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Abstract

Information Flow Control (IFC) is a powerful tool for protecting data in a computer
system, enforcing not only who may access it, but also how it may be used throughout
its lifespan. Intel’s So�ware Guard Extension (SGX) a�ords complementary protection,
providing a general-purpose Trusted Execution Environment for applications and their
data. To date, no work has been conducted considering the overlap between the two,
and how they may mutually reinforce each other.

�is dissertation presents Citadel, a modular, SGX-backed reference monitor to se-
curely and veri�ably implement IFC methods in the Linux kernel. Its prototype exter-
nalises policy decisions from its enforcement security module, providing a userspace
promise-of-access model with asynchronous ful�llment. By aliasing system calls, the
system transparently integrates with unmodi�ed applications, and amortises the per-
formance cost of integration by inferring processes’ underlying security contexts.

Observed results are promising, demonstrating a worst-case median performance
overhead of 25%. In addition, the Nginx webserver is demonstrated running under
Citadel; high bandwidth transfers exhibit near parity with the native Linux kernel’s
performance. �is work illustrates the potential viability of a symbiotic enclave-kernel
relationship for security implementations, something that may, in the long run, bene�t
both.
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Chapter 1

Introduction

Defending computer systems against malicious programs and enforcing the isola-
tion of protected components has always been exceedingly challenging. A system’s
Trusted Computing Base (TCB), de�nes the minimal set of components critical to estab-
lish and maintain system security and integrity. �is traditionally includes, amongst
others; the OS kernel; device drivers; device �rmware; and hardware. Compromise of
a trusted component inside a system’s TCB directly threatens any secure application.
One approach to hardening a system’s security is to minimise its TCB, diminishing its
potential a�ack surface.

An increasingly common trend is outsourcing a system’s physical layer to a foreign
party, for example, a cloud provider — this is bene�cial in terms of cost and �exibility,
but many security considerations assume that the physical layer itself can be trusted.
�is is not guaranteed when the physical layer is a virtual machine, in�ating the sys-
tem’s TCB with an external and transparent so�ware layer, the underlying hypervisor.

Trusted Execution Environment (TEE), have long been explored by the security com-
munity as potential protection against this. �ey generate isolated processing contexts
in which an operation can be securely executed irrespective of the rest of the system
— one example is so�ware enclaves. Enclaves are general-purpose TEE provided by the
CPU, protecting the logic found inside at the architectural level. Intel’s So�ware Guard
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Extensions (SGX) is the most proli�c example, a�ording a black-box environment and
runtime for arbitrary apps to execute under.

An alternative approach is to use Information Flow Control (IFC) to police system
components. Enforced using a reference monitor, IFC models permissible data use, ma-
nipulating systems at a granular level.

�is work explores methods of hardening Linux with an SGX-driven reference moni-
tor to track and protect host OS resources using IFC methods. Further, it aims to reason
what the future relationship between an OS and the enclaves it hosts should be, and
whether complete isolation between them is the natural answer in several common
situations.

Contributions

• Citadel, a prototype implementation of a modular reference monitor protected
using Intel SGX, empowering IFC techniques to operate with autonomy and pro-
tection from the host operating system. Enforcement is achieved using a Linux
Security Module (LSM) embedded in the Linux kernel, with an overall TCB of
only a minimal footprint of the kernel alongside the enclave application.

• A userspace interposition library to near-transparently integrate unmodi�ed ap-
plications to fully function under the new restrictions.

• A full port of the libtomcrypt cryptography library for use inside an SGX enclave.

• A rigorous investigation of performance implications, featuring the Nginx pro-
duction webserver. Worst-case performance shows a 24% decrease in request
throughput, with other trials reporting performance parity with native Linux.
Additionally we report a median overhead of 43µs (IQR 26 − 72µs, n = 106)
per a�ected system call without caching, matching or surpassing similar, non-
enclave-based, systems.
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Chapter 2

Background

2.1 Information Flow Control

IFC regulates how and where data is permi�ed to move and be transformed in a
computer system. [1] �is di�ers from access control, which de�nes what resources
may be used by an entity — IFC allows granular control over how they may be used
once accessed, including restricting propagation between components.

Formally, IFC de�nes and enforces a non-interference policy between abstract se-
curity contexts. A simple example is the distinction between unclassi�ed and classi�ed
data — here, information is only allowed to �ow up, ensuring that an unclassi�ed en-
tity does not learn anything marked as classi�ed. [2] �is relationship can generally be
represented as a partial ordering over security contexts, formulated as a la�ice. [3]

However, practical systems o�en require data�ow adhering to a more complicated
policy set — for example, supporting declassi�cation. [4] Work undertaken by Pasquier
et al., [5] the core in�uence of the IFC model developed in this project, constructs a pli-
able and e�cient decentralised IFC (DIFC) model suitable for provenance enforcement
and auditing in the Linux kernel.
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2.1.1 Motivation, History, and Decentralised IFC

IFC has recently grown in popularity as a powerful methodology for ensuring granu-
lar privacy whilst not unduly restricting access to sensitive information. IFC annotates
data records with opaque labels referring to their con�dentiality or integrity status.
Rather than simply restricting access to sensitive data, as an access control mecha-
nism would, IFC tracks data as it propagates — if an entity a�empts to move data into
an unknown, untrusted, or con�icting security context the IFC system prohibits this to
prevent improper release.

IFC originated in the mid-1970s [3] but has not yet seen mainstream adoption. �is
may be because early schemes were designed around the Multilevel Security (MLS)
doctrine set out in the Orange Book: [6] this locked IFC to a shallow set of broad la-
bels, mirroring existing institutional segregation (such as restricted, secret, top secret).
Policies were managed centrally, something easily applicable in se�ings with rigor-
ous hierarchies such as the military, but unwieldy in an organisation with manifold
security protocols.

�e majority of recent research has advocated decentralised information �ow control
(DIFC), introduced by Myers and Liskov. [7, 8, 9] DIFC is more granular than schemes
adhering to the MLS model, for example, creating two distinct security contexts for two
�les in the same folder. Policies are discretionary, allowing users to specify and modify
the enforced policies for assets they own.

2.1.2 Security Labels and the Reference Monitor

A DIFC system relies on tags and labels to annotate the entities it tracks. Let T be
a large set of opaque tokens, or tags. Tags are themselves meaningless, but used as
an abstract identi�er for an entity’s security context. A label, l ⊆ T , is a collection of
tags that are concretely a�ached to assets, such as �les; these form a la�ice under the
subset-relation partial order. For each process a there are two labels, one for secrecy,
as, and one for integrity, ai. For a tag t, t ∈ as implies, conservatively, that process a
has seen information associated with tag t. Likewise, t ∈ ai indicates that every input
to a has been endorsed for an integrity level marked with t.
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Notation Explanation
A→ B Rule α; a permissible information �ow between entity A

and entity B.
A⇒ B Rule β; a creation �ow, initialising B from A as its parent.
A A′ Rule γ; a context change, with A modifying its security

context in accordance with its capabilities.

A
t±x
↪−→ B Rule δ; priviledge delegation, with A passing a capability

t±x to B.

Table 2.1: Overview of the four core IFC events used in § 2.1.3.

Walkthrough — Secrecy Enforcement In a typical environment, a user can only
convince themselves that a text editor is safe to use if they, or someone they trust,
audits the program’s source code. With DIFC, however, it is possible to reason that
if the system can provide the following four guarantees, it cannot leak sensitive data
without the user’s permission.

1. If a process a read a �le with a secrecy tag t, then t ∈ as.

2. t ∈ as implies that a cannot communicate with another process, b, where t /∈ bs.

3. a cannot remove t from as without permission.

4. t ∈ as restricts a’s access to an uncontrolled medium, such as a network.

�e heart of an IFC implementation is its referencemonitor, which tracks the labelling
for each process, granting or rejecting permission before an operation is executed by
the OS. Contrasting solutions handle this process di�erently: Flume, [10] implements
a full system interposition layer, forcing all syscalls to pass through its userspace refer-
encemonitor before reaching the OS, whereasCamFlow [5] embeds its referencemonitor
in the kernel itself. In all schemes, however, this trusted component is responsible for
both policy and enforcement. �is project focusses on this implementation.
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2.1.3 Modelling

In centralised IFC schemes, the reference monitor is the only entity capable of cre-
ating, changing, and assigning tags. However DIFC gives all processes the ability to
create and modify tags for entities they own; thus, they alone have the right to declas-
sify them.

Notation As the model we build in § 4 is closest in spirit to CamFlow, we use the
same notation (Table 2.1).

Enforcing Safe Flows (α), below, describes the conditions in which a �ow can be
considered safe. �e recipient must be at least as privileged as the originator and can-
not accept information graded below its own integrity status. Here � denotes any
applicable preorder relation; this context uses inclusion (⊆). If a �ow is impermissible
it is denoted as A9 B.

A→ B ⇐⇒ As � Bs ∧ Bi � Ai (α)

Information produced within a security context may only �ow within the same con-
text or a related subcontext.

Entity Creation (β) shows correct initialisation of a new object’s security context.
Logically it must be held at the same level as the environment creating it. For example,
when a process creates a new �le, this must subject to the same tainting as the original
process.

A⇒ B =⇒ As = Bs ∧ Ai = Bi (β)

Vocational LabelManagement �e core mantra of the decentralised aspect of DIFC
is that processes are responsible for policies governing their assets. �erefore, a pro-
cess’s labelling must be dynamic. Generally, entities are sorted into two distinct cate-
gories;

• Active (processes), with mutable security contexts.
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• Passive (�les, pipes, sockets, etc.), which merely act as data vessels for active
entities.

Active entities may modify their labelling i� they have the capability to add or re-
move speci�c tags. �e set A+

s ⊆ T lists all the tags that entity A may add to its
security labelling, while A−s ⊆ T holds all the tags A may remove from its labelling.
�ese sets are modi�ed either during creation or in receipt of a delegated capability
from a peer. �e sets A±i ⊆ T also exist, performing the same function for integrity
labels. (γ) formalised this process.{

A′x ← Ax ∪ {t} if t ∈ A+
x

A′x ← Ax r {t} if t ∈ A−x

}
=⇒ A A′ (γ)

A notable restriction is that processes must be aware of the IFC constraints imposed
on them and how to interact with the system to manage their labels.

