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Abstract

Information Flow Control (IFC) is a powerful tool for protecting data in a computer
system, enforcing not only who may access it, but also how it may be used throughout
its lifespan. Intel’s Software Guard Extension (SGX) affords complementary protection,
providing a general-purpose Trusted Execution Environment for applications and their
data. To date, no work has been conducted considering the overlap between the two,
and how they may mutually reinforce each other.

This dissertation presents CITADEL, a modular, SGX-backed reference monitor to se-
curely and verifiably implement IFC methods in the Linux kernel. Its prototype exter-
nalises policy decisions from its enforcement security module, providing a userspace
promise-of-access model with asynchronous fulfillment. By aliasing system calls, the
system transparently integrates with unmodified applications, and amortises the per-
formance cost of integration by inferring processes’ underlying security contexts.

Observed results are promising, demonstrating a worst-case median performance
overhead of 25%. In addition, the NGINx webserver is demonstrated running under
CrtaDEL; high bandwidth transfers exhibit near parity with the native Linux kernel’s
performance. This work illustrates the potential viability of a symbiotic enclave-kernel
relationship for security implementations, something that may, in the long run, benefit

both.
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Chapter 1
Introduction

Defending computer systems against malicious programs and enforcing the isola-
tion of protected components has always been exceedingly challenging. A system’s
Trusted Computing Base (TCB), defines the minimal set of components critical to estab-
lish and maintain system security and integrity. This traditionally includes, amongst
others; the OS kernel; device drivers; device firmware; and hardware. Compromise of
a trusted component inside a system’s TCB directly threatens any secure application.
One approach to hardening a system’s security is to minimise its TCB, diminishing its

potential attack surface.

An increasingly common trend is outsourcing a system’s physical layer to a foreign
party, for example, a cloud provider — this is beneficial in terms of cost and flexibility,
but many security considerations assume that the physical layer itself can be trusted.
This is not guaranteed when the physical layer is a virtual machine, inflating the sys-

tem’s TCB with an external and transparent software layer, the underlying hypervisor.

Trusted Execution Environment (TEE), have long been explored by the security com-
munity as potential protection against this. They generate isolated processing contexts
in which an operation can be securely executed irrespective of the rest of the system
— one example is software enclaves. Enclaves are general-purpose TEE provided by the

CPU, protecting the logic found inside at the architectural level. Intel’s Software Guard



Extensions (SGX) is the most prolific example, affording a black-box environment and

runtime for arbitrary apps to execute under.

An alternative approach is to use Information Flow Control (IFC) to police system
components. Enforced using a reference monitor, IFC models permissible data use, ma-

nipulating systems at a granular level.

This work explores methods of hardening Linux with an SGX-driven reference moni-
tor to track and protect host OS resources using IFC methods. Further, it aims to reason
what the future relationship between an OS and the enclaves it hosts should be, and
whether complete isolation between them is the natural answer in several common

situations.

Contributions

« CITADEL, a prototype implementation of a modular reference monitor protected
using Intel SGX, empowering IFC techniques to operate with autonomy and pro-
tection from the host operating system. Enforcement is achieved using a Linux
Security Module (LSM) embedded in the Linux kernel, with an overall TCB of

only a minimal footprint of the kernel alongside the enclave application.

« A userspace interposition library to near-transparently integrate unmodified ap-

plications to fully function under the new restrictions.
« Afull port of the libtomcrypt cryptography library for use inside an SGX enclave.

« A rigorous investigation of performance implications, featuring the Nginx pro-
duction webserver. Worst-case performance shows a 24% decrease in request
throughput, with other trials reporting performance parity with native Linux.
Additionally we report a median overhead of 43 jus (IQR 26 — 72 us, n = 10°)
per affected system call without caching, matching or surpassing similar, non-

enclave-based, systems.



Chapter 2

Background

2.1 Information Flow Control

IFC regulates how and where data is permitted to move and be transformed in a
computer system. [[1]] This differs from access control, which defines what resources
may be used by an entity — IFC allows granular control over how they may be used

once accessed, including restricting propagation between components.

Formally, IFC defines and enforces a non-interference policy between abstract se-
curity contexts. A simple example is the distinction between unclassified and classified
data — here, information is only allowed to flow up, ensuring that an unclassified en-
tity does not learn anything marked as classified. [2]] This relationship can generally be

represented as a partial ordering over security contexts, formulated as a lattice. [3]

However, practical systems often require dataflow adhering to a more complicated
policy set — for example, supporting declassification. [4] Work undertaken by Pasquier
et al,, [5] the core influence of the IFC model developed in this project, constructs a pli-
able and efficient decentralised IFC (DIFC) model suitable for provenance enforcement

and auditing in the Linux kernel.



