packages that have
more components exposed in their public interface, we add subtyping to our
system.4 Because interface names carry meaning, our subtyping relation is also

4 Note that superficially this can be modelled by implementing multiple interfaces.
However, in dependency structures such as Figure 1 the bottom of the diamond D

would have to import Wombat twice. This then raises the question of whether the
type TWombat is shared between those two imports.

7

nominal (i.e. explicitly defined between interface names). This allows us to rea-
son about backwards compatibility of interfaces (Definition 1), and by extension
packages (Definition 2).

Definition 1. An interface I-vN(Y) is backwards compatible with an interface
I-vM(X) if N ≥M and I-vN <: I-vM and Y <: X.

Definition 2. A package P-vB(T) implementing interface I-vN(Y) is backwards
compatible with package P-vA(S) implementing interface I-vM(X) if B ≥ A,
S <: T and I-vN(Y) is backwards compatible with I-vM(X).

Definition 2 states that packages are contravariant in their parameters and co-
variant in the implemented interface. This corresponds to subtyping for functors
in Standard ML [14] and standard subtyping for function types [20]. Imported
packages can be ignored, because they are not part of the exposed interface
of a package. Subtyping has more flexibility than shown here, since it also has
to deal with sharing and the correspondence between parameters, for example
iface IX-v2(W : IW-v1) <: IX-v1(W,W) is valid. The full details of subtyping
are in Appendix A.1.

Structural Typing and Names Standard ML and OCaml (among others)
use structural typing for signatures (the structural equivalent of our interfaces).
We have argued for names (IVname) to import packages, which is incompatible
with structural typing because we can import a package with a name, say I-v2,
but subsequently use the package as a I-v1 where I-v2 <: I-v1. However, the
package may implement I-v2 but not I-v1, and the relation between I-v2 and
I-v1 is not explicitly defined. Hence a system based on structural subtyping that
wishes to have separately defined and named interfaces must treat them purely
in a structural fashion both for type-checking and dependency resolution.

Multiple Interfaces Packages are more heavyweight than modules (they are
often comprised of many modules), and typically handle multiple concerns. For
example, we could have a package pkg Wombat-v1 impl IFeedAndGroom-v1 that
handles both feeding and grooming of wombats. Any incompatible change to
wombat grooming results in a pkg Wombat-v2 impl IFeedAndGroom-v2, break-
ing backwards compatibility even with packages looking to feed their wombats.
Concerns should be separated by implementing multiple interfaces, isolating
change in different interfaces. Although we could argue that packages should ad-
dress a single conern, this may be incompatible with their course-grained nature
(leading users to ignore the separation principle and write monolithic interfaces
anyway).

5 Formal Development and Guarantees

In this section we address the safety claims we have made in the introduction. We
introduce shapes in §5.1, the basis of our type system, adopting terminology from

8

Backpack [16]. Building on this, we show how “dependency hell” is eliminated
in §5.2, by formalizing package repositories and dependency resolution. Although
we do not prove all aspects of the system, dependency resolution is a simple and
efficient depth-first traversal. We then show that packages are modularly type-
checkable (and compilable) (§5.3) by defining a static semantics that consults
a package repository R for interface but not package definitions. We defer a
dynamic semantics to §A.2 where we also state soundness (but leave a proof to
future work).

5.1 Shape and Identity

We have argued for interfaces as a means of package specification or type; sharing
of dependencies and abstract data types is expressed through variable names. For
example in pkg A-v1(W : IW-v1, P : IP-v1(W)) the package for P must have
been linked with the package for W . Although all required information is present
to treat packages as terms and interfaces as types, we find it convenient to enrich
packages and interfaces with information that explicitly expresses equalities of
packages such as W . We do this by assigning labels ` ∈ Label that represent
package identity (assigned to a particular imported or linked package). Versions
bear no relation to labels, as they bear no relation to their identity. We label
interface and package constructors (IVname and PVname), written I` and P`,
as well as (abstract data) type names, written T `. Note that textual equality
of types now includes labels on their type names; this ensures that P.f ◦Q.g is
valid only if the TWombat types exposed by f and g are identically labelled.

Labels further make it easy to resolve imports and to verify the validity
of Iexprs. We call these enriched structures shapes. One way of handling type
identity is manifest types [18] and substitution of type names in signatures.
However, we support nominal subtyping, which extends to interface parame-
ters and not just to the body of the interface (or the signature). For example,
both IW-v1 and IW-v2 may export a type TWombat, but if W1 : IW-v1 and
W2 : IW-v2, then IP-v1(W1) and IP-v2(W2) represent different interfaces (with
IP-v1(W2) <: IP-v1(W1) if IW-v2 <: IW-v1). Hence we model our equality
constraints with interface names instead of type names.

Type-checking and compilation of packages is the process of shape checking,
which given a Idef or Pdef produces an interface or package shape respectively:

I ::= I`(I){type T `; fun f : τ} (interface shape)

P ::= P`(I){type T ` = τ ; fun f : τ = e} : I | P`(I){∗} : I (package shape)

Shapes have more or less the same structure as their respective interface
or package definitions. Most notable is the addition of labels (I`, P` and T `)
and the addition of shape bodies {. . .} for interfaces and external package de-
pendencies (internal dependences use {∗} as their bodies are unknown during
shaping). Bodies include labelled types T `, with appropriate extensions to τ
and e. Moreover, variables Ipar and Pvar are resolved to interface shapes I us-
ing a context ∆ (defined below), so an Iexpr IP-v1(W2) becomes an interface

9

shape IP-v1`1(IW-v2`2(){B2}){B1} for some shape bodies B1, B2 and labels
`1, `2. Type projections W2.TWombat are now of the form TWombat`, while term
projections are now on interface shapes I, e.g. IW-v2(){. . .}.f .

