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Abstract

Automated Essay Scoring (AES) is the use of specialised computer software

to assign scores for essays written in an academic environment. Its growing

interest has been motivated by several factors including rising costs of edu-

cation, need for grading standards, and major technological breakthroughs.

Despite the positive results in literature, there still remain many critical

challenges that need to be addressed to ensure the wide-spread adoption of

AES systems. These challenges can be divided into three main categories:

meaningfulness, transparency, and robustness.

This investigation aims to address these challenges while also attempting to

improve the human-machine inter-rater agreement. Motivated by the recent

success of neural networks, we conduct a systematic investigation of deep rep-

resentation learning; initially using a basic recurrent neural network (RNN)

but extending to Long-short term memory cells and deep bi-directional ar-

chitectures as well. In order to evaluate the AES system, an adapted visual-

isation technique was implemented. The visualisation identifies portions of

the text that are discriminative of writing quality.

Overall it was found that deep bi-directional model, DBLSTM, are more

e↵ective in capturing features discriminative of writing quality than shallower

uni-directional models. Although the results did not surpass existing state-

of-the-art, our methodology lays the foundations for a potentially rewarding

avenue for future AES systems.
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Chapter 1

Introduction

1.1 Motivation

Automated Essay Scoring (AES) is the use of specialised computer software

to assign scores for essays written in an academic environment. Its growing

interest has been motivated by several factors including rising costs of edu-

cation, need for grading standards, and major technological breakthroughs.

With the recent advancements in machine learning and data science, there is

an increased expectation in using technology to reduce the high costs of qual-

ity education. Currently, in order to ensure consistency across standardised

examinations, academic boards hire multiple graders to moderate the scores

on written assessments. This proves both time consuming and costly. AES

proposes a system that can eliminate the need for additional markers but

still ensure the necessary consistency required for comparable and reliable

scores. The benefits of AES extend beyond just economic gains. Making

the system available to less developed regions at negligible cost aligns with

social responsibility of more developed countries in democratising education

throughout the world.

Literature cites a variety of methods that have been used to develop AES

systems. Larkey (1998) models AES as a text classification task and obtains
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high results by implementing a Naive Bayes model trained on vectors of

stemmed words. Attali & Burstein (2006) attempt to use regression to build

a generic scoring model, while Yannakoudakis et al. (2011) use an SVM and

a preference ranking function to build a state-of-the-art AES system.

AES systems are evaluated according to inter-rater agreement between the

human marker and the machine. Existing systems have demonstrated high

levels of inter-rater agreement. However, despite the positive results, there

still remain many critical challenges that need to be addressed to ensure the

wide-spread adoption of AES systems. These challenges can be divided into

three main categories: meaningfulness, transparency, and robustness.

In order to ensure that an AES system is meaningful, not only must the

system must return high inter-rater agreement but the features being used

in the model should also be truly discriminative of writing quality. This is to

ensure the model encourages e↵ective writing practices and not e↵ective test

taking practices. The second limitation of existing models is transparency.

There is much skepticism surrounding the idea of relying on a mark that

has been outputted from a black-box AES system. With existing models,

assessors may not be able to isolate what areas of text were deterministic of

the high/low grade. The third challenge of existing systems is robustness,

particularly in their ability to identify and correct errors in the essays. By

being able to identify and correct errors, the student and assessor can receive

details on where the grammatical mistakes are, as well how they can be

corrected (similar to human essay marking). Currently, only about 30% of

errors made in written text are detected using state-of-the-art error detection

systems (Ng et al. (2014)). A large number of missed errors are long-distance

errors e.g. word order and agreement. In order for the AES system to make

a valued and fair assessment of the essay, a larger portion of the errors need

to be captured.

Motivated by recent advancements in deep learning, this investigation aims to

address the three challenges mentioned above, by using recurrent neural net-

works (RNNs) to model the AES system. RNNs automatically abstract the

features that are most discriminative of the defined problem (writing quality
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in the case of this investigation). The method of feature learning used by

RNNs encourages better writing practices and prevents feature manipula-

tion and reverse engineering thereby contributing to the meaningfulness of

the model. In order to ensure transparency, a visualisation can be developed.

This can identify the portions of the text that are discriminative of writing

quality. Additionally, it can also be used in e↵ective error analysis of the

deep neural network.

The architecture of an RNN allows it to take inputs of variable size, making it

ideal for processing essays with variable length. This along with the ability to

emulate memory through the Long-short term memory (LSTM) cell provide

RNNs with some promising scope in developing a robust AES system.

1.2 Purpose of Investigation

The purpose of this dissertation is to conduct a systematic investigation of

deep neural networks on assessing upper-intermediate texts. More specifi-

cally, the aims of this study are to:

1. Carry out comprehensive literature review on existing techniques of

AES and their limitations

2. Develop and extend an AES system using RNNs and its variations

(a) Perform analysis on RNN and it’s variants (including RNN-MLP,

LSTM, BLSTM, DBLSTM) in determining writing quality and

score

(b) Identify the optimal hyperparameters that maximise the perfor-

mance of the AES system

3. Exploit visualisation techniques to evaluate and conduct an in-depth

error analysis of the AES system

4. Lay foundations for future research in the area of deep learning for AES

3



1.3 Contributions

The main contributions the investigation makes to the domain of Automated

Essay Scoring are as follows:

1. A systematic investigation of AES systems using RNNs and four vari-

ations on assessing upper-intermediate texts:

(a) Simple Recurrent Neural Network (RNN)

(b) Recurrent Neural Network with Multilayer Perceptron overlay (RNN-

MLP)

(c) Long-short term Memory (LSTM)

(d) Bi-Directional LSTM (BLSTM)

(e) Deep Bi-Directional LSTM (DBLSTM)

2. A unique moethod visual error analysis of deep neural networks to

improve transparency of the“black-box” model

1.4 Report Structure

This dissertation takes on the following structure:

1. Chapter 2 provides a comprehensive literature review of previous AES

systems and their limitations; a brief overview of natural language ap-

plications that make use of deep neural networks; and justification be-

hind some decisions made during the development of the RNN models.

2. Chapter 3 provides the background information and intuition behind

the RNN and the LSTM. Additionally, the chapter provides some in-

sight into an optimisation technique known as RMSProp.

3. Chapter 4 presents an overview of the design and implementation of

the five types of RNN models; the motivation behind the methods and

design decisions is also discussed in this chapter.
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4. Chapter 5 provides a quick overview of the experimental setup, results

of three di↵erent experiments (hidden-layer, script type, and learning

rate) and a detailed analysis of the models in general.

5. Chapter 6 describes the visualisation developed in order to understand

the inner workings of the system and provide a valuable error analysis

to further improve the existing models. This chapter also evaluates the

meaningfulness, transparency, and robustness of the models..

6. Chapter 7 draws general conclusions regrading the investigation and

measures the contributions made against the key aims set out at the

beginning of the study. This chapter also provides ares for future re-

search.

