
Copyright 2003 IEEE. Published in the Proceedings of the
Hawai’i International Conference on System Sciences,
January 6-9, 2003, Big Island, Hawaii.

Stream Processing Hardware from Functional Language Specifications

Simon Frankau and Alan Mycroft
Computer Laboratory, University of Cambridge

William Gates Building, J J Thomson Avenue, Cambridge CB3 0FD, UK
{sgf22,am}@cl.cam.ac.uk

Abstract

We describe work-in-progress which aims at compiling
suitably restricted functional programs with lazy lists di-
rectly into hardware. This extends previous work on SAFL
which demonstrated that functional languages are effective
at describing “fire-and-wait-for-result” programs, but for
which stream-like I/O was awkward or impossible. Other
frameworks (e.g. Lava) have used functional languages as
a form of macro-language, so that executing a program gen-
erates a net-list (structural) description, while our language
is compiled directly (“behaviourally”) to hardware. In par-
ticular our stream operations (represented as creation and
pattern matching of lazy CONS cells) are mapped into chan-
nel writes and reads. We introduce our language, SASL,
compare our approach to that of synchronous stream/signal
languages, and give example functional descriptions which
can be compiled to hardware.

1. Introduction

Statically-allocated languages have an application in the
form of hardware description. A statically-allocated pro-
gram may be able to store all the data it requires within
the circuit, reducing the problem of von Neumann bottle-
necks caused by dynamically-allocated structures such as
heaps and stacks. Such systems are well-suited to process-
ing streams of data, and are guaranteed not to have runtime
errors due to running out of memory.

Modern general-purpose processors devote a large
amount of resources to hiding memory latency and coping
with complex control-flow. The amount of parallelism ex-
tracted is very limited. For some applications, with little
in the way of control-flow limitations or complex mem-
ory access patterns, reconfigurable arrays such as FPGAs
can bring extremely large amounts of parallelism to bear
on tasks often associated with general-purpose CPUs (ex-
amples include DES cracking [11], gene processing [7] and
ray-tracing [22]). Such tasks do not require the same sup-

port for memory access and control-flow prediction, and can
instead spend the resources on actual computation. Pre-
dictable memory-access patterns allow for more efficient
access to memory as requests can be pipelined and sched-
uled statically.

Such systems need to be provided with a hardware de-
scription rather than a conventional program, and this may
be a major obstacle to the acceptance of such systems. Con-
ventional programming languages that can be reasonably
efficiently compiled to hardware could be extremely useful.
Functional languages provide a relatively abstract way of
describing algorithms that may be better suited to hardware
compilation than many alternatives. By specifying the pro-
gram in a functional style we may sidestep the implicit or-
derings of imperative programs, allowing more parallelism.
Program transformation techniques may be applied to pro-
duce optimised hardware from a software-like description.
This is the approach used by SAFL-based [15, 16, 20] lan-
guages.

Although SAFL+ [20] provides channels for communi-
cation, it does not provide support for processing streamed
data in a pure functional form. The approach we have taken
here is to support streams of data as a new data type, ex-
tending the language. In comparison to some other stream-
processing languages (such as Lucid [1] and Lustre [6]),
our language, SASL, retains recursion for iteration, and has
both stream and simple values. Streams are provided via a
CONS primitive, so that the language is relatively accessible
to programmers used to conventional functional languages.

Streams are distinct from lazy lists in that streams can-
not be “rewound”. The problem with lazy lists is that a
reference to an earlier part of a lazy list can be kept, and
an unbounded part of the list can be processed repeatedly.
Streams are like linear lazy lists—once an item in the list is
read, it cannot be read again. This allows the input data to
be queued in order, with a known access pattern, and may
simplify the internal pipelining of hardware.

The underlying computational power of a statically-
allocated stream-processing language like SASL is that of
a finite state machine or regular language, since the internal

state is finite and the input cannot be “rewound”. Pragmat-
ically, this is not a significant problem, if the state space is
large enough, since computers in general use are just state
machines with very large amounts of state. As long as the
statically-allocated hardware can be scaled to process all the
data sets we are interested in, this is not a serious limitation.

An issue more relevant to practical implementations is
that of avoiding von Neumann bottlenecks. Random-access
to large memories can be expensive and difficult to im-
plement efficiently, leading to much of the complexity of
modern out-of-order superscalar processors. This is the real
reason for looking at statically-allocated stream-processing
languages, as they provide a set of programs which are suit-
able for efficient hardware implementation, with the data
being held close to the hardware that will process it.

The language is aimed to be used for the core imple-
mentation of stream-processing algorithms, with pipelining
and parallelism limited only by the dataflow of the given
program. It could be used to simply describe algorithms
that would otherwise be implemented in VHDL or Verilog,
where scheduling, signalling and control logic would have
to be designed explicitly by the user. Interface circuitry
may be generated automatically by suitable tools, or “hand-
crafted” in a low-level HDL.

