
Graded monads in program analysis

Andrej Ivašković

Department of Computer Science and Technology
University of Cambridge

BCTCS 2020, 7 April

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

What this talk is about

I My research is about tying program analysis with writing
programs in functional languages.

I I will first introduce you to program analysis and the
significance of type systems in programming languages.

I I will go on to talk about writing programs using monads
and graded monads. The examples of graded monads will
demonstrate the relationship with program analysis.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Program analysis

I It is possible to infer some properties of programs and
reason about its correctness.

I Constant propagation can simplify a sequence of
assignments (and thus speed up code execution):

x := 1 x := 2
y := x+5 −→ y := 6
x := y-4 z := 10
z := 2*x+y

I Unreachable code analysis can infer that some parts of the
program can never be reached and executed:

x := 1 −→ x := 1
if x = 1 then f() f()

else g()

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Program analysis in practice

I Most program analysis is implemented in compilers or in
external static analysis tools (mainly for the purposes of
optimisation, but also verification).

I Unfortunately, Rice’s theorem roughly states that these
tools cannot give you an exact answer – analysing
semantic properties of programs is undecidable.

I Program analysis is necessarily a safe, conservative
overapproximation.

code found by
unreachable

code analysis

code never reached

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Types in programming languages

I The purpose of static type systems is to constrain
programs to catch out some kinds of errors that would
otherwise appear.

I The compiler explicitly rejects programs that do not type
check.

I For example, in most statically typed languages the
following expression does not type check:

if b then 42 else "foo"

whereas in most functional languages this one does
(provided b is a boolean):

if b then 42 else 17

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

More interesting type systems

I A lot of work has been done on more powerful type
systems, which tend to provide a lot more information
about the data they are manipulating.

I e.g. dependent type systems

I e.g. programming using GADTs:

cons: a -> Vec n a -> Vec (S n) a

I Can you encode a program analysis inside the type
system itself?

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

More interesting type systems

I A lot of work has been done on more powerful type
systems, which tend to provide a lot more information
about the data they are manipulating.

I e.g. dependent type systems
I e.g. programming using GADTs:

cons: a -> Vec n a -> Vec (S n) a

I Can you encode a program analysis inside the type
system itself?

I Yes!
I Many different approaches, includes effect systems.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Monads and side effects

I Side effects in functions in programming languages make
them impure, and running f(x) can give different results
depending on the global program state.

I In functional programming languages, we don’t like side
effects – we want our functions to be pure and our
language to be referentially transparent.

I Thus we use monads – these are type constructors that
represent possibly impure computation.

I For a monad T , if A is a type, then TA is the type of a
computation that ‘eventually returns’ a value of type A.

I An impure function of type A→ B is typically represented
as a function of type A→ TB.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Example: IO monad

I The most common impure effect is dealing with IO –
Haskell does this via the IO monad. It is deeply magical.

I The main operations are getLine :: IO String and
putStrLn :: String -> IO ().

I Haskell provides the helpful do notation that is very
convenient in this setting:

do putStrLn "What␣is␣your␣name?"
name <- getLine
putStrLn ("Welcome,␣" ++ name ++ "!")

I This is just syntactic sugar for the following (>>= composes
IO actions):

putStrLn "What␣is␣your␣name?" >>= getLine
>>= \name -> putStrLn ("Welcome,␣" ++ name ++ "!")

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Monad operations and laws

I A monad T is defined by two main operations:

I return : A→ TA for all types A

I �= : TA→ (A→ TB)→ TB for all types A and B, binary
operator pronounced ‘bind‘, associates to the left

I The monad operations have to satisfy the following laws:

I do {x <- m; return x} ≡ m (identity 1)

I do {y <- return x; f y} ≡ f x (identity 2)

I do {y <- do {x <- m; f x}; g y} ≡
do {x <- m; do {y <- f x; g y}} (associativity)

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Example: State monad

I For a type s, there is a monad State s representing
computations that make use of a mutable variable of type
s.

I In order to retrieve the result of a stateful computation, you
need to use runState :: State s a -> s -> (a, s).

I To read and write from the mutable variable, use
get :: State s s and put :: s -> State s ()

I Example:

runState (do x <- get
put (2 * x + 5)
y <- get
return (y - 1))

3

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Graded monads: core idea

I The type constructor used in a monad does not provide a
lot of information other than that the computation is
potentially impure.

I Key idea: what if the monad carries an ‘annotation’?

I The type constructor are now be of the form T r, where r is
drawn from some grading algebra.

I There are still be�= and return operations, but it is not the
case that every T r is a monad – instead, the new ‘graded
bind’ combines the annotations.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Example: graded State monad with permissions

rw

woro

pure

�= has to consider lub (∧)

return should carry the pure annotation

I The elements of the algebra represent the permissions on
the mutable variable (‘cannot do anything’, ‘read only’,
‘write only’, ‘read and write’).

I In Haskell, this structure has type GState s g a.

I The types of get and put change: get :: GState s ro s
and put :: s -> GState s wo ()

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Graded monad operations

I Given a grading algebra (E, ·, i), which is at least a
monoid, a graded monad is a family of type constructors
{T r|r ∈ E} along with the following operations:

I return : A→ T iA for all types A

I �=r,s : T rA→ (A→ T sB)→ T r·sB for all types A and B
and all r, s ∈ E

I Typically, to allow for subtyping, we also assume that the
monoid is pre-ordered: ((E,≤), ·, i).

I Details swept under the rug.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Example: live variable analysis

I We now turn to live variables in the GState s graded
monad. First we consider the case when there is only one
mutable variable.

I A variable is live at a program point if its ‘current value’
might be used during computation. Otherwise it is dead.
For example, in

do {t <- get; put (t + 1); e}

the variable is live at the start.

I We want GState s f a to somehow provide information
about live variables at ‘the start’ of an expression of type a.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Example: live variable analysis (cont’d)

I For every expression there is a transfer function: a map
from the set of live variables ‘just after’ the expression to
the set of live variables ‘just before’. For example, the
transfer function for put is λl. l \ {x}

I The grading algebra is the algebra of transfer functions,
with · being function composition and the function λl. l as
the identity.

I Then the type of get is GState s (λl. l ∪ {x}) s and the
type of put is s -> GState s (λl. l \ {x}) ().

I For an expression of type GState s f a, the set of live
variables at the starting program point is f(∅).

I This generalises to multiple variables (easiest approach is
with monad transformers).

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Conclusions

I These are just some analyses which can be represented
as graded monads.
I Cut for time: deadlock-free concurrency is possible.

I The overall point of this exercise is to represent program
analyses as type inference or type checking – inside
Haskell’s type system.

I This opens up potential for the programmer to write their
own program analysis without using an external tool or
modifying the compiler.
I Cut for time: if the grading algebra is a finite lattice

satisfying certain monotonicity properties, the type
inference algorithm is simple and guaranteed to terminate
in a reasonable amount of time.

Graded monads in program analysis Andrej Ivašković



Overview Background Monads and graded monads Summary

Summary

I Monads are a way to write effectful programs in functional
languages.

I With the right choice of grading algebra, we can represent
program analyses.

I Therefore program analysis can sometimes be
represented as type checking or type inference.

Graded monads in program analysis Andrej Ivašković


	Overview
	Background
	Monads and graded monads
	Summary

