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Abstract

In previous work we have outlined the design of a functional language, SAFL, and argued
that it is well suited to hardware description and synthesis. Unlike conventional high-level
synthesis languages, SAFL specifications capture explicitly resource allocation, variable bind-
ing and scheduling. This paper is concerned with the details of the FLaSH compiler: an
optimising silicon compiler which translates SAFL specifications to RTL Verilog suitable for
simulation or synthesis. We describe a number of high-level optimisation and analysis tech-
niques which find novel application in the field of hardware-synthesis. In particular, we believe
our approach to compiling function definitions into shared resources could be applied advan-
tageously in existing industrial silicon compilers.

1 Introduction

The last few decades have seen significant advances in programming language design and imple-
mentation. Although much of the research in these areas has been directly applied to software
design, it seems that many of the established results and techniques have not yet found their way
into the world of hardware synthesis. At AT&T Laboratories Cambridge we are in the process of
building an advanced hardware synthesis system, combining new techniques with those that have
currently only been applied to software compilation.

The FLaSH (Functional Languages for Synthesising Hardware) system allows a designer to map
a high level functional language, SAFL (Statically Allocated Functional Language), into hardware.
The system has two phases:

1. We transform SAFL programs using meaning-preserving transformations to choose the area-
time position (e.g. resource allocation, binding and schedule) while remaining a high-level
specification.

2. The resulting specification is compiled into hardware in a resource-aware manner, that is
we map separate functions to separate hardware functional units; functions which are called
twice now become shared functional units—accessed by multiplexers and possibly arbiters.

This paper concerns the internals of the FLaSH compiler, outlining novel analysis and op-
timisation techniques which allow us to compile SAFL to efficient hardware whilst respecting
resource-awareness. A more formal presentation of SAFL and examples of source-to-source pro-
gram transformations appear in [9]; hardware/software partitioning using SAFL is considered
in [11] and a brief overview of the whole project can be found in [10].
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1.1 A brief overview of the SAFL language

SAFL is a language of first order recurrence equations with an ML-like syntax [7]; a user program
consists of a number of function definitions (declared using the fun keyword) and a single initial-
ising expression declared with the do keyword. The initialising expression is invoked as soon as
the program is executed and is thus analogous to C’s main() function. Other constructs include
let-in-end which declares variable bindings; if-then-else for conditional evaluation and a set
of primitive operations for use in arithmetic and boolean expressions (e.g. +, *, <, >= etc.).
SAFL has a call-by-value semantics since strict evaluation naturally facilitates parallel execution
which is ideal for hardware implementation. Some of the interesting features of the FLaSH system
are outlined below:

Parallelism

SAFL is a functional language and therefore enjoys the property of referential transparency. This
enables us to synthesise designs in which many expressions are computed simultaneously. More
precisely the FLaSH compiler produces designs in which all function call arguments and let
declarations are evaluated in parallel. This kind of fine-grained parallelism is ideal for a hardware
implementation where, in contrast to software, performing operations in parallel is easier than
forcing their sequentialisation.

Resource Awareness

One of the novel features of the FLaSH compiler is resource awareness. We enforce the rule that a
single SAFL function definition, f, synthesises to a single block of hardware, Hy. In this context,
multiple calls to f at the source level correspond directly to multiple accesses to the shared unit,
Hy, at the hardware level. H; supports a function-style call-return interface and has a single
data output. We use the terms resource and functional-unit interchangeably to refer to hardware
blocks like Hy.

Our approach can be illustrated by considering the compilation of the following SAFL code:

fun mult(x, y, acc) =
if (x=0 | y=0) then acc
else mult(x<<1l, y>>1, if y.bit0 then acc+x else acc)

fun cube(x) = mult(mult(x, x, 0), x, 0)

From this specification, the FLaSH compiler generates two hardware resources: a circuit, Hyyit,
corresponding to mult! and a circuit, H.ype, corresponding to cube. The two calls to mult are not
inlined: at the hardware level there is only one shared resource, Hyyi+, which is invoked twice by
chbe-

Adopting a technique such as this allows SAFL to capture both the intensional semantics
of a specification and the structure of the synthesised circuit (extensional semantics). In this
framework, source-to-source program transformation becomes a very powerful technique allowing
a designer to explore a wide range of possible implementations by repeatedly transforming some
initial specification [9, 11].

Static Allocation

In order to make SAFL well suited to hardware description and synthesis we impose syntactic
restrictions on SAFL source:

1. a function can only call previously defined functions; and

2. all recursive calls must be in tail-context.

I The tail-recursive call is synthesised into a feedback loop at the circuit level.
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Restriction (1) prohibits mutual recursion which, if treated naively, can create cycles in our
call graph, leading to deadlock in our hardware implementations where functions represent shared
resources.? Restriction (2) ensures that the amount of storage (e.g. number of registers) needed for
a program’s execution can be calculated at compile time, a property that we call static allocability.

We argue that static allocation is ideal for hardware synthesis since it means our designs do
not have to rely on a global addressable store to model stacks and heaps. This prevents us from
inhibiting parallelism by creating a Von Neumann bottleneck.

Architecture Independence

Although we try to make SAFL well-suited to describing hardware in general, we are careful not to
favour the description of any particular circuit design paradigm. We say that SAFL is architecture
neutral to mean that it abstracts a number of implementation styles. For example, a single SAFL
specification could be compiled into either synchronous or asynchronous hardware.

In particular, resource-awareness provides a useful abstraction since we can compile different
source-level function definitions into different design styles (e.g. synchronous or asynchronous) and
automatically synthesise suitable inter-resource interfaces. In [11] we use this idea to show how a
source-to-source transformation can arbitrarily partition a SAFL specification into hardware and
software parts.