5
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Chapter 2

Literature Review

2.1 Automated Essay Scoring

There is a significant amount of research done in the area of AES. Project

Essay Grade (PEG) developed by Page (1968) and Page (1967) uses manually

identified textual features that represent proxies for writing ability. Some of

the features include essay length, number of pronouns, POS tags, number

of punctuation marks, presence of a title and number of paragraphs. The

learning model then learns the essay scores by applying linear regression to

the feature combinations. However, the features engineered by Page (1968)

and Page (1967) such as essay length and number of paragraphs are easy to

manipulate and does not encourage improved writing competence.

eRater by Attali & Burstein (2006) was the first AES system deployed in a

high-stakes assessment. The system employs vectors and weighted features.

The features are divided into several categories including grammar, style,

mechanics, organisation and discourse, and semantic coherence and similar-

ity. The model makes an assumption that well written essays are similar to

other well written essays. Therefore, if the quality of an essay can be repre-

sented by a vector, the quality of other essays can be determined by taking

the cosine similarity of the well written essay and the unknown essay. Linear
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regression was used to fit the model into predetermined marking schemes.

Although Attali & Burstein (2006) presents a reasoned argument for vector

representations, the features contained within the vectors are limited when

evaluated for robustness. Furthermore, some of the manually engineered

features require re-training and re-optimisation when used with a di↵erent

dataset.

Larkey (1998) was one of the first to approach AES as a classification task

by using Naive Bayes trained on vectors of stemmed words. This trend was

continued by Rudner & Liang (2002) who developed Bayesian Essay Test

Scoring sYstem (BETSY). BETSY uses Bernoulli Naive Bayes to classify

text. The features include bi-gram, essay length, number of verbs, and noun-

verb pairs. The models, however, do not make use of all of the training data

available but rather train a separate classifier for each grade boundary.

Chen et al. (2010) use supervised clustering and a voting algorithm to score

essays. Each of the texts are clustered according to grade and according to

their respective z-score. At each iteration of the model, the score of the text

changes based on similarity to all of the other texts until it reaches below a

certain threshold. The model uses a bag-of-words representation. However,

this makes it easy to reverse engineer the system and can encourage good

test taking strategies as opposed to good writing techniques.

Briscoe et al. (2010) approached AES from a discriminative model approach.

The motivation behind this decision was grounded in the assumption that

generative models cannot make the “correct” assumptions regarding the qual-

ity of writing. As discriminative models making weaker assumptions, Briscoe

et al. (2010) developed an AES model based on a variant of the batch per-

ceptron algorithm. The model is trained on the Cambridge Learner Cor-

pus (CLC) and employs lexical and grammatical features (e.g. POS tags,

ngrams).

Inspired by the work of Briscoe et al. (2010) in using discriminative models,

Yannakoudakis et al. (2011) developed a novel AES model using a learning-

to-rank algorithm and SVM. Using a range of manually engineered features
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including lexical ngrams, POS ngrams, feature representing syntax, script

length and error rate. Although achieving state-of-the-art performance and

integrating the inherent “rank” structure of essays in the model, the features

used in the model are prone to manipulation. Script length features may

demonstrate high levels of correlation between the score, but is not necessar-

ily indicative of good writing quality. Futhermore, error rate detection has

not yet reached level of accuracy that justifies its use in a feature vector.

McNamara et al. (2015) approaches AES through a hierarchical classification

model. It employs linguistic, semantic, and rhetorical features. Although

perform relatively well on the given dataset, the model does not generalise

well across di↵erent datasets, as it requires substantial modification to the

feature engineering when applied to di↵erent types of texts.

Alternative approaches to AES have made use of a range of di↵erent fea-

tures. Klebanov & Flor (2013) developed a new representation of content

that captures levels of highly associated, mildly associated, unassociated,

and dis-associated pairs of words. The study presents a relationship between

word association and writing quality to evaluate essays written by college

graduates. It was shown that high scoring essays contained higher propor-

tions of highly associated and dis-associated pairs. Somasundaran et al.

(2014) exploits local lexical chains to measure the discourse coherence qual-

ity in essays. The study shows that combining lexical chaining features with

complementary discourse features can yield convincing results.

2.2 Discussion

There is strong evidence to suggest that the initial criteria set for an AES sys-

tem that includes transparency, meaningfulness, and robustness, was

not fulfilled by the aforementioned methods in literature. Thus far, experts in

this field have relied heavily on feature engineering to obtain reliable results.

However, those models do not generalise well across di↵erent types of essays.

One can also call into the question the authenticity or meaningfulness of
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the proxy features implemented in the models. A specific example from the

current state-of-the-art (Yannakoudakis et al. (2011)) includes script length.

Many exams require their intermediate or advanced students to write longer

essays while their beginner level students are tasked with a shorter length

response. This can lead to the model learning features that do not reflect

writing quality.

The recent breakthroughs made in deep learning, specifically in the domain

of natural language processing, pose an interesting avenue of exploration for

the future architectures of AES systems. Mikolov, Kombrink, Deoras, Bur-

get & Cernocky (2011) and Chelba et al. (2013) have shown how RNNs can

e↵ectively be used for language modelling. These same language models can

form the foundations of the approaches to other text oriented tasks. Moti-

vated by the novel implementations of LSTMs by Tang (2015) and Tai et al.

(2015), as part of this investigation we aim to explore a range of sequential

neural networks, from the most basic RNNs to complex deep bi-directional

LSTMs.
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Chapter 3

Background

This chapter will present the relevant background material required to thor-

oughly understand the design and implementation phase of this investigation.

Additionally, it will aim to provide some intuition regarding the design deci-

sions made throughout this study.

3.1 Neural Word Embeddings

“You shall know a word by the company it keeps” - J.R. Firth (1957)

Inspired by one of the most successful ideas in statistical natural language

processing, the AES system needs to incorporate a method of capturing

the semantics of a word by observing the context in which it occurs. This

can be achieved by using word embeddings (Bengio et al. (2006)). A word

embedding is a vector of a predefined size, that when trained, aims to capture

a distributional numerical representation of the word features. How well the

vectors are trained depends on the method, as well as the quality and volume

of data used.

Neural distributional representation is a popular technique of training word

embeddings. It has been cited extensively throughout literature: Mnih &

Hinton (2007); Collobert & Weston (2008); Turian et al. (2010); Collobert
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et al. (2011); Mikolov, Kombrink, Burget, Černockỳ & Khudanpur (2011).

The embeddings combine vector space semantics with the prediction of prob-

abilistic models. Each word is represented as a dense vector. This is con-

trastive to the 1-hot vector method where each word vector is the size of the

entire corpus vocabulary (scarce vector).

Mikolov, Kombrink, Burget, Černockỳ & Khudanpur (2011) developedWord2vec,

a popular model that trains word embeddings. The authors’ view words as

discrete states for which they are trying to determine transitional probabil-

ities. The aim of Word2vec is to group similar words together on a feature

space thereby making the processing of deriving similarities between words

mathematically feasible. The architecture proposed by Mikolov, Kombrink,

Burget, Černockỳ & Khudanpur (2011) is a two-layer neural network that

takes a text corpus as an input and outputs feature vectors; each vector

represents a word in the corpus. Word2vec is comprised of two models, the

skip-gram model Mikolov, Chen, Corrado & Dean (2013) and the continuous

bag-of-words model (CBOW) Mikolov, Sutskever, Chen, Corrado & Dean

(2013).