2.1.1 Motivation, History, and Decentralised IFC

IFC has recently grown in popularity as a powerful methodology for ensuring granu-
lar privacy whilst not unduly restricting access to sensitive information. IFC annotates
data records with opaque labels referring to their confidentiality or integrity status.
Rather than simply restricting access to sensitive data, as an access control mecha-
nism would, IFC tracks data as it propagates — if an entity attempts to move data into
an unknown, untrusted, or conflicting security context the IFC system prohibits this to

prevent improper release.

IFC originated in the mid-1970s [3] but has not yet seen mainstream adoption. This
may be because early schemes were designed around the Multilevel Security (MLS)
doctrine set out in the Orange Book: [6] this locked IFC to a shallow set of broad la-
bels, mirroring existing institutional segregation (such as restricted, secret, top secret).
Policies were managed centrally, something easily applicable in settings with rigor-
ous hierarchies such as the military, but unwieldy in an organisation with manifold

security protocols.

The majority of recent research has advocated decentralised information flow control
(DIFC), introduced by Myers and Liskov. [[7, 8| 9] DIFC is more granular than schemes
adhering to the MLS model, for example, creating two distinct security contexts for two
files in the same folder. Policies are discretionary, allowing users to specify and modify

the enforced policies for assets they own.

2.1.2 Security Labels and the Reference Monitor

A DIFC system relies on tags and labels to annotate the entities it tracks. Let 7 be
a large set of opaque tokens, or tags. Tags are themselves meaningless, but used as
an abstract identifier for an entity’s security context. A label, | C T, is a collection of
tags that are concretely attached to assets, such as files; these form a lattice under the
subset-relation partial order. For each process a there are two labels, one for secrecy,
as, and one for integrity, a,. For a tag ¢, ¢ € a, implies, conservatively, that process a
has seen information associated with tag t. Likewise, ¢ € a; indicates that every input

to a has been endorsed for an integrity level marked with ¢.



Notation Explanation

A — B Rule a; a permissible information flow between entity A
and entity B.

A = B Rule f3; a creation flow, initialising B from A as its parent.
A ~» A" Rule v; a context change, with A modifying its security

context in accordance with its capabilities.

+
A< B Rule 0; priviledge delegation, with A passing a capability
t= to B.

Table 2.1: Overview of the four core IFC events used in §

Walkthrough — Secrecy Enforcement In a typical environment, a user can only
convince themselves that a text editor is safe to use if they, or someone they trust,
audits the program’s source code. With DIFC, however, it is possible to reason that
if the system can provide the following four guarantees, it cannot leak sensitive data

without the user’s permission.
1. If a process a read a file with a secrecy tag ¢, then ¢ € a,.
2. t € a4 implies that a cannot communicate with another process, b, where ¢ ¢ b,.
3. a cannot remove ¢ from a; without permission.

4. t € a, restricts a’s access to an uncontrolled medium, such as a network.

The heart of an IFC implementation is its reference monitor, which tracks the labelling
for each process, granting or rejecting permission before an operation is executed by
the OS. Contrasting solutions handle this process differently: Flume, [10] implements
a full system interposition layer, forcing all syscalls to pass through its userspace refer-
ence monitor before reaching the OS, whereas CamFlow [5] embeds its reference monitor
in the kernel itself. In all schemes, however, this trusted component is responsible for

both policy and enforcement. This project focusses on this implementation.



2.1.3 Modelling

In centralised IFC schemes, the reference monitor is the only entity capable of cre-
ating, changing, and assigning tags. However DIFC gives all processes the ability to
create and modify tags for entities they own; thus, they alone have the right to declas-

sify them.

Notation As the model we build in § 4| is closest in spirit to CamFlow, we use the
same notation (Table [2.1).

Enforcing Safe Flows («), below, describes the conditions in which a flow can be
considered safe. The recipient must be at least as privileged as the originator and can-
not accept information graded below its own integrity status. Here < denotes any
applicable preorder relation; this context uses inclusion (C). If a flow is impermissible

it is denoted as A » B.

A—-B < A, <XB, N B XA ()

Information produced within a security context may only flow within the same con-

text or a related subcontext.

Entity Creation (/) shows correct initialisation of a new object’s security context.
Logically it must be held at the same level as the environment creating it. For example,
when a process creates a new file, this must subject to the same tainting as the original

process.

A= B = A, =B, N A, =B (B)

Vocational Label Management The core mantra of the decentralised aspect of DIFC
is that processes are responsible for policies governing their assets. Therefore, a pro-
cess’s labelling must be dynamic. Generally, entities are sorted into two distinct cate-

gories;

« Active (processes), with mutable security contexts.