1.2 Relation to Other Work

We are not the first to observe that the mathematical properties of functional languages are de-
sirable for hardware description and synthesis. A number of synchronous dataflow languages, the
most notable being LUSTRE [4], have been used to synthesise hardware from declarative spec-
ifications. However, whereas LUSTRE is designed to specify reactive systems SAFL describes
interactive systems (this taxonomy is introduced in [1]). Furthermore LUSTRE is inherently syn-
chronous: specifications rely on the explicit definition of clock signals. This is in contrast to SAFL
which could, for example, be compiled into either synchronous or asynchronous circuits.

The ELLA HDL is often described as functional. However, although constructs exist to define
and use functions the language semantics forbid a resource-aware compilation strategy. This is
illustrated by the following extract from the ELLA manual [8]:

Once you have created a named function, you can use instances of it as required in
other functions ... [each] instance of a function represents a distinct copy of the block
of circuitry.

ELLA contains low-level constructs such as DELAY to create feedback loops, restricting high-level
analysis. SAFL uses tail-recursion to represent loops; this strategy makes high-level analysis a
more powerful technique.

Previous work on compiling declarative specifications to hardware has centred on how func-
tional languages themselves can be used as tools to aid the design of circuits. Sheeran’s et al.
muFP [13] and Lava [2] systems use functional programming techniques (such as higher order
functions) to express concisely the repeating structures that often appear in hardware circuits.
In this framework, using different interpretations of primitive functions corresponds to various
operations including behavioural simulation and netlist generation. Our approach takes SAFL
constructs (rather than gates) as primitive. Although this restricts the class of circuits we can
describe to those which satisfy certain high-level properties, it permits high-level analysis and
optimisation yielding efficient hardware.

Conventional HDLs such as Verilog and VHDL allow a user to specify a design at various levels
of abstraction. Although the behavioural subsets of these languages support function definitions
and calls, we are not aware of any existing high-level synthesis tools which provide explicit support
for treating functions as shared resources (e.g. automatic support for sharing, insertion of arbiters

21n fact the formal semantics of SAFL presented in [9] permits a form of mutual recursion by stratifying function
definitions into (potentially mutually recursive) groups.
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and temporary registers). Typically, behavioural Verilog and VHDL synthesisers inline function
calls as a preprocessing stage and then apply traditional high-level scheduling techniques to share
the large amount of duplicated logic which arises as a result. Silicon compilers for other high-level
languages [3, 6, 12] tend to use a similar approach leading to a dangerous exponential increase in
code-size which our method avoids.

2 Compiling SAFL

Translating SAFL to parallel hardware whilst respecting resource awareness leads to some inter-
esting issues which the FLaSH compiler needs to deal with. In order to whet the reader’s appetite
(and to provide some real examples of SAFL code) two such issues are presented here:

2.1 Parallel Sharing Conflicts

Parallel sharing conflicts arise because, at the hardware level, we are dealing with multiple threads
all trying to access a shared set of resources. Consider the following SAFL code fragment taken
from the specification of a processor:

fun add(x,y) = x+y

fun ALU(op, argl, arg2, ...) =
if op=1 then add(argl,arg2)
else ...

fun calculate_new_PC(current_PC,offset,condition) =
if condition then add(current_PC,offset)
else current_PC

Since both the ALU and calculate new PC functions call add, the FLaSH compiler will synthesise
a circuit containing a single add-unit shared between the ALU and calculate new PC units. One
interesting question is, although the add circuit is shared, is it subject to multiple concurrent
accesses—i.e. is there a scenario where both the calculate new PC and ALU functions may try to
call the add circuit simultaneously? If so we say that the calls to add have a parallel sharing conflict
and automatically synthesise an arbiter to protect H,qq from multiple concurrent accesses.?

The FLaSH compiler performs parallel conflict analysis to infer which hardware resources are
subject to sharing conflicts. This enables us to synthesise arbiters only where necessary—even
though a functional-unit is shared our compiler is often able to infer from the program structure
that an arbiter is not required. Parallel conflict analysis is described in detail in Section 4.

2.2 Register Placement
Consider the following SAFL expression:

let var x = £(4)
in let var y = £(5)
inx +y
end
end

In this example x is bound to the result of computing f(4) whilst y is bound to the result of
computing f (5). However, since f represents a shared resource, Hy, with a single output we see
that, if translated naively, the second call to £ will invalidate the first (since both x and y are
bound to H;’s shared output). This is an instance of a sequential sharing conflict, the result of

3Note the similarity between parallel sharing conflicts and structural hazards [5] in pipelined processor design.
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Figure 1: Structure of the FLaSH Compiler

which is that we must synthesise a register to latch the value of f(4) before it is corrupted. We
call these latches permanising registers since they make the result of computing an expression
permanent, decoupling the caller from the callee.

Similarly, consider this code fragment in which the calls to £ have a parallel sharing conflict
(see Section 2.1):

let var x = £(4)
var y = £(5)
in x+y
end

Here, £ (4) will be evaluated in parallel with £(5) and both x and y will be bound to the
shared output of resource Hy. Although an arbiter will be synthesised to dynamically schedule
the concurrent accesses to Hy, we cannot determine statically? which of the two let declarations
will be evaluated first. Thus, in this case, we require two permanising registers: one to latch the
value of computing f (4), the other to latch the value of £(5).

The problem of register placement involves the insertion of as few registers as possible to deal
both parallel and sequential conflicts. The method used to place registers in the FLaSH compiler
is documented later in this paper.

3 An overview of the FLaSH Compiler

The structure of the FLaSH compiler can be seen in Figure 1 and is summarised below:

e SAFL source is lexed and parsed into an abstract syntax tree. We check that the source
complies with the restrictions described in Section 1.1; invalid SAFL is rejected.

o We perform parallel conflict analysis at the abstract syntax level which allows us to infer
which functions may be subject to multiple concurrent calls. The results of this analysis are
used to place arbiters at the hardware level.

e The abstract syntax tree is translated into intermediate code. Our intermediate represen-
tation is based on a control/data-flow graph model. At this level we perform data-validity
analysis to detect sequential conflicts and place permanising registers—latches used to store
temporary values (see Section 2.2).