To keep the size of inference rules manageable, we use I instead of IVname
for interface constructors and P instead of package constructors PVname and
Pname. We use B to range over shaped bodies (corresponding to Ibody and
Pbody). We use S to range over either I, P or B, and X to range over both Ipar
and Pvar. We use the following contexts in our shape-checking rules:

R ::= I 7→ Idef P 7→ Pdef
∆ ::= X 7→ I

Γ ::= x 7→ τ T 7→ (τ | abs)

Contexts R, ∆ and Γ are each finite partial maps: R maps constructors I and
P (IVname and PVname) to their respective interface and package definitions
(Idef and Pdef), ∆ maps variables X (Pvar and Ipar) to interface shapes. Core-
language context Γ maps variable and function names to types, and abstract
types names either to types if locally defined or to abs otherwise. We further
use L = [`] as an optional label (` or •), in order to label type declarations
and definitions type T [= τ]. Finally, we write ∆[X 7→ I] for context extension,
dom(∆) for all X and range(∆) for all I where X 7→ I ∈ ∆, and • for the empty
context. This applies similarly to R and Γ . We use judgements of the following
form during shape-checking

R;∆;L;Γ ` E B S

to translate a source-level term E (package, interface or core-language) into a
shape S. We also use judgements

R;∆;L;Γ ` E import
 I

R;∆;L;Γ ` E impl
 I

to compute shape information for the purpose of dependency resolution. Finally,
we presume the core-language type system has judgements of the form:

Γ ` t : τ

Finally, we abbreviate •; • as just •.

5.2 Satisfiability

In this section we formalize our satisfiability guarantee, by which we mean the
guarantee that any P 7→ Pdef ∈ R can be installed onto a user system. To do so
we restrict repositories R. The first restriction is that of well-formedness, which
states that a repository must have all information available for any package or
interface to be judged by the shaping rules from Figure 3 (§5.3) and Figure 4

10

R;∆;L;Γ ` I(E) B I`(I) X 7→ I ′ ∈ ∆

R;∆;L;Γ ` import Y : I(E) from P(X)
import
 P`(I ′){∗} : I`(I)

(Dep-Pimport)

R; • ` pkg P(X1 : E1, . . . , Xn : En) impl I(E′) {. . .} B P`(I){. . .} : I`(I ′)

R; • ` pkg P(X1 : E1, . . . , Xn : En) impl I(E′) {. . .} impl P`(I){∗} : I`(I ′)
(Dep-Pimpl)

Fig. 2. Shaping Rules for Package Imports and Interface Exports

(Appendix A.1). These rules succeed only if all dependencies (Definition 3) are
satisfied in R (Definition 6, Definition 7), and if all dependencies are them-
selves well-formed (i.e. shape- and type-correct) according to the rules. There
are further restrictions on circularity, covered in Appendix B.

Definition 3. A dependency is either a package dependence (Definition 4), or
an interface dependence (Definition 5).

Definition 4. Package P depends on package Q if P contains some import with
a shape S1, determined by (Dep-Pimport), that is a supertype (or supershape)
of shape S2 exported by Q according to (Dep-Pimpl) from Figure 2 (S2 <: S1,
using rule (SubShape-Pkg) from Figure 7 in Appendix A.1).

Definition 5. A package or interface depends on another interface I whenever,
during the shaping of the package or interface, the rule (Shape-Iexpr) (from
Figure 4 in Appendix A.1) is applied for an Iexpr with interface constructor I.

Definition 6. A package dependence arising from a package P is satisfied in
a repository R whenever there is some package Q in R on which P depends (i.e.
when there is at least one matching package for every package dependency).

Definition 7. A dependence on an interface I is satisfied in a repository R
whenever I 7→ Idef ∈ R.

Plans Repositories are used for sharing packages with others, and may consist of
many packages. The point of an installation plan is to install some P 7→ Pdef ∈
R and all of its dependencies. Such installation plans are always computable (by
definition we can always choose R′ = R), but R may be very large, so we wish
to compute some repository R′ that is preferably smaller than R (Definition 8).

Definition 8. An installation plan for a package P, with regard to a (shared,
central) package repository R, is some repository R′ ⊆ R such that P 7→ Pdef ∈
R′ where P is satisfied in R′.

In our system we have expressed dependencies in terms of interfaces, and
express sharing of dependencies through abstraction. Hence when we see an
import we are free to choose any compatible version, without regard for other

11

packages or the current state of the system. Conflicts are therefore not possible,
and we free ourselves of dependency hell. Moreover, checking for satisfiability
of a package, or computing an installation plan R′ for some package P is both
efficient and almost trivial in our system. First, we assume shaping (§5.3) and
subtyping (Appendix A.1) are both decidable in polynomial time.5 With the
help of our subtype algorithm we can readily compute an installation plan R′
from a given repository R (Theorem 1).

Theorem 1. A (best-effort) installation plan can be computed in polynomial
time for any package P 7→ Pdef ∈ R.

Proof. We can compute a plan by taking the transitive closure of our package
dependence relation, starting with only the desired package. Finding a package
is a linear scan over R at worst, and shape matching is decidable in polynomial
time by assumption.

Our installation theorem and its PTIME complexity trivially follow from
the removal of version conflicts, a fact well known for version-based systems [3].
However, as we showed in §2, version-based package managers generally do not
know when it is safe to install multiple versions, because their metadata cannot
distinguish shared from non-shared dependencies. Hence our contribution is not
stating a well-known complexity, but rather unlocking it with more expressive
metadata.

Heuristics and Installation We can further minimize the size of the plan
through a simple heuristic: we can reuse packages from the (partial) solution R′
when resolving a dependence. With this heuristic we can in fact compute a plan
for any P 7→ Pdef ∈ R by taking the initial solution to be the repository S that
represents the user system. The result is then a new system S ′ that contains P.

5.3 Portability

To argue that packages can be compiled separately and reasoned about modu-
larly, we show shaping rules of packages that look up interface but not package
definitions in R. We explain package shaping rules in turn, which can also be
found in Figure 3 in Appendix A.1.