Capability Lifecycle and Delegation As per (β), an entity automatically inherits
the labelling of its creator without any capabilities (A±s , A±i = ∅), therefore requiring
capability delegation (δ). A capability held by A, t±x , where t ∈ A±x , is permi�ed to be
transferred to B to act on its behalf.

A
t±x
↪−→ B only if t ∈ A±x (δ)

Delegation is vital for webservers, for example. To transmit another entity’s infor-
mation over an untrusted socket the server must have permission to declassify it — i.e.
it must hold f−s , where f is the secrecy label of the information to transmit.1

1�e server process, W , must have Wi = ∅ as it holds a connection to an untrusted socket. �us
the integrity clause in (α) will not interfere.
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Figure 2.2: Abstract overview of SGX’s protection in an adversarial environment.

2.2 Intel® SGX

Intel’s So�ware Guard Extensions (SGX) was �rst detailed in 2013. [11, 12, 13, 14]
Its whitepapers described a novel approach to trusted computing, creating in-CPU con-
tainers with dedicated protected memory pools. �ese regions, called enclaves, cannot
be read from or wri�en to by an unauthorised party due to fundamental protection
mechanisms provided by the x86 architecture, even if running in ring 02 (Figure 2.2).
Enclaves guarantee both integrity and secrecy to the application running inside, even
in the presence of a malicious host.

Motivation Broadly, SGX secures sensitive applications by shielding them and their
resources from any access, and to guarantee an enclave’s integrity to end-users; this
is achieved using a�estation and measurement (see § 2.2.4). One use case [15, 16, 17]
is in cloud computing, where users are forced to trust an outside party with their data
and business logic. By distributing encrypted, yet executable, containers targe�ed at
a single, unique SGX core, users can be assured that their information is safe, despite
virtualisation. Only the provisioned CPU is able to decrypt and execute the enclave,
strictly in accordance with the restrictions of the CPU platform.
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2.2.1 Security Characteristics

At its heart SGX is designed to be trustworthy; this is achieved in several ways,
including robust enclave provisioning, sealing and a�estation. Intel summarises SGX’s
protections [12, 18] as follows;

• Memory is secured against observation and modi�cation from outside the en-
clave, using an in-die Memory Encryption Engine (MEE), [19] with a secret that
rotates on every boot. �is protection notably works against host hypervisors,
other enclaves, and anything running in supervisor mode.

• Enclaves can a�est to, or prove, their identity to a challenger with the help of a
permanent hardware security key for asymmetric encryption.

• So�ware calls are proxied to prepare and transfer control in and out of an en-
clave. Arguments are securely marshalled according to a static enclave de�ni-
tion.

• SGX does not defend against reverse engineering or side-channel a�acks: [20]
mitigating this is the developer’s responsibility.

2.2.2 Architecture and Implementation

�e SGX platform comprises several interlocking parts (Figure 2.3), building on the
core extended x86 instruction set. Information here as reported by [14, 21].

2.2.2.1 Hardware

Enclaves’ state is stored securely in Processor Reserved Memory (PRM) a set of pages
in system memory presided over by the MEE. PRM consists of two data structures; the
Enclave Page Cache (EPC) and the Enclave Page Cache Map (EPCM).

An enclave is de�ned by its SECS — generated when an enclave is created and stored
in a dedicated entry in the EPC. A SECS holds important metadata including; the en-
clave’s (system-)global identi�er, its measurement hash (MRENCLAVE, § 2.2.4) and its
memory usage.

2Linux uses two of x86’s four protection rings — 0 for the kernel, and 3 for userspace.
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Figure 2.3: A high-level overview of the SGX hardware and so�ware architecture.

�e EPCM provides an index into the EPC: it stores access control information, own-
ership and validity indicators, and a marker for a page’s designated use — this is not
accessible from so�ware.

PRM pages are only successfully resolved if the CPU is in enclave mode and the
EPCM corroborates the enclave’s ownership of the region; invalid requests are pre-
sented with an unused page from generic system memory. Direct Memory Access to
PRM is always rejected.

�e EPC is managed by the system’s hypervisor or OS as typical memory, but it
must use SGX-speci�c instructions. �is is to appease the MEE, which is responsible
for ensuring the integrity and con�dentiality of this process, encrypting and decrypt-
ing pages as they cross the PRM boundary. An SGX driver, isgx, is required to allow
userspace applications to use the platform and create/manage enclaves.

2.2.2.2 Userspace Services

Starting an enclave requires retrieving a launch token from Intel’s Launch Enclave;
this checks the enclave’s validity and identity. Access to the Launch Enclave and
other architectural enclaves is provided by the Application Enclave Services Manager

10



(AESM); the userspace SGX libraries facilitate communication. Other architectural en-
claves include;

• �e Provisioning Enclave — veri�es the authenticity of the platform and retrieves
an enclave’s a�estation key from the Intel Provisioning Service’s servers.

• �e �oting Enclave — provides trust in the identity of the SGX environment
and enclave being a�ested, by converting the locally generated a�estation key
to a remotely-veri�able quote.

2.2.2.3 �ird-party enclaves

Enclaves are always accompanied by a host application which acts as its untrusted
counterpart. �e host application calls the SGX SDK to build an enclave on its behalf
using an enclave image, packaged as a standard shared library (enclave.so) and re-
turns its global identi�er. Control is passed from the host application to the enclave
by invoking an enclave function via an ECALL. Execution �ow can temporarily leave
the enclave if it calls one of the host application’s functions via an OCALL. Execution
naturally leaves enclave-mode when an ECALL terminates. Both ECALLs and OCALLs
are de�ned statically in the enclave’s interface de�nition (enclave.edl), and the nec-
essary glue code is generated by the SGX SDK’s build toolchain at compile time; this
ensures calls crossing the enclave boundary are marshalled safely and correctly.

2.2.3 Enclave Lifecycle

SGX instructions can be separated into two distinct groups; privileged and unprivi-
leged (Table 2.53). �e following description is illustrated in Figure 2.4.

Preparing an enclave �e host application begins initiating the creation process via
isgx, the SGX driver. isgx allocates the requisite number of pages to run the enclave
〈1〉;4 this is tracked by the driver’s internal state 〈2〉.

3A few instructions irrelevant to the explanation given here are omi�ed.
4Numbers correspond to events in Figure 2.4.
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Figure 2.4: �e process of creating and initialising an enclave; details given in § 2.2.3.
Purple components belong to the SGX platform.

�e application next calls ECREATE with the metadata of the enclave to be loaded
〈3〉; the MEE checks that the pages being claimed are vacant and populates the SECS
page 〈4〉. Once complete the application prepares the remaining EPC pages using EADD
〈5〉 and loads the enclave’s code and data 〈6〉.

Next the enclave is measured — EEXTEND is called 〈7〉, triggering the MEE to update
the measurement hash in the SECS to mirror the current state of the enclave’s memory
〈8〉. A�er, the EPC memory is �nalised using EINIT 〈9〉: this operation requires the
application to retrieve the EINITTOKEN from the Launch Enclave, locking the execution
of the measured enclave to currently assigned processor core. Notably, pages cannot
be added a�er EINIT,5 and an enclave cannot be a�ested to or entered before it. Lastly,
the SECS is updated with the enclave’s �nal hash 〈10〉.

Stepping into the enclave A�er creation, an enclave may be invoked using the
EENTER instruction; this can only jump to points explicitly de�ned in the enclave’s

5Only strictly true in SGX v1, see § 2.2.6.
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interface de�nition, and switches the CPU core to enclave mode. SGX uses a �ag in
the CPU core’s �read Control Block to prevent any other logical core following the
current one into the enclave.

Interrupts and exceptions can be served to the enclave, just as with any other ap-
plication. Control, however, is not immediately passed over to the de�ned handler.
Instead the enclave’s current state is saved and cleared to prevent leaking. �e Asyn-
chronous Enclave Exit routine is then invoked and enclave mode disabled. Execution
post-interruption is restarted with ERESUME. Once execution completes, all registers
are erased and EEXIT called. Enclaves are terminated using the EREMOVE command; all
claimed EPC pages are marked as invalid and the SECS page deleted.

A signi�cant restriction of the SGX architecture is that enclaves cannot be entered
from ring 0; [22] the required instructions are simply not available. �us all host ap-
plications must run in userspace, making interoperation with the kernel challenging,
as discussed in § 4.2.

2.2.4 Attestation

An essential feature of the trusted computing model SGX creates is a�estation, the
process of verifying both the authenticity and integrity of components cryptograph-
ically. SGX achieves this by creating two signing identi�ers per enclave; MRENCLAVE
and MRSIGNER. [13, 23]

MRENCLAVE acts an a unique identi�er for enclave’s contents. It is generated by
hashing the instructions and data passed when creating the enclave with ECREATE,
EADD, and EEXTEND; the value is �nalised and stored in the SECS on EINIT. �is value
depends on the exact content and ordering of the enclave’s EPC pages. As long as the
enclave’s source remains the same, so will its MRENCLAVE.

MRSIGNER, also known as the enclave’s Sealing Identity, is generated during the en-
clave build process — all production enclaves need to be signed using an RSA key
provided by the compiling user (the Sealing Authority). �e public key from this pair
is stored in SIGSTRUCT, the Enclave Signature Structure. During an enclave’s launch
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Execution Mode Instruction Function

Ring 0

ECREATE Generate and copy the SECS structure to a new
page in the EPC, initialising a new enclave.

EADD Add a new EPC page for the current enclave; this
is used to load initial code and data.

EEXTEND Updates the enclave’s measurement during a�es-
tation; modi�es the SECS.

EINIT �e terminal instruction in an enclave’s initialisa-
tion, �nalising its a�ributes and measurement.