4This simple example is chosen for expository purposes only; in reality, for this trivial case, it would be beneficial
to transform the SAFL into a specification where the order of access to Hy is specified statically (as in the previous
example). However, in more complex cases (e.g. where the two calls to f are preceded by operations with data-
dependent timings) synthesising an arbiter may lead to better performance.
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o Finally we translate the intermediate graph into a hierarchical RTL Verilog design.

The remainder of this paper outlines the phases of the compiler in more depth, explaining both
the technical details and motivations behind the analyses and transformation steps.

3.1 Abstract Syntax Level

As SAFL is a small language, the abstract syntax is straightforward, containing the following
nodes (where, here and throughout this section, we use the notation ¥ to abbreviate (x1,...,x)
and similarly € to abbreviate (eq, ..., ex)):

e variables: x; and constants: ¢

e user function calls: f(e1,...,ex)

primitive function calls: a(ey,...,e), where a ranges over operators such as +, -, < etc.

conditionals: if e; then e else e3

let bindings: let & = € in ey end

It is important to differentiate between function definitions and function calls. In order to distin-
guish distinct calls we assume that each abstract-syntax node is labelled with a unique identifier,
a, writing f*(e1,...,ex) to indicate a call to function f at abstract-syntax node a.

4 Parallel Conflict Analysis

Parallel conflict analysis allows us to determine the set of function calls subject to parallel sharing
conflicts (as outlined in Section 2.1). This analysis is performed at the abstract-syntax level and
is described below.

We define a call set to be a set of calls. The result of Parallel Conflict Analysis is a conflict
set: a call set containing the calls which require arbiters. For example, if the resulting conflict set
is {f1, 2, f5,9'°, ¢g'} then we would synthesise two arbiters: one for calls {f!, 2, f°} and one
for calls {g'?, g*4}.

Let ey represent the body of function f. Let the predicate RecursiveCall(f<) hold iff f is a
recursive call (i.e. occurs within ef). C[e] returns the set of non-recursive calls which may occur
as a result of evaluating expression e:

Clz] = 0
Cle] = 0
Clater,...,ex)] = |J Cleil
1<i<k
a _ 0 if RecursiveCall(f%)
el ers. . er)] = (ISLiJSkC[[ei]])U{ e} e s
C[if e; then e; else e3] = U Clei]
1<i<3
Cllet #=¢ine] = U Cles]
0<i<k

PC(S1,...,S,) takes call sets, (S1,...,S,), and returns the conflict set resulting from the as-
sumption that calls in each S; are evaluated in parallel with calls in each S; (j # 9):

PC(Sy,.--,8,) = | J{f*€8:i138. P €85}
i#£]
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We are now able to define A[e] which returns the conflict set due to expression e:

Alz] = 0
Al = 0
Alales,...,ex)] = PC(Cleil,---,CleshU | Aleil
1<i<k
Alf(er,....en)] = PC(Clel,....ClexD U |J Aleil
1<i<k
A[if e1 then es else es] = U Alei]
1<i<3
Alet =€ ine] = PC(Clei],---,C[ex]) U U Alei]
0<i<k
Finally, for a program, p, consisting of:
e a sequence of user-function definitions: fun fi(...) =e1; ...; fun f,(...) = e, and

e an initial expression, eg

A[p] returns the conflict set resulting from program, p:

Al = | Alei]

0<i<n

(The letter A is used since A[p] represents the calls which require arbiters.)

5 FLaSH Intermediate Code

There are many analysis and optimisation techniques which are more suited to a lower level of
representation. For this reason the FLaSH compiler translates designs into intermediate code.
The intermediate code was was designed with the following aims:

e to map well onto hardware (many of the intermediate operations can be represented directly
by simple circuit templates);

e to make all control and data dependencies explicit; and

e to facilitate analysis and transformation.

As in many compilers, the intermediate representation is a graph-like structure best modeled
as sets of nodes and edges.
5.1 The structure of intermediate graphs

An intermediate graph can be represented as (N, E., E4) where:

N is a set of nodes
E. CN x N is a set of control edges i.e. (n,n') € E. < control flows out of n into n'
E; CN x N is a set of data edges i.e. (n,n') € Eq < data flows out of n into n’

We define functions to compute successors/predecessors as follows:

Succ.(n) = {n']|(n,n') € E.}
(n) = A{n'|(n,n') € Eq}
Pred.(n) = {n'|(n',n)€ E.}
(n) (n',n)

= {n'|(n/,n) € E4}

n
n
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% ******************* START

v !
Constant: 3 Constant: 4
Call f Call g

AT ]
! v
Call h Call f
[ J
s
Built-in: ‘+
-
Callg |77 END

This intermediate graph represents the following expression:

let var x = £(3)
var y = g(4)
in g(x, h(x) + £(y))

end

Figure 2: Example intermediate graph
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Node Number of Control || Number of Data

Type Inputs | Outputs || Inputs | Outputs
CONTROL_FORK 1 > 2 0 0
CONTROL_JOIN >2 1 0 0
CONSTANT 1 1 0 1
BUILT_IN 1 1 >1 1
CALL 1 1 >0 1
JUMP 1 1 >0 1
READ_FORMAL 1 1 0 1
CONDITIONAL_SPLIT 1 2 1 0
CONDITIONAL_JOIN 2 1 3 1

Figure 3: Nodes used in intermediate graphs

Intermediate graphs are best viewed pictorially. We adopt the convention that thin lines
represent control edges and thick lines represent data edges. Figure 2 gives an example of an
intermediate graph and the SAFL expression it represents. The types of node used in intermediate
graphs are summarised in Figure 3. Given a node n, we define the formula (n : CALL f) to hold
iff n is a call node (and similarly for other node forms).