We start by shaping package definitions:

R;∆0; • ` E1 B I1 . . . R;∆n−1; • ` En B In (∆i ≡ [X1 7→ I1, . . . , Xi 7→ Ii])
R;∆n; `; • ` {body} B {B} ` fresh

R;∆n; `; • ` E B I`′(Ij){[` 7→ `′]B′} {B} <: {B′}
R; • ` pkg P(X1 : E1, . . . , Xn : En) impl E {body} B P`(Ii){B} : I`(Ij){B′}

(Shape-Pdef)

5 Although interface shapes may grow exponentially due to substitution during shap-
ing packages or interfaces, sub-terms are also shared exponentially often in such
scenarios. Our matching algorithm (Appendix A.1) copes well with this, as checking
for label equality suffices on the second and subsequent encounters of some sub-term.

12

Rule (Shape-Pdef) handles scoping of package parameters, computing a shape
Ii of the form I`i(. . .){B} for each package argument Xi : Ei. We add Xi 7→ Ii
to ∆ for any subsequent arguments Xi+1 : Ei+1, as well as the impl clause and
the package body. A fresh label ` is allocated that represents the package itself,
used when shaping the package body (for (Shape-Type-Def)). The shape body
must be a sub-shape of the shapes from the impl clause {B} <: {B′}, with a
proper relabelling of `′ to `. Here `′ is a fresh label allocated by the (Shape-Idef)

rule. Subtyping, or sub-shaping, is covered in detail in Appendix A.1. Next is
(Shape-Pimport), which handles scoping of imports:

R;∆;L;Γ ` E1 B I
R;∆[X 7→ I];L;Γ ` {. . .} B {B}

R;∆;L;Γ ` {import X : E1 from E2; . . .} B {B}
(Shape-Pimport)

The rule computes an interface shape I (which contains a fresh label, allocated
by (Shape-Iexpr) below) from the interface expression E1 and adds X 7→ I
to ∆ for the remainder of the body. Package application E2 is left untouched,
which is our argument for modular type-checking. However, it is processed by
(Dep-Pimport) from Figure 2 for dependency resolution and (static or dynamic)
linking. Interface applications Iexpr occur in both package and interface defini-
tions, shown below:

` fresh R;∆;L;Γ ` E B I
R; • ` iface I . . . B I`′(I ′){B′} I`(I){} wf

R;∆;L;Γ ` I(E) B I`(I){[`′ 7→ `][lab(I ′) 7→ I]B′}
(Shape-Iexpr)

The rule computes a shape I`(I){φσB′} with a fresh label `, arguments I and
a body φσB′. To compute the body we look up the actual definition of I 7→
iface I . . . ∈ R and assign a new shape I`′(I ′){B′} to the interface definition.
This new shape has distinct labels from the package (or interface) that we are
shaping, so we use a renaming φ = [` 7→ `′] where we define lab(I`(. . .){. . .}) = `.
This effectively relabels abstract data type names with labels from the arguments
instead of the labels from the formal parameters. Relabelling is formally defined
in the Technical Appendix, and rewrites types T `′ to T ` whenever `′ 7→ ` ∈ φ. We
further need to substitute interface shapes I, which we do with σ = [lab(I ′) 7→ I],
and essentially replaces a shape (sub-)term I`′(. . .){. . .} with I whenever `′ 7→
I ∈ σ. Substitution of the arguments, as opposed to relabelling, is necessary to
properly replace interface shapes I ocurring in the interface body as part of term
projections. Interface constructors are a form of dependent function types, since
the resulting shape depends on the values of the arguments, and (Shape-Iexpr)

is the elimination rule.
The new shape I`(I){} is checked for well-formedness (Appendix A.1), to

ensure that the Iexpr is actually valid, using a nominal subtype relation that
respects sharing (Appendix A.1). This relation is defined purely on interface
names and parameters, and ignores bodies (so we leave it empty).

13

Rule (Shape-Type-Def) handles type definitions by labelling types T :

T ` 6∈ dom(Γ) ∆;Γ ; `;Γ ` τ B τ ′
R;∆; `;Γ [T ` = τ ′] ` {body} B {B}

R;∆; `;Γ ` {type T = τ ; body} B {type T ` = τ ′;B}
(Shape-Type-Def)

The rule also guards against duplications with T ` 6∈ dom(Γ) and processes τ
to label any uses of type names T ′ and handle type projections. The rule for
function definitions is similar:

f 6∈ dom(Γ) ∆;Γ ;L;Γ ` τ B τ ′ ∆;Γ ;L;Γ ` e B e′
Γ ` e′ : τ ′ R;∆;L;Γ [f : τ ′] ` {body} B {B}

R;∆;L;Γ ` {fun f : τ = e; body} B {fun f : τ ′ = e;B}
(Shape-Fun-Def)

Rules (Shape-Type-Def) and (Shape-Fun-Def) each perform shaping of types,
in order to resolve type projections. To do this we need to define shaping on
arrow types:

R;∆;L;Γ ` τ1 B τ ′1 R;∆;L;Γ ` τ2 B τ ′2
R;∆;L;Γ ` τ1 → τ2 B τ ′1 → τ ′2

(Shape-Fun-Type)

We assume a similar rule for terms e to handle variables X. Type projection
labels abstract data type names by looking up the shape for variable X in ∆
and finding a definition type T `:

X 7→ I`(I){. . . ; type T `; . . .} ∈ ∆
R;∆;L;Γ ` X.T B T `

(Shape-ProjType)

We also need to resolve and label bare type names T , and check that they are
properly declared or defined:

T ` ∈ dom(Γ)

R;∆;L;Γ ` T B T `
(Shape-Abs-Type)

We do not handle term projections directly during shaping, which is instead
done by (Type-TermProj) in §A.1 (since we cannot directly inline the function
body in terms e). However, we do need to resolve variables X in term projections
X.f :

X 7→ I ∈ ∆
R;∆;L;Γ ` X B I

(Shape-Var)

Shaping of interfaces and other core-language typing rules are in Figure 4 and
Figure 5 in Appendix A.1. Finally, we have to handle the empty body:

R;∆;L;Γ ` {} B {}
(Shape-Empty-Body)

14

6 Expressiveness

It seems that our system and traditional version-based systems are not equally
expressive, and comparing them is not entirely straightforward. For example,
encoding a version-based system into

∏
automatically would be non-trivial, as

the interface between packages may vary between versions and sharing is implicit.
Conversely, encoding

∏
into a system based on versions may also be non-trivial

if we want to avoid dependency hell, as version based systems would falsely
assume sharing of our internal dependencies.