As seen in Figure 3.1, Word2vec trains words against other words that neigh-

bour them in the corpus. This can be achieved by using the word to predict

the context (skip-gram) or the context to predict a word (CBOW).

Neural word embeddings have shown to boost performance for various natural

language processing tasks from syntactic parsing (Socher, Bauer, Manning &

Ng (2013)) to sentiment analysis (Socher, Perelygin, Wu, Chuang, Manning,

Ng & Potts (2013)). Motivated by its performance, for this investigation

we will be using pre-trained Word2vec embeddings1. The word embeddings

have been trained on the Google News dataset (100 billion words) containing

3 million word vectors with dimensions of 300.

1
pre-trained vectors available here http://code.google.com/archive/p/word2vec/
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Figure 3.1: Figure showing Word2Vec architecture with both CBOW and
Skip-gram methods of training

3.2 Recurrent Neural Network (RNN)

In order to understand RNNs, we must first revisit the basics of feedforward

neural networks, specifically the multilayer perceptron (MLP). An MLP is

made up on an input layer xi, a hidden layer hi and an output layer oi.

Formally, an MLP with a single hidden layer is a function f : RI ! RO where

I is the size of the input vector xi and O is the size of the output vector

oi. The model also contains two weight matrices that must be optimised

throughout the training process. The size of the matrices are determined by

the size of each of the three layers (input, hidden, output).

The hidden layer hi can be defined as follows:

hi = s(xi ⇤Wx + bx) (3.1)

s is a non-linear function such as sigmoid or tanh. Wx is the weight param-

eter matrix for the input. It is the weight matrices that we are optimising

13



through the model. bx is the bias for the hidden layer. The hidden layer then

feeds into the output layer oi. The output layer can be defined as follows:

oi = G(hi ⇤Wo + bo) (3.2)

G is also a non-linear function that can take the form of a softmax (in the case

of multi-class classification). As we will be exploring regression as part of our

experiment, we will not be implementing the function G. hi is the output

of the hidden layer which is multiplied by Wo, another weight parameter

matrix.

In order to train the MLP, we use Stochastic Gradient Descent (SGD). The

parameters of the model defined by ✓ = (Wx,Wo,bx,bo). For each parameter

we calculate the gradient using the backpropagation algorithm (Rumelhart

et al. (1988)).

For an MLP or feedforward neural networks in general, there is no notion

of sequences or order in time. Particularly with essays, the sequence of

words can provide substantial information regarding the essay as a whole.

Fortunately, RNNs were built with the purpose to capture a series of events

(training examples).

An RNN is a class of artificial neural networks that contain at least one

feedback connection. At each iteration or time step t, the RNN takes an

input xt which is passed through the hidden layer st to the output ot. The

hidden layer of the previous time step st�1 is also feeds into the st. This allows

for temporal processing and sequence learning. Some refer to this feedback

layer as a form of recent memory. In order to train RNN, backpropagation

through time (BPTT) algorithm is used.

The RNN has proven to be successful across a variety of natural language

processing tasks including statistical machine translation (Cho et al. (2014))

and language modelling (Bengio et al. (2006)) to name a few. However,

its exploration in the domain of AES has been limited to the best of our

knowledge.
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The RNN network can be formalised as follows:

st = fh(xt, ht�1) (3.3)

ot = fo(ht), (3.4)

More specifically, each of the inputs, in equation 4.2 and equation 4.4 have

associated weight matrices which are the parameters ✓ of the model. There-

fore, the hidden layer st and the output layer ot can be defined as follows:

st = fh(Uxt +Wht�1) (3.5)

ot = fo(V ht), (3.6)

Figure 3.2: Figure showing a traditional RNN with one hidden layer (Source:
Nature)

3.3 Long-short term memory (LSTM)

In a traditional RNN, the gradient signal is multiplied many times. This can

be problematic for the RNN. More specifically, if the lead eigenvalues of the

weight matrix is smaller than 1, the can results in the vanishing gradient

15



descent problem. Similarly, if the leading eigenvalue is greater than 1, the

RNN will witness what is referred to as exploding gradients.

In order to address this problem, Hochreiter & Schmidhuber (1997) introduce

Long-short term memory (LSTM). The LSTM is that uses “self-connected

unbounded internal memory cells” (Graves et al. (2004)) that ensure a con-

stant error flow. This allows the model to capture information across a wide

range of timescales. LSTMs have been implemented e↵ectively across many

natural language processing tasks, including speech recognition (Graves et al.

(2004)), context free grammar (Gers & Schmidhuber (2001)) and generating

music (Eck & Schmidhuber (2002)); all tasks that place importance on the

sequence of events.

Figure 3.3: Figure showing long-short term memory cell with forget gate
(Source: deeplearning.net)

LSTMs can be formalised as follows where it represents the input gate, Ĉt

is the current cell state, ft is the forget gate, Ct is the new cell state,

ot is the output gate, and ht is the output of the LSTM. xt is the input

vector at time t. Wi, Wc, Wf , Wo, Ui, Uc, Uf , Uo, and Vo are weight matrices

that are updated throughout the training process. The following parameters

are bias vectors: bi, bc, bf , bo. The sigmoid function used as the non-linear

activation function is represented by �. The block in the middle of Figure 3.3

is often referred to as the Constant Error Carousel (CEC). The LSTM
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model can be formalised as follows:

it = �(Wixt + Uiht�1 + bi) (3.7)

Ĉt = tanh(Wcxt + Ucht�1 + bc) (3.8)

ft = �(Wfxt + Ufht�1 + bf ) (3.9)

Ct = itĈt + ftCt�1 (3.10)

ot = �(Woxt + Uoht�1 + VoCt + bo) (3.11)

ht = ot � tanh(Ct) (3.12)

3.4 Optimising the Model

3.4.1 RMSProp

RMSProp, initially introduced by Tieleman & Hinton (2012), is a method of

iteratively decreasing the learning rate whilst preventing the issue of dimin-

ishing learning rates (an issue with Adagrad (Duchi et al. (2011))). RMSProp

divides the learning rate for weight by the running average of the magni-

tudes from previous gradients for that particular weight. RMSProp can be

formalised as follows where E[g2]t is the running average of the magnitudes

from previous gradients for that particular parameter, ✓ is the parameter

being updated, and lr is the learning rate:

E[g2]t = 0.9E[g2]t�1 + 0.1gt2 (3.13)

✓t�1 = ✓t �
lr

q
E[g2]t + ✏

gt (3.14)
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Chapter 4

Approach

The literature review has revealed that the majority of the work done in AES

relies on feature engineering. Motivated by this and the recent breakthroughs

in deep learning, we decided to take on a new approach to AES with auto-

matic feature recognition or representation learning. This chapter sets

out to provide an overview of the approach used to develop an AES system

using representation and deep learning methods. The chapter begins with

explaining the data processing task, including providing an overview of the

corpus. The second part of the chapter details technical aspects regarding

each of the five models developed as part of this investigation along with

design decision justifications.

4.1 Data Processing

This section describes the methodology of processing the data from the First

Certificate in English (FCE) dataset. In order to input the essay into the

deep learning models, several transformations must take place.
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4.1.1 FCE Dataset

One of the datasets fundamental to improving the performance existing AES

systems is the Cambridge Learner Corpus (CLC). The CLC is a collection of

exam scripts from students learning English in collaboration with the Cam-

bridge English Language Assessment. The dataset contains scripts from more

than 180,000 students, from 200 countries and 138 di↵erent first languages.