The following section covers related work in this area.
Section 3 introduces the core language and the problems
raised when trying to statically allocate a stream-based lan-
guage. Section 4 introduces SASL, with its type-like re-
strictions for static allocation. Section 5 covers some ex-
ample programs, and then Section 6 performs some com-
parisons with other high-level HDLs. Section 7 briefly out-
lines language synthesis, and Section 8 finishes the paper
with conclusions and possible directions for further work.

2. Related work

The work here extends the work carried out on
SAFL [15, 16, 20], a statically-allocated functional lan-
guage used as part of the FLaSH [14] project. The lan-
guage we use, SASL, is very similar to SAFL extended
to process streams. This contrasts with projects such as
HML [12] and Lava [3] (which are based on Standard
ML [19] and Haskell [10], respectively). These languages
embed hardware description languages within a functional
setting, rather than compiling an actual functional descrip-
tion. The functional parts of these languages are often
used for macro generation of the hardware netlists. Simi-
lar approaches are seen in other languages like muFP [21],
Ruby [5] and Hawk [4].

Lucid [1] is a language that takes a stream-like ap-
proach, intended for use as a formal system. The primitives
“first” and “next” describe streams, and loops are de-
scribed using streams from which a particular value can be

extracted using the “as soon as” primitive.
This concept is used by synchronous stream languages

intended for hardware synthesis, such as Lustre [2]. In these
languages, variables represent streams (or flows, or signals)
of values over discrete time. These streams can take values
on different clocks derived from a basic clock, with lan-
guage restrictions preventing unsynchronised streams from
being combined. The streams are defined in terms of func-
tions on time-delayed versions of streams. The signal ap-
proach is also used to specify hardware in a functional lan-
guage in Hydra [17], to create structural netlists. Section 6
contains a comparison between SASL and signal-based lan-
guages.

The main difference between the synchronous stream
approach and using a functional language with streams is
that the functional language can have non-stream variables,
and specify recursion in terms of a tail-recursive program,
while the synchronous stream approach creates the answer
through a recursive stream definition. We define streams in
terms of iteration, by generating zero or more elements of
a list in one recursive tail call, and the rest in following it-
erations. In contrast, synchronous stream languages define
iteration in terms of streams, with successive iterations of
a loop being represented by successive stream items. Thus
programs in SASL use a more familiar functional style.

Another approach to take is that of Kahn-MacQueen net-
works [13], where computation is achieved through a set
of communicating processes which send data items to each
other along the edges of a graph. The edges effectively rep-
resent streams of data, and SASL programs can be repre-
sented as fixed-topology Kahn-MacQueen networks where
the processes are statically allocated. Fixed-topology Kahn-
MacQueen networks can still have unbounded queues, and
so not all such networks can be translated to SASL. Fixed-
topology Kahn-MacQueen networks with bounded queues
and finite state processes have equivalent power to SASL
programs.

Neil Jones’ work on the power of CONS-less lan-
guages [9] provides a theoretical viewpoint on the expres-
siveness of languages with restrictions similar to static allo-
cation. Whereas SASL allows the lazy creation of streams,
he considers languages without the ability to create un-
bounded structures. His “read-only tail recursive” functions
are statically allocated, but allow non-linear access to the
input, so that it can be rewound. As such, the language has
the computational power of LOGSPACE, rather than just that
of a finite state machine. The extra power appears because
these programs do not provide static allocation with a fixed,
finite amount of state—the back references into the input
list can represent an unbounded number of values.

Due to issues like these, Jones’ model is of limited use
for our purposes, but it does raise a point of some relevance.
In some restricted languages adding higher-order functions

increases the power of the language, as data can be stored in
nested closures. There will be some higher-order programs
that cannot be converted to a similarly restricted first-order
form. For example, closures can be used to convert pro-
grams to continuation-passing form, so that non-tail recur-
sion is eliminated, but the program still cannot be statically
allocated. Rather than attempt to limit a higher-order lan-
guage to programs that are statically allocable, we use a
first-order language. Streams can be viewed as lazy lists
where the closure representing a CONS node is guaranteed
to be statically allocable.

Linear typing [24] allows data to be processed once and
only once, which can be used for destructive array updates
and so on, providing an efficient way to keep large state
variables in a pure functional language. In SASL, affine
linear typing is used to ensure that each stream item is read
at most once. Linear typing means that we can ensure that
unbounded buffering is not required for streams.

Wadler’s listless transformation [23] allows programs
with intermediate lists to be converted to a form where the
intermediate lists are never fully generated1. In software,
this can convert some programs to a form that does not need
more than a statically-allocated amount of storage. Both
forms of program, when written in SASL, can be translated
to the same hardware which, at a low level, serially pro-
cesses stream values in a pipeline.

Lars Pareto’s PhD thesis [18] includes “Synchronous
Haskell”, a language that uses sized types [8] to guaran-
tee that well-typed programs are free from busy loops and
deadlocks. However, this language has a complex typ-
ing scheme, that provides other information beyond static-
allocability, such as productivity. At the same time, some
useful language features are restricted. For example, filter-
ing of a stream is only possible by creating a stream with
so-called nothing elements (also known as hiatons in Lu-
cid), which are used to replace elements which would have
been filtered out, to maintain the original stream size.