However, our system is more expressive than traditional systems in that
packages in

∏
can express dependencies on future versions of a dependency if

that dependency implements (a subtype of) the required interface. Further, by
mechanically removing import sealing boundaries during dependency resolution
we can express a form a dependent compatibility, where compatibility with one
package depends on the interface implemented by a dependency, rather than the
interface required by the importing package. This gives a form of disjunction
that is present in some version-based package systems. We cover this further in
the Technical Appendix [13].

However, traditional package systems (such as Debian) are more expressive
in that they support dependencies between packages written in different lan-
guages, dependencies on services, configuration data or command-line programs.
To somewhat narrow the expressivity gap we introduce some extensions below.

Version Restrictions Traditional package systems based on version ranges
can restrict package versions, which is especially useful to rule out buggy or
vulnerable implementations. We can incorporate such functionality into

∏
by

adding version restrictions on imports in addition to the interface restriction.
This then restricts import resolution without sacrificing any guarantees or sim-
plicity of dependency resolution. This is because we are free to choose any com-
patible version of the package without restrictions from outside (i.e. the con-
straints are local). Adding version restrictions to external dependencies (formal
parameters) would however require non-trivial extensions to our system, with a
question around whether the version ranges are part of interfaces.

Conflicts Traditional package systems can often express conflicts between
packages [6], e.g. because they both provide a service that binds to the same
port. We can extend our system to deal with such cases (e.g. pkg FastHTTP

impl IHTTP-v1 conflicts HTTP), with corresponding changes to the dependency
resolution algorithm. Such an extension means that we can no longer guarantee
to install any package from a repository. However, we may ask ourselves if such
conflicts are not better expressed at a “whole systems”-level, rather than at the
level of individual packages.

Platforms Some packages may be platform-specific, which we could sup-
port through an import “disjunction”: import P : IP-v1 from PLinux or
PWindows. Disjunctions that depend on user preferences or configuration data
may prove useful in general.

15

Circularity Our system does not support circular dependencies or recursive
linking. However, our system can in principle be extended to include fixpoints of
package applications, similar to the functor fixpoints based on the ML module
system detailed in [15]. For example, we could write:

import F : IFoo−v1 (B) from Foo−any (B)
import B : IBar−v1 (F) from Bar−any (F)

Recursive modules, and the interplay with mutable variables and circular defi-
nitions have been extensively studied in [9][8][21][15][11] and others.

7 Discussion and Related Work

Module Systems As alluded to earlier, our package system is rather much like
module systems such as that of Standard ML [14] or OCaml, MixML [10], Units
[12] or component-based systems [17]. This is because the purpose of module
systems is to support modular development and a way of linking modular code
units into larger ones. All these systems have an abstraction mechanism in com-
mon that uses types or interfaces to express how modules may be composed.
Our presentation differs in that we focus on packages instead of modules, which
have different dependency relations than modules (hence our import opera-
tor). For example, both module systems and package systems need a (typed)
abstraction mechanism, but their motivation is rather different: module abstrac-
tion is used for multiple instantiation (as well as separate compilation), while
package abstraction is used primarily to reason about package equality for com-
mon dependencies, necessary because of versioning. We further support separate
compilation of importing and imported packages, which is not possible in mod-
ule systems which use bare names M to identify modules. We argue that these
differences are substantial enough to re-evaluate common design decisions, in
particular with regard to how packages and interface are identified, how subtyp-
ing is done, and when sealing occurs.

Backpack Backpack is a package system for Haskell [16], based on the mod-
ule calculus MixML. The main difference in our presentation is that we han-
dle versioning, a defining aspect that sets packages apart from modules. With
versioning in place, we can reason about dependency hell and the constructs
required to absolve it. This leads us to think about change management and
backwards compatibility, where we place increased importance on names and
the use of nominal instead of structural typing.

Backpack is applied to an existing language, and is therefore more practi-
cally motivated. Backpack, building on MixML, further supports recursive and
more flexible linking with an applicative semantics. Applicativity is not of great
concern in the design of our system for two reasons: first, packages cannot ex-
port internal dependencies, which means that applicativity of imports would
only work locally within the package body. Second, our package abstractions
are first-order, so we cannot export types from an abstraction passed in as an
argument.

16

Functional Package Managers Functional package managers such as Nix
[5] manage packages functionally by never removing or mutating them explicitly
during upgrade or installation. Instead packages are only ever added to the sys-
tem, allowing seamless rollback to earlier versions of the system. Packages are
then garbage collected to free diskspace. In Nix the user describes a complete
system, making systems reproducible. Our system differs in that we compose
packages modularly, without requiring a description of a complete system. Sys-
tems can then be automatically generated by a dependency resolution procedure.
Further, we use interfaces for modular compilation, while Nix can only verify a
package composition once all dependencies have been satisfied (requiring intri-
cate knowledge of package compatibility). We also support type-safety at the
package level, and support runtime linking. The concept of functional package
management is a powerful one, which implementations of our system almost
invariably would adopt. Reproducibility in our system would be supported by
generating a list of package versions for a particular user system S.

