Question 1

1. Draw the term-document incidence matrix and the inverted index
 - Doc 1: breakthrough drug for schizophrenia
 - Doc 2: new schizophrenia drug
 - Doc 3: new approach for treatment of schizophrenia
 - Doc 4: new hopes for schizophrenia patients

2. Using the document collections above, what will be returned for the following queries
 - Query 1: schizophrenia AND drug
 - Query 2: for AND NOT (drug OR approach)

Question 2

1. Which of the following statements are true?
 - In a Boolean retrieval system, stemming never lowers precision
 - In a Boolean retrieval system, stemming never lowers recall
 - Stemming increases the size of the vocabulary
 - Stemming should be invoked at indexing time but not while processing a query

Question 3

1. In the inverted index of an information retrieval system, dictionary terms can be represented using different data structures.

A Consider the trie in the figure above, which encodes several dictionary terms.
 i. List the terms contained in this trie
 ii. Explain how terms are looked up in a trie
B Alternatively, we could store the terms in a binary search tree
 i. Draw the binary search tree with minimal depth that stores the
dictionary terms from the figure above.
 ii. Compare the worst-case time complexity of the dictionary lookup
for a binary tree and a trie. What are the conditions where the
binary tree is preferable to a trie.

C Next consider a radix tree, a spaced-optimised trie data structure
where each node with only one
 i. Draw the radix tree containing the dictionary terms from the
figure above.
 ii. Give an algorithm for insertion of a new index term $t = t(0)...t(k)$
into a radix tree. Use examples to illustrate your algorithms.
 You may use pseudocode as long as you can clearly explain your
thoughts.

Question 4
1. Compute the Jaccard matching score and the tf matching score for the
following query-document pairs.

<table>
<thead>
<tr>
<th>query</th>
<th>document</th>
</tr>
</thead>
<tbody>
<tr>
<td>information on cars</td>
<td>all you’ve ever wanted to know about cars</td>
</tr>
<tr>
<td>information on cars</td>
<td>information on trucks, information on planes,</td>
</tr>
<tr>
<td></td>
<td>information on trains</td>
</tr>
<tr>
<td>red cars and red trucks</td>
<td>cops stop red cars more often</td>
</tr>
</tbody>
</table>

Question 5
1. Assume you have to explain the tf-idf weighting to someone unfamiliar
with the scheme. In one or two paragraphs, explain the intuition behind
the tf-idf weighting scheme.

2. How does the tf-idf scheme exploit the phenomenon known as Zipf’s law
for assigning weights?