The word collection size is upwards of 50 million. The FCE dataset is a

subset of the CLC. It contains a set of 1,244 exam scripts written by stu-

dents sitting the Cambridge ESOL First Certificate in English. Each exam

scripts includes the original text from the students, as well as annotations in

the form of demographic details, error types, parts-of-speech tags (extracted

from RASP parser).

4.1.2 Data Extraction

The FCE data is contained in three .xml files: training, development, and

test. Each essay script in the .xml file is referenced by the tag <script>.

We iterate through each essay in the file and extract the script level score

referenced by <g> (range from 1-40) and the associated words referenced by

<word>. Each essay also contains answer level scores (each script contains

at least one answer) referenced as <score> (range from 1-20). Two separate

datasets are created: 1) script level essays and scores; 2) answer level essays

and score.

Dataset Script Answer

Training 1061 2116
Development 80 159

Test 97 194

Table 4.1: Table showing the number of essays in the training, development
and test sets
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4.1.3 Tokenising

After extracting the relevant data from the .xml files, the essay scripts must

be tokenised. Tokenisation is the process of breaking up streams of text into

individual words called tokens. Each token will receive a unique identification

code or a key. This key will function as an index. Thereby, an essay can be

expressed as a list of indices which refer to a specific word in the token

dictionary.

For this investigation, we will only be tokenising words that occur at least

twice in the entire dataset. Words occurring less than two times will be

treated as unknown words. The justification behind this decision is based on

the assumption that the usage of unknown words in an essay contribute more

information about the quality of writing than the use of a particular word

that has only been seen once. If unknown words are treated as a collective,

we may be able to extract more information about the text.

4.1.4 Neural Word Embeddings

Each token or word in the token dictionary must be mapped on to a neural

word embedding. This will allow each word to be “machine readable”. We

will use the pre-trained Word2vec representations to extract the neural word

embeddings. A word embedding matrix is created containing a reference

(index) to each word in the corpus and it’s vector representation.

4.2 Model 1: Preliminary RNN

The first model used to develop the AES system was the vanilla RNN. As

described in Section 3.2, the model contains a input layer xi, a hidden layer hi

and an output layer oi. The objective of the RNN, similar to all other machine

learning algorithms, is to minimise the cost function. The cost function being
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used throughout this investigation is least squares, a standard approach to

regression analysis. Least squares can be defined as follows:

cost =
X

(yi � ŷi)
2 (4.1)

yi is the target score for the essay while ŷi is the model determined score

for the essay. The objective of this model is to minimise the cost function,

which in turn minimises the root mean squared error (RMSE) metric. Ideally,

minimising the cost should improve the Pearson and Spearman assuming the

model is not overfitted to the training data. The parameters that need to be

optimised are outlined in Table 4.2

P Dimensions Description

U input x hidden weight matrix for the input to hiddent

W hidden x hidden weight matrix for the hiddent�1 to hiddent

V hidden x out weight matrix for hiddent�1 to output

Table 4.2: Table showing the dimensions of the weight matrices in an RNN

As mentioned in Section 3.2, the RNN is trained using BPTT. BPTT calcu-

lates the gradient of each cost function w.r.t the parameters through time.

The cost function is then multiplied by a float known as the learning rate.

The product of the learning rate and the gradient of the parameter is then

subtracted from the previous value of the parameter. This iterative process

known as stochastic gradient descent (SGD), decreases the cost value of

the model. However, the issue arises when selecting the right learning rate for

the model. Choosing a learning rate that is too high results in the model not

reaching the local or global (ideally) minimum as it may overshoot. Choosing

a learning rate that is too low results in a model that takes a long time to

converge (computationally expensive).

Ideally the learning rate should decrease while the model is being trained (i.e.

get lower as the model gets closer to the local minimum). There are many

methods of doing this, but one popular method of optimising the learning

rate is RMSProp. The technical details regarding RMSProp are discussed in
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Section 3.4. Please note that RMSProp is used throughout the investigation

and is the preferred method of optimising SGD. RMSProp takes three main

hyperparameters: learning rate lr, decay rho, epsilon ✏. The values for decay

and epsilon are set to 0.9 and 10�6 respectively, as suggested by Tieleman

& Hinton (2012). The learning rate used for this investigation ranged from

0.001 to 0.01.

Another common issue with RNNs is that they are prone to overfitting.

Overfitting is when the model fits a particular training set relatively well,

but fails to generalise across the unseen test set. In order to prevent this we

use L2 regularisation.

The RNN model outputs at every time step. More specifically, if an essay

contains 300 words, during a single run-through of the entire essay, the model

will output a score 300 times. However, for this investigation, we are only

concerned with the score that is obtained in the final run i.e. after the entire

essay as been processed. This is called the many-to-one approach (Please

see Figure 4.1).

Figure 4.1: Figure showing the RNN with many-to-one output method

Table 4.3 outlines the hyperparameters that need to be tuned during the

training process. The optimal hyperparameters for the RNN will be discussed

in Chapter 5.

The model was trained for 50 epochs. An epoch is a single run through
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Hyperparameter Value

Learning Rate lr 0.001-0.01
Hidden Layer 50,100

L2-Regularisation ↵ 0.001
Epsilon (RMSProp) ✏ 10�6

Decay (RMSProp) rho 0.9

Table 4.3: Table showing the various parameters of an RNN

the entire training set. 50 will the be the default number of epochs for this

investigation.

4.3 Model 2: RNN-MLP

The second model developed is the RNN-MLP model. This is a hybrid model

that combines an RNN and an MLP overlay. The model functions similarly

to the previous model described in Section 4.2. However, rather than having

an output layer of with the size of 1, the model will output an embedding of

size 50�100 (depending on the configuration). This embedding will serve as

the input to the MLP hidden layer which then outputs the essay score. The

intuition behind using this model is that by applying an MLP overlay we can

capture a higher level feature embedding for the entire essay. This allows us

to emulate the complexity inherent in determine the quality of writing.

The RNN-MLP model can be formalised as follows:

st = tanh(Uxt,Wht�1 + bs) (4.2)

qt = �(Pst + bq), (4.3)

ot = V qt + bo, (4.4)

The RNN-MLP model contains a few extra weight parameters in comparison

to the RNN.
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P Dimensions Weight Matrix Description

U input x hidden-rnn matrix for the input to hiddent

W hidden-rnn x hidden-rnn matrix for the hiddent�1 to hiddent

P out-rnn x hidden-mlp matrix for the RNN output to MLP hiddent

V hidden-mlp x out-mlp matrix for MLP hiddent to MLP output

Table 4.4: Table showing the dimensions of the weight parameters for an
RNN-MLP

Hyperparameter Value

Learning Rate lr 0.001-0.01
Hidden Layer (RNN) 50,100
Hidden Layer (MLP) 50,100
L2-Regularisation ↵ 0.001
Epsilon (RMSProp) ✏ 10�6

Decay (RMSProp) rho 0.9

Table 4.5: Table showing the various parameters for the RNN-MLP

Table 4.5 outlines the hyperparameters that need to be tuned. The optimal

hyperparameters for the RNN-MLP will be discussed in Chapter 5.