EREMOVE Permanently remove a page from the EPC; usually
invoked during enclave destruction.

Ring 3

EENTER Transfer control from the host application to a
pre-determined location in an enclave.

ERESUME Re-enter the enclave a�er an interrupt/exception
and resume execution.

EEXIT Restore the original operating mode at the loca-
tion EENTER was triggered and �ush the TLB.

EGETKEY Access platform cryptography keys required for
a�estation and sealing.

EREPORT Generate a report for an enclave’s a�estation key
for an a�estation process.

Table 2.5: Overview of notable SGX x86 instructions in an enclave’s lifecycle. [22]
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its signed compile-time MRENCLAVE value (held in SIGSTRUCT ) is decrypted and cross-
referenced with a freshly-computed runtime MRENCLAVE value to detect tampering.
MRSIGNER is the same for all enclaves signed by the same Sealing Authority.

Local Attestation Two enclaves resident on the same system are able to a�est their
identities to each other using their MRENCLAVE and MRSIGNER values; this usually pre-
cedes the establishment of a shared secret (using a variant of Di�e-Hellman backed by
the platform’s master SGX key) for con�dential communication between them.

RemoteAttestation �e Intel speci�cation also enables an enclave to a�est its iden-
tity to a remote party. �e system’s �oting Enclave veri�es an enclave’s local quote
and creates a digital signature of it using the CPU’s permanent hardware SGX private
key. Using an Enhanced Privacy Identi�er (EPID) [24] allows this process to complete
anonymously, relying on information encoded in the CPU during manufacturing. �e
Provisioning Enclave assists in this process, especially as production enclaves are re-
quired to a�est with Intel’s provisioning service [23] before executing. Remote a�es-
tation is not explicitly required in this project, hence will not be covered further.

2.2.5 Sealing

Sealing is the encryption of data using a key unique to the generating enclave on a
particular platform. SGX o�ers two policies for deriving the encryption key based on
the platform’s Root Sealing Key — relative to the current enclave (MRENCLAVE) or the
current enclave’s Sealing Authority (MRSIGNER). �ese serve many use cases, including
allowing state to persist through enclave upgrades.

2.2.6 SGX Versions

�ere are currently two versions of SGX available — the details given here relate to
v1 as this project will be compatible with both. v2 o�ers a number of improvements on
which this project does not rely, including: dynamic memory management, eased pro-
duction enclave restrictions (‘Flexible Launch Control’), increased PRM size support,
and support for virtualisation.
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2.3 Aspects of the Linux Kernel

Linux needs li�le introduction. Created in 1991 as an open-source alternative to
UNIX, it now powers over 90% of the cloud and 85% of smartphones. With almost
25,000 contributors to the kernel, it is immensely complex, with numerous interlocking
parts. �is section provides a brief overview of a small subset of them to support the
information given in § 4.

2.3.1 Virtual File System

Linux represents almost every component as a �le, including sockets, terminals,
and driver interfaces. �e VFS is the transparent layer that provides this abstraction,
routing requests to the correct underlying implementation. �is virtual interface relies
on the following mechanisms.

Superblocks �e superblock a�ached to an entity represents the characteristics and
properties of the �lesystem in which it sits. An important marker held in the su-
perblock is it’s magic value; this prede�ned code6 indicates the underlying implemen-
tation the �lesystem belongs to.

Inodes �e inode data structure represents information about a single �le existing
on a �le system. All objects, not only �les, are backed by inodes. No pathname is
assigned at this level; this is provided at a higher level of abstraction. An inode does
however indicate ownership, access restrictions and content type, and is identi�ed by
its inode number.

Dentries Each item in the direct entry cache (dcache), shortened to dentry, represents
a connection between an inode its path in the VFS. �is glue layer is responsible for
building the tangible folder structure, and as the name suggests, metadata caching. A
�le consists of a dentry-inode pair.

File descriptors Whenever a process opens a �le, it is presented with a �le descriptor
by the kernel. �is structure is unique to a process, providing the gateway between

6De�ned in include/uapi/linux/magic.h.
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the process and the underlying �le it describes. All active descriptors can be viewed at
/proc/<pid>/fd/; for standard processes 0 globally refers to stdin, 1 to stdout, and 2
to stderr. Reads and writes to a �le (or socket, pipe, etc.) are performed on the relevant
�le descriptor, not the object directly.

2.3.1.1 Extended Attributes

Files can have additional, external, key-value pairs a�ached to them. �ese at-
tributes, shortened to xa�rs, are permanent and saved to disk alongside the �le’s con-
tent. Values must be in the form of a null-terminated string, however they are op-
tional and may be le� empty if the a�ribute is just a �ag. xa�rs are namespaced
to de�ne di�erent classes of functionality; the user namespace is open to all (e.g.
user.example attribute), but trusted, system, and security are reserved for
speci�c uses by the kernel — the security namespace belongs exclusively to LSMs
(§ 2.3.2).

2.3.1.2 sysfs

sysfs is a pseudo-�lesystem provided by the VFS, that the kernel uses to export its
subsystems via a virtual �le interface (/sys). Speci�c instantiations of sysfs are used
for various purposes — for example, LSMs and SecurityFS (/sys/kernel/security).

2.3.2 Linux Security Modules

Linux supports the inclusion of third-party security models in the kernel itself using
a uni�ed framework, LSM. �is provides developers with hooks into kernel functional-
ity at every point a userspace syscall is about to access fundamental kernel primitives,
such as inodes or task control structures. Each of these hooks can in�uence the be-
haviour of the kernel by allowing or denying the operation.

LSM a�aches a void* security �eld to every instance of kernel primitives, such as
struct inode, to allow security implementations to a�ach additional state to each,
tracking them as appropriate. Decisions taken within an LSM a�ect all aspects of a
Linux system; superuser privilege cannot override it and every component in the sys-
tem can be restricted.
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2.3.2.1 Integrity Measurement Architecture

Linux’s IMA subsystem is responsible for calculating the hashes of �les and pro-
grams as they are loaded (measurement), verifying them against an allowed list if re-
quired (appraisal). Its driving purpose is to detect if �les have been maliciously altered
remotely or locally; the �le’s hash is stored as an xa�r (security.ima). IMA supports
many use cases, the majority of which are complementary to the LSM framework, but
we shall focus on one here — EVM.

�e Linux Extended Veri�cationModule (EVM) protects xa�rs in the security names-
pace — this covers both the IMA hash and any labels created by security modules. Two
tamper-detection methods are provided:

1. �e HMAC-SHA1 hash of the security namespace is stored as security.evm
for reference, and

2. A digital signature of this value is stored alongside using a key that is sealed
either using a Trusted Platform Module [25] or passphrase.
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Chapter 3

Related Work

3.1 Flume and CamFlow

Both Flume [10] and CamFlow [5] present practical DIFC systems for generic, OS-
level protection in Linux. �eir models are not dissimilar, with CamFlow re�ning the
basic Flume approach. A detailed overview of the CamFlow model has already been
presented in § 2.1, but there are important di�erences in the implementation of the
two works.

Flume Flume takes the form of a userspace reference monitor. Processes con�ned
by Flume are not able to perform most syscalls directly — an interposition layer replaces
syscalls with Interprocess Communication (IPC) to the reference monitor, which en-
forces IFC policies and ensuring operation safety on processes’ behalf. �e majority of
complexity lies in the reference monitor, with its LSM only a small auxiliary compan-
ion. �e authors report a 30− 40% overhead.

CamFlow In contrast, the CamFlow core IFC implementation lies entirely within its
LSM, e�ciently exploiting kernel functionality to minimise the overhead it creates.
File operations in microbenchmark tests produce an 11% average overhead.
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3.1.1 Other IFC Systems

Many di�erent approaches to IFC have been published; the most in�uential to this
project will be brie�y summarised.

Asbestos is a prototype OS by Efstathopoulos et al. [26] that provides entity labelling
and isolation as an OS primitive. Applications express individual policies via a custom
kernel interface, and all data�ow is protected, including IPC and system-wide infor-
mation �ows. Additionally, a novel event abstraction and sub-process security contexts
allows processes to act on behalf of multiple entities. HiStar (Zeldovich et al. [27])
builds on the Asbestos model, minimising the size of the system’s TCB — the system
has no notion of superuser, with no code other than the kernel being fully trusted. An
important consequence of this is that the risk of data leaking via covert channels is dras-
tically reduced. DStar (Zeldovich et al. [28]) translatesHiStar into a distributed context,
translating labels between IFC-enabled hosts with the help of a globally-meaningful
set of tags. In contrast, Aeolus (Cheng et al. [29]), derived from Asbestos, deploys a
common TCB across all nodes in a distributed system to enforce IFC; it �lters I/O and
both inter- and intra- process communication.

Laminar (Roy et al. [30]) takes a similar approach to Flume, using an LSM for policy
enforcement, but extends it with customisation to the Java Virtual Machine (JVM). [31]
to support thread-level isolation and heap-object protection. �is approach has proved
powerful in applying DIFC to popular processing systems such as MapReduce [32] and
Hadoop. [33]

3.2 Interoperation between Linux and SGX

�e relationship between SGX and Linux has at times been di�cult; Intel has been
a�empting to upstream isgx, the SGX driver, into the mainline kernel for six years.1 A
source of extreme friction lies in the fact that enclaves are not operable in ring-0, forc-
ing research seeking to use SGX to harden the kernel itself to be creative integrating
it.

1�e linux-sgx patch-set has seen 32nd revisions; https://lore.kernel.org/linux-sgx/.
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�e TresorSGX [34] project was one of the �rst to consider the practicalities of this
relationship seriously, constructing an externalised interface for kernel functionality
to be o�oaded to an enclave via a specialised kernel module. Mainly focusing on
disk encryption, the prototype achieved its security goals but struggled with perfor-
mance, only performing at 1% the bandwidth of its kernel-embedded counterpart. �e
most prevalent performance hit came from kernel ↔ enclave communication over-
head, made worse by the need to exit and re-enter ring-0.

