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Abstract

The structure of curriculum plays a vital role in our learning process, both as
children and adults. Presenting material in ascending order of difficulty that also
exploits prior knowledge can have a significant impact on the rate of learning.
However, the notion of difficulty and prior knowledge differs from person to
person. Motivated by the need for a personalised curriculum, we present a novel
method of curriculum learning for vocabulary words in the form of visual prompts.
We employ a reinforcement learning model grounded in pedagogical theories that
emulates the actions of a tutor. We simulate three students with different levels
of vocabulary knowledge in order to evaluate how well our model adapts to the
environment. The results of the simulation reveal that through interaction, the
model is able to identify areas of weakness, as well as push students to the edge
of their zone of proximal development. We hypothesise that these methods can
also be effective in training agents to learn language representations in a simulated
environment where it has previously been shown that order of words and prior
knowledge play an important role in the efficiency of language learning.

1 Introduction

With the rise of machine learning and tasks such as automated teaching and assessment, there is an
increased interest in understanding how machine learning models can be grounded in theories of
language acquisition. Additionally, with an abundance of learner data in archive and generation, we
now have an avenue through which we can not only evaluate our theories of learning, but also explore
whether these theories can be used to train agents for the purpose of general AI.

Language Acquisition is a multidisciplinary field that overlaps with linguistics, psychology, neuro-
science, philosophy, and more recently computer science. At the intersection of language acquisition
and pedagogy lie theories of educational practices for language learners, including for example, an
optimal curriculum for both L1 and L2 learners. A curriculum is a guide that helps teachers decide
what content to present and the order of which it needs to be presented. The aim of a curriculum is to
provide a highly structured method of introducing concepts in order to maximise the rate of learning.

The idea of a curriculum to facilitate the rate of learning has been discussed from the perspective of
animal training [1, 2], where it is defined as shaping. It has also been referenced in an educational
framework [3] where the author introduces the idea of a spiral curriculum, a process by which
complex information is first presented in a simplified manner and then revisited at a more difficult
level later on. Similarly Vygotsky, from the view of language acquisition, introduces the idea of
scaffolding in order to provide contextual support for more complex ideas using simplified language
or visuals. Elman [4] draws parallels between the effectiveness of staged learning in humans, and in
artificial neural models. All of these concepts have been discussed in different fields but reference
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the same underlying idea of presenting information in a structured manner in order to exploit prior
knowledge.

Bruner [5] argues that the role of the teacher is not to present information by rote learning but rather
facilitate the learning process in order to teach students to become active learners: put simply, they
are “learning to learn”. There are many factors that teachers need to consider when constructing a
curriculum to achieve this goal, namely the difficulty and appropriateness of content.

Difficulty is measured relative to the zone of proximal development (ZDP), introduced by Vygotsky,
which is a representation of what a learner is capable of achieving without help, with some help, and
of concepts that are beyond the learner’s current ability. Appropriateness is a measure of whether
content being presented is within the ZPD or, in the case of scaffolding, comprises material from
within the ZPD.

Determining difficulty and appropriateness is traditionally a very laborious and resource intensive
task which entails experts conducting focus groups and analysis to decide where a particular question
or topic sits in the curriculum. This method is not only inefficient, it also assumes a static curriculum
for all students.

To address these limitations, we propose the use of reinforcement learning (RL) in order to learn
an optimal policy and curriculum for each student for the task of visual vocabulary acquisition.
Through this, we also discuss the similarities between the properties and features of RL and those of
language acquisition. We evaluate our models by simulating three types of student at different levels
of proficiency (beginner, intermediate, and advanced). We find that the system is able to identify the
difference in proficiency and adapt its curriculum to reflect this difference.

Previous uses of RL in pedagogy include [6] where it is used to teach students arithmetic, aiming to
minimise the time taken to answer questions. [7, 8] teach students database design using Q-learning.
Both [6] and [7, 8] evaluate results on simulated students. [9] use RL for maths while [10] use it
for physics. However, as far as we know, no previous work has been done in the space of visual
lexical acquisition where the principles of RL have explicitly been related to theories of language
acquisition.