4.4 Model 3: LSTM

As referenced in Section 3.2, the LSTM model was introduced in order

to solve the issue of vanishing gradient descent prevalent in RNN models.

LSTMs have shown to perform very well on tasks that require it to act based

on information several time steps before (Hochreiter & Schmidhuber (1997)).

However, as mentioned by Gers (2001), critical markers were processed along

with the text to facilitate the model in learning when to use the crucial in-

formation. In many cases, it may not be possible to pass markers into the

model. Gers (2001) develop an extension to the LSTM known as “Peephole

Connections” that aims to allow the network to represent the duration of

task-specific intervals without needing markers.

This modification is particularly useful in the case of AES as many of the
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Figure 4.2: Figure showing an LSTM with “Peephole Connections” (Source:
Herta (2015))

features inherent to writing quality are dependant on the precise duration of

intervals between events. Suppose the network is trying to identify whether

an essay contains periods in the right location. The network needs to learn

the representation sentence and when the sentence is complete, if there is a

valid punctuation present, the LSTM needs to know whether to allow the

internal state to a↵ect the output. In order to do this, the output gate must

be aware of the contents in the internal state. The LSTM model with the

“Peephole Connection” modifications can be represented by the following

equations:

it = �(Wixt + Uiht�1 + PiCt�1 + bi) (4.5)

Ĉt = tanh(Wcxt + Ucht�1 + bc) (4.6)

ft = �(Wfxt + Ufht�1 + PfCt�1 + bf ) (4.7)

26



Ct = itĈt + ftCt�1 (4.8)

ot = �(Woxt + Uoht�1 + PoCt + bo) (4.9)

ht = ot � tanh(Ct) (4.10)

yt = Voht (4.11)

4.5 Model 4: Bi-directional LSTM

The next model evaluated as part of this investigation is the Bi-directional

LSTM (BLSTM). A limitation of the traditional RNN is that they can only

incorporate the signal obtained from the pervious occurrences. However,

in many natural language tasks, such as speech recognition, where an en-

tire utterance is transcribed simultaneously, it can be beneficial to explore

BLSTMs. In the case of AES, having knowledge of references made in the

future (timet+n) can be critical for deriving representations at timet.

Before moving into the BLSTM, is it important to understand the structure

of the simpler Bi-directional RNN (BRNN). As described by Schuster & Pali-

wal (1997), the BRNN contains two hidden layers, both of which are connect

to the input and the output layers. One hidden layer processes informa-

tion in the direction of the sequence, while the other processes information

backwards along the sequence (See Figure 4.3).

The limitations of the BRNN is that it can only model information for

where the end point is known, i.e not for online learning. However, in our

particular case, AES, the model poses an interesting investigation. BRNN

have achieved state-of-the-art results in tasks such as phoneme classifcation

(Graves & Schmidhuber (2005)) and handwriting recognition (Graves et al.

(2009)).

The hidden layers of the BRNN can be described by the following equations:

ht = �(Uhxxt +Whhht�1 + bh) (4.12)
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Figure 4.3: Figure showing Bi-directional RNN

zt = �(Uzxxt +Wzzht+1 + bz) (4.13)

yt = Vohht + Vozzt + by (4.14)

ht is the hidden layer in the forward direction while zt is the hidden layer in

the backwards direction. The hidden layers are then added together at the

output layer yt to produce an combined representation. Combining BRNNs

with LSTMs allows the model to capture signal for long sequences (charac-

teristic of LSTMs in contrast to RNNs) and in both directions.

4.6 Model 5: Deep Bi-Directional LSTM

Much of the success in of neural networks can be attributed to deep archi-

tectures (Graves et al. (2013)). Deep models develop progressively higher
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levels of representation of the input data. In the case of a deep RNN, this is

done by stacking multiple RNN hidden layers where the output of one hidden

layer serves as the input of the next. The lower level layers are able to ab-

stract the short term interactions between the inputs. The higher level layers

represent interpretations spanning over longer areas of the input (Hermans

& Schrauwen (2013)).

Figure 4.4: Figure showing deep bi-directional LSTM (Source: Graves &
Schmidhuber (2005))

Applying the deep architectures to natural language sentences have shown

to better capture the complexities and multi-scale e↵ects characteristic of

natural language (Irsoy & Cardie (2014)). Motivated by its performance

on other natural language tasks (Graves et al. (2013)), we have decided to

employ deep architectures to our AES system. In a deep RNN where each of

the hidden layer functions are the same, the hidden layer can be formalised

as follows:

hn
t = tanh(Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh) (4.15)

yt = WhNyh
N
t + by (4.16)
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Equation 4.16 is iteratively computed from n = 1 to N and t = 1 to T where

the variables are the number of hidden layers and time respectively. In order

to implement a Deep BRNN, the hn can be replaced with a hidden layer that

is computing the forward sequences and a hidden layer that is computing

the backwards sequence (See Equation 4.12 and Equation 4.13). For a Deep

BLSTM (as the one implemented for this investigation) one would simply

replace the hidden layer with a BLSTM layer.
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Chapter 5

Evaluation

This chapter aims to provide a detailed evaluation of the approach. It com-

prises of three experiments along with detailed discussions regarding each

experiment. The experiments include: the hidden layer analysis; comparison

of answer level versus scripts level; learning rate selection. The chapter also

evaluates the performance of the five models as AES systems in general.

5.1 Experimental Setup

In order to build and evaluate the models, we used a numerical computation

library in Python called Theano. It provides e�cient functionality on CPUs

and GPUs. Once the models were developed in Theano, Word2vec word

embeddings were used to initialise the network. The values for the weight

matrices were randomly initialised. Each model was trained for 50 epochs.

At each epoch, an evaluation on the development set was carried out to

observe the changes in Pearson, Spearman, and RMSE. The top performing

models were evaluated against an unseen test set. The results section reports

values for the unseen test set.
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5.2 Results

5.2.1 Hidden Layer Analysis

The aim of this experiment is to determine the optimal hidden layer size for

the models developed. We trained all five model on two hidden layer sizes

{50, 100}. For models that require multiple hidden layers (i.e. RNN-MLP,

BLSTM, DBLSTM), we assume that all hidden layers will have the same

size. A learning rate lr 0.002 with the default RMSProp configurations were

used to evaluate the models.

As can be seen in Table 5.1, RNN obtains of 0.242 and 0.305 for Pearson

and Spearman respectively. It also achieves an RMSE of 5.922. Our hybrid

model, RNN-MLP, shows improvements in the Pearson metric but experi-

ences a slight drop in the Spearman score with values of 0.265 and 0.285

respectively. The RNN-MLP reports an RMSE value of 6.143.