Various other studies touch upon these issues, including:

• Custos (Paccagnella et al. [35]); tamper-detection for audit logs using SGX. �e
design a�aches itself to the pre-existing Linux Audit Framework, deliberately
avoiding execution tied to the kernel. Performance overheads are 2− 7%.

• DelegaTEE (Matetic et al. [36]); credential delegation between two computer sys-
tems by enforcing either centrally brokered or peer-to-peer. discretionary access
control. �e system does not operate at the OS-layer, but presents an e�ective
capability-sharing system for modi�ed applications via an SGX mediator.

• NeXUS (Djoko et al. [37]); practical access control for remote storage systems
such as Google Drive. �e design uses a stackable �lesystem to interface with
encrypted volumes — SGX is used to protect and share these encryption keys.
Performance overheads are 100%.

3.3 Data�ow Protection using SGX

Research into applying the protections a�orded by SGX to large-scale distributed
computation accelerated recently — the most prominent projects are detailed here.

• SCONE [38] presents a secure container framework for Docker. [39] Using a se-
cured version of the standard library for C it transparently encrypts/decrypts I/O
crossing the container’s boundary. �e authors claim×0.6−1.2 the performance
of native throughput.

• VC3 [40] secures Hadoop MapReduce computations — the Hadoop platform is
not considered part of the TCB, thus allowing the system’s security invariants
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to remain una�ected if it were to be compromised. �e reported performance
overhead is 8% (for full read/write integrity).

• �e Maru project [41] added support for running distributed Apache Spark in
SGX enclaves. Data residing outside of a worker in HDFS is sealed, removing
the needs for the need for Hadoop to be a part of the TCB. A notably di�culty
was porting the JVM to function e�ciently inside an enclave; SGX v1 restricts
the EPC size to 128MB, severely penalising applications that struggle to run in
relatively small memory footprints.

• Ryoan [42] provides a distributed sandbox environment to con�ne untrusted ap-
plications running on sensitive data in the cloud; a speci�c use case is computa-
tion outsourcing. It uses con�ning labels to create a weakened form of IFC track-
ing; processing nodes must be stateless and once tainted by a request cannot
access resources outside the execution environment. Enforcement is managed
both by SGX and NaCl [43] for the host application.
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Chapter 4

Citadel

In this chapter we shall introduce and detail a prototype implementation of a modu-
lar, SGX-protected reference monitor — Citadel. We start by considering this project’s
motivation and discussing the challenges faced. �en, we explain the three-part ar-
chitecture, relating design decisions to its DIFC model. We discuss the architecture’s
performance and e�ectiveness in § 5.

4.1 Motivation

Since its introduction in Anderson’s 1972 report, [44] the reference monitor concept
has proved a reliable workhorse for many security models. It does not refer to any
exact policy, nor limit itself to any particular implementation — its abstractness is one
of its greatest strengths, reserving any judgement about what policy is appropriate in
a particular se�ing. [45]

Fundamental Properties of a Reference Monitor

• Always invoked. To guarantee that adversaries are unable to bypass the system’s
security policies, every access to the system must be mediated

• Evaluable. It “must be small enough to be subject to analysis and tests, the com-
pleteness of which can be assured”; [44] to be trustworthy, it must be auditable,
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with, ideally, a restricted TCB.

• Tamper proof. To ensure that an a�acker cannot disable the authorisation mech-
anisms mandated by the security policy, the integrity of a reference monitor
cannot be in question.

No computer system is ever completely secure, and Linux is no exception. Having
grown by 1.7 million lines of code (LoC) in the past year alone, to 27.8 million LoC in
total,1 bugs are inevitable — almost 2000 have been reported in the past year,2 and 662
severe bugs are still outstanding.3 �erefore we must question whether Linux alone
can provide a reference monitor implementation the guarantees it requires, [46, 47]
thus motivating the use of SGX.

Applying SGX to this problem brings two a�ractive bene�ts;

• �e system’s IFC policy can be evaluated both during o�ine analysis and online
using a�estation, building other enclaves’ con�dence in the underlying system.

• SGX’s hardware protections are very capable of defending a reference monitor’s
state, even if adversaries have ring-0 privileges or in the presence of a kernel
bug.

4.2 Challenges

�e natural location for a reference monitor is embedded directly into the kernel,
in the path of syscalls’ control �ows. CamFlow does this using the LSM framework,
silently tagging processes and other entities as they are encountered by the kernel, and
additionally providing an external LSM-interface for any active changes. However, an
SGX enclave is incompatible with this work�ow (§ 2.2.3) as it cannot execute along-
side kernel code. �us a signi�cant, unavoidable design feature is that the reference
monitor must be distributed across rings 0 and 3 — an enclave policy component, and
an LSM for enforcement.

1https://www.theregister.com/2020/01/06/linux_2020_kernel_systemd_code/
2https://bugzilla.kernel.org/
3https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
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Figure 4.1: Abstract syscall control �ow route. Grey components show the natural
Linux design. Green additions highlight the externalised enclave LSM component.

�e disruption this change causes could severely impact performance; Figure 4.1
highlights the signi�cant change to overall control �ow. Most notably, externalising
part of the LSM to an enclave forces, in the worst case, an additional pair of context
switches for each syscall.

Given a ring-3 component is unavoidable, we seek to minimise the overhead caused
by its integration, while maintaining safety (every operation must be mediated). �is
situation is reminiscent of exokernels; [48] forcing a portion of the system into userspace
could, if treated carefully, help overall performance. [49]

Two architectures, as illustrated in Figure 4.2, were initially considered.

1. An isolated extension of the LSM. Only the security implementation commu-
nicates with the policy enclave, acting as a naı̈ve reimplementation of a fully
self-contained LSM, and using an additional kernel module as an I/O relay.

2. An integrated userspace service, through which permission is requested ahead
of time and decisions stored in the LSM until needed. Back�ow of information
is facilitated asynchronously, but no additional kernel relay is required.

Architecture 1 can be implemented without changing the IFC model presented in
§ 2.1.3, reducing concerns regarding correctness and safety. However it adds signi�cant
overhead to the critical sections [50] of core LSM functions, in most cases while the
kernel holds locks for various objects being accessed.
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Figure 4.2: Two possible enclave integration designs.

Architecture 2 is more �exible, requiring all negotiation be conducted ahead of time,
and importantly, without leaving userspace: any overhead only impacts the applica-
tion, leaving the kernel’s critical sections to execute with minimal interference. A
notable downside, however, is that the system’s security model will need an extension
because policy decisions and enforcement are no longer one and the same.

Preliminary experiments showed that performance of the two architectures was sim-
ilar in light workloads, but that Architecture 1 degrades signi�cantly due to resource
contention. Additionally, as will be explained in § 5.2.1, the dependence on a kernel
module con�icts with the desired constrained TCB of the system. For these reasons
Architecture 2 forms the basis of the prototype.

An additional challenge is one of incomplete information — an enclave is not privy
to internal kernel datastructures such as task struct, which will store the taint and
capabilities of processes. A potential solution would be a request-response model via
a custom kernel interface for any queries, though the performance impact would be
severe, requiring additional context switches. Instead, the approach adopted creates
an abstract interface that purposefully removes the minutiae of the underlying system.
Any solution must be trustworthy and safe, and malicious entities must not be able to
exploit any eventually consistent components. [51]
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As a �nal comment, it must be noted that SGX is not �awless; § 5.2.3 discusses the
impact of this on the project.

4.3 �e Citadel IFC Model

Before work on the �nal Citadel implementation began, we constructed a formal-
isation describing the distributed nature of its design. A model helps reason about
the safety and correctness of the �nal system, and provides the notation to properly
discuss its features. Our model directly extends the one presented in § 2.1.3.

4.3.1 Reservations

Previously we de�ned the concept of a safe �ow, A→ B, which underpins our IFC
restrictions. In previous works permission is granted while implicitly considering how
the �ow is to take place (4.1). An isolated enforcement component does not understand
the concept of �ows, forcing policy decisions to be de�ned explicitly; Citadel uses
reservations for this purpose (4.2). �is distinction is simple but very important when
introducing laziness and other optimisations between the two halves of the reference
monitor.

operation→ reference monitor decision−−−−−→ {0, 1} (4.1)

operation→ policy reservation−−−−−−→ enforcement decision−−−−−→ {0, 1} (4.2)

Let Ω be the set of all operations mediated by the reference monitor, for example,
file read or socket open, andR, the set of all reservations, as follows.4

R = T ×℘(Ω)

Further, we de�ne a shorthand, tα;

r ∈ R . (r = (t, α) = tα =⇒ t ∈ T ∧ α ⊆ Ω)

4Recalling that T is the set of all tags.
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For a process A, Ar ⊆ R de�nes the set of all reservations it holds. Once a decision
has been made, it is important for a reference monitor to be able to change it, revoking
access if required. �us we specify validity with an indicator function, V : R 7→ {0, 1}.
A reservation can only be used if valid; invalid reservations are discarded.

4.3.2 Permissible Operations

Satis�ability To determine if an operation is permissible, the constraint reservation
representing it is compared against reservations held by the process. For example,
t{file read} is the constraint for reading a �le tagged t.

A constraint τx is said to be satis�ed by a reservation τ y (τx - τ y) if the tags match,
the reservation is valid, and y permits at least the required form of access (4.3).

σα, τβ ∈ R . ( σα - τβ ⇐⇒ σ = τ ∧ α ⊆ β ∧ V(τβ) ) (4.3)

From here we de�ne a permissible operation, A ω−⇀ t; process A may perform oper-
ations ω on an entity tagged t. An operation is only permissible if the process holds a
reservation explicitly granting permission (4.4).

