Graded monads in program analysis

Andrej Ivašković

Department of Computer Science and Technology
University of Cambridge

BCTCS 2020, 7 April
What this talk is about

- My research is about tying *program analysis* with writing programs in *functional languages*.

- I will first introduce you to program analysis and the significance of type systems in programming languages.

- I will go on to talk about writing programs using *monads* and *graded monads*. The examples of graded monads will demonstrate the relationship with program analysis.
Program analysis

- It is possible to infer some properties of programs and reason about its correctness.
- **Constant propagation** can simplify a sequence of assignments (and thus speed up code execution):

\[
\begin{align*}
x & := 1 \\
y & := x + 5 \quad \rightarrow \quad y := 6 \\
x & := y - 4 \\
z & := 10 \\
z & := 2 \times x + y
\end{align*}
\]

- **Unreachable code analysis** can infer that some parts of the program can never be reached and executed:

\[
\begin{align*}
x & := 1 \\
\text{if } x = 1 \text{ then } f() & \quad \rightarrow \quad x := 1 \\
\text{else } g() & \quad f()
\end{align*}
\]
Program analysis in practice

- Most program analysis is implemented in compilers or in external static analysis tools (mainly for the purposes of optimisation, but also verification).
- Unfortunately, Rice’s theorem roughly states that these tools cannot give you an exact answer – analysing semantic properties of programs is undecidable.
- Program analysis is necessarily a safe, conservative overapproximation.
The purpose of static type systems is to constrain programs to catch out some kinds of errors that would otherwise appear.

The compiler explicitly rejects programs that do not type check.

For example, in most statically typed languages the following expression does not type check:

```
if b then 42 else "foo"
```

whereas in most functional languages this one does (provided \(b \) is a boolean):

```
if b then 42 else 17
```
A lot of work has been done on more powerful type systems, which tend to provide a lot more information about the data they are manipulating.

- e.g. *dependent type systems*
- e.g. programming using GADTs:
 \[\text{cons: } a \rightarrow \text{Vec } n\ a \rightarrow \text{Vec } (S\ n)\ a \]

Can you encode a program analysis inside the type system itself?
More interesting type systems

▶ A lot of work has been done on more powerful type systems, which tend to provide a lot more information about the data they are manipulating.

▶ e.g. **dependent type systems**
▶ e.g. programming using GADTs:

\[
\text{cons: } a \rightarrow \text{Vec n a } \rightarrow \text{Vec (S n) a}
\]

▶ Can you encode a program analysis inside the type system itself?

▶ Yes!
▶ Many different approaches, includes **effect systems**.
Side effects in functions in programming languages make them impure, and running $f(x)$ can give different results depending on the global program state.

In functional programming languages, we don’t like side effects – we want our functions to be pure and our language to be referentially transparent.

Thus we use monads – these are type constructors that represent possibly impure computation.

- For a monad T, if A is a type, then TA is the type of a computation that ‘eventually returns’ a value of type A.
- An impure function of type $A \rightarrow B$ is typically represented as a function of type $A \rightarrow TB$.
Example: IO monad

- The most common impure effect is dealing with IO – Haskell does this via the IO monad. It is deeply magical.
- The main operations are `getLine :: IO String` and `putStrLn :: String -> IO ()`.
- Haskell provides the helpful do notation that is very convenient in this setting:
  ```haskell
do putStrLn "What is your name?"
    name <- getLine
    putStrLn ("Welcome, " ++ name ++ "!")
```
- This is just syntactic sugar for the following (>>=-composes IO actions):
  ```haskell
putStrLn "What is your name?" >>= getLine
>>= \name -> putStrLn ("Welcome, " ++ name ++ "!")
```
A monad T is defined by two main operations:

- **return**: $A \to TA$ for all types A
- **$\gg=$**: $TA \to (A \to TB) \to TB$ for all types A and B, binary operator pronounced ‘bind‘, associates to the left

The monad operations have to satisfy the following laws:

- **$\text{do } \{x \leftarrow m; \\text{return } x\} \equiv m$** (identity 1)
- **$\text{do } \{y \leftarrow \text{return } x; f \ y\} \equiv f \ x$** (identity 2)
- **$\text{do } \{y \leftarrow \text{do } \{x \leftarrow m; f \ x\}; g \ y\} \equiv$**
 $\text{do } \{x \leftarrow m; \text{do } \{y \leftarrow f \ x; g \ y\}\}$ (associativity)
Example: State monad

- For a type s, there is a monad $\text{State } s$ representing computations that make use of a mutable variable of type s.