3. A naı̈ve stream processing language

In this section a simple first-order statically-allocated
language similar to SAFL will be introduced, and then
naı̈vely extended with stream processing constructs. Ex-
amples are then given of the problems raised by adding un-
constrained stream processing to the language.

3.1. The stream-less language

We start with a strict first-order statically-allocated lan-
guage. To achieve static allocation general recursion is dis-

1Deforestation extends listlessness to work on tree-like data structures,
but the resulting program may require unbounded storage.

p := d1 . . . dn program definition
d := fun f x = etr function definition
e := f e function application

| c(e1, . . . , ek) constructor
| case e of m1| . . . |mn case expression
| let x = e1 in etr

2
let expression

| x variable access
m := c(x1, . . . , xk) ⇒ etr match

Figure 1. The language’s abstract grammar

allowed (as in SAFL), as are recursive datatypes. Non-
recursive algebraic datatypes and tail recursion are provided
(although we have not included datatype definitions in the
abstract grammar presented here). Tuples can be imple-
mented using datatypes (we take the Haskell-like approach
that a constructor takes 0 or more arguments, rather than
ML’s approach of taking either no arguments or a single tu-
pled argument). A Hindley-Milner type system is used to
type the language. Polymorphic functions can be special-
ized to concrete types during synthesis.

An intermediate abstract grammar2 for the language is
shown in Figure 1. Subexpressions marked with the suffix
tr are those that are in a tail context if the enclosing ex-
pression is in a tail context. The top level expression of a
function is in a tail context. Tail calls may only occur in tail
contexts.

Only direct tail recursion is allowed, and non-recursive
datatypes, although the language could be extended to allow
mutual tail-recursion and sized recursive datatypes [8] with
upper size limits, without changing the language power.
Similarly, lexical scoping could be introduced, with lambda
lifting used to reduce the program to a top-level-only form.

The language’s semantics are strict, since lazy evalua-
tion, in the absence of perfect strictness information (which
is uncomputable in the general case), can pass closures re-
cursively so that they build up without bound.

3.2. Stream-processing extensions

To add streams to the language, the ability to construct
and read values from them is required. The added language
features are shown in Figure 2. CONS nodes are evaluated
lazily. When a CONS is evaluated, both the head and tail
parts are evaluated, and evaluation of both must complete
(the tail evaluating to another lazily-evaluated CONS node)
before values are returned. This allows streams containing
no items, by creating an infinite loop in either the head or
tail expression. The tail of the stream is a tail context for
the purposes of tail recursion.

2Example code may have some extensions beyond this basic grammar
in order to aid readability, but may be easily converted to this form.

e := e1::etr

2
cons expression

| case e1 of x1::x2 ⇒ etr

2
stream matching

Figure 2. Grammar extensions for stream pro-
cessing

The semantics of the stream-processing constructs can
be defined in terms of syntactic conversion to higher-order
ML. The corresponding stream datatype is given by:

datatype α stream =
cons of unit → (α × (α stream))

Translation can then be performed at a syntactic
level: e1::e2 becomes cons(fn() ⇒ (e1, e2)) and
case e1 of x1::x2 becomes case e1 of cons(f) ⇒
let (x1, x2) = f () in e2 end, where f is a new temporary
variables, distinct from all others.

We have decided to only implement infinite streams. Fi-
nite streams can be simulated by wrapping stream elements
up in an option datatype, and treating the first None ele-
ment as the end of the stream. Similarly, infinite streams
can be simulated by streams that can end, by making sure
that streams that end never crop up in practice, and adding
never-executed pieces of code to match on end-of-stream
cases. As the streams are lazily evaluated, all streams can
be assumed to be infinite without losing functionality.

3.3. Problems raised

Before introducing constraints to make the language stat-
ically allocated, it may be useful to look at what can go
wrong if no extra limitations are applied. The data from a
stream must only be read once, and a linear type system can
be used to enforce this. To prevent stream “rewinding”, it is
sufficient to make all streams and types that contain streams
linear, and use the type system of [24].

Beyond basic linearity constraints, if care is not taken,
data can accumulate within the system as an unbounded
amount of information is required to represent a stream. Ex-
ample code illustrating these problems is shown in Figure 3.
The problems include:

• Streams that produce data at different rates are some-
how merged, requiring unbounded buffering (case 1).

• A stream may be recursively built up by repeated CONS
operations in non-tail contexts, or more subtly have
mappings recursively applied, so that the amount of in-
formation that must be held about the stream will grow
unbounded (cases 2 and 3).

The next section introduces a type system and linearity and
stability restrictions that make the language statically allo-
catable.

4. A statically-allocated stream language

In order to simplify analysis, a stratified type system is
introduced. Two sets of constraints are then applied to make
the language statically allocated—linearity prevents stream
elements from being reused, and stability prevents the de-
scription of a stream from “blowing up”, with the stream
requiring more and more space on each recursive call to
represent it.