A
ω−⇀ t ⇐⇒ (∃ tα ∈ Ar =⇒ tω - tα) (4.4)

To bridge the gap between permissible �ows and operations, a �nal de�nition is
required; a speci�c permissible �ow, A ω,τ7−−→ B, meaning thatAmay send information
to B using operations ω, via entities tagged with τ . �us:

(∃ω, τ . A ω,τ7−−→ B) =⇒ A→ B (4.5)

A
ω,τ7−−→ B =⇒ (∃ω′ . A ω′−−⇀ τ ∧ ω ⊆ ω′) (4.6)

Together, these de�ne the relationship between an abstract policy space (A → B,
§ 4.4.2) and concrete implementation (A ω−⇀ τ , § 4.4.1). A policy decision may grant
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a greater set of permissions than asked for (4.6) — e.g. allowing both read and write
when only write was explicitly requested. [10, 52]

Some small updates are required to make the existing rules consistent with the new:
reservations are not transferred when creating a new entity (4.7), and reservations
are not a�ected by capabilities as they represent a centralised component of the DIFC
system.

A⇒ B =⇒ As = Bs ∧ Ai = Bi ∧ Br = ∅ (4.7)

4.3.3 Transient Entities

Alongside active and passive entities, we introduce a third type; transient entities.
�ese are passive entities that are privately held by an owning active entity; they are
used to model Linux functions such as pipe() and unclaimed tainted �les.

To facilitate this, all processes are assigned a unique tag p ∈ T , and any �les it
creates are initially also be tagged with p. Using P as the set of all process identi�ers,
we de�ne I as the function returning a process’s transient identi�er;

I : P 7→ T (4.8)

�e expression for a permissible operation now becomes;

A
ω−⇀ t ⇐⇒ I(A) = t ∨ (∃ tα ∈ Ar =⇒ tω - tα) (4.9)
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Figure 4.3: High level overview of the Citadel architecture.

4.4 Implementation

Citadel consists of its LSM, citadeld, and libcitadel. Each plays an essential,
symbiotic role in the reference monitor’s operation. �e prototype is over 9,000 lines
of C and C++, extending the Linux kernel build system (§ 4.4.6). �is section presents
Citadel’s architecture, guided by Figure 4.3.

Analogy �e system is well illustrated by the will-call system used by theatres —
customers (processes) reserve tickets (permission) to a�end a show (perform an opera-
tion) ahead of time via phone or the internet (citadeld), but only receive their tickets
(reservations) at the venue (LSM) on the day (at the point of execution).

Citadel’s LSM comprises its enforcement domain (§ 4.4.1), and citadeld its policy
domain (§ 4.4.2). Enforcement is policy-agnostic, implementing an abstract, tagged taint
tracking system that exposes decision points to policy in�uence via reservations. Pol-
icy components need not be aware of the enforcement strategy to successfully express
their protection schemes. Inter-domain communication is discussed in § 4.4.3.
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Figure 4.4: Accesses across the taint boundary taint the untainted party.

4.4.1 Enforcement

�e Citadel LSM tracks all entities within the Linux system by a�aching a small
data structure (< 48 bytes) to each; it computes and tracks a conservative notion of
taint for each to ensure safety. Tainting in Citadel is dynamic and additive — enti-
ties are only policed if involved in a successful operation crossing the taint boundary
(Figure 4.4). In additional to automatic propagation, the policy domain may amend the
taint for most entities.

�e following metadata is tracked for each entity:

— Active. Processes only — these require many markers and �ags, including; taint
and its reservation list.

— Passive. �ere are many forms of passive entity, the most prevalent being �les
and other inode-backed structures. �ese carry taint, an identi�er (tag), and an
anonymous �ag. Non inode-backed tracking is discussed in § 4.4.2.5.

4.4.1.1 Identi�ers

Entities are tagged with a single, randomly-generated 128-bit identi�er, A security
policy may maintain internal pseudonyms for secrecy and integrity, but must convert
back to the system tag for enforcement.

4.4.1.2 Extended Attributes

An inode-backed entity’s taint �ag and identi�er are copied to xa�rs. �ese occupy
the security.citadel namespace, and ensure that taints and identi�ers persist be-
tween boots. Certain entities may be anonymous, indicated by an anonymous �ag, if
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their identi�er is not present as an xa�r, either because the entity does not support
xa�r or those with temporary identi�er (§ 4.4.1.5).

4.4.1.3 Permissions

Tainted processes must hold a valid reservation to perform any operation allow-
ing data to �ow to another entity — enforcement strictly follows the rules in § 4.3.2.
Untainted processes bypass all checks, and thus lie outside the IFC model; security
implications are discussed in § 5.2.2

4.4.1.4 Reservation Cache

When the system’s policy enclave presents a new reservation to the LSM, it is stored
in the reservation cache. Implemented as a red-black tree, this maps a process’s identi-
�er to a linked list of its pending reservations. �is intermediary storage is necessary as
LSMs are event-driven, and thus can only access an entity’s state when it is presented
for review. Before a permission check is carried out, the LSM updates the process’s
reservation list by;

1. Installing pending tickets. All reservations are moved to its internal reservation
list, ready for inspection.

2. Disposing of expired entries. When a reservation is inserted into the reservation
cache, it is timestamped with an explicit expiry date — this lifetime is 15 seconds
by default.

4.4.1.5 Entity Creation

Every newly spawned process is privately tagged by the LSM as if it were a passive
entity (§ 4.3.3). �e purpose of this identi�er is to enable association any private, pas-
sive entities it creates. �is includes the �le descriptors provided by pipe(), and any
new �les it creates using open(). Processes always have permission to access their
transient entities, and external entities can only gain access rights if they;

1. Are a child processes requesting access to their parent, or
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2. �e process o�cially claims them via the policy enclave, giving them an inde-
pendent tag and removing the entity’s status as transient.

fork() In Linux, child processes are initially exact clones of their parent, with ac-
cess to the same state and �le descriptors. �us children of tainted processes are also
tainted, but importantly without the same rights as their parents — open �le descrip-
tors will not function without revalidation (§ 4.4.4), and children must request the right
to their parent’s transient entities to use pipes or similar. It is the policy enclave’s
responsibility to validate that the security contexts of the parent and child have not
diverged.

4.4.2 Policy Components

citadeld represents the policy counterpart to the LSM’s enforcement, including
the core SGX enclave. citadeld is modular, hosting an independent policy module
si�ing on top of an enforcement translation library (Figure 4.5).

4.4.2.1 Abstract Policy Module

�e policy module is presented with a simple, event-driven interface; this stream-
lines their implementation, allowing more emphasis to be put on correctness. �eir
implementation is based around a single method, through which their permission is
sought when required; asm handle request(3).

�e simplest possible policy is that any operation is permissible. �e request param-
eter, amongst other things, holds the target identi�er and set of operations.

1 citadel_response_t asm_handle_request (pid_t pid,

2 struct citadel_op_request *request, void *metadata) {

3 return CITADEL_OP_APPROVED;

4 }

�is can be considered to determine the validity of an operation, A ω−⇀ t, based on
its knowledge of any implicated �ows (A→ ∗).
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Figure 4.5: Overview of the components inside citadeld.

Operations Entity operations, Ω, are presented as citadel operation t, a simple
bit mask over the operations Citadel recognises. Similarly, policy decisions are rep-
resented using citadel response t; these may be approved, rejected, error, invalid,
granted,5 and forged.6

4.4.2.2 Host Application

�ere are several steps before presenting requests to the resident policy module
(§ 4.4.3). Requests o�en refer to absolute �lepaths, requiring retrieval of their tags, if
they exist — security xa�r serve these requests. Translation is performed pre-emptively
depending on the operation requested, and results are cached in a translation cache to
minimise overhead. �is is implemented using sparsehash,7 and great care is taken to
detect stale entities that may confuse the internal decision process.

5Approved, and con�rming that the process is recognised as the owner of the entity.
6See § 4.4.5.
7https://github.com/sparsehash/sparsehash
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4.4.2.3 Enforcement Interface

�e policy module is interchangeable, but the enforcement interface acts as the en-
clave’s backbone. All requests are routed through it to detect forgery or invalid data,
and all information leaving it is forma�ed and signed8 as appropriate. �e process of
installing reservations created by the enforcement interface is detailed in § 4.4.3.

4.4.2.4 libtomcrypt

We ported libtomcrypt,9 a leading open-source cryptography library, to function in-
side an SGX enclave as citadeld requires many encryption mechanisms on top of
those provided by SGX. Porting was achieved by replacing libtomcrypt’s backing preci-
sion arithmetic library with an SGX-aware version of GMP,10 and forcing it to statically
allocate its memory (as SGX v1 lacks support for dynamic memory management). Fur-
ther changes rewrote the internal random number generator to use the one provided
by SGX, and rework its exception strategy to remove abort(), an illegal instruction
inside an enclave.

4.4.2.5 Shared Memory

Citadel also supports the tagging and restriction of shared memory (SHM). �is
is managed directly using System V identi�ers granted to allocated memory segments
instead of inodes. Internally, restrictions function as �les do, but per-access mediation
is not directly possible – we can only detect when segments are allocated and a�ached.
�us this work�ow requires special consideration, and a new reporting mechanism
from the LSM back to the policy enclave. Using a specialised xa�r interface (4.10) to
drive a request-response model, the LSM tracks and reports the PIDs of everything
that has touched an SHM segment.

security.citadel.shm.[shm id] −→ {145, 267, 1120, ...} (4.10)

8Encryption is discussed in § 4.4.3
9https://github.com/libtom/libtomcrypt

10https://github.com/intel/sgx-gmp
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4.4.3 Communication Pathways

�ere are three notable I/O pathways between components within Citadel;

1. Applications←→ Policy Enclave.
All application requests (via libcitadel, § 4.4.4) are sent to the policy enclave
using a standard domain socket; /run/citadel.socket. To ensure that all pro-
cesses can communicate with the reference monitor, a special tag, τ = 2128 − 1,
is assigned, asserting the reference monitor’s ownership of it and whitelisting it
in the LSM.