Models Pearson Spearman RMSE

RNN 0.242 0.305 5.922
RNN-MLP 0.265 0.285 6.143
LSTM 0.394 0.381 5.321
BLSTM 0.433 0.406 5.234
DBLSTM 0.493 0.503 5.126

Table 5.1: Table showing results for hidden-layer size 50

Models Pearson Spearman RMSE

RNN 0.291 0.282 5.750
RNN-MLP 0.301 0.347 6.033
LSTM 0.389 0.402 5.264
BLSTM 0.497 0.513 5.229
DBLSTM 0.562 0.624 4.671

Table 5.2: Table showing results for hidden-layer size 100

LSTM with hidden layer size 50 reports values of 0.394, 0.381, and 5.321 for

Pearson, Spearman, and RMSE respectively. Our BLSTM model reports val-
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ues of 0.433 for Pearson, 0.406 for Spearman and 5.321 for RMSE. DBLSTM

reports the top metrics with hidden layer size of 50 with Pearson, Spearman,

and RMSE values of 0.493, 0.503, and 5.126 respectively.

Models Pearson Spearman RMSE

RNN +0.049 -0.023 -0.172
RNN-MLP +0.036 +0.062 -0.110
LSTM -0.005 +0.020 -0.057
BLSTM +0.064 +0.107 -0.005
DBLSTM +0.069 +0.121 -0.455

Table 5.3: Table showing di↵erence observed between 50 and 100 hidden
layer size

Table 5.2 reports values for all the models when configured with a hidden

size of length 100. The change observed by increasing the size of the hidden

layer can be seen in Table 5.3. RNN showed an improvement in Pearson, but

su↵ered a penalty of -0.023 in the Spearman score. The RNN-MLP shows

improvements in Pearson, Spearman, and RMSE score with values of 0.301,

0.347, and 6.033 respectively. The LSTM model shows a marginal perfor-

mance decrease with a larger hidden layer (-0.005). BLSTM and DBLSTM

model shows substantial improvements in all metrics with an increased hid-

den layer size. DBLSTM reports changes to Pearson, Spearman and RMSE

with values of +0.069, +0.121, and -0.455 respectively.

5.2.2 Discussion: Hidden Layer Analysis

Deciding on the right hidden layer for your model can make a significant

di↵erence. Motivated by Hernández-Lobato & Adams (2015) we decided to

start our experimentation with a hidden layer size of 50. However, is it of-

ten found that larger hidden layers perform better with more complex tasks

Korattikara et al. (2015) and therefore we decided to also run an experiment

with all the models on hidden layer size of 100. In the case where there is

more than one hidden layer, each hidden layer is assumed to be the same size.

Based on the results in Table 5.1 and Table 5.2, we can see that larger hidden

33



layer size are indeed better for capturing more complex problems. However,

it is worth noting that with larger hidden layer sizes have more parameters

to compute and therefore are substantially more expensive. Furthermore,

increase the size of the hidden layer too much can result in the model overfit-

ting to the training data resulting in low performance when evaluated against

unseen data.

5.2.3 Answer Level versus Script Level

Based on the results from Section 5.2.1 in determining the optimal hid-

den layer size, we decided to focus on optimising the top performing model

(DBLSTM). As discussed in Section 4.1.2, script level essays are composed

of answer level essays. The aim of this experiment is to determine whether

smaller individual answer level essays can be more e↵ective in regressing essay

scores in comparison to larger script level essays.

The answer level scripts reported lower Pearson, Spearman and RMSE score

with values of 0.582, 0.535, and 5.013 respectively. This was trained on a

hidden layer size of 100 and learning rate lr of 0.002. Default RMSProp

configuration can be assumed.

Level Pearson Spearman RMSE

Answer Level 0.582 0.535 5.013
Script Level 0.624 0.562 4.671

Table 5.4: Table showing evaluation score between answer level texts and
script level texts

5.2.4 Discussion: Answer Level versus Script Level

Constructing a hypothesis on the performance of script level texts in compar-

ison to answer level texts was a di�cult task. As answer level scripts contain

less data to derive features discriminative of writing quality, our initial in-

clination would be in favour of script level texts. However, script level texts
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are simply an aggregation of at least one answer level script. For example if

answer 1 received a score of 20 and answer 2 received a score of 4, then the

script level score would report 24. The text contained in half the script level

text will be disproportional to the other half.

The results in Table 5.4 show that in fact script level texts did produce

better results than answer level texts. This can be attributed to the addi-

tional sequences provided by the script level. Additionally, the previous claim

regrading the disproportional text, although possible, is unlikely given the

same student complete both answers. Our results are further supported by

the foundations of machine learning which supports the notion that models

generally perform better if they receive more training data.

5.2.5 Learning Rate Selection

Selecting the right learning rate for your model can make a significant dif-

ference on the overall performance of your model. Choosing a rate that is

too high can result in overshooting and never reaching the local minima.

Alternatively, choosing a rate that is too low, can require a long time to

converge (computationally expensive). As a result, we experiment with a

variety of learning rates to identify the one that is optimal for our models.

Having already identified the top performing model through our previous

experiments, we have decided to report the results of our learning rates only

on the DBLSTM with script level texts.

A learning rate of 0.01 results in the lowest performance with Pearson, Spear-

man and RMSE scores of 0.574, 0.523, and 5.238 respectively. Reducing the

learning rate by a factor of 10 (0.001) improves Pearson by +0.017 and re-

duces the RMSE by -0.25. The top performing learning rate is 0.002 which

reports 0.624, 0.562 and 4.671 for Pearson, Spearman and RMSE respectively.

However, it is possible over a large number of epochs, the 0.001 learning rate

may outperform.
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lr Pearson Spearman RMSE

0.01 0.574 0.523 5.238
0.002 0.624 0.562 4.671
0.001 0.591 0.545 4.988

Table 5.5: Table showing results for various learning rates lr {0.01, 0.002,
0.001}

5.2.6 Learning Rate Analysis

Our initial learning rate, 0.001, was set based on the recommendation of

Tieleman & Hinton (2012). We also ran experiments with 0.01 and 0.002. It

was found that 0.002 produced the best results for our particular model. The

worst results were produced by the learning rate of 0.01. This can be a result

of overshooting, despite the implementation of SGD optimiser RMSProp.

For our particular epoch length (50), the learning rate of 0.002 performed

slightly better than 0.001. Primarily because the steps are marginally larger

and therefore was able to reach closer to the local minima in the given number

of epochs.

5.2.7 Model Evaluation

Comparing the models in Table 5.1 and Table 5.2 at each iterative extension

onto the RNN models showed improvements. The performance increase from

RNN to RNN-MLP is indicative of the higher level complexities that can be

abstracted from an additional layer. However, the absence of a feedback loop

in the MLP hidden layer limits the potential signal that could be exploited

from a higher level hidden layer. The architecture of the models is such

that the entire essay is provided as a single input. When trying to capture

discriminative writing features, such as flow of sentences, an aggregate view

of all the sentences is needed. In order to do this, the model needs to maintain

sequential information for longer time steps (characteristic of LSTMs).

LSTM’s ability to capture longer sequence is evidenced by the higher evalu-
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ation results achieved. This is in line with the findings in literature, Irsoy &

Cardie (2014); Graves et al. (2004), Eck & Schmidhuber (2002). However,

as supported by Graves et al. (2013), the addition of bi-directionality, in

the BLSTM model, provides an additional boost in performance. This can

be attributed to the natural structure of language and the way we visually

perceive information.