As can be seen from Figure 3, nodes have at most one data output-port. We say that a node n
is a data-producer if it has a data output-port. If n is a data-producer then we define n.DataOut
to refer to n’s (single) data output-port. We define R* to be the transitive closure of relation R;
similarly R* is the reflexive-transitive closure. For example, Succt (n) is the set of nodes which
occur after n on the control path.

When compiling an expression to an intermediate graph, we mark two distinguished interme-
diate nodes: start and end. The node marked start represents an expression’s entry point and the
node marked end is a data-producer whose value will ultimately yield the result of the expression.

The meanings of nodes (and their pictorial representations) are outlined informally in the
following sections. In order to describe the semantics of nodes we often talk of control and the act
of propagating control. This will become clearer when we outline the translation to hardware, but
until then it may help the reader to imagine control edges propagating events cf. asynchronous
circuit design.

5.1.1 Fork/Join Parallelism

Parallelism is made explicit through control fork/join nodes:

CONTROL_FORK CONTROL_JOIN
Input Inputs
Outputs Output

e When control reaches a CONTROL_FORK node’s single input then control is propagated to
its many control outputs.

e Conversely, a CONTROL_JOIN node waits for control to arrive at all its inputs, before propa-
gating control to its single output.

Examples of the use of CONTROL_FORK and CONTROL_JOIN can be seen in Figure 2 where they
are used to facilitate the parallel evaluation of let-declarations and function arguments.
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Figure 4: Conditional translation: [if e; then ey else e3]

5.1.2 Conditionals

We represent conditional execution using two nodes: CONDITIONAL_SPLIT and CONDITIONAL_JOIN.
The style of these nodes may seem unusual to people familiar with software compilers, but they
map well onto hardware. In particular the CONDITIONAL_JOIN node mimics a multiplexor.

CONDITIONAL_SPLIT CONDITIONAL_JOIN

True branch Select False branch

Select Control_in

Control_true Control_false

Control_out

e A CONDITIONAL_SPLIT node channels control from control_in to either control true or con-
trol_false output depending on the boolean data value on the select input.

e The CONDITIONAL_JOIN node has two control/data input pairs corresponding to the true
and false branches of a corresponding CONDITIONAL_SPLIT. When control arrives at either
control input it is propagated to control_out. Similarly, data on one of the two data-inputs is
propagated to data_out. The boolean value on select is used to determine which of the data
values to forward.

Figure 4 shows how conditionals are translated into intermediate structures.

5.1.3 Recursive calls

We use the JUMP node to represent recursive calls. (Recall that we can always implement recursive
calls as jumps because all recursive calls are restricted to tail-calls.)
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JUMP

Arguments_in

Control_in

I

Control_out Result_out

A JuMP returns no data and never propagates control—hence its outputs are ignored; we can
treat the data output as some random undefined value and the control output as never asserted.
In practice, control and data outputs are not realised at the hardware level. (We only include them
at the intermediate level because it allows us to maintain the invariant that a closed expression is
represented by an intermediate graph with a control input, a control output and a data output).

5.1.4 Primitive and User-defined Function Calls

Although they are treated very differently at the hardware level, primitive function calls and
user-defined function calls look similar at the intermediate level:

CALL BUILT_IN

Arguments_in Arguments_in

Control_in
Control_in

I

Control_out Result_out

[ Built-in: ‘op’

Control_out Result_out

Both these nodes read their data-inputs when control reaches their single control-input, perform
their operation and then return their result on the single data-output, propagating control forwards
when the operation is complete. (Note that the CALL node is only used to represent non-recursive
calls to external functional-units. We have already shown how we use JUMP to represent recursive
calls).

5.1.5 Constants

The CONSTANT node simply propagates control whilst continually writing its value, ¢, onto its
data-output.

CONSTANT

Control_in

Constant: ¢

Control_out lDataout

5.1.6 Variables
Variables can be subdivided into two separate categories:
e let-bound variables

e formal parameters
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Constant: 3 Read formal: x

mﬂg ffffffffffffff B

Figure 5: Intermediate graph representing the body of fun f(x) = x+4

Although let-bound variables are represented implicitly by sharing a node’s data-output (see
Figure 2) we require a special node to deal with formal parameters:

READ_FORMAL

Control_in

Read formal: x

Control_out lData_oul

This node propagates control whilst writing the value of the local function’s formal parameter,
z, to its data-output. Figure 5 shows an example of the READ_FORMAL node by translating the
body of fun f(x) = x+4.

5.2 Translation to Intermediate Code

The main translation phase is implemented by a recursive function which walks the abstract-
syntax tree, constructing parts of intermediate graph and then gluing them together. Although
the technicalities of the translation procedure are omitted there are some issues worth mentioning;:

1. Intermediate graphs represent expressions rather than programs. Thus, in order to compile
a SAFL program into intermediate form we compile each of the function bodies separately
and maintain a list of (function name, intermediate expression) pairs. The start and end
nodes of the intermediate expression then correspond to the entry and exit points of the
function.

2. We translate abstract syntax expressions into intermediate graphs where all 1et-declarations,
primitive function call arguments and user-defined function call arguments are evaluated in
parallel. (This parallelism is made explicit through the use of CONTROL_SPLIT and CON-
TROL_JOIN nodes.)