4.1. The stratified type system

To simplify the analysis, we wish to avoid situations
involving streams of streams, streams held in algebraic
datatypes, and so on. At the same time, it is useful to ex-
press the type of functions without making the language
higher-order. To this end, we create a stratified type sys-
tem.

The lowest layer, represented by the type variable τ , con-
sists of basic types, which are the types of expressions that
can occur in the simple stream-less language. All values are
created using non-recursive constructors with zero or more
arguments, and tuples are implemented using constructors.
For example, statically-sized integers can be represented us-
ing tuples of booleans (true and false being zero-argument
constructors) mirroring the binary representation. Values of
a basic type τ have bounded storage requirements that are a
function of τ .

The next layer consists of the value types, represented by
the type variable σ:

σ := τ | τ streami | σ1 × . . . × σn

Value types are the types associated with expressions and
variables. The type may be a basic type, τ , a stream of basic
type, τ streami, or a tuple of value types—σ×. . .×σ. Each
stream is given an identifier i ∈ S? that is used to identify
the stream during stability analysis. The identifier is either
a symbol from an infinite alphabet S , representing a stream
provided as a parameter to the function, or “?” representing
a newly created stream. The set S ∪ {?} is represented by
S?. The tuple type constructor allows the creation of tu-
ples of value types (as opposed to basic types, which can be
tupled using constructors). A new tupling operator and its
associated case expression are also added to the language.
The added forms of expression are shown in Figure 4. The
function SI is defined to return the set of stream identifiers
(including ?) used in a typing.

Values of stream type can produce an infinite stream of
values, but the amount of state required at any point to rep-
resent the rest of the stream is finite3, and so value types can

3Externally provided input streams could provide an oracle supplying
data that could not be generated internally, but the only state needed inter-
nally for that stream is which input stream should be read from.

(* 1. Streams that may require unlimited buffering. *)
fun odds (hd1::hd2::tl) = hd1::odds(tl)

fun merge (hd1::tl1, hd2::tl2) = (hd1, hd2)::merge(tl1,tl2)

fun needs_buffer stream = merge((odds(stream)), stream)

(* 2. A stream recursively cons’d upon *)
fun build (item, stream) = build(item, (item::stream))

(* 3. Streams that can recursively increase storage requirements *)
(* (f is some function such as fn x => x+1). *)
fun map_f (hd::tl) = f(hd)::map_f(tl)

fun map_iter_f (stream) = let stream’ = map_f(stream)
in case stream’ of hd::tl => hd::map_iter_f(tl)

Figure 3. Programs that cause problems for static allocation

e := (e1, . . . , ek) tupling
| case e1 of (x1, . . . , xk) ⇒ etr

2
untupling

Figure 4. Grammar extensions for handling
tuples

be stored in a bounded amount of space.
The top layer extends the type system to cover the types

of functions and constructors, by adding arrow types. Func-
tions have the type σ1 → σ2, while constructors have the
type τ1 . . . τn → τ (n ≥ 0). These typings only apply to
functions and constructors, and do not appear in the types of
expressions or the typing environment, which only contains
value types.

The rules for typing the language are shown in Fig-
ure 5. As the typing environment, A, contains only vari-
ables, the types of functions and constructors are treated as
side-conditions. The typing of functions is very similar to
that used for polymorphic typing. For example, if an ex-
pression has the typing

x1 : τ1 streamα, x2 : τ2 streamβ , `
e : τ1 streamα × τ2 stream?

then the typing of the function f given by fun f(x1, x2) = e

can be written as

∀α, β τ1 streamα×τ2 streamβ → τ1 streamα×τ2 stream?

in a way analogous to polymorphic typing. As functions
cannot have free stream identifiers in this language, we gen-
erally omit the qualifiers, as is done in ML with type vari-
ables.

In general, the type of a function fun f x=e is f : σ1 →
σ2, where σ1 and σ2 are given by the typing rules, using x :
σ1 ` e : σ2. New, unused stream identifiers are created
for streams in σ1; all the stream identifiers in σ1 must be
distinct, and SI (σ1) ⊂ S . As this is the only place where
new stream identifiers are introduced, SI (σ2) ⊆ SI (σ1) ∪
{?}. Due to linearity, each non-? identifier will occur at
most once in σ2.

The (APPLY) typing rule includes a substitution on
stream identifiers, in order to match up the stream identi-
fiers of the formal and actual parameters, and provide the
same substitution in the return type4. The substitution is
similar to those done in calls to polymorphic functions. The
domain of the substitution is S , its range is S?. The substi-
tution is injective on all stream identifiers except ?, due to
linearity.

The rule (VAR) relies on a ?-substitution. This is a
substitution that replaces zero or more non-? elements of
SI (σ) with “?”, but is otherwise the identity substitution.
This substitution allows different streams to be unified in
(CONSTR-ELIM), by giving all the streams involved a “?”
identifier.