« Passive (files, pipes, sockets, etc.), which merely act as data vessels for active

entities.

Active entities may modify their labelling iff they have the capability to add or re-
move specific tags. The set AT C T lists all the tags that entity A may add to its
security labelling, while A7 C 7T holds all the tags A may remove from its labelling.
These sets are modified either during creation or in receipt of a delegated capability
from a peer. The sets A" C T also exist, performing the same function for integrity

labels. () formalised this process.

A+ A, U{t} if te A
Al — AN {t} if te A,
A notable restriction is that processes must be aware of the IFC constraints imposed

on them and how to interact with the system to manage their labels.

Capability Lifecycle and Delegation As per (), an entity automatically inherits
the labelling of its creator without any capabilities (A¥, AF = @), therefore requiring
t:t

s Yo

capability delegation (9). A capability held by A where t € AZ, is permitted to be

transferred to B to act on its behalf.

+

A< B onlyif t € A ©)

Delegation is vital for webservers, for example. To transmit another entity’s infor-
mation over an untrusted socket the server must have permission to declassify it — i.e.

it must hold f,, where f is the secrecy label of the information to transmitﬂ

The server process, W, must have W; = & as it holds a connection to an untrusted socket. Thus
the integrity clause in («) will not interfere.
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Figure 2.2: Abstract overview of SGX’s protection in an adversarial environment.

2.2 Intel® SGX

Intel’s Software Guard Extensions (SGX) was first detailed in 2013. [11} [12] [13] [14]
Its whitepapers described a novel approach to trusted computing, creating in-CPU con-
tainers with dedicated protected memory pools. These regions, called enclaves, cannot
be read from or written to by an unauthorised party due to fundamental protection
mechanisms provided by the x86 architecture, even if running in ring ¢°| (Figure .
Enclaves guarantee both integrity and secrecy to the application running inside, even

in the presence of a malicious host.

Motivation Broadly, SGX secures sensitive applications by shielding them and their
resources from any access, and to guarantee an enclave’s integrity to end-users; this
is achieved using attestation and measurement (see §[2.2.4). One use case [[15 16} [17]
is in cloud computing, where users are forced to trust an outside party with their data
and business logic. By distributing encrypted, yet executable, containers targetted at
a single, unique SGX core, users can be assured that their information is safe, despite
virtualisation. Only the provisioned CPU is able to decrypt and execute the enclave,

strictly in accordance with the restrictions of the CPU platform.



2.2.1 Security Characteristics

At its heart SGX is designed to be trustworthy; this is achieved in several ways,

including robust enclave provisioning, sealing and attestation. Intel summarises SGX’s

protections [[12] 18] as follows;

Memory is secured against observation and modification from outside the en-
clave, using an in-die Memory Encryption Engine (MEE), [19] with a secret that
rotates on every boot. This protection notably works against host hypervisors,

other enclaves, and anything running in supervisor mode.

Enclaves can attest to, or prove, their identity to a challenger with the help of a

permanent hardware security key for asymmetric encryption.

Software calls are proxied to prepare and transfer control in and out of an en-
clave. Arguments are securely marshalled according to a static enclave defini-

tion.

SGX does not defend against reverse engineering or side-channel attacks: [20]]

mitigating this is the developer’s responsibility.

2.2.2 Architecture and Implementation

The SGX platform comprises several interlocking parts (Figure [2.3), building on the

core extended x86 instruction set. Information here as reported by [14} 21]].

2.2.2.1 Hardware

Enclaves’ state is stored securely in Processor Reserved Memory (PRM) a set of pages

in system memory presided over by the MEE. PRM consists of two data structures; the
Enclave Page Cache (EPC) and the Enclave Page Cache Map (EPCM).

An enclave is defined by its SECS — generated when an enclave is created and stored
in a dedicated entry in the EPC. A SECS holds important metadata including; the en-
clave’s (system-)global identifier, its measurement hash (MRENCLAVE, § [2.2.4) and its

memory usage.

“Linux uses two of x86’s four protection rings — 0 for the kernel, and 3 for userspace.
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| Userspace Host Application |<—>| Enclave
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Y
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| SGX Kernel Module / Driver |

1

SGX Capable CPU «—> Processor Reserved Memory, PRM

Intel hardware

Figure 2.3: A high-level overview of the SGX hardware and software architecture.

The EPCM provides an index into the EPC: it stores access control information, own-
ership and validity indicators, and a marker for a page’s designated use — this is not

accessible from software.

PRM pages are only successfully resolved if the CPU is in enclave mode and the
EPCM corroborates the enclave’s ownership of the region; invalid requests are pre-
sented with an unused page from generic system memory. Direct Memory Access to

PRM is always rejected.