Virtual Environments Virtual package environments such as virtualenv
[4] provide a fresh environment for packages to be installed (often including core
components such as a compiler or interpreter). Although this can help reduce ver-
sion conflicts, the same problem still exists within the individual environments.
Tools such as Vagrant [2] or Docker [1] solve woes around code deployment, by
isolating the entire operating system (or large parts of it) from the host system
by sandboxing a virtual image. Although powerful for code deployment, creat-
ing an image still relies on traditional package systems and type-safety is not
addressed.

8 Conclusions

We have introduced a package system based on interfaces with strong safety
guarantees: any package contained in a shared repository of packages can be
installed onto a user system, and the resulting libraries and programs defined by
those packages are type-safe. A defining aspect has been change management,
so that packages can be flexibly updated with minimal effects to the package
ecosystem (and the need for others to adapt to change in other packages).

We hope to have shown that there are real problems in package management,
which are not a mere result of buggy or incapable package managers. Dependency
hell is a direct result arising from the limitations of linkers and in-expressiveness
of package metadata. Package systems for Linux and other systems work as well
as they do because of extensive community involvement, which includes testing
and auditing of a centralized package repository. With our approach packages
can be developed in a distributed way, and composed in a type-safe way.

An important direction for future work is to apply package systems such
as ours to existing languages, and study the interplay with different language
features such as subtyping, dynamic typing, unsafe language features, and so on.
To be practically applicable to new programming languages, it may make sense to
incorporate more features from module systems (such as more sophisticated type

17

sharing constraints), to create a unified system for both packages and modules.
Other directions of future work may include increasing the expressiveness of
the language to include other forms of dependency (communicating programs,
command-line tools, and so on).

Acknowledgements Omitted for review version.

References

1. Build, ship, and run any app, anywhere, https://www.docker.com/
2. Vagrant, https://www.vagrantup.com/
3. Abate, P., Cosmo, R.D., Treinen, R., Zacchiroli, S.: Dependency solving: A separate

concern in component evolution management. Journal of Systems and Software
85(10), 2228–2240 (2012)

4. Bicking, I.: Virtualenv, https://virtualenv.pypa.io/en/latest/
5. van der Burg, S.: A Reference Architecture for Distributed Software Deployment.

Ph.D. thesis (2013)
6. di Cosmo, R.: Report on formal management of software dependencies (05 2012)
7. Dijkstra, E.W.: On the role of scientific thought. Selected Writings on Computing:

A personal Perspective pp. 60–66 (1982)
8. Dreyer, D.: A type system for well-founded recursion. ACM SIGPLAN Notices

39(1), 293–305 (2004)
9. Dreyer, D.: Understanding and evolving the ML module system (05 2005)

10. Dreyer, D., Rossberg, A.: Mixin’ up the ML module system (09 2008),
http://dx.doi.org/10.1145/1411203.1411248

11. Duggan, D.: Type-safe linking with recursive DLLs and shared libraries. ACM
Transactions on Programming Languages and Systems 24(6), 711–804 (2002)

12. Flatt, M., Felleisen, M.: Units: Cool modules for hot languages. ACM SIGPLAN
Notices 33(5), 236–248 (1998)

13. Florisson, M., Mycroft, A.: Towards a theory of packages: Technical appendix,
http://www.cl.cam.ac.uk/∼mbf24/PackageAppendix.pdf

14. Harper, R.: Programming in Standard ML (2011)
15. Im, H., Nakata, K., Garrigue, J., Park, S.: A syntactic type system for recursive

modules. Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications – OOPSLA ’11 (2011)

16. Kilpatrick, S., Dreyer, D., Jones, S.P., Marlow, S.: Backpack: Retrofitting haskell
with interfaces. Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages – POPL ’14 (2014)

17. Lau, K.K., Wang, Z.: Software component models. Proceeding of the 28th inter-
national conference on Software engineering – ICSE ’06 (2006)

18. Leroy, X.: Manifest types, modules, and separate compilation. Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages - POPL ’94 (1994)

19. Leroy, X.: Applicative functors and fully transparent higher-order modules. Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages – POPL ’95 (1995)

20. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA (12
2002)

21. Russo, C.V.: Recursive structures for Standard ML. ACM SIGPLAN Notices
36(10) (2001)

18

A Semantics

We define a static (§A.1) and dynamic semantics (§A.2) in order to state sound-
ness (which we do not prove). Soundness is our argument for type-safety of
package linking.

A.1 Static Semantics

In §5.3 of the paper we covered package shaping in detail. We now also define
shaping for interface definitions and include well-formedness constraints, which
in turn relies on nominal sub-shaping rules, analogous to subtyping for shapes.

Package Shaping Package shaping rules are repeated from §5.3 in a single
Figure 3.

Interface Shaping The shaping rules for interface definitions are shown in
Figure 4. The first rule, (Shape-Idef), does for interfaces what (Shape-Pdef)

does for packages. Scoping of parameters is handled in the same way, and ∆i is
again a macro for X1 7→ I1, . . . , Xi 7→ Ii. Since <: is optional the sub-shape check
is also optional. Rules (Shape-Type-Decl) and (Shape-Fun-Decl) are analogous
to the package shaping rules (Shape-Type-Def) and (Shape-Fun-Def), but with
omitted definitions τ and e respectively. Rules for shaping interface applications
or variables are identical to the package shaping rules.

Core-Level Typing Figure 5 shows core-level typing judgements. The first
rule (Type-ProjTerm) handles projection of term components (functions f)
from variables X. Rules (Type-Reify) and (Type-Abstract) are inverses of each
other. The first removes abstraction boundaries of abstract data types within a
package. That is, when it is known that type T = τ and further e : T , then
we can conclude e : τ . The latter goes the other way, i.e. given a typing e : τ ,
it concludes e : T ` if T ` = τ . Rule (Shape-CoreVar) handles term and function
variables from the core language.