The importance of curriculum learning in training deep learning models and agents has also been
discussed by [11] where its use is shown to facilitate the generalisation as well as the rate of
convergence and training of deep learning networks. [12] also illustrate the need for some form of
curriculum to improve the rate of learning for agents in a 3D simulation. However, it is worth noting
that no explicit RL is used to model curriculum by either [11] or [12].

2 Curriculum Q-Learning

In order to automate the process of curriculum learning for visual vocabulary acquisition, we must
first identify the key components of our RL system. The agent in this task is the automated tutor that
must learn what information to present to the student. The environment is the student with whom the
agent is interacting.

We assume that the student is a learner of English who has reached a given level on the Common
European Framework of Reference (CEFR) scale. CEFR is an international standard for describing
language ability, using a six point scale, from A1 for beginners, up to C2 for those who have mastered
language.

The RL algorithm used by our proposed system is Q-Learning, an off-policy algorithm for Temporal
Difference (TD) Learning. Q-Learning can be defined as follows:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Qπ(s′, a′)−Q(s, a)] (1)

where Q(s, a) is the Q-value of a state s and action a tuple. The α is the learning rate and γ is the
discount factor. γ models the fact that future rewards are less valuable than immediate rewards at a
given time t.
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A policy π maps states s to actions a. The aim of the Q-Learning algorithm is to find an optimal policy
π such that it maximises the long-term cumulative reward. The policy achieves this by acting greedily
and taking the action that presents the maximum Q-value given the state such that maxa∈AQ

π(st, a).

In action selection, there is a trade-off between exploiting what you have learnt so far and exploring
other state-action tuples. In this task we model that using ε-greedy. This means the policy will,
for most part, select the actions that provide the highest estimated future reward given the state.
However, with a probability of 1− ε, an action will be selected randomly and independently from a
uniform distribution. Action selection is usually drawn from a Q-Table which is a table that stores all
state-action Q-values.

In this task, a policy can be viewed as a curriculum as it decides what should be shown and in what
order. In order to learn a curriculum for vocabulary acquisition, we incorporate two models, the
CEFR level model (See Figure 4) and word level model (See Figure 5). The CEFR level model has 6
states which are defined by the 6 CEFR levels. The actions are whether the student should progress to
the next level, stay in the current level, or go back a level. The word level model has two states: active
(show the word), inactive (hide the word). The actions are remain in the current state or toggle state.
This architecture ensures that there is also an estimated long-term reward associated with showing a
student a particular word.

Modelling reward is often viewed as a challenging task in RL. For this application, a student is
rewarded negatively (-1) for getting a question correct and positively (+1) for getting it incorrect. The
motivation behind using these values is grounded in how we learn. The RL model acts greedily and
takes the action with the maximum reward, so if we review a concept we understand, then we are
not gaining knowledge by reviewing it again. Thus its value should be reduced. Alternatively, if we
get a question wrong, the benefit of reviewing that word is higher, and thus we should increase the
associated Q-value.

To evaluate the students’ understanding, we present a word in the form of an image. The objective for
the students is to describe the image, and based on their response, the Q-Learning algorithm and thus
the policy is updated. A valid response is defined by the target word associated with the image or a
near synonym of that target word, which is automatically generated by looking at the top 10 nearest
words to the target word in a pre-trained word2vec model [13]. The use of images was motivated by
the ease of generating teaching materials and widespread use of flashcards for vocabulary learning.
Additionally, there are countless studies that indicate the effectiveness of images for learning [14].

3 Experiments

For the CEFR level model, we use a learning rate α of 0.1, a discount rate γ of 0.9 and an ε value of
0.95. The word level model uses an α of 0.1, a γ of 0.9 and an ε value of 1 in order to prevent words
randomly going into an inactive state.