3. We perform a simple reachability analysis and dead-code elimination phase to remove re-
dundant nodes from the graph before any analysis takes place. For example consider the
intermediate graph corresponding to the body of:

fun f(x) = if ... then f(x+1)
else f(x-1)
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Sequential Conflict Parallel Conflict

Call f Vi i
Call f Call f
|- ]
Call f NV

\|/ Built-in: ‘+

Built-in: ‘+ \I/ \L

Figure 6: A sequential conflict (left) and a parallel conflict (right). The horizontal dotted lines
show the points where data may become invalid. These are the points where permanising registers
are required

In this case, since both of the conditional branches contain tail recursive calls (represented as
JUMP nodes) we know that the corresponding CONDITIONAL_JOIN node will never be reached
and is hence unnecessary.

6 Analysis at the Intermediate Code Level

The intermediate level analyses described here concern the placement of permanising registers as
outlined in Section 2.2. Recall that there are two types of conflict which require the insertion of
permanising registers:

e Sequential conflicts. These arise when the output of a call to f is read after a following call
to f may have already occurred. The problem is that since both calls to f access the same
shared resource, Hy, the second call changes the value of H¢’s data output thus invalidating
the result of the first call.

e Parallel conflicts. These arise when there are multiple parallel calls to the same function.
Since we do not know the order in which the calls will occur we have to place permanising
registers after both call nodes since either may be corrupted by the other.

An example of both a sequential conflict and a parallel conflict is shown in Figure 6. The
horizontal dotted lines show the points where data may become invalid. It is at these points
that permanising registers must be placed. In order to represent permanising registers at the
intermediate level we introduce a new node which models a latch:

Node No. Control No. Data
Type Inputs | Output || Inputs | Outputs
[PERMANISOR [ 1 | 1 [ 1 ] 1 |

On receiving control, this node latches its data input, propagating control once the data out-
put (read directly from the latch) is valid. Once we have determined which data-edges require
permanising we can insert PERMANISOR nodes using the transformation shown in Figure 7. The
transformation is based on the observation that multiple data-edges originating at a single node
can all share a permanisor if necessary.
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Figure 7: We insert permanisors on data-edges using this transformation. The dashed data-edges
represent those which do not require permanisors; the solid data-edges represent those which do
require permanisors.

Section 4 has already described an analysis for detecting parallel conflicts; now we present a
data-flow style analysis over intermediate graphs which allows us to infer which data-edges require
permanising due to sequential conflicts.

The analysis presented here assumes that hardware-level functional-units respect the following
invariants:

Invariant 1 After a call to a functional-unit, Hy, the data on Hy’s (shared) output remains valid
until another call to Hy occurs.

Invariant 2 Functions latch their arguments when called.

Invariant 2 (analogous to callee-save in software compilers) means that the caller does not have to
worry about keeping arguments valid throughout the duration of a call; arguments need only be
valid at the point of call. (In Section 7 we show how to modify the analysis to deal with a hybrid
of both callee-save and caller-save policies.)

The register placement analyses are presented in three stages:

Resource Dependency Analysis tags each data-producing node, n, with the set of functional-
units that n.DataOut depends upon. (We say that a node, n, depends on a functional-unit,
Hy, iff changing the value on Hy’s (shared) output may invalidate the value of n.DataOut.)

Validity Analysis tags each node, n, with the set of nodes whose data output is guaranteed to
be valid when control reaches n.

Sequential Conflict Register Placement uses validity information to decide which data-edges
require permanising registers to resolve sequential conflicts.

These analyses assume that permanisors have already been inserted to ensure the validity of
function calls subject to parallel sharing conflicts (see Section 4). The equations below require
information about parallel sharing conflicts and the structure of the call-graph; thus we make the
following definitions:

Definition 1 Given a CALL node, n, predicate HasParConflict(n) holds iff n has a parallel sharing
conflict.

Definition 2 CG is the call-graph relation of the program being translated. Thus, CG(f), returns
the functions that f calls directly and CG*(f) returns all the functions which may be invoked as
a result of invoking f.
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It is also worth mentioning that whilst parallel conflict analysis is an inter-procedural analysis,
dealing with the structure of the whole program, sequential conflict analysis is intra-procedural,
concerned with placing registers within each function separately.

Dataflow equations for the register placement analysis are summarised in Figure 10. The
following sections clarify some of the terminology and describe the intuition behind the equations:

6.1 Resource Dependency Analysis

Recall that a data-producing node, n, depends on a functional-unit, Hy, iff changing the value on
Hy’s (shared) output may invalidate the value of n.DataOut. The resource dependency equations
map a node, n, onto the set of functional-units on which n depends.

Definition 3 Given a node, n, D,y (n) is the set of (names of) functional-units that n depends
on.

Dout : Node — P(Functional-unit name)
0 if (n: JuMP) V [(n : CcALL f) A HasParConflict(n)]

CG*(f) if (n : cALL f) A ~HasParConflict(n)
Dout (n) =

U Dout(p) otherwise
pE Predq(n)

The resource dependency equations reflect the following observations:

1. If nis a CALL node (n : CALL f) subject to a parallel sharing conflict then we assume that a
permanising register has already been inserted. Hence n.DataQOut has been decoupled from
Hy and is not dependent on any functional-units.

2. If n is a CALL node (n : CALL f) and n is not subject to any parallel sharing conflicts then
n.DataOut is dependent only on f and the functional-units that f may access. We know that
n.DataOut is not dependent on any of its data-predecessors since Hy latches these values at
the beginning of the call decoupling n from all n' € Predy(n).

3. If n is not a CALL node then it is dependent on the same functional-units as its data-
predecessors since changes to the data-outputs of any n’ € Pred;(n) may be propagated
through to n.DataQOut.

6.2 Data Validity Analysis

The data validity equations form the core of the register placement analysis. Defined mutually
recursively, V;, and V,,; map a node, n, onto the set of nodes whose data-output is guaranteed
to be valid when control respectively reaches and leaves n. However, before launching into the
data validity equations we must first introduce some auxiliary definitions. Definitions 4 and 5
formalise the notion of a thread allowing us to reason precisely about parallelism (they are shown
diagrammatically in Figure 8). Definition 6 defines kill which maps a node, n, onto the set of
nodes whose data outputs are invalidated as a result of control passing through n.