- In order to retrieve the result of a stateful computation, you need to use $\text{runState :: State } s \ a \rightarrow s \rightarrow (a, s)$.

- To read and write from the mutable variable, use $\text{get :: State } s \ s$ and $\text{put :: } s \rightarrow \text{State } s \ ()$

- Example:

  ```haskell
  runState (do x <- get
              put (2 * x + 5)
              y <- get
              return (y - 1))
  3
  ```
Graded monads: core idea

- The type constructor used in a monad does not provide a lot of information other than that the computation is potentially impure.

- **Key idea:** what if the monad carries an ‘annotation’?

- The type constructor are now be of the form T^r, where r is drawn from some grading algebra.

- There are still be \gg and `return` operations, but it is not the case that every T^r is a monad – instead, the new ‘graded bind’ combines the annotations.
Example: graded State monad with permissions

- The elements of the algebra represent the permissions on the mutable variable (‘cannot do anything’, ‘read only’, ‘write only’, ‘read and write’).
- In Haskell, this structure has type `GState s g a`.
- The types of `get` and `put` change: `get :: GState s ro s` and `put :: s -> GState s wo ()`
Given a grading algebra \((E, \cdot, i)\), which is at least a monoid, a graded monad is a family of type constructors \(\{T^r | r \in E\}\) along with the following operations:

- **return**: \(A \to T^i A\) for all types \(A\)
- **\(\gg\gg\)**: \(T^r A \to (A \to T^s B) \to T^{r \cdot s} B\) for all types \(A\) and \(B\) and all \(r, s \in E\)

Typically, to allow for *subtyping*, we also assume that the monoid is pre-ordered: \(((E, \leq), \cdot, i)\).

Details swept under the rug.
We now turn to live variables in the $\text{GState} \ s$ graded monad. First we consider the case when there is only one mutable variable.

A variable is live at a program point if its ‘current value’ might be used during computation. Otherwise it is dead. For example, in

$$\text{do} \ \{ \text{t <- get; put (t + 1); e} \}$$

the variable is live at the start.

We want $\text{GState} \ s \ f \ a$ to somehow provide information about live variables at ‘the start’ of an expression of type a.
Example: live variable analysis (cont’d)

- For every expression there is a transfer function: a map from the set of live variables ‘just after’ the expression to the set of live variables ‘just before’. For example, the transfer function for `put` is \(\lambda l. l \setminus \{x\} \).

- The grading algebra is the algebra of transfer functions, with \(\cdot \) being function composition and the function \(\lambda l. l \) as the identity.

- Then the type of `get` is `GState s (\lambda l. l \cup \{x\}) s` and the type of `put` is \(s \rightarrow GState s (\lambda l. l \setminus \{x\}) () \).

- For an expression of type `GState s f a`, the set of live variables at the starting program point is \(f(\emptyset) \).

- This generalises to multiple variables (easiest approach is with monad transformers).
These are just some analyses which can be represented as graded monads.

- **Cut for time:** deadlock-free concurrency is possible.

The overall point of this exercise is to represent program analyses as type inference or type checking – inside Haskell’s type system.

This opens up potential for the programmer to write their own program analysis without using an external tool or modifying the compiler.

- **Cut for time:** if the grading algebra is a finite lattice satisfying certain monotonicity properties, the type inference algorithm is simple and guaranteed to terminate in a reasonable amount of time.
Summary

- Monads are a way to write effectful programs in functional languages.

- With the right choice of grading algebra, we can represent program analyses.

- Therefore program analysis can sometimes be represented as type checking or type inference.