4.2. Linearity

The linearity constraint prevents a reference into a
stream being reused, so that once an item is read, it can-
not be read from the stream again. It does so by allowing
each stream variable to be used at most once, for example
being passed to only one subroutine in a function. Not using
a stream is also permitted.

4As only tail-recursion is allowed, a total ordering of the functions can
be created so that no function requires the type of a function that has not
yet been processed.

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 → σ3

θ(σ2) = σ1

(CONSTR-INTRO)
A ` e1 : τ1 · · · A ` ek : τk

A ` c(e1, . . . , ek) : τ
c : τ1 . . . τk → τ

(TUPLE-INTRO)
A ` e1 : σ1 · · · A ` ek : σk

A ` (e1, . . . , ek) : σ1 × . . . × σk

(CONS-INTRO)
A ` e1 : τ A ` e2 : τ stream?

A ` e1 :: e2 : τ stream?

(CONSTR-ELIM)

A ` e : τ







A, x 1

1
: τ1

1
, . . . , x 1

k1
: τ1

k1
` e1 : σ

. . .

A, xn
1

: τn
1
, . . . , xn

kn

: τn
kn

` en : σ

A ` case e of c1(x
1

1
, . . . , x 1

k1
) ⇒ e1

| . . .
| cn(xn

1
, . . . , xn

kn

) ⇒ en : σ







c1 : τ1

1
. . . τ1

k1
→ τ

. . .

cn : τn
1

. . . τn
kn

→ τ

(TUPLE-ELIM)
A ` e1 : σ1 × . . . × σk A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` case e1 of (x1, . . . , xk) ⇒ e2 : σ

(CONS-ELIM)
A ` e1 : τ streami A, x1 : τ, x2 : τ streami ` e2 : σ

A ` case e1 of x1 :: x2 ⇒ e2 : σ

(LET)
A ` e1 : σ2 A, x : σ2 ` e2 : σ1

A ` let x = e1 in e2 : σ1

(VAR)
A, x : σ ` x : θ(σ)

θ is a ?-substitution

Figure 5. Typing rules

lin(f e1) = lin(e1)

lin(c(e1, . . . , ek)) = lin(e1)] . . .] lin(ek)

lin((e1, . . . , ek)) = lin(e1)] . . .] lin(ek)

lin(e1::e2) = lin(e1)] lin(e2)

lin(case e of m1| . . . |mn) = lin(e)] (linm(m1)∪· . . .∪· linm(mn))

lin(case e1 of (x1, . . . , xk) ⇒ e2) = lin(e1)] (lin(e2) \ {x1, . . . , xk})

lin(case e1 of x1::x2 ⇒ e2) = lin(e1)] (lin(e2) \ {x1, x2})

lin(let x = e1 in e2) = lin(e1)] (lin(e2) \ {x})

lin(x) =

{

{x} : If the type of x contains a stream
∅ : otherwise

linm(c(x1, . . . , xk) ⇒ e) = lin(e) \ {x1, . . . , xk}

Figure 6. Linearity rules

To generate a statically unbounded number of elements
of a stream, a function must generate it using a CONS in a
tail-call position (the alternative, of using an accumulator
argument to a function, is disallowed by the stability con-
straint). In this case, the function’s return type must be a
single stream, because of this CONS in the tail-call position.

Due to linearity, one stream cannot be passed to multi-
ple functions in parallel, and since functions that generate
streams can only return one stream, each stream can only
have one other stream that depends on it for a statically un-
bounded number of elements. It is not possible to generate
multiple distinct streams that depend on the same original
stream. Linearity similarly prevents a stream being passed
to a function along with a stream it depends upon, since the
original stream is “used up”. Linearity thus prevents the
synchronisation problems mentioned in Section 3.3, as well
as preventing “rewinding”. For example, linearity prevents
the creation of a function that returns two copies of a stream
provided as a parameter (such as the function dup stream
in Section 5).

Linearity is ensured by labelling each expression with
the set of linear variables it uses. The sets of variables are
built in a bottom-up manner using the] operator. If the sets
being merged contain a repeated linear variable, an error is
yielded. A linear value cannot be held inside a non-linear
value, so any type containing a stream is linear.

The operators] and ∪· are defined as:

s]t =

{

error : if s = error ∨ t = error ∨ s ∩ t 6= ∅
s ∪ t : otherwise

s∪· t =

{

error : if s = error ∨ t = error
s ∪ t : otherwise

The linear variables used by a typed expression can be
found using the function lin shown in Figure 6. A program
has the required linearity property if none of its function
bodies yield error when lin is applied.

4.3. Stability

In this language, processing of streams is achieved us-
ing recursive functions. To produce non-stream results tail-
recursion can be used, while to generate an entire new
stream a tail recursive call is done in the tail part of a CONS
node.