AES Models Pearson Spearman RMSE

BLSTM (Zaidi, 2016) 0.624 0.562 4.671
SVMrank (Yannakoudakis et al., 2011) 0.741 0.773 n/a

Table 5.6: Table showing results obtained by our top model in comparison
to the current state-of-the-art

When reading, we continually make eye movements called saccades. Sac-

cades are not always forward moving. As a matter of fact, around 15% of

saccades are regressions (right-to-left movements)(Rayner (1998)). Short re-

gressed saccades are usually when information is not processed, while longer

regressed saccades are due to the reader not understanding the text (Rayner

(1998)). This phenomenon has been emulated in RNNs through the introduc-

tion of bi-directional networks. When processing text using neural networks,

incorporating the bi-directionality aspect can facilitate the processing and

understanding of text. As a matter of fact, this is evidenced by the results

shown in Table 5.1 and Table 5.2 as well as other sources in literature (Graves

& Schmidhuber (2005), Schuster & Paliwal (1997)).

Much of the recent success associated imaging and neural networks can be

attributed to deep learning, or the inclusion of additional hidden layers. This

is due to the complex patterns inherent in images and object detection; nat-

ural language is no di↵erent. Lower level hidden layers process text patterns

in close proximity. The high level layers process data across a wider span

of text and are capable identifying elaborate patterns. Combining the deep

architecture with bi-directionality in our DBLSTM model, we have boosted

the performance of our neural network substantially (See Table 5.2). The

appreciation of Pearson and Spearman values and decrease in the RMSE
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metric shows that our model is indeed learning the complexity of scoring the

AES better than the shallower less intricate models. However, as shown in

Table 5.6, we are still a few iterations away from outperforming the current

state-of-the-art.

38



Chapter 6

Visual Evaluation and Error

Analysis

Transparency is an important aspect of implementing AES systems. Un-

derstanding how the AES system works is a vital ethical and commercial

concern. Although users should have the ability to understand how the AES

assign a particular grade, it should be in such a way that discourages reverse

engineering and “teaching to test” . This chapter aims to build on our exist-

ing evaluation in the previous chapter by showing the inner workings of the

models. The chapter will cover a brief overview of our method of visualisa-

tion. Additionally, it will provides examples and analysis of visual outputs

made by our LSTM and DBLSTM models.

6.1 Visualisation Approach

In order to tackle these critical issues, we have attempted to provide more

insight into the system through the use of visualisations. This evaluation

technique aims to visually capture the networks performance by measuring

the quality of individual word vectors. This work has been inspired by the

work of Alikaniotis et al. (2016). When the model reaches its optimal per-

39



formance, a single essay is passed through the system, one word1 at a time.

When the word reaches the end of the system, the total gradient of the error

is calculated using backpropagation. However, the weight parameters are

not updated. Instead, pseudo targets scores are provided to the error or cost

function. The cost function can be defined as follows:

cost =
X

(yi � ŷi)
2 (6.1)

In the place of the target value, yi, two pseudo targets scores are provided.

The max-pseudo target score and the min-pseudo target score which are 40

and 0 respectively.

lossmax =
X

(40� ŷi)
2 (6.2)

lossmin =
X

(0� ŷi)
2 (6.3)

Calculating the gradient for lossmax and lossmin with respect to all of the

parameters in the model will give us the relative quality our word embedding

and whether it is positively and negatively influencing the score of our essay.

In order to present a combined score (scorec), we perform the following:

scorec = lossmin � lossmax (6.4)

The intuition behind the metric scorec is that the higher the score the better

the word. The quality of word have been divided into four levels {lowest, low,
high, highest}. The quality of words are essay dependant. Therefore, scorec

between two di↵erent essays are not comparable. In order to categorise the

quality of vectors the follow mathematical manipulations were carried out:

bin = [max(scorec)�min(scorec)]/4 (6.5)

1
Please note that “word” for the purposes of this section, refers to any token in the

essay including punctuations
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lowest = ifmin <= scorec < min+ bin (6.6)

low = ifmin+ bin <= scorec < min+ (bin ⇤ 2) (6.7)

high = ifmin+ (bin ⇤ 2) <= scorec < min+ (bin ⇤ 3) (6.8)

highest = ifmin+ (bin ⇤ 3) <= scorec < min+ (bin ⇤ 4) (6.9)

6.2 Visualisation Examples

Below are some visualisations of sentences that have been processed by the

LSTM and DBLSTM models. The quality of the vectors have been repre-

sented with the following colours: lowest quality vectors, low quality vectors,

high quality vectors, and highest quality vectors.

Example 1

LSTM: Mr. Manager my name James Camirez and i’am writing this letter

to you because I have some compleints for the disappointing evening I had

last night.

DBLSTM: Mr. Manager my name James Camirez and i’am writing

this letter to you because I have some compleints for the disappointing

evening I had last night.

Looking at example 1 we can see that the model was able to detect that

there is a missing verb (“is”) before “James” and therefore James gets a

lower score. Additionally it identifies the two misspelled words in the sen-

tence, “I’am” and “compleints”. The model was able to capture the correct

use of the phrase “I have”. In the context of non-native English speaks, the

phrase “I have” can be quite ambiguous as it is usually associated with tan-

gible objects. The correct use of a period at the end of the sentence is also

awarded with a high quality vector.
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Example 2

RNN: . . . International Arts Festival. This festival was well-orginised.

There were a lot of activities for everyone. I relly liked exhibitions. I had a

chance to see amazing pictures with wezy painted by Russian painters.

DBLSTM: . . . International Arts Festival. This festival was well-orginised.

There were a lot of activities for everyone. I relly liked exhibitions. I had a

chance to see amazing pictures with wezy painted by Russian painters.

Example 2 DBLSTM illustrates the models ability to capture correctly used

references. Specifically, the phrase “This festival” is referring to “Interna-

tional Arts Festival”. Using variable references for the same event is a sign

of higher writing quality. As a result, the system awards this occurrence.

The model picks up on what seems to be a grammatically incorrect sentence

“. . . to see amazing pictures with wezy painted by Russian painters.” The

word “pictures” is given a low score. It seems that the system does not

recognise that “wezy” could be a noun and therefore interprets the sentence

as “pictures with <unknown> painted by Russian painters”. Therefore the

ambiguity can be detected around the word “pictures”. A better model

would be able to detect that “wezy” was a noun and ameliorate the score

for “pictures”. The term “by” in the phrase “painted by Russian painters”

is correctly award a high score.

In the case of the LSTM, the model was not able to catch the spelling mistake

“well-orginised”. Additionally, it places less of a penalty of spelling “really”

as “relly”. The LSTM model penalised the essay score for using “This” at

the beginning of the second sentence despite being discriminative of good

writing quality. This illustrates the additional level of complexity that can

be obtained by developing a “deep” architecture.

Example 3

LSTM/DBLSTM: Dear Mr Robertson , I am writing to express my plea-

sure about the successful programme that you have prepared. . .

Both models scored the word vectors similarly. “Mr” was penalised due to
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the missing period. The comma after “Dear Mr Robertson” is indicative of

good writing quality. Interestingly the word “pleasure” was identified as a low

quality vector. “Pleasure” is a B1-Level word and should not be considered a

low quality vector. Both DBLSTM and LSTM fail to rectify this limitation.

Example 4

LSTM:. . . excellent idea to visit the National Art Gallery.

DBLSTM:. . . excellent idea to visit the National Art Gallery.