2. Policy Enclave←→ LSM.
Communication uses two mediums; SecurityFS and xa�rs. All messages are en-
crypted using AES-256-GCM [53, 54]; the key is chosen during initialisation
(§ 4.4.3.1).
Reservations are installed using a custom SecurityFS interface11 and synchronously
inserted into the reservation cache. �e policy enclave may invoke an operation
directly on a �le using setxattr(), which the LSM intercepts, triggering it to
enact the required changes. One common use of this is entity tagging.

3. LSM −→ Applications.
To verify their identities with the policy enclave, applications present a ptoken
with each request (§ 4.4.5.1) which is generated by reading from a public Securi-
tyFS interface.12

Additionally, libcitadel occasionally needs to check the tag associated with a
path or �le descriptor; this is managed using the existing libc xa�r methods.

4.4.3.1 Initialisation and Encryption

Whenever the system boots, the LSM is �rst to come online — citadeld may start
any time a�erwards, meaning that the LSM must be capable of operating indepen-
dently. In this case the system will tend towards a state of complete lockdown (for
tainted processes). �us the mechanism by which the LSM and policy enclave ini-
tialise communication is vital for secure operation; Citadel achieves this with a pair

11/sys/kernel/security/citadel/update
12/sys/kernel/security/citadel/ptoken
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of 2048-bit RSA keypairs, one for the enclave (EP/S) and one for the kernel (KP/S).

SGX does not provide protection against reverse engineering, thus the enclave’s
keys must be provided as a sealed entity; sealing here uses MRSIGNER, allowing any
policy enclave provided by the sealing authority to fully function, and is compiled into
the kernel, available via SecurityFS.13

Once a policy enclave has been initialised it must verify itself; the LSM issues a
random challenge14 encrypted using the enclave’s public key, and expects a reply using
the corresponding private key.

LSM→ Enclave : {challenge}EP

Enclave→ LSM : {challenge, PID, identi�er, aes key, ...}ES

Given ES is only held sealed, any entity providing a valid challenge is trusted and
considered part of the Citadel TCB. �e challenger’s PID is stored to detect any ad-
versarial replay messages. RSA is only used for this initial exchange; it would be too
slow to use for all messages. �us the AES key provided in the response underlies all
future communication.

Citadel uses AES for protection as all SGX-capable processors supportsAESNI ; [55]
this provides hardware-accelerated AES operations to achieve an encryption band-
width over 1 Gbps, far exceeding the capacity required, so adds negligible overhead.
�e system’s AES key updates with every message sent from the enclave using an
SGX-approved source of entropy;15 this adds minimal overhead and constitutes good
practice. A copy of the �rst key presented in the challenge-response is retained and
used in cases when a static key is essential.

13/sys/kernel/security/citadel/sealed keys
14/sys/kernel/security/citadel/challenge
15new ← old⊕ update
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4.4.4 libcitadel

Citadel provides a userspace auxiliary library to make integrating existing pro-
grams easy and unobtrustive. For each mediated syscall (e.g. open()) it provides a
proxy function (c open()), thus requiring no major changes to applications’ work-
�ows.16 A good example of this in action is the ported version of Nginx (§ 5.1.4).

libcitadel performs two main functions;

1. Communication with the policy enclave.

2. Tracking and predicting what permissions it believes the process has.

Communication is facilitated via citadeld’s domain socket. A zero-copy approach17

helps minimise latency on both sides; this is optimised for in the protocol design. Each
communicant veri�es the PID of the other party (§ 4.4.5.1).

Caching at this level has a tremendous impact on overall performance. When read-
ing a large �le a program may make thousands of calls to c read() — always calling
to citadeld would be wasteful, as processes usually have enough information to infer
their current position.

�erefore every process maintains a list of expectations — the reservations it be-
lieves it has, including their validity — and inferred taint status. �ey cannot precisely
know the true values, especially as the policy enclave may grant di�erent permissions
than asked for, but in Nginx over 97% of requests were servable locally in a realistic
workload. Using the same work�ow, untainted processes speculatively execute opera-
tions, again removing the need to involve citadeld. �e performance gain of requests
served from the cache reduces the overhead from O(10µs) to O(100ns).

A core challenge of the cache is relating open �le descriptors to the permissions they
require. �is involves manual work, including fetching its xa�r tag with fgetxattr()

and estimating the expiration time of the LSM’s underlying reservation. libcitadel
16Future work would integrate this directly into libc.
17Excluding copying in the kernel and transferring the request into the enclave.
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1 int c_open(const char *pathname, int oflag, mode_t mode) {

2 int fd; bool from_cache = false;

3 bool creating = access(pathname, F_OK) < 0 && (oflag & O_CREAT) > 0;

4

5 // Pre-emptively attempt access if I suspect I'm not tainted.

6 // Alteratively, register a transient file if we're creating it.

7 // -- close and reopen to ensure it is independently tagged.

8 if (!am_tainted() || creating) {

9 fd = open(pathname, oflag, mode);

10 if (!am_tainted() && fd > 0)

11 return fd;

12 if (fd == -1 && errno != -EPERM)

13 return -1;

14 if (fd != -1)

15 close(fd);

16 }

17

18 // Request access from the policy enclave. Claim file if not tagged.

19 if (!citadel_file_open(pathname, strlen(pathname)+1, &from_cache))

20 return -EPERM;

21

22 // Continue as normal.

23 fd = open(pathname, oflag, mode);

24 citadel_declare_fd(fd, CITADEL_OP_OPEN);

25 if (!am_tainted()) set_taint();

26 return fd;

27 }

Listing 4.6: �e libcitadel shim function for open().
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a�empts to revalidate tickets before expiry to avoid unexpected drops in service; this
is particularly important for applications unaware of Citadel.

Special care is required with child processes. Children are given a copy of their
parent process’s state, including its libcitadel cache. Although the LSM passes no
reservations to the child, libcitadel maintains the same expectation cache. Entries
in it are marked as invalid, to force the child to revalidate a �le descriptor before �rst
use. Additionally, we assume that a process trusts the initialisation code of its child,
enabling libcitadel to delete the parent’s ptoken (§ 4.4.5.1); the c fork() function
handles this automatically.

4.4.5 Additional Security Features

Citadel implements additional security mechanisms to reinforce potentially vul-
nerable aspects of the system. Both the policy enclave and LSM use a process’s PID as
its primary identi�er — Citadel implements two schemes to protect and prove iden-
tity.

4.4.5.1 ptokens

Before a process may interact with citadeld, it must retrieve its ptoken from the
LSM.18 �e purpose of this (4.11) is twofold;

a. Inform libcitadel about the process’s metadata in the eyes of the LSM, and

b. Provide an authenticable access token to present to citadeld, verifying the pro-
cess’s identity. �is encrypted using K , the system’s designated static AES key,
which is unknown to the process.

ptoken→ (citadel pid, identi�er, token, {identi�er, token, pid}K) (4.11)

Whenever a process connects to the citadeld socket, its identity is retrieved from
the underlying transport mechanism (Listing 4.7). At both the sender and receiver
the identity of the other is veri�ed using this method, and additionally libcitadel

18Read from /sys/kernel/security/citadel/ptoken
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1 // Get PID of sender.

2 struct ucred cred;

3 socklen_t len = sizeof(struct ucred);

4 getsockopt(socket, SOL_SOCKET, SO_PEERCRED, (void*)&cred, &len);

5 uint64_t pid = cred.pid;

Listing 4.7: PID retrieval from an active domain socket.

expects the decrypted token to be returned by citadeld, inspiring con�dence that the
response is legitimate.

4.4.5.2 PID Protection

�e LSM also watches for PID forgery, as it is possible for PIDs to be modi�ed with
the help of a malicious kernel module (Appendix A). �is would be detrimental for the
LSM’s integrity, allowing a process to silently assume another’s identity. �erefore the
LSM stores a process’s PID within its security structure and routinely checks to ensure
it does not change unexpectedly.19 Any process deemed to have an illegitimate PID is
denied access to all entities, e�ectively killing it.

4.4.6 Citadel Build System

Building Citadel requires both the kernel and policy enclave to be in agreement
about the shared RSA keys; without this compilation will fail. A preparatory script
achieves this by;

1. Downloading the kernel’s source and inserting the Citadel LSM.

2. Generating twoOpenSSL20 2048-bit RSA keys inDER format — the kernel’sCrypto
API requires keys to present themselves as ASN.1 structures.21

3. Compiling and launching Citadel’s preparatory enclave, signed with the same
signing identity as any policy enclaves generated. �is ingests the two keys and
generates a sealed keyset to be presented to initialising enclaves.

19A valid change would be on fork(), in which case the stored PID should equal the parent process’s.
20https://www.openssl.org/
21https://tls.mbed.org/kb/cryptography/asn1-key-structures-in-der-and-pem
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4. Generating an interface �le (keys.h) in the kernel’s source directory — this �le
contains the kernel’s keypair, the enclave’s public key, and the aforementioned
sealed keyset. �e key �les are deleted.

5. Building and signing the poicy enclaves.

6. �e kernel may now be compiled.
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Chapter 5

Evaluation

�ree core questions hang over Citadel’s viability — its security, expressivity, and
performance. �is chapter presents a thorough investigation of the prototype’s per-
formance and a discussion of its security implications and application to real-world
scenarios.

5.1 Performance

�e Citadel prototype demonstrates impressive performance, matching, and in
places surpassing, related approaches, despite its the architectural disadvantage. We
present its behaviour relative to native Linux kernel as follows;

1. Application-level microbenchmarks, tracing the duration of syscalls both na-
tively and through libcitadel. (§ 5.1.2)

2. IPC bandwidth microbenchmarks in both intra- and inter-process contexts. (§ 5.1.3)

3. Real-worldNginx performance benchmarks for both low-latency and high-bandwidth
con�gurations. (§ 5.1.4)

�e following results are best compared to Flume [10] — CamFlow, although imple-
mented similarly, has a di�erent scope that this project. Flume reports∼ 40% decrease
in real-world performance; we report ∼ 25% (§ 5.1.4).
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Figure 5.1: Control �ow inhabitation for libcitadel’s c open() function, n = 100.