Definition 4 Given a CONTROL_SPLIT node, n, Join(n) is the corresponding CONTROL_JOIN
node.’

5Due to the properties of the translation to intermediate code each CONTROL_SPLIT node has a corresponding
CONTROL_JOIN node (cf. bras and kets in a well-bracketed string).
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Definition 5 Given a CONTROL_SPLIT node, n, such that Succe(n) = {s1,..., sk}, let thread; =
Succt(s;) N Pred}[Join(n)] (for 1 <i < k). Then, 7(n, s;) is the set of nodes in each of n’s threads
except the thread containing node s;:

w(n,s;) = U thread;
i#i
Definition 6 Given a node n, kill(n) is the set of nodes whose data outputs are invalidated as a
result of control passing through n:

kill - Node — P(Node)

(0 # 1| Dows(n') N CGH(f) £ 0} if (n : CALL f)
Kill(n) =
] otherwise

The equations for kill reflect the following observations:

e The only way a node’s data output can be invalidated by executing n is if n invokes some
shared resource. Thus if n is not a CALL node then nothing can be invalidated.

e If n is a call node (n:CALL f) then every node which is dependent on something which n
may invoke (either directly or indirectly) is invalidated.

The data validity equations are now presented:

Definition 7 Given a node, n, Vi, (n) is the set of nodes whose data-output is guaranteed to be
valid when control reaches n.

Definition 8 Given nodes n and s, V5, (n) is the set of nodes which are guaranteed to be valid

when control leaves n along edge (n,s) € E.

For the sake of clarity, in cases where we know that n has only one control successor (i.e. Succ.(n) =

{n'}), we write V,,(n) to mean V7, (n).

Vin : Node — P(Node)
Vi : Node — P(Node)

(1 Vou(p) if (n: CONDITIONAL_JOIN)
Vin(n) = p€E Pred.(n)
" U Vout(p)  otherwise
p€EPred.(n)

U kill(n') if (n : CONTROL_SPLIT)
2ur(n) = Vin(n) U fn} \ § 70

out

kill(n) otherwise

The intuition behind Vi, (n) is as follows:

1. If n is a CONDITIONAL_JOIN node then at run-time control will arrive at n from either its
true-branch or its false-branch. Thus the nodes guaranteed to be valid when control reaches
n are those that are guaranteed to be valid at both the end of the true-branch and the end
of the false-branch.

2. If n is not a CONDITIONAL_JOIN node then the nodes that are guaranteed to be valid when
control reaches n are those that were guaranteed to be valid just after n’s control-predecessors
have been executed.
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node, n

node, s;

thread, ... thread,

Figure 8: The nodes contained in the highlighted threads are those returned by m(n, s;)

5.t (1) reflects the following intuition:

e If n is not a CONTROL_SPLIT node then the nodes guaranteed to be valid when control leaves
n are precisely:

— those nodes which were valid when control arrived at n;
— plus n itself;

— minus the nodes that were invalidated as a result of executing n. i.e. those nodes in
kill(n)

e If n is a CONTROL_SPLIT node then things are a little more complicated since we have to
cope with the parallelism that n introduces. As we do not know statically which interleaving
of parallel operations will occur at run-time we are forced to make a safe approximation:
when analysing a particular thread (the one containing s;—see Figure 8) we assume that
every other parallel thread has already been executed (i.e. we assume that any nodes whose
data may be invalidated has been invalidated!).

6.3 Sequential Conflict Register Placement

Sequential conflict register placement is the process where we decide which data-edges (n,n') € E,
require registers to resolve sequential conflicts. We define a predicate Perm(n,n') which holds iff
data-edge (n,n’) requires a permanisor. As a first approximation, we simply observe that if a
node n is not guaranteed to be valid at n’ then we must place a permanising register on data-edge
(n,n'):

V(n,n') € E4. Perm(n,n') & n ¢ Vin(n')

Although this works, we can improve the accuracy of our model (i.e. make it insert considerably
fewer permanisors) by giving CONDITIONAL_JOIN nodes a special treatment:

Definition 9 Given a CONDITIONAL_JOIN node, n’, and a node, n, which occurs before n' on the
control path,® RV, (n,n') ‘Relative-V;, ’ is the set of nodes guaranteed to be valid on entry to n'
given the extra information that control passes through node n.

RVin(n,n') = N pur (")
n'" € [Succi(n) N Pred.(n')]

61.e. n’ € Succt (n).
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The vertically hatched nodes are those in
Succl(n); the horizontally hatched nodes
correspond to Pred.(n'). Only control
flow is shown. node, n

ﬁ%%ﬂ
@ = = U

node, n’

Figure 9: Diagrammatic explanation of Succ(n) N Pred.(n')

This is based on the observation that if we know which way a CONDITIONAL_SPLIT has branched,
we can do much better at predicting the nodes that are going to be valid at the corresponding
CONDITIONAL_JOIN: the nodes which are valid at n' are those which are valid at the end of the
conditional branch in which n occurs. We use the equation Succj(n) N Pred.(n') to calculate the
final node in the conditional branch containing n (shown graphically in Figure 9). Note that if
n is not in either of the conditional branches joining at n' then (since n occurs before n’ on the
control path) Succl(n) N Pred.(n') = Pred.(n'). Thus, in this case RV, (n,n’) reduces to Vj,(n')
(intuitively this is what we expect: if n is not in either of the conditional branches joining at n'
then we have not gained any extra information by stating that control passes through n.)
Now we can use RV;, to define a more accurate version of Perm as follows:

Definition 10 Perm(n,n') holds iff data-edge (n,n') requires permanising:

n ¢ RV, (n,n') if (n' : CONDITIONAL_JOIN)
V(n,n') € E4. Perm(n,n') &
n ¢ Vip(n') otherwise

7 Extending the model: Calling conventions

The equations presented in Figure 10 assume a callee-save model. In a hardware implementation
this corresponds to every functional-unit latching its arguments on a call. Often these latches
are unnecessary and substantial savings can be made by adopting a caller-save model, where
functional-units do not latch their arguments but make the assumption that the caller will keep
the arguments valid throughout the duration of the call.