Sub-Shaping of Package and Interface Bodies This sub-section defines
subtyping for shape bodies. These rules are used to check whether an package/in-
terface body is a sub-shape of an implemented interface/super-shape interface,
by rules (Shape-Pdef) and (Shape-Idef) respectively. The rules are simple be-
cause both bodies are assumed to have identical labels and interface shapes, as
(Shape-Iexpr) substitutes shape arguments in an Iexpr for formal parameters
from an Idef. We again use B to range over shape bodies. Rule (Sub-Body) de-
fines width, depth and permutation subtyping for bodies. The remaining rules
require definitions to match declarations. Rules for matching declarations with
equivalent declarations are handled by the reflexivity rule (Sub-Refl).

19

Well-Formedness We use the rule (WF-App-Iface) during shaping, to ensure
well-formedness of interface shapes constructed from interface expressions Iexpr.
The rule validates the shape arguments computed from Iexprs against the for-
mal parameters computed from Idef s. Validation checks whether the argument
shape is a sub-shape of the parameter shape, and ensures sharing constraints are
respected with the help of a sharing context E . Well-formedness of body {B} can
be ignored, because this is checked during shaping of the interface definition.

R ` iface I(E) [<: E′] {. . .} B I`′(I ′i){B′}
R; • ` I1 <: I ′1 a E1 . . . R; En−1 ` I1 <: I ′1 a En 1 ≤ i ≤ n

R ` I`(Ii){B} wf
(WF-App-Iface)

Sub-Shape Checking of Package and Interface Shapes Here we de-
fine sub-shaping (subtyping for shapes) of package and interface shapes. Sub-
shaping for package shapes is used during dependency resolution (§5.2), while
sub-shaping for interface shapes happens during shaping, when checking for well-
formedness of interface shapes in (WF-App-Iface). The key consideration is to
handle sharing, for which we use a sharing context E . Further, we can ignore
interface bodies, and instead rely on a purely nominal sub-shape relation. This
is because the bodies are guaranteed to be sub-shapes by the definition of our
shaping rules. Sub-shaping rules are shown in Figure 7.

The rules handle sharing by threading a sharing context E through the rules.
Rule (SubShape-Pkg) handles sub-shaping of package shapes, used to match im-
ports with package definitions. The shape of the imported package must be a sub-
shape of the shape of the importing package. Since package shapes are contravari-
ant in their arguments we first check that R; Ei−1 ` I ′i <: Ii a Ei using sharing
context Ei = [lab(I1) 7→ I ′1, . . . , lab(In) 7→ I ′i]. Package shapes are covariant in
the exported interface, so we need to check that I`11 (I){B′1} <: I`22 (I ′){B′2}. We
do this by computing a correspondence M between the arguments to I1 and I2.
We then use substitution with En (which is valid because we know that I ′i <: I)
to check for an exact sharing correspondence between the two interfaces. Substi-
tution is necesary to handle the dependence that exists between the parameters
to P`1 and the arguments to I1. Without substitution subtyping would not work,
as the arguments are contravariant and the result covariant. For example, the
relation would not hold for

R; E ` P`(T){B} : I`(T) <: P`′(S){B′} : I`
′
(S) a E ′

whenever R; E ` S <: T a E ′ with S 6= T . However, we want the relation to
hold, because the shape of the imported package (left) is really I`(S), which is
trivally a sub-shape of I`′(S) (the required shape on the right).

Next are rules (SubShape-Iface-1) and (SubShape-Iface-2), which update E
whenever they see a new label `: if the label has not been seen before, the rules
apply recursively (SubShape-Iface-1). If the label has been seen before, the rules

20

require that the left-hand shape is equivalent to what was seen before (SubShape-

Iface-2). This last rule ignores the remainder of the shape on the right-hand side
I`22 (I ′){B′}, because it has been processed before by (SubShape-Iface-1).

Formal Parameter Mapping When sub-shaping package and interface shapes,
we covered how sharing is handled. We also used a mapping M to make argu-
ments from a sub-shape correspond to the arguments of a super-shape inter-
face constructor. In particular, when we want to know whether I2 <: I1 for
some interface shapes I2 and I1, I2 may have as outermost term an interface
constructor that is a nominal subtype of the interface constructor in I1 (i.e.
I2(I2){B2} <: I1(I1){B1}). To define sub-shaping, we have to understand how
the parameters of I2(I2) correspond to those of I1(I1). For example, consider
the following interface definitions:

i face IWombat−v1 (S : IS t r ing−v1)
. . .

i face IWombat−v2 (S : IS t r ing−v1 , G : IGrass−v1) <: IWombat−v1 (S)
. . .

To define sub-shaping, we have to relate arguments of IWombat-v2 to arguments

of IWombat-v1. To do so we define a mapping I2
M→ I2 for example to map

from m argument positions from IWombat-v1 to n argument positions from
IWombat-v2. We use these mapping functions to transform arguments vectors
as follows:

[1 7→ x1, . . . ,m 7→ xm]Ii = Ixi

The rules for computing these functions are listed in Figure 8.

A.2 Dynamic Semantics

Here we give an operational semantics that performs dynamic linking. We first
extend our grammar with programs of the form

pkg PVname {Pbody}

We require the last function definition in Pbody to be

fun main : Unit → Int = λ().e

Package values are (closed) package bodies of the form

PkgVal ::= {type T ` = τval ; fun f : τval = v}
τval ::= τ1 → τ2 | T `

where v is a core-language λ-value. There is no real operational need to keep
type components, their labels or indeed any type as part of package values.
However, since packages include the type components of a package in the shape
body, we also include type components and types as part of package values in

21

order to state our preservation theorem. Further, in order to construct package
values that include labels, we assume that packages have been annotated with
the labels from their shapes. We call such packages label annotated.