These two forms of recursion have some anti-symmetry
in the forms of allowed functions, as shown in the exam-
ples5 of Figure 7. In plain tail recursive functions, expres-
sions may be evaluated before the tail call, but not after-
wards, as this would require extra storage. For tail recursion
on streams, CONS operations may occur on the result of tail

5The displayed parts of the function bodies are assumed to be in tail
context of a larger, valid expression.

calls, because they will be implemented as side effects be-
fore the function call, but tail calls on a CONSed version of
the input could, in general, create a stream requiring un-
bounded space.

To forbid streams that require unbounded amounts of
space to represent them, we must forbid the streams from
being recursively processed in a way that increases the stor-
age requirements each iteration.

We introduce the concept of stability, where streams
passed to a tail call must be substructures of the correspond-
ing streams in the function’s formal parameter. The sub-
structures of a stream are itself, and those streams reached
by repeatedly taking the tail of the stream. By limiting the
streams that can be passed recursively in this manner, the
space requirements of the streams cannot build up.

In the typing system of Section 4.1, a stream that is guar-
anteed to be a substructure of one of the streams in the func-
tion’s parameters will have the same stream identifier. Oth-
erwise the stream will have the identifier “?”.

Hence, the stability restriction is simply that for a tail
recursive call the stream identifiers in the formal and actual
parameter of the function match. A modified (APPLY) rule
to achieve this constraint is as follows:

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 → σ3

θ(σ2) = σ1

if f e is a recursive tail call
then θ must be the identity

4.4. Static Allocation

Viewing CONS expressions as closures, with CONS-
matching performing the execution, the programs can be
statically allocated if the closures are guaranteed to be able
to be statically allocated. With non-recursive datatypes, a
closure may only take an unbounded amount of space if
the environment of a closure may contain other closures,
nested arbitrarily deeply. The only way to generate arbitrar-
ily deeply nested closures would be through tail recursive
calls, but the stability constraint prevents layers of closures
building up, as the only stream parameters passed to the re-
cursive call are substructures of the original parameters—in
terms of closures, functions may only evaluate closures, not
generate them, before performing tail calls.

5. Example Programs

Common operations to generate, map, filter and fold lists
are simple to write in SASL:6

fun from (i) = i::from(i+1)

6To avoid using higher-order functions, we provide f, g and so on as
top-level functions rather than parameters.

(* Plain tail recursion. *)
fun f1 (x) = ... 1 + f1(x) (* Disallowed. *)
fun f2 (x) = ... f2(x + 1) (* Allowed. *)

(* Stream tail recursion. *)
fun g1 (x::xs) = ... 1 :: g1(xs) (* Allowed. *)
fun g2 (xs) = ... g2(1 :: xs) (* Disallowed. *)

Figure 7. Examples of recursive functions

fun map_f (x::xs) = f(x)::map_f(xs)

fun filter (x::xs) =
if test(x) then x::filter(xs) else filter(xs)

fun fold_g (x::xs, acc) =
if done(x)
then accumulator
else fold_g(xs, g(acc, x))

Streams may be merged together (subject to linearity), but
streams may not be duplicated, or multiple streams created
depending on unbounded sections of the same stream, since
the resulting streams may not be able to be merged without
unbounded buffering:

(* An allowed merge function. *)
fun merge_h (x1::xs1, x2::xs2) =

h(x1, x2)::merge_h(xs1, xs2)

(* A disallowed duplication function. *)
fun dup_stream (stream) = (stream, stream)

This difference to synchronous stream languages is dis-
cussed in the next section.

6. Language Comparison

We compare SASL with the statically-allocated func-
tional language SAFL+, and the synchronous stream lan-
guage Lustre. In comparison to SAFL+, our language sim-
plifies the processing of streams of data, as the programmer
need not have to deal with the explicit parallelism of passing
data over channels, and need not worry about the possibil-
ity of deadlock. SASL is a pure functional language, unlike
SAFL+.

Comparisons with Lustre seem useful, as this is another
language that concentrates on stream-processing, although
it takes a quite different approach. The main difference be-
tween synchronous stream processing languages and SASL
is that in the synchronous stream languages all variables are
streams with explicit clocks, and all processing is done in
terms of streams, whereas in SASL the stream processing
is demand-driven, not pervasive (there are non-stream vari-
ables) and not explicitly clocked, which may be useful for
component-based design, where the programmer need not

specify the exact timing of components and signalling be-
tween them.

The demand-driven nature of SASL streams makes the
merge h function simple to write, while in Lustre it is nec-
essary to organise the clocks so that values occur on both in-
put streams at the same time, perhaps through back-pressure
if either input stream may use an unbounded loop. Lus-
tre uses a clock calculus to describe which streams may
be merged, while in SASL any pair of streams may be
merged, subject to linearity constraints. While a function
like dup stream is allowed in Lustre, linearity prevents it
in SASL (although later we show how to embed Lustre in
SASL).

The use of streams for everything in Lustre may compli-
cate some things, such as loops. While iteration in SASL
can be achieved through a tail-recursive function call, Lus-
tre requires a data-flow program that either performs an it-
eration of the loop, or resets the loop with new values if a
request comes in. Results are sent out by sending a stream
value out on the cycle representing the final iteration of the
loop. Loop hardware therefore takes a stream of loop ini-
tialisation requests, and returns a stream of loop results. If
the loop is unbounded, some form of back-pressure will be
required to prevent new requests until the loop has finished.