In this section we show how we can adjust our data-flow analyses to cope with a combination of
both callee-save and caller-save conventions. Let predicate CalleeSave(f) hold for a function, f, iff
f adopts a callee-save model. In this way we can specify on a per-resource basis which functional-
units latch their arguments and which functional-units require their arguments to remain valid
throughout a call (we can use a suitable pragma to convey this information to the compiler).
Adopting this policy has proved very useful since selecting the right combination of callee- and
caller-save conventions allows one to considerably reduce the area of a final circuit. Thus, for
caller-save functional-units, our invariants (see Section 6) become:

Invariant 3 After a call to a (caller-save) functional-unit, Hy, the data on Hy’s (shared) output
remains valid until either (i) another call to Hy occurs or (ii) the values on Hy’s inputs change.



7 EXTENDING THE MODEL: CALLING CONVENTIONS 19

Resource Dependency Analysis

Dout : Node — P(Function name)
0 if (n : JuMP) V [(n : CcALL f) A HasParConflict(n)]

Doyt (n) = ca(f) if (n : CALL f) A ~HasParConflict(n)

U Dout(p) otherwise
p€ Predq(n)

Data Validity Analysis

Vin : Node — P(Node)
5.4 ° Node — P(Node)

out

ﬂ cut(P) if (n : CONDITIONAL_JOIN)
V- n) = PEPredc(n)
o U ™ (D) otherwise
pEPred. (n)

U kill(n') if (n : CONTROL_SPLIT)
gut(n) =Vin (n) U {n} \ n'€n(n,s)

kill(n) otherwise

where 7(n, s) (see Definition 5 and Figure 8) is the set of nodes in each of CONTROL_SPLIT node
n’s threads except the thread containing node s.

and kill(n) is the set of nodes whose data outputs are invalidated as a result of control passing
through n:

kill : Node — P(Node)

{n' #n | Doue(n') NCG*(f) # 0} if (n: CALL f)
kill(n) =
0 otherwise

RVin(n,n') is the set of nodes valid on entry to the CONDITIONAL_JOIN node n' given the extra
information that control passes through node n.

szn (n:nl) = ﬂ gut (n”)
n'" € [Succi(n) N Pred.(n')]

Sequential Conflict Register Placement

n ¢ RVin(n,n') if (n' : CONDITIONAL_JOIN)
VY(n,n') € E4. Perm(n,n') &
n & Vin(n') otherwise

Figure 10: Summary: Register Placement for Sequential Conflicts
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Invariant 4 The caller keeps the arguments valid throughout the duration of the call.

It turns out that we only have to modify the resource dependency analysis and the permani-
sation analysis; validity analysis remains unchanged.

7.1 Extended Resource Dependency Analysis

We add an extra clause to the definition of D,,; (see Section 6.1) reflecting the observation that
for a node n : CALL f, where Hy does not latch its arguments, n is dependent upon:

e the functional-units that n’s data predecessors are dependent upon; and

e all the functional-units that H; may invoke
( 0 if (n : JuMP) V [(n : CcALL f) A HasParConflict(n)]
CG*(f) if (n : cALL f) A ~HasParConflict(n) A CalleeSave(f)

Dout(n) =<  CG*(f)U U Dout(p) if (n: cALL f) A ~HasParConflict(n) A —CalleeSave(f)
p€E Predg(n)

U Dout(p) otherwise
\ pEPredq(n)

7.2 Extended Permanisation Analysis

We update our definition of Perm to reflect the observation that if we are not dealing with a
callee-save function, it is the duty of the caller to keep the function arguments valid until after
the call.

n ¢ RV(n,n') if (n' : CONDITIONAL_JOIN)
V(n,n') € E4. Perm(n,n') & ¢ n ¢ VS, (n) if (n' : caLL f) A = CalleeSave(f)

n ¢ Vin(n') otherwise

8 Translation to Hardware

Having performed analyses and transformation at the intermediate level, we compile intermediate
graphs into hierarchical RTL Verilog suitable for simulation or synthesis using existing tools. This
section describes how the FLaSH compiler maps intermediate graphs onto hardware. We outline
the particular design style currently adopted by our compiler; targeting the system to produce
different circuit styles is the topic of future work.

The generated hardware is synchronous and based on a matched-delay protocol where each
group of data-wires is bundled with a control wire. Control wires propagate events which, in this
framework, are represented as one-cycle pulses. The circuits are designed so that control events
propagate at the same speed as valid data. When the control wire is high the corresponding data
wires are guaranteed to be valid; how long they remain valid for after the control wire falls is
determined by validity analysis (see Section 6.2 and Figure 11).

Firstly we discuss how expressions are compiled; Section 8.2 explains how function definitions
are compiled into hardware functional-units.
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Figure 11: A lower-level view of validity analysis
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Figure 12: Expressions and Functions

8.1 Compiling Expressions

A closed expression is compiled into a hardware-block with one control input, one control output
and one data output—see Figure 12 (left). Signalling an event on the control input triggers the
expression which computes its value and places its result on the data output, signalling an event
on its control output when the data output becomes valid.