To evaluate the performance of our system, we simulated three types of students at varying levels of
proficiency: beginner, intermediate and advanced. In this case, we modelled the student’s probability
of getting a question correct as a negated Gompertz[15] distribution:

P (success | u, q) = 1− exp(−b exp(−c(l(q)− l(u)))) (2)

where l(u) denotes the level of user u calibrated to a scale of [0, 6]. Each integer in the scale represents
a corresponding CEFR level from A1 to C2 (e.g. 0→ A1, 1→ A2, etc.). l(q) represents the level
of an item q (i.e. a word which must be guessed from an image) calibrated to the same scale. The
parameter b determines the probability of success when student and item level match. This is set
to ln(0.75) to model a ‘typical’ pass rate of 75%. The calibrated curve is shown in Appendix C.
The curve is flatter at the lower end as students may be expected to be comfortable with most of the
material at lower CEFR levels than their own, whereas at higher levels, their ability is more uncertain.
We ran simulations where each student had 100 interactions with the system. An interaction can be
defined as when a student responds to a question.
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Figure 1: CEFR levels determined by the agent
for students of varying levels of proficiency over
100 interactions

Figure 2: Cumulative reward earned by students
of varying levels of proficiency from the agent
over 100 interactions

3.1 Results

The results from Figure 1 show how the agent responds to the various proficiency levels. The beginner
student remains relatively constant around A1 and A2 which is reflective of the student’s current
level. The intermediate student continually increases in CEFR level until level 3 (B2). The advanced
student, although tested with material beneath the actual level of proficiency, eventually reaches an
advanced or higher CEFR level. We can also see that the agent tutor pushes the student to what
can be interpreted as the edge of their ZDP. Figure 2 illustrates how the cumulative reward of the
students varies for students at different proficiencies. The curve experiences a downward slope as
the students reach their current level of vocabulary and are now being pushed to understand more
advanced material.

4 Discussion

We have shown through the use of simulations, that we can effectively model a personalised cur-
riculum for vocabulary acquisition using Q-Learning. Figure 1 and Figure 2 show clear indications
of varying agent behaviour for students at different levels of lexical proficiency. However, beyond
that, we have set up a framework that can be used in the future to extrapolate the difficulty and
appropriateness of new material. The system will serve as a test bed that will yield metrics to
determine where the content fits in the curriculum. Although this is foundational work, it lays the
building blocks for future pedagogically inspired RL architectures.

Through this work, we have also shown that there are many similarities between the principles of
RL and theories of language acquisition. Specifically, parallels can be drawn between the concept
of ε-greedy and Krashen’s Input Hypothesis or the i+1. The Input Hypothesis states that students
learn by comprehending language that is slightly above their current language level. The interactions
between the agent and the environment in RL is analogous to the social interaction approach to
language acquisition, specifically the equal importance of input and output. For this reason, we
use the Q-Learning algorithm as opposed to the SARSA algorithm mainly due to the properties of
Q-Learning that ensure an "optimal path" is followed i.e. the minimum number of steps to reach our
goal (language fluency).

However, there is scope for substantial extensions in this space. Deploying the system on-line in order
to collect user data will allow us to validate and improve our existing models. Incorporating memory
and spaced repetition learning [16], a phenomenon initially documented by Ebbinghaus (1885), in
order to optimise the policy and emulate cognitive processes is also an important extension that may
have a great impact on the learning output. Using deep learning models to approximate the Q-value
will allow the system to capture additional signals pertinent to language acquisition. Additionally,
moving towards an adaptive reward model that reflects difficulty to encourage memory retention.
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All of these models can also be applied to agents instead of students. As discussed previously, [12]
indicated the need for a curriculum in order to effectively train an agent in the simulated environment.
Creating a dynamic environment guided by a curriculum grounded in pedagogically inspired RL may
result in improved learning rates for the agent.
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Appendix A Curriculum Q-Learning System Overview

Figure 3: Overview of the system. A simulated student takes the place of a human actor in our study.

Appendix B CEFR Level and Word Level Q-Tables

CEFR Back Remain Forward
A1 0 1 0
A2 0 1 0
B1 0 1 0
B2 0 1 0
C1 0 1 0
C2 0 1 0

Figure 4: Q-Table for CEFR Level model. The table is biased towards the remain state at initialisation
to ensure that the student remains in the current CEFR level until it is no longer beneficial to do so.

Status Remain Toggle
Active 0.1 0

Inactive 0 0

Figure 5: Q-Table for Word Level model. The table is biased towards the remain state at initialisation
to ensure that the word is always seen at least once for each student.
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Appendix C Negated Gompertz Curve

Figure 6: Gompertz curve used as a model to simulate student success probabilities.
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Appendix D Preview of Web-based Curriculum Q-Learning

Figure 7: A preview of the web-based Curriculum Q-Learning platform.
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