SASL hides the implementation of back-pressure and
signalling. Although synchronous stream languages may
be more convenient for certain classes of problems (such as
hard real-time systems with exact per-cycle requirements),
SASL aims to provide features similar to those in a conven-
tional software language, presenting a higher-level interface
to the programmer. Control over the cycle-based timing
of streams is lost, in exchange for more flexible synthesis,
freeing the programmer from many details7. For example,
functions may be composed without worrying about timing
or signalling:

fun compose1 (i) =
fold_g(filter(map_f(from(i))), 0)

fun compose2 (i) =
if predicate(i)

7It may be possible to extend the language with pragmas or annota-
tions specifying timing requirements the synthesis tool must meet—this is
a possible further area of research.

then i
else compose2(compose1(i))

fun compose3 (x::xs) =
compose2(x)::compose3(xs)

To aid comparison, we will compare implementations of a
simple example program from [6] in Lustre and SASL. The
Lustre program is as follows:

node WatchDog(set, reset, deadline:bool)
returns (alarm:bool);

var is_set:bool;
let

alarm = deadline and is_set;
is_set = set ->

if set then true
else if reset then false
else pre(is_set);

tel.

The most direct translation to SASL would involve putting
all the Lustre parameter streams into one tupled SASL
stream, producing a program such as:

fun WatchDogInt (str, is_first, prev_is_set) =
case str of (set, reset, deadline)::rest =>

let is_set = if is_first then set else
if set then True
else if reset then False
else prev_is_set in

let alarm = deadline and is_set in
(alarm, set, reset, deadline)
:: WatchDogInt(rest, False, is_set)

fun WatchDog (stream) =
WatchDogInt(stream, True, False)

In this translation, each item in the stream of tuples repre-
sents the values held by Lustre streams on that clock. Since
all the Lustre streams are synchronised by a clock scheme,
they are put in the same SASL stream, as unused SASL
streams are independent. Other Lustre streams using dif-
ferent clocks can be added using hiatons, and Lustre pre
values are generated by passing extra non-stream param-
eters such as prev is set. The returned stream passes
back all the data passed in, since the stream passed in can-
not be reused due to linearity. In general, a Lustre node that
takes streams x1 through xn, returning streams y1 through
ym can be implemented as a function of the form

fun example ((x1,... xn)::tl, state) =
(f1(...), ..., fm(...))::example(tl, g(...))

where the fi and g are SAFL-like combinatorial functions
of the xi and the non-stream variable state. Using this trans-
lation, Lustre programs can be converted relatively easily,
if not elegantly, to SASL. For example, duplication of a
stream in Lustre can be represented in SASL by duplicat-
ing elements:

fun dup_elt (x::xs) = (x, x)::dup_elt(xs)

(as compared to the disallowed dup stream function of
Section 5).

A better translation would match the task required to the
language features of SASL. For example, the function could
read tuples of set, reset and deadline values until the “alarm”
condition is met, and then return the remaining input at that
point, making use of the function call mechanism:

fun WatchDogInt (str, prev_is_set) =
case str of (set, reset, deadline)::rest =>

let is_set = if set then True
else if reset then False
else prev_is_set in

if deadline and is_set
then rest
else WatchDogInt(rest, is_set)

fun WatchDog (str) =
WatchDogInt(str, False)

Note that translating programs suited to Lustre into
SASL does not show off the natural usage of SASL, or fea-
tures difficult to describe in Lustre, as discussed above.

7. Hardware synthesis

We plan to cover the details of synthesis in another paper.
As a brief outline, streams are converted to a form of syn-
chronous channel, with CONS becoming a channel write and
CONS-matching a channel read. Functions become mod-
ules that provide call and return buses to take and return
non-stream values, and input and output channels represent
the supplied and returned streams respectively. An initial
“function call” sets up the state for producing channel val-
ues, and returns non-stream results. Further reads from out-
put channels return stream items on demand. Each active
stream can be mapped to a separate hardware channel.

In terms of optimising synthesis, parallelism can be ex-
tracted at the dataflow level, as can be done in SAFL, and
also at the stream processing level, by speculatively produc-
ing stream items before demand on otherwise idle hardware,
and pipelining the processing of stream items.

8. Conclusions and Further Work

We have introduced a pure functional language, SASL,
that can deal with streamed I/O, and that can be stati-
cally allocated. The language is modelled on conventional
functional languages, using tail recursion and standard list-
processing notation. Synthesis techniques are being inves-
tigated, and we hope to produce a SASL-based optimising
high-level synthesis tool for software-like descriptions.

There is much scope for further work. As it stands,
SASL may be overly restrictive, and it may be useful to in-
vestigate variations on the linearity and stability constraints

to give the programmer more flexibility. For example, lin-
earity constraints prevent variables of stream type being
“broadcast” to multiple functions, even if this causes no
synchronisation problems. Extended constraints could use
something like the clock calculus of synchronous stream
languages, or just allow limited reuse of streams, as long
as related streams are never merged.