5.1.1 Evaluation Environment

�e research machine used for evaluation contained a quad-core Intel® Core™ i5-
6600 (supporting SGX v1), 16 GiB RAM, and a 1-Gbps NIC. �e primary disk provided
389 MBps read and 210 MBps write.1 For all experiments running under Citadel,
citadeld was running via systemd — all debugging tools were disabled and the en-
clave was built in hardware pre-release mode with the transition using threads opti-
misaton. [56] Linux v5.6.0 was used as the base kernel.

Both Tables 5.2 and 5.6 report the sample mean and standard deviation. Figures 5.3,
5.4, and 5.5 plot the sample medians and interquartile range (IQR) for each point. �e
Wilcoxon paired signed rank test was chosen to determine statistical signi�cance at
5% con�dence. [57]

5.1.2 syscall Microbenchmarks

A custom benchmark tool was built to assess the overall impact Citadel has on
syscall performance — for example, the duration of open() compared to c open().
Table 5.2 presents these results. To give a fair comparison, two �gures are reported
for Citadel. Amortised refers to the normal operation of libcitadel, in which the
majority of queries are served from the cache; overhead arises from both local cache
operations and added kernel latency from the LSM. �e other column, CacheMiss, gives
the overhead when caching is disabled, thus including communication with citadeld.

1Reported by the dd tool.
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Native Citadel
Amortised Cache Miss 99th %ile

open() 1.675± 0.076 6.083± 0.129 50.133± 1.482 2.38×
read() 5.724± 0.206 7.010± 0.192 54.736± 1.556 1.26×
write() 14.340± 0.208 15.597± 0.250 63.824± 1.902 1.05×
close() 0.651± 0.005 0.718± 0.011 1.10×

socket() 1.446± 0.179 3.156± 0.291 1.02×
bind() 0.762± 0.023 1.911± 0.183 49.110± 1.746 2.78×
listen() 0.705± 0.015 1.882± 0.149 48.411± 1.386 2.91×
connect() 16.570± 0.278 17.961± 0.330 66.273± 2.147 1.05×

shmget() 1.880± 0.122 1.913± 0.111 49.326± 1.466 0.98×
shmat() 0.420± 0.005 1.575± 0.134 47.997± 1.560 0.99×
shmctl() 0.418± 0.005 0.743± 0.083 45.912± 1.114 0.97×
shmdt() 0.415± 0.003 1.342± 0.040 1.01×

pipe() 1.110± 0.061 1.288± 0.069 47.334± 1.147 1.02×
mkfifo() 3.865± 0.048 11.509± 0.405 59.623± 1.788 1.93×

fork() 47.866± 3.175 48.647± 3.457 81.174± 3.829 15.77×
citadel init() − 0.801± 0.009 34.940± 1.329 —

Table 5.2: libcitadel microbenchmarks.
All values are in µs and the sample standard deviation is shown alongside the mean.
For Citadel, both the amortised and average cache-miss durations are given. Only

one value is given if the operation is not a�ected by a cache miss. �e di�erence
between Citadel and Native Linux at the 99th percentile is also presented. n = 106.
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Figure 5.3: E�ective read()/write() bandwidths for both the native Linux kernel
and Citadel. �e percentage overhead is also presented. n = 200 per bu�er size.

Overall libcitadel contributes ∼ 1µs of overhead (amortised) on average — this
rises to∼ 40µs on a cache miss. Figure 5.1 presents a more detailed view of where ex-
actly this overhead arises, approximately plo�ing where the control �ow for c open()

moves (on a cache miss). Interestingly, the slowest component is the communication
channel between libcitadel and citadeld (median 26µs);2 as a result, the core ref-
erence monitor functionality only adds a median penalty of 24µs. �e �nal Kernel
call before terminating is the internal call to open(). Additionally, the 10th percentile
demonstrates that the �rst Kernel call is not always required if the entity’s metadata
is resident in the citadeld cache. During these experiments, citadeld showed to
reliably handle over 30,000 requests/second and between 90− 100% usage of a single
thread.

2Included in the Application regions.
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Figure 5.3 plots observed e�ective bandwidth whilst reading from and writing to a 16
MiB �le with di�erent sized bu�ers; the corresponding percentage overhead in�icted
by Citadel is plo�ed to the right. �e benchmark driving this was adapted for Linux
from one wri�en by R. Watson for FreeBSD. [58] �e results clearly show Citadel
having a more adverse e�ect on performance for smaller bu�er sizes; unsurprising, as
smaller bu�ers force a larger number of calls to read() / write(). It is unclear why
Citadel provides be�er performance for large bu�ers with write(), an unexpected
artefact — the di�erence is statistically signi�cant for bu�ers in the range 256KiB and
2 MiB, and reproducible. More work is required to determine the root causes, but
hypotheses include the slight optimisation a�orded by regular, small delays easing
pressure on microarchitectural caches.

5.1.3 IPC Microbenchmarks

Again using the modi�ed Watson benchmark, we investigated Citadel’s e�ect on
end-to-end IPC performance. We investigate pipes, local sockets (socketpair()), and
regular sockets, between 2 threads (Figure 5.4) and between a parent and child process
(Figure 5.5).

Overall, the results between the two contexts are similar — both see approximately
20% degradation in the worst cases, tending towards equal performance when using
∼ 105-byte blocks. At �rst glance it appears that Citadel a�ects the performance
between 2 threads slightly more than 2 processes, but in fact Citadel performs near-
identically in both. Native performance is more heavily optimised when sending be-
tween two threads; Citadel overshadows any latency gained by the kernel.

In a similar way to write(), Citadel unexpectedly outperforms the native kernel
in both contexts using pipe(). �e readings are noisy, but statistically signi�cant for
bu�ers in the range 16 KiB to 8 MiB, and reproducible. �e cause is again unknown, but
observing that the native kernel’s throughput halves a�er bu�ers of 8 KiB, we suspect
that this is the result of cache exhaustion or inopportune paging. Notably, Citadel’s
readings exhibit a far larger IQR for large bu�er sizes than the native kernel, a side
e�ect that is repeated in real-world testing.
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Figure 5.4: E�ective bandwidths for various types of IPC between 2 threads, n = 200.

48



0

106

2×106

3×106
Native, pipe()
Citadel, pipe()

0

106

2×106

3×106
Native, socketpair()
Citadel, socketpair()

102 103 104 105 106

0

106

2×106

3×106
Native, socket() (TCP)
Citadel, socket() (TCP)

−40

−20

0

20

40

−40

−20

0

20

40

102 104 106
−40

−20

0

20

40

I/O Bu�er Size, bytes

E�
ec

ti
ve

B
an

dw
id

th
,K

iB
/s

ec
on

d

C
it

ad
el

ov
er

he
ad

(%
)

Figure 5.5: E�ective bandwidths for various types of IPC between 2 processes, n = 200.
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Native Citadel
Untainted Tainted Overhead

Webserver Benchmark, 100-byte packets
Latency 35.73µs 36.18µs 44.35µs 24%

− std. dev. 13.85µs 14.12µs 13.26µs

− max. 536µs 554µs 508µs

Requests/s 2.748 · 104 2.717 · 104 2.214 · 104 19%

Bandwidth 177.28 Mbps 168.72 Mbps 143.04 Mbps 18%

10GB File Transfer
Bandwidth 1.404 Gbps 1.410 Gbps 1.413 Gbps ∼ 0%

− std. dev. 0.428 Gbps 0.440 Gbps 0.549 Gbps
Duration 56.98s 56.74s 56.62s ∼ 0%

− std. dev. 19.45s 18.97s 23.63s

Table 5.6: Nginx performance comparinson between native Linux, and both
untainted and tainted Citadel, n = 25.

5.1.4 Nginx Benchmarks

To validate the performance results presented thusfar, we ported the entirety of the
Nginx webserver3 to function alongside Citadel. No optimisations were made to the
codebase — the only changes made replaced core libc function calls to use their c *

libcitadel counterparts.

Two trials were run; a low-latency benchmark4 and a 10GB HTTP �le transfer (high-
bandwidth). �e webserver was con�gured to only run a single server process to en-
sure it was exercised to its full extent, and was set up to use the loopback interface5 to
eliminate any interference from outside the OS.

3https://www.nginx.com/
4https://github.com/wg/wrk
5http://127.0.0.1/.
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�e results are not surprising (Table 5.6). For the low latency tests we observe the
same 20−25% overhead as seen from TCP sockets in § 5.1.3 using the same bu�er size.
�e high-bandwidth tests show Citadel performing equally to the native kernel, only
di�ering by its larger sample standard deviation. �is trial is also interesting as this is
the �rst time we see �le descriptor revalidation happening automatically on read()

and write(). �e CPU overhead from citadeld was < 1%.

5.2 Security

5.2.1 Citadel TCB

One of the core initial goals of this project was to build an enclave-based reference
monitor whilst minimising in�ation to the system’s TCB; to this end we present the
trusted components of a Citadel system.

— �e SGX Platform, including all libraries and isgx.

— �e policy enclave implementation.

— �e userspace citadeld application; discussed further below.

— �e core Linux kernel, including the Citadel LSM and the Linux VFS.

— �e Intel AESNI Linux driver.

We also assume that the build environment is entirely trusted. A notable exclusion
from the TCB is the majority of Linux drivers and other kernel modules — this was
a strong motivation for using SGX, as it can e�ectively defend against malicious and
misbehaving ring-0 parties.

However, how might the system defend against citadeld, an unprivileged, user-
space application, being replaced by a malicious adversary?

citadeld amay be protected in exactly the same way that Citadel defends its
socket, /run/citadel.socket, with a reserved identi�er. For example, opting to
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mark it with an xa�r such as security.citadel.daemon with a nonce value dur-
ing the build process provides the LSM ample con�dence that an executable is a valid
product of a Citadel build,6 and protects it from tampering. �is may also be valuable
for defending the enclave object �les themselves; although they cannot be tampered
with, an adversary may try to remove them to deny service. �ese features would
require extending the Citadel build system further.

