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What this talk is about

I My research is about tying program analysis with writing
programs in functional languages.

I I will first introduce you to program analysis and the
significance of type systems in programming languages.

I I will go on to talk about writing programs using monads
and graded monads. The examples of graded monads will
demonstrate the relationship with program analysis.
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Program analysis

I It is possible to infer some properties of programs and
reason about its correctness.

I Constant propagation can simplify a sequence of
assignments (and thus speed up code execution):

x := 1 x := 2
y := x+5 −→ y := 6
x := y-4 z := 10
z := 2*x+y

I Unreachable code analysis can infer that some parts of the
program can never be reached and executed:

x := 1 −→ x := 1
if x = 1 then f() f()

else g()
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Program analysis in practice

I Most program analysis is implemented in compilers or in
external static analysis tools (mainly for the purposes of
optimisation, but also verification).

I Unfortunately, Rice’s theorem roughly states that these
tools cannot give you an exact answer – analysing
semantic properties of programs is undecidable.

I Program analysis is necessarily a safe, conservative
overapproximation.

code found by
unreachable

code analysis

code never reached
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Types in programming languages

I The purpose of static type systems is to constrain
programs to catch out some kinds of errors that would
otherwise appear.

I The compiler explicitly rejects programs that do not type
check.

I For example, in most statically typed languages the
following expression does not type check:

if b then 42 else "foo"

whereas in most functional languages this one does
(provided b is a boolean):

if b then 42 else 17
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More interesting type systems

I A lot of work has been done on more powerful type
systems, which tend to provide a lot more information
about the data they are manipulating.

I e.g. dependent type systems

I e.g. programming using GADTs:

cons: a -> Vec n a -> Vec (S n) a

I Can you encode a program analysis inside the type
system itself?
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More interesting type systems

I A lot of work has been done on more powerful type
systems, which tend to provide a lot more information
about the data they are manipulating.

I e.g. dependent type systems
I e.g. programming using GADTs:

cons: a -> Vec n a -> Vec (S n) a

I Can you encode a program analysis inside the type
system itself?

I Yes!
I Many different approaches, includes effect systems.
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Monads and side effects

I Side effects in functions in programming languages make
them impure, and running f(x) can give different results
depending on the global program state.

I In functional programming languages, we don’t like side
effects – we want our functions to be pure and our
language to be referentially transparent.

I Thus we use monads – these are type constructors that
represent possibly impure computation.

I For a monad T , if A is a type, then TA is the type of a
computation that ‘eventually returns’ a value of type A.

I An impure function of type A→ B is typically represented
as a function of type A→ TB.
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Example: IO monad

I The most common impure effect is dealing with IO –
Haskell does this via the IO monad. It is deeply magical.

I The main operations are getLine :: IO String and
putStrLn :: String -> IO ().

I Haskell provides the helpful do notation that is very
convenient in this setting:

do putStrLn "What␣is␣your␣name?"
name <- getLine
putStrLn ("Welcome,␣" ++ name ++ "!")

I This is just syntactic sugar for the following (>>= composes
IO actions):

putStrLn "What␣is␣your␣name?" >>= getLine
>>= \name -> putStrLn ("Welcome,␣" ++ name ++ "!")
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Monad operations and laws

I A monad T is defined by two main operations:

I return : A→ TA for all types A

I �= : TA→ (A→ TB)→ TB for all types A and B, binary
operator pronounced ‘bind‘, associates to the left

I The monad operations have to satisfy the following laws:

I do {x <- m; return x} ≡ m (identity 1)

I do {y <- return x; f y} ≡ f x (identity 2)

I do {y <- do {x <- m; f x}; g y} ≡
do {x <- m; do {y <- f x; g y}} (associativity)
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Example: State monad

I For a type s, there is a monad State s representing
computations that make use of a mutable variable of type
s.

I In order to retrieve the result of a stateful computation, you
need to use runState :: State s a -> s -> (a, s).

I To read and write from the mutable variable, use
get :: State s s and put :: s -> State s ()

I Example:

runState (do x <- get
put (2 * x + 5)
y <- get
return (y - 1))

3
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Graded monads: core idea

I The type constructor used in a monad does not provide a
lot of information other than that the computation is
potentially impure.

I Key idea: what if the monad carries an ‘annotation’?

I The type constructor are now be of the form T r, where r is
drawn from some grading algebra.

I There are still be�= and return operations, but it is not the
case that every T r is a monad – instead, the new ‘graded
bind’ combines the annotations.
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Example: graded State monad with permissions

rw

woro

pure

�= has to consider lub (∧)

return should carry the pure annotation

I The elements of the algebra represent the permissions on
the mutable variable (‘cannot do anything’, ‘read only’,
‘write only’, ‘read and write’).

I In Haskell, this structure has type GState s g a.

I The types of get and put change: get :: GState s ro s
and put :: s -> GState s wo ()
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Overview Background Monads and graded monads Summary

Graded monad operations

I Given a grading algebra (E, ·, i), which is at least a
monoid, a graded monad is a family of type constructors
{T r|r ∈ E} along with the following operations:

I return : A→ T iA for all types A

I �=r,s : T rA→ (A→ T sB)→ T r·sB for all types A and B
and all r, s ∈ E

I Typically, to allow for subtyping, we also assume that the
monoid is pre-ordered: ((E,≤), ·, i).

I Details swept under the rug.
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Example: live variable analysis

I We now turn to live variables in the GState s graded
monad. First we consider the case when there is only one
mutable variable.

I A variable is live at a program point if its ‘current value’
might be used during computation. Otherwise it is dead.
For example, in

do {t <- get; put (t + 1); e}

the variable is live at the start.

I We want GState s f a to somehow provide information
about live variables at ‘the start’ of an expression of type a.

Graded monads in program analysis Andrej Ivašković
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Example: live variable analysis (cont’d)

I For every expression there is a transfer function: a map
from the set of live variables ‘just after’ the expression to
the set of live variables ‘just before’. For example, the
transfer function for put is λl. l \ {x}

I The grading algebra is the algebra of transfer functions,
with · being function composition and the function λl. l as
the identity.

I Then the type of get is GState s (λl. l ∪ {x}) s and the
type of put is s -> GState s (λl. l \ {x}) ().

I For an expression of type GState s f a, the set of live
variables at the starting program point is f(∅).

I This generalises to multiple variables (easiest approach is
with monad transformers).
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Conclusions

I These are just some analyses which can be represented
as graded monads.
I Cut for time: deadlock-free concurrency is possible.

I The overall point of this exercise is to represent program
analyses as type inference or type checking – inside
Haskell’s type system.

I This opens up potential for the programmer to write their
own program analysis without using an external tool or
modifying the compiler.
I Cut for time: if the grading algebra is a finite lattice

satisfying certain monotonicity properties, the type
inference algorithm is simple and guaranteed to terminate
in a reasonable amount of time.
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Summary

I Monads are a way to write effectful programs in functional
languages.

I With the right choice of grading algebra, we can represent
program analyses.

I Therefore program analysis can sometimes be
represented as type checking or type inference.
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