Also, the language could be extended, such as adding
higher order features or non-deterministic stream process-
ing (useful for merging together data items from different
streams as they arrive, for example). Our main area of on-
going research, however, is in language synthesis, with the
aim of creating efficient pipelined hardware based around
stream processing.

Acknowledgements

The first author gratefully acknowledges a PhD stu-
dentship from Altera; this work was partly supported by
(UK) EPSRC grant GR/N64256. The anonymous review-
ers provided helpful remarks.

References

[1] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedu-
ral language with iteration. Communications of the ACM,
20(7):519–526, July 1977.

[2] G. Berry. The foundations of Esterel. In Language and
Interaction: Essays in Honour of Robin Milner. MIT Press,
1998.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In International Conference on
Functional Programming, pages 174–184, 1998.

[4] B. Cook, J. Launchbury, and J. Matthews. Specifying super-
scalar microprocessors in Hawk. In In Workshop on Formal
Techniques for Hardware, 1998.

[5] S. R. Guo and W. Luk. Compiling Ruby into FPGAs. In
Field-Programmable Logic and Applications, pages 188–
197, 1995.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language LUS-
TRE. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991.

[7] D. T. Hoang. Searching genetic databases on Splash 2.
In D. A. Buell and K. L. Pocek, editors, Proceedings of
IEEE Workshop on FPGAs for Custom Computing Ma-
chines, pages 185–191, Napa, CA, Apr. 1993.

[8] J. Hughes, L. Pareto, and A. Sabry. Proving the correct-
ness of reactive systems using sized types. In Symposium
on Principles of Programming Languages, pages 410–423,
1996.

[9] N. D. Jones. The expressive power of higher-order types or,
life without CONS. Journal of Functional Programming,
11(1):55–94, January 2001.

[10] S. P. Jones and J. Hughes. Report on the programming lan-
guage Haskell 98, a non-strict purely functional language.
Technical Report YALEU/DCS/RR-1106, Yale University,
February 1999.

[11] J.-P. Kaps and C. Paar. Fast DES implementation for FPGAs
and its application to a universal key-search machine. In
S. E. Tavares and H. Meijer, editors, Selected Areas in Cryp-
tography ’98, SAC’98, Kingston, Ontario, Canada, August
17-18, 1998, Proceedings, volume 1556 of Lecture Notes in
Computer Science, pages 234–247. Springer-Verlag, 1999.

[12] Y. Li and M. Leeser. HML: an innovative hardware descrip-
tion language and its translation to VHDL. In Proceedings
of CHDL’95, 1995.

[13] D. MacQueen. Models for distributed computing. Tech-
nical Report 351, Institut de Recherche d’Informatique et
d’Automatique, 1979.

[14] A. Mycroft and R. Sharp. The FLaSH project: Resource-
aware synthesis of declarative specications. In Proceedings
of The International Workshop on Logic Synthesis 2000,
2000.

[15] A. Mycroft and R. Sharp. A statically allocated parallel
functional language. In Proceedings of the 27th Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), volume 1853 of Lecture Notes in Computer
Science, 2000.

[16] A. Mycroft and R. Sharp. Hardware synthesis using SAFL
and application to processor design. In T. Margaria and
T. Melham, editors, Correct Hardware Design and Verifica-
tion Methods: 11th IFIP WG10.5 Advanced Research Work-
ing Conference, CHARME 2001: Livingston, Scotland, UK,
September 4–7 2001: Proceedings, volume 2144 of Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[17] J. J. O’Donnell. From transistors to computer architecture:
Teaching functional circuit specification in Hydra. In Func-
tional Programming Languages in Education, pages 195–
214, 1995.

[18] L. Pareto. Types for Crash Prevention. PhD thesis, Chalmers
University of Technology, Sweden, 2000.

[19] L. C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1996.

[20] R. Sharp and A. Mycroft. A higher-level language for hard-
ware synthesis. In Proceedings of 11th Advanced Research
Working Conference on Correct Hardware Design and Ver-
ification Methods (CHARME), 2001.

[21] M. Sheeran. Designing regular array architectures using
higher order functions. In Jouannaud, editor, Proceedings
of International Conference on Functional Programming
and Computer Architecture, volume 201 of Lecture Notes
in Computer Science, pages 220–237, 1985.

[22] J. Srinivasan. Hardware accelerated ray tracing. Final
year undergraduate project, Cambridge University Com-
puter Laboratory, 2002.

[23] P. Wadler. Listlessness is better than laziness: Lazy evalua-
tion and garbage collection at compile-time. In ACM Sym-
posium on Lisp and Functional Programming, pages 45–52,
1984.

[24] P. Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors, IFIP TC 2 Working Conference on
Programming Concepts and Methods, Sea of Galilee, Israel,
pages 347–359. North Holland, 1990.