Reduction rules are of the form

R;Φ;P ` e −→ v

where R is a well-formed repository, Φ is a mapping to connect internal depen-
dencies with package implementations (covered next), and P keeps track of the
package constructor during package body evaluation, in order to find shapes for
internal dependencies using Φ.

We assume a dependency mapping Φ from package implementations and
imports to (respectively) import and impl package shapes, constructed during
shaping with the rules from Figure 2 in §5.2 (we omit modified shaping rules
that construct this mapping as they are trivial). The mapping is of the following
form:

Φ ::= P impl
 S (P1, X,P2)

import
 S

In particular, rule (E-Import) uses Φ to look up an appropriate package im-
plementation for an import statement. Here P and P1 are versioned PVname
package constructors. However, P2 is an unversioned Pname, leaving the evalu-
ation rules to determine an appropriate version. Here P1 is the dependant (the
importing package, for which a concrete version number is known), and P2 the
dependee (the imported package, for which we still need to find an appropriate
version). In either case S is a package shape corresponding to the impl and
import shapes respectively.

We now define a call-by-value small-step operational semantics for programs
and packages, shown in Figure 9. In the rules we use P to range over package
constructors that are appropriate versioned or unversioned depending on context.
Rules for core-language term reduction e −→ e′ are omitted, which take place
after all packages have been elaborated.

Soundness We are now in a position to state soundness, although we do not
provide a proof. SupposeR is a well-formed repository, and Φ is a shape mapping
for all package definitions (impl) and internal dependencies (import). Theorem
2 states progress of package evaluation, and Theorem 3 states preservation of
shape of package terms under evaluation.

Theorem 2 (Package Progress). Let p be a label-annotated package body
that is well-shaped with respect to repository R. Then either p is a value, or there
is some p′ such that R;Φ;P ` p −→ p′.

Theorem 3 (Package Preservation). Let p be a label-annotated package
body with R; • ` p B B and R;Φ;P ` p −→ p′, then also R; • ` p′ B B.

We leave progress and preservation theorems of programs and terms to future
work.

22

B Repositories and Restrictions

In §5.2 we covered how dependencies can be automatically resolved from a repos-
itory of packages R. We said that all packages and interfaces in the repository
must be well-typed and satisfied in R, so that any P 7→ Pdef ∈ R could be in-
stalled onto a any user system S. In this section we cover additional restrictions
that are necessary to ensure that packages will in fact install and link correctly
(§A.2). Firstly, there must be no dependency cycles in repositories because this
may lead to non-termination of package evaluation in our operational semantics.
We might imagine changing the operational semantics and having the linker deal
with cycles, this would not be compatible with mutable state: if Foo requires a
Bar with fresh mutable state, and Bar requires a Foo with fresh mutable state,
there is no finite package instantiation that satisfies such demands.

For these reasons we impose the restriction that no cycle is allowed between
packages. We can do this in two ways: we could impose the restriction that a
package is rejected if there is always a dependency cycle, or if there is some
dependency cycle. While the former is more expressive, it undoes the simplicity
of our dependency resolution algorithm, as resolution can no longer just pick
any suitable package version to resolve an import. To maintain simplicity and
efficiency we reject cycles conservatively. We do this by constructing a graph
G = (V,E) where V consists of all exported shapes P`(I){∗} : I`(I){B} for
all packages in R, as defined by rule (Dep-Pimpl) (Figure 2 from §5.2). The
edges E are constructed from the package dependencies arising from imports,
as defined by rule (Dep-Pimport) from §5.2. That is, whenever a package A-vX

has a dependence on package B-vY, we add an edge between all shapes exported
by A-vX to the matching shape for the import exported by B-vY. Any cycles in
the resulting graph indicate errors (indicating ill-formedness of the repository).
There are similar restrictions on circularity between interfaces, where the nodes
are interface constructors I (IVname), and there is an edge between two nodes
I1 and I2 whenever I1 occurs in an Iexpr of I2.

23

R;∆0; • ` E1 B I1 . . . R;∆n−1; • ` En B In (∆i ≡ [X1 7→ I1, . . . , Xi 7→ Ii])
R;∆n; `; • ` {body} B {B} ` fresh

R;∆n; `; • ` E B I`
′
(Ij){[` 7→ `′]B′} {B} <: {B′}

R; • ` pkg P(X1 : E1, . . . , Xn : En) impl E {body} B P`(Ii){B} : I`(Ij){B′}
(Shape-Pdef)

R;∆;L;Γ ` E1 B I
R;∆[X 7→ I];L;Γ ` {. . .} B {B}

R;∆;L;Γ ` {import X : E1 from E2; . . .} B {B}
(Shape-Pimport)

` fresh R;∆;L;Γ ` E B I
R; • ` iface I . . . B I`

′
(I ′){B′} I`(I){} wf

R;∆;L;Γ ` I(E) B I`(I){[`′ 7→ `][lab(I ′) 7→ I]B′}
(Shape-Iexpr)

T ` 6∈ dom(Γ) ∆;Γ ; `;Γ ` τ B τ ′
R;∆; `;Γ [T ` = τ ′] ` {body} B {B}

R;∆; `;Γ ` {type T = τ ; body} B {type T ` = τ ′;B}
(Shape-Type-Def)

f 6∈ dom(Γ) ∆;Γ ;L;Γ ` τ B τ ′ ∆;Γ ;L;Γ ` e B e′
Γ ` e′ : τ ′ R;∆;L;Γ [f : τ ′] ` {body} B {B}

R;∆;L;Γ ` {fun f : τ = e; body} B {fun f : τ ′ = e;B}
(Shape-Fun-Def)

R;∆;L;Γ ` τ1 B τ ′1 R;∆;L;Γ ` τ2 B τ ′2
R;∆;L;Γ ` τ1 → τ2 B τ ′1 → τ ′2

(Shape-Fun-Type)

X 7→ I`(I){. . . ; type T `; . . .} ∈ ∆
R;∆;L;Γ ` X.T B T `

(Shape-ProjType)