Secondly, can the kernel actually be held to the same integrity level as an enclave?
How trustable is a system that enclaves can only a�est to half of?

Enclaves are unique in that their online a�estation process inspires absolute trust,
but o�ine provenance can be equally valuable. Although not SGX-based, UEFI Secure
Boot [59] is an industry-standard mechanism for verifying whether an OS is legitimate.
Ensuring that a Citadel system’s installation is trustworthy by having it properly
signed by a trusted party defends against many types of a�ack. Assuming that an
OS installation is veri�ed, trust in Citadel revolves around the policy enclave — if it
believes the system is legitimate then other enclaves may too. It alone has the power
to decide permissions, meaning its endorsement of its own TCB should carry weight.
�is, however, is undermined when running on a hypervisor, as the LSM’s integrity
may be compromised.

�irdly, does the kernel protects itself adequately from malicious kernel modules?

E�ective protection is possible if carefully executed. Appendix A presents a proof
of concept kernel module that changes a process’s PID dynamically. �is is highly
concerning, as a process’s PID is its core identi�er in Citadel’s eyes; defence was
discussed in § 4.4.5.2. �e Linux kernel is a soup of exported and unexported symbols,7

which is exploitable to access internal functions never designed to be called from a
di�erent context. �is work does not assess the implications for the LSM framework,
but highlights the potential need for defensive programming when designing the LSM.

6Using the bprm check security LSM hook.
7Symbols include functions and variables held in the global namespace; exporting is the process of

exposing it publicly to be called by third parties.
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We believe that Citadel, with its restricted TCB, can be trustworthy, creating a
system of integrity checks based upon, and complementing, the trust placed in SGX
itself.

5.2.2 IFC Model Implications

�e Citadel IFC model deviates from the designs of Pasquier et al. and Krohn et al.
in three key ways;

1. Policy and enforcement decision are separated.

2. Passive entities may exist in a temporary transient state.

3. Operations between untainted entities are not mediated.

�e �rst is handled with an extension to the core model to make policy decisions
explicit and communicable (§ 4.3.2). �is relationship is this work’s core focus, and
Citadel relies on conservative assumptions — if not explicitly granted, permission is
withheld. By default the system tends towards complete lockdown, a defensive mea-
sure to preserve safety if subjected to denial of service.

�e second point is justi�ed with an extension to the creation �ow rule (§ 4.3.2, (4.7)).
Transient entities are only created from a secure context, under which they automat-
ically assume the labelling of their parent entities. �is may informally be considered
an extension of the process’s internal state, and held to the same restrictions. Such
entities may only alter their security context (via another active entity) a�er being
declared explicitly, leaving their transient states.

Regarding the �nal point — tainting in Citadel assumes the worst, treating any
potential infraction as cause for mediation; only the policy enclave may clear a taint.
Assuming all sensitive entities are correctly labelled, Citadelwill protect them against
anything within the system. Unlabelled entities are assumed to be in the public domain,
which allows normal execution and access control to proceed until the taint boundary
is crossed.
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5.2.3 SGX Vulnerabilities

�is work assume that the SGX platform is itself secure; a successful a�ack on SGX
obviously compromises any protection o�ered by Citadel. A number of SGX vulnera-
bilities have been detailed; [60, 61, 62, 63, 64] these are e�ective and highly concerning,
but mitigating them is not within this project’s scope

5.3 Use Cases

Our goals for Citadel, included using it as a platform for reasoning about the re-
lationship between an enclave and its host. Standard work�ows for creating an SGX
application use a library OS, such as SGX-LKL [65] and Graphene-SGX, [66] to create
a synthetic Linux environment inside the enclave supporting the primary application
— this approach subjects the enclave to some of the same �aws and issues as the un-
derlying OS. Could we reach a point where the host OS is trusted to hold custody of
sensitive assets, instead of a trend toward pure isolation?

Two hypothetical scenarios are presented — one requiring secrecy, and one integrity
— to illustrate how Citadel could aid enclave-application development.

Scenario 1 A social-media company provides a GDPR platform to ful�l members’
requests for an archive of their personal data; these may exceed 10 GB. Processing
and collation happen inside an enclave, and an external service authenticates requests.
Must the enclave seal archives a�er creation, before storage, and unseal them when
requested? A solution using Citadel may o�oad unencrypted archives to the cus-
tody of the host OS, using IFC’s secrecy mechanic to prevent unauthorised release. On
request, the webserver requests permission to declassify the archive from the authen-
tication authority — no penalty need be paid for encryption.8

Scenario 2 An Apache Spark application partitions input data into a large number of
shards. Assuming that shard-processing is protected inside an enclave, do shards need
to be cryptographically signed to verify their provenance? Citadel would entrust this

8Disk encryption should be used for o�ine protection.
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tracking to the policy enclave, which, once a�ested, may be considered a part of the
application’s trusted components.

Although Citadel may not be suitable for the most sensitive processing tasks —
enclaves are still vital here — it o�ers a lightweight protection mechanism that could
potentially be, in the interest of performance, trusted in a supporting role.
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Chapter 6

Conclusions

�is dissertation presented Citadel, a modular, enclave-backed reference monitor
which securely and veri�ably implements IFC methods in the Linux kernel. By sepa-
rating policy decisions and enforcement, we demonstrated a feasible approach to deep
kernel integration using Intel SGX; the prototype leverages Linux’s security frame-
work to realise decisions at the lowest level of the OS. Citadel optimises for per-
formance via an auxiliary library, which conservatively predicts a process’s security
context, enabling unobtrusive application integration.

A full implementation of the Nginx webserver running on Citadel validates this
work using real-world performance benchmarks; the most punitive trial produced a
25% overhead, but other scenarios reported performance parity with the native Linux
kernel. Verifying the methods presented here should be the next step, but an extension
of Citadel in a distributed se�ing also has great potential; inter-machine a�estation
will likely establish an exceptional degree of trust between remote components.

Further is required before Citadel is fully realised and production-ready, but this
project successfully demonstrates the viability and potential of a symbiotic enclave-
kernel relationship, which, in the long run, may prove valuable for both.
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Appendix A

PID Tampering: Proof of Concept

1 static void* retrieve_symbol(const char *sym) {

2 static unsigned long faddr = 0;

3

4 // Compare kernel symbol with query.

5 int symcmp(void* data, const char* sym, struct module* mod,

6 unsigned long addr) {

7 if(!strcmp((char*)data, sym)) {

8 faddr = addr;

9 return 1;

10 }

11 else return 0;

12 };

13

14 kallsyms_on_each_symbol(symcmp, (void*)sym);

15 return (void*)faddr;

16 }

Listing A.1: Expose unexported symbols from the global namespace using kallsyms.
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1 static asmlinkage void (*_change_pid)

2 (struct task_struct *task, enum pid_type type, struct pid *pid);

3 static asmlinkage struct pid* (*_alloc_pid)(struct pid_namespace *ns);

4

5 static ssize_t change_pid(void)

6 {

7 struct pid* newpid = _alloc_pid(task_active_pid_ns(current));

8 _change_pid(current, PIDTYPE_PID, newpid);

9 /* current->pid has changed. */

10 }

11

12 static int __init module_init(void)

13 {

14 _change_pid = retrieve_symbol("change_pid");

15 _alloc_pid = retrieve_symbol("alloc_pid");

16 /* ... */

17 /* On SysFS call execute change_pid(void) */

18 return 0;

19 }

Listing A.2: Exploit unexported symbols to change the PID of the current process.
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Acronyms

AES Advanced Encryption Standard. 35, 37, 40

AESM Application Enclave Services Manager. 10

AESNI Advanced Encryption Standard New Instructions. 37, 51

API Application Programming Interface. 41

ASN Abstract Syntax Notation. 41

CPU Central Processing Unit. 1, 8, 10, 12, 14, 50

DER Distinguished Encoding Rules. 41

DIFC Decentralised Information Flow Control. 3–6, 19, 20, 23, 28

EPC Enclave Page Cache. 9–13, 21

EPCM Enclave Page Cache Map. 9, 10

EPID Enhanced Privacy Identi�er. 14

EVM Extended Veri�cation Module. 17

GCM Galois Counter Mode. 35

GDPR General Data Protection Regulation. 54

GMP GNU Multiple Precision Arithmetic Library. 34

HDFS Hadoop Filesystem. 21

HTTP Hypertext Transfer Protocol. 50

I/O Input/Output. 19, 21, 25, 35
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IFC Information Flow Control. 1–5, 7, 19, 22, 24, 25, 27, 31, 52, 54, 55

IMA Integrity Measurement Architecture. 17

IPC Interprocess Communication. 19, 43, 47

IQR Interquartile Range. 2, 44, 47

JVM Java Virtual Machine. 20, 21

LoC Lines of Code. 24

LSM Linux Security Module. 2, 16, 17, 19, 20, 24, 25, 30, 32, 35–38, 40, 41, 44, 51, 52

MEE Memory Encryption Engine. 8–11

MLS Multilevel Security. 4

NIC Network Interface Card. 43

OS Operating System. 1, 2, 5, 10, 19, 21, 50, 52–55

PID Process Identi�er. 35, 37, 38, 40, 52

PRM Processor Reserved Memory. 9, 10, 14

RSA Rivest–Shamir–Adleman. 14, 36, 37, 41

SDK So�ware Development Kit. 10

SECS SGX Enclave Control Structure. 9, 11–13

SGX So�ware Guard Extensions. 1, 2, 8–14, 20–24, 26, 33, 34, 36, 37, 43, 51–53, 55

SHM Shared Memory. 35

TCB Trusted Computing Base. 1, 2, 19, 21, 23, 26, 37, 51, 52

TCP Transmission Control Protocol. 50

TEE Trusted Execution Environment. 1

TLB Translation Lookaside Bu�er. 13

UEFI Uni�ed Extensible Firmware Interface. 52
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VFS Virtual File System. 15, 16, 51

xattr Extended A�ribute. 16, 17, 31, 33, 35, 36, 38, 51
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