In example 4, we can see that the LSTM positively rates the word “visit”.

Its seems that the LSTM is exaggerating the positivity of vectors that should

have less of an impact on the overall score. This is resolved with the DBLSTM

which lowers the weighting of “visit” from highest to high. The terms “Na-

tional” and “Gallery” have been highlighted because of their change in clas-

sification from the LSTM to the DBLSTM. This is due to the fact that the

categorisation thresholds are very steep. If a vector is even 0.001 below the

range for that particular category, it will be dropped to the lower ranking.

Example 5

LSTM: In addition, I would like to inform you about an advertisement. . .

DBLSTM: In addition, I would like to inform you about an advertise-

ment. . .

Similar to example 4, in example 5 the AES system has rewarded the correct

use of the transitional phrase “In addition”. However, the LSTM has placed

undue positive weighting which is corrected by the DBLSTM. Both models

fail the recognise and reward the correct use of “an”. Something that could

perhaps be captured with additional training data.

Example 6

LSTM: We are really interested in latest fashions and new. . .

DBLSTM: We are really interested in latest fashions and new. . .
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In example 6, both LSTM and DBLSTM fail to identify a short-distance

subject-verb agreement case. The model has shown that it can reward cor-

rectly subject-verb agreement but failed to do so in this case. The DBLSTM

correctly identified the missing determiner (‘the’) before“latest”. This was

not captured by the LSTM. The implementation of bi-directionality may have

facilitated with this particular example. For example the phrase “...to death

in latest shocking murder case” is an except from a news story in the Tele-

graph. A bi-directional model would positively rate this phrase. However,

once the phrase “shocking murder case” is replaced with “fashions and. . . ”,

then the neural network should penalise the score as it is not grammatically

correct.
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Chapter 7

Summary and Conclusions

The purpose of this investigation was to develop an AES system that demon-

stratesmeaningfulness, transparency, and robustness. Through the use

of neural networks and deep learning we have laid the foundation for future

AES systems. RNNs and it’s variants we have shown a promising start to-

wards developing a state-of-the-art model. The architecture implemented as

part of this investigation extracts features that cannot be reverse engineered.

They also provide meaningful results when evaluated against the domain

standard metrics (Pearson, Spearman, RMSE). Through the use of our visu-

alisation tool, users can get insight into the inner workings of the “blackbox”

model. This was demonstrated by calculating error gradients for each words

with pseudo target scores. It was found that many complex features discrim-

inative of writing quality were captured through our implementation.

The top performing model was the DBLSTM. It’s performance can be at-

tributed to the additional hidden layers that capture more complex pat-

terns. Furthermore, the presence of bidirectionally in the system, allowed

the model to pick up on additional errors that would otherwise not been

extracted. Revisiting the initial aims set out for this investigation, we have

managed to demonstrate that our system is meaningful, transparent, and

robust. However, there need to be additional work in the area of improve

human-machine inter-rater agreement. Although, the top performing model
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successfully captured spelling mistakes, subject-verb agreement errors, mis-

spelled words, and incoherent phrases, it was not able to do so on a consistent

basis.

Future work in this area includes integrating Bayesian methods of determin-

ing hyperparamters. This may provide an additional boost to the perfor-

mance of our AES system. Relying on intuition and grid search approach

is not a feasible solution to reach optimal results. Additionally, adopting a

deep compositional approach where the layered model is training sentence

level representations and essay level representations on di↵erent levels of the

network can be an interesting area of investigation. Finally, although liter-

ature suggests that initialising the network using Word2vec improves con-

vergence speed, Word2vec is trained for context. An interesting avenue to

explore would be to train new embeddings that capture writing quality.
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Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H. & Bengio, Y. (2014), ‘Learning phrase representations using
rnn encoder-decoder for statistical machine translation’, arXiv preprint
arXiv:1406.1078 .

Collobert, R. &Weston, J. (2008), A unified architecture for natural language
processing: Deep neural networks with multitask learning, in ‘Proceedings
of the 25th international conference on Machine learning’, ACM, pp. 160–
167.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. & Kuksa,
P. (2011), ‘Natural language processing (almost) from scratch’, The Jour-
nal of Machine Learning Research 12, 2493–2537.

Duchi, J., Hazan, E. & Singer, Y. (2011), ‘Adaptive subgradient methods

47



for online learning and stochastic optimization’, The Journal of Machine
Learning Research 12, 2121–2159.

Eck, D. & Schmidhuber, J. (2002), Finding temporal structure in music:
Blues improvisation with lstm recurrent networks, in ‘Neural Networks for
Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on’,
IEEE, pp. 747–756.

Gers, F. (2001), Long short-term memory in recurrent neural networks, PhD
thesis, Universität Hannover.

Gers, F. A. & Schmidhuber, J. (2001), ‘Lstm recurrent networks learn sim-
ple context-free and context-sensitive languages’, Neural Networks, IEEE
Transactions on 12(6), 1333–1340.

Graves, A., Eck, D., Beringer, N. & Schmidhuber, J. (2004), Biologically
plausible speech recognition with lstm neural nets, in ‘Biologically Inspired
Approaches to Advanced Information Technology’, Springer, pp. 127–136.

Graves, A., Jaitly, N. & Mohamed, A.-r. (2013), Hybrid speech recognition
with deep bidirectional lstm, in ‘Automatic Speech Recognition and Un-
derstanding (ASRU), 2013 IEEE Workshop on’, IEEE, pp. 273–278.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H. & Schmid-
huber, J. (2009), ‘A novel connectionist system for unconstrained hand-
writing recognition’, Pattern Analysis and Machine Intelligence, IEEE
Transactions on 31(5), 855–868.

Graves, A. & Schmidhuber, J. (2005), ‘Framewise phoneme classification
with bidirectional lstm and other neural network architectures’, Neural
Networks 18(5), 602–610.

Hermans, M. & Schrauwen, B. (2013), Training and analysing deep recurrent
neural networks, in ‘Advances in Neural Information Processing Systems’,
pp. 190–198.

Hernández-Lobato, J. M. & Adams, R. P. (2015), ‘Probabilistic backprop-
agation for scalable learning of bayesian neural networks’, arXiv preprint
arXiv:1502.05336 .

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural
computation 9(8), 1735–1780.

Irsoy, O. & Cardie, C. (2014), Opinion mining with deep recurrent neural
networks., in ‘EMNLP’, pp. 720–728.

48



Klebanov, B. B. & Flor, M. (2013), Word association profiles and their use
for automated scoring of essays., in ‘ACL (1)’, pp. 1148–1158.

Korattikara, A., Rathod, V., Murphy, K. & Welling, M. (2015), ‘Bayesian
dark knowledge’, arXiv preprint arXiv:1506.04416 .

Larkey, L. S. (1998), Automatic essay grading using text categorization
techniques, in ‘Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval’, ACM,
pp. 90–95.

McNamara, D. S., Crossley, S. A., Roscoe, R. D., Allen, L. K. & Dai, J.
(2015), ‘A hierarchical classification approach to automated essay scoring’,
Assessing Writing 23, 35–59.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013), ‘E�cient estimation
of word representations in vector space’, arXiv preprint arXiv:1301.3781 .

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J. H. & Khudanpur, S.
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