T ` ∈ dom(Γ)

R;∆;L;Γ ` T B T `
(Shape-Abs-Type)

X 7→ I ∈ ∆
R;∆;L;Γ ` X B I

(Shape-Var)

R;∆;L;Γ ` {} B {}
(Shape-Empty-Body)

Fig. 3. Shaping of Packages

24

R;∆0; • ` E1 B I1 . . . R;∆n−1; • ` En B In (∆i ≡ [X1 7→ I1, . . . , Xi 7→ Ii])
R;∆n; `; • ` {body} B {B} ` fresh

[R;∆n; `; • ` E B I`
′
(. . .){[` 7→ `′]B′} {B} <: {B′}]

R; • ` iface I(X1 : E1, . . . , Xn : En) [<: E] {body} B I`(Ii){B}
(Shape-Idef)

T ` 6∈ dom(Γ) R;∆; `;Γ [T ` 7→ abs] ` {body} B {B}
R;∆; `;Γ ` {type T ; body} B {type T `;B}

(Shape-Type-Decl)

f 6∈ dom(Γ) R;∆;L;Γ ` τ B τ ′
R;∆; `;Γ [f : τ ′] ` {body} B {B}

R;∆;L;Γ ` {fun f : τ ; body} B {fun f : τ ′;B}
(Shape-Fun-Decl)

Fig. 4. Shaping of Interfaces

Γ ` I`(I){. . . fun f : τ ; . . .}.f : τ
(Type-ProjTerm)

T ` 7→ τ ∈ Γ Γ ` e : T `

Γ ` e : τ
(Type-Reify)

T ` 7→ τ ∈ Γ Γ ` e : τ

Γ ` e : T `
(Type-Abstract)

x 7→ τ ∈ Γ
Γ ` x : τ

(Type-CoreVar)

Fig. 5. Core-level Typing (omitting other term typing rules)

Bσ(i) <: B′i (1 ≤ i ≤ m) σ : {1, . . . ,m} 7→ {1, . . . , n} m ≤ n
{B1; . . . ;Bn} <: {B′1; . . . ;B′m}

(Sub-Body)

type T ` = τ <: type T `
(Sub-Type-Def-Decl)

fun f : τ = e <: fun f : τ
(Sub-Fun-Decl-Decl)

S <: S
(Sub-Refl)

Fig. 6. Sub-Shaping Rules for Bodies.

25

R ` I2
M→ I1 : M

R; • ` I ′1 <: I1 a E1 . . . R; En−1 ` I ′n <: In a En
En(M(I)) ≡ I ′

R; E0 ` P`1(I1, . . . , In){B1} : I`11 (I){B′1} <: P`2(I ′1, . . . , I
′
n){B2} : I`22 (I ′){B′2} a E ′

(SubShape-Pkg)

R ` I2
M→ I1 : M

R; • ` IM(1) <: I ′1 a E1 . . . R; En−1 ` IM(n) <: I ′n a En
`2 6∈ dom(E0) Eout = Em[`2 7→ I`11 (I1, . . . , In){B1}]
R; E0 ` I`11 (I1, . . . , In){B1} <: I`22 (I ′1, . . . , I

′
m){B2} a Eout

(SubShape-Iface-1)

`2 7→ I`11 (I){B1} ∈ E
R; E ` I`11 (I){B1} <: I`22 (I ′){B2} a E

(SubShape-Iface-2)

Fig. 7. Sub-Shaping Rules that Handle Sharing.

I2 7→ iface I2(p1 : E1, . . . , pn : En) <: I1(p′1, . . . , p
′
m){. . .} ∈ R

R ` I1
M→ I2 : {1, . . . ,m} 7→ {1, . . . , n}

(Map-SubShape)

I 7→ iface I(p1 : E1, . . . , pn : En){. . .} ∈ R

R ` I M→ I : [1 7→ 1, . . . , n 7→ n]
(Map-Refl)

R ` I1
M→ I2 : {1, . . . ,m} 7→ {1, . . . , n} R ` I2

M→ I3 : {1, . . . , n} 7→ {1, . . . , k}

R ` I1
M→ I3 : {1, . . . ,m} 7→ {1, . . . , k}

(Map-Trans)

Fig. 8. Formal parameter mappings

26

R;Φ;P ` {body} −→ {. . . ; fun main : Unit → Int = λ() : Unit .e}
R;Φ; • ` pkg P {body} −→ e

(E-Prog)

(P, X,P ′) import
 S ∈ Φ P ′ impl

 S′ ∈ Φ R; • ` S′ <: S a E
P ′ 7→ pkg P ′(par : E) impl E′ {body ′} ∈ R

R;Φ;P ′ ` [par 7→ arg]{body ′} −→ v

R;Φ;P ` {import X : . . . from P ′(arg); body} −→ [X 7→ v]{body}
(E-Import)

R;Φ;P ` τ −→ τ ′ R;Φ;P ` {body} −→ {body ′}
R;Φ;P ` {type T = τ ; body} −→ {type T = τ ′; body ′}

(E-TypeDef)

R;Φ;P ` τ −→ τ ′ R;Φ;P ` [f 7→ v]{body} −→ {body ′}
R;Φ;P ` {fun f : τ = v; body} −→ {fun f : τ ′ = v; body ′}

(E-FunDef)

R;Φ;P ` {. . . ; type T ` = τ ; . . .}.T −→ T `
(E-Proj-Type)

R;Φ;P ` {. . . ; fun f : τ = v; . . .}.f −→ v
(E-Proj-Fun)

R;Φ;P ` τ1 −→ τ ′1 R;Φ;P ` τ2 −→ τ ′2

R;Φ;P ` τ1 → τ2 −→ τ ′1 → τ ′2
(E-Arrow-Type)

R;Φ;P ` T ` −→ T `
(E-Abs-Type)

Fig. 9. Operational Semantics for
∏

.

27