CALL nodes are synthesised into connections to other hardware level functional-units; JUMP
nodes (representing recursive calls) are synthesised into a connection back into the current func-
tional unit; all other intermediate nodes are translated into a corresponding circuit template.
Figure 14 shows the circuit templates corresponding to conditional split and join nodes; Figure 15
shows the hardware block corresponding to a CONTROL_JOIN node.” In many cases we can opti-
mise CONTROL_JOINs away by performing timing analysis to infer that control will arrive at each
of the control inputs simultaneously. Similarly, if we can infer which control input will be asserted
last, the CONTROL_JOIN circuit reduces to a wire!

Other nodes have their obvious translations. For example a CONTROL_SPLIT node is just a
wire connecting its control input to all its control outputs, and a BUILT_IN: <op> node contains
combinatorial logic to perform operation <op>.

8.2 Compiling Functions

A function definition is compiled into a single hardware-block (functional-unit) with multiple
control and data inputs: one control/data input-pair for each call—see Figure 12 (right). There
are multiple control outputs (one to return control to each caller), but only a single data output
(which is shared between all callers). Each function contains logic to compute its body expression.

8.2.1 Calling Protocol

Figure 16 shows how functional-units are composed to form larger structures. In this example
functional-unit Hy is shared between H, and Hj. Notice how Hy’s data output is shared, but the

7Some of our schematics use synchronous reset-dominant SR flip-flops. Figure 13 shows how these can be
constructed from the more familiar D-type flip-flop.



8 TRANSLATION TO HARDWARE 22

O
(}
R clock

Figure 13: How to build a synchronous reset-dominant SR flip-flop from a D-type

CONDITIONAL_SPLIT CONDITIONAL_JOIN

Control_in Select
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\%% MUX
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Control_true Control_false

Data_out Control_out

Figure 14: Hardware blocks corresponding to CONDITIONAL_SPLIT (left) and CONDITIONAL_JOIN
(right) nodes

control structure is duplicated on a per call basis.

To perform a call to resource Hy the caller places the argument values on its data input into
Hj before triggering a call event on the corresponding control input. Some point later, when Hy
has finished computing, the result of the call is placed on Hy’s shared data-output and an event
is generated on the corresponding control output.

8.2.2 Function Unit Internals

The internals of a functional-unit are shown in Figure 17. To simplify the presentation we show a
functional-unit that contains registers which latch the incoming arguments on a call. (Recall that
this corresponds to the callee-save policy discussed in Section 7). The functional-unit’s operation
is discussed below.

First consider the control path. Each control/data input-pair to a functional-unit, Hy, corre-
sponds to a single call. If any of the control inputs may trigger calls in parallel (as inferred by
the analysis in Section 4) then these control wires are passed through an arbiter (priority encoder
with arbitrary priority in the synchronous case) which ensures that only one call is dealt with at
a time.

Having been through the arbiter, the control inputs are fed into the External Call Control Unit
(ECCU—see Figure 18), which:

1. remembers which of the control inputs triggered the call;
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FB_invoke J] FB_finished
Figure 18: The Design of the External Call Control Unit (ECCU)

2. invokes the function body expression (by generating an event on the FB_invoke wire);
3. waits for completion (signalled by the FB_finished wire); and finally

4. generates an event on the corresponding control output, signalling to the caller that the
result is waiting on H’s shared data output.

Now let us consider the data-path. The data inputs are fed into a multiplexor which uses the
corresponding control inputs as select lines. The selected data input is latched into the argument
registers. (Obviously, the splitter is somewhat arbitrary; it is included in the diagram to emphasise
that multiple arguments are all placed on the single data-input). Note that recursive calls feed
back into the multiplexor to create loops, re-triggering the body expression as they do so. The
D-type flip-flop is used to insert a 1-cycle delay onto the control path to match the 1-cycle delay
of latching the arguments into the registers on the data-path.

The function body expression contains connections to the other functional-units that it calls.
These connections are the ones marked “calls to other functions” in Figure 17 and are seen in
context in Figure 16.

8.3 Generated Verilog

The FLaSH compiler produces RTL Verilog to express the generated hardware. The Verilog is
hierarchical in the sense that each function definition in the SAFL source has a corresponding
module definition in the generated Verilog.

This is useful for two reasons:

e it makes the Verilog more readable, since the high-level circuit structure is explicit; and

e 3 hierarchical design is useful when performing technology mapping, since typical RTL com-
pilers operate more efficiently when provided with modular designs. Furthermore, typical
logic synthesisers often allow users to specify optimisation priorities (e.g. area vs time) on a
per-module basis.
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Figure 19: Applying validity analysis to a 4-phase request/acknowledge handshake protocol

9 Conclusions and Future Directions

We have outlined the design of a silicon compiler for producing hardware directly from func-
tional specifications. Early experiments show that the techniques presented here can produce
efficient hardware both in terms of time and area. However, all the examples we have tried so
far are quite small, more work is needed to investigate how our compiler scales to larger design
projects. We also intend to explore other hardware styles by retargetting the FLaSH compiler to
produce different types of design. In particular we would like to produce a compiler that generates
asynchronous hardware. This would require functional-units to communicate using some kind of
request/acknowledge protocol. Figure 19 shows how validity analysis could be applied to a 4-phase
request/acknowledge protocol.

In other work we have demonstrated that SAFL can represent a wide range of hardware
designs using only its simple functional primitives. This makes source-to-source transformation a
very powerful technique for investigating multiple designs from a single specification. Although
SAFL is very good at expressing many types of design, it seems that there are some types of
hardware for which SAFL is not an ideal specification language: in particular we are currently
unsure how best to represent input/output. More work is needed to investigate how to make the
SAFL language applicable to a wider range of designs. We are currently investigating a number of
ideas including the controlled incorporation of imperative features (cf. ML [7]) and an approach
based on CSP-like channel communication.
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