The EPC is managed by the system’s hypervisor or OS as typical memory, but it
must use SGX-specific instructions. This is to appease the MEE, which is responsible
for ensuring the integrity and confidentiality of this process, encrypting and decrypt-
ing pages as they cross the PRM boundary. An SGX driver, isgx, is required to allow

userspace applications to use the platform and create/manage enclaves.

2.2.2.2 Userspace Services

Starting an enclave requires retrieving a launch token from Intel’s Launch Enclave;
this checks the enclave’s validity and identity. Access to the Launch Enclave and

other architectural enclaves is provided by the Application Enclave Services Manager

10



(AESM); the userspace SGX libraries facilitate communication. Other architectural en-

claves include;

« The Provisioning Enclave — verifies the authenticity of the platform and retrieves

an enclave’s attestation key from the Intel Provisioning Service’s servers.

+ The Quoting Enclave — provides trust in the identity of the SGX environment
and enclave being attested, by converting the locally generated attestation key

to a remotely-verifiable quote.

2.2.2.3 Third-party enclaves

Enclaves are always accompanied by a host application which acts as its untrusted
counterpart. The host application calls the SGX SDK to build an enclave on its behalf
using an enclave image, packaged as a standard shared library (enclave.so) and re-
turns its global identifier. Control is passed from the host application to the enclave
by invoking an enclave function via an ECALL. Execution flow can temporarily leave
the enclave if it calls one of the host application’s functions via an OCALL. Execution
naturally leaves enclave-mode when an ECALL terminates. Both ECALLs and OCALLs
are defined statically in the enclave’s interface definition (enclave.edl), and the nec-
essary glue code is generated by the SGX SDK’s build toolchain at compile time; this

ensures calls crossing the enclave boundary are marshalled safely and correctly.

2.2.3 Enclave Lifecycle

SGX instructions can be separated into two distinct groups; privileged and unprivi-
leged (Table . The following description is illustrated in Figure

Preparing an enclave The host application begins initiating the creation process via
isgx, the SGX driver. isgx allocates the requisite number of pages to run the enclave
(1){Ythis is tracked by the driver’s internal state (2).

3A few instructions irrelevant to the explanation given here are omitted.
*Numbers correspond to events in Figure

11
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Figure 2.4: The process of creating and initialising an enclave; details given in §
Purple components belong to the SGX platform.

The application next calls ECREATE with the metadata of the enclave to be loaded
(3); the MEE checks that the pages being claimed are vacant and populates the SECS
page (4). Once complete the application prepares the remaining EPC pages using EADD
(5) and loads the enclave’s code and data (6).

Next the enclave is measured — EEXTEND is called (7), triggering the MEE to update
the measurement hash in the SECS to mirror the current state of the enclave’s memory
(8). After, the EPC memory is finalised using EINIT (9): this operation requires the
application to retrieve the EINITTOKEN from the Launch Enclave, locking the execution
of the measured enclave to currently assigned processor core. Notably, pages cannot
be added after EINITE and an enclave cannot be attested to or entered before it. Lastly,
the SECS is updated with the enclave’s final hash (10).

Stepping into the enclave After creation, an enclave may be invoked using the

EENTER instruction; this can only jump to points explicitly defined in the enclave’s

>Only strictly true in SGX v1, see §

12



interface definition, and switches the CPU core to enclave mode. SGX uses a flag in
the CPU core’s Thread Control Block to prevent any other logical core following the

current one into the enclave.

Interrupts and exceptions can be served to the enclave, just as with any other ap-
plication. Control, however, is not immediately passed over to the defined handler.
Instead the enclave’s current state is saved and cleared to prevent leaking. The Asyn-
chronous Enclave Exit routine is then invoked and enclave mode disabled. Execution
post-interruption is restarted with ERESUME. Once execution completes, all registers
are erased and EEXIT called. Enclaves are terminated using the EREMOVE command; all

claimed EPC pages are marked as invalid and the SECS page deleted.

A significant restriction of the SGX architecture is that enclaves cannot be entered
from ring 0; [22] the required instructions are simply not available. Thus all host ap-

plications must run in userspace, making interoperation with the kernel challenging,

as discussed in §[4.2}

2.2.4 Attestation

An essential feature of the trusted computing model SGX creates is attestation, the
process of verifying both the authenticity and integrity of components cryptograph-
ically. SGX achieves this by creating two signing identifiers per enclave; MRENCLAVE
and MRSIGNER. [13] 23]

MRENCLAVE acts an a unique identifier for enclave’s contents. It is generated by
hashing the instructions and data passed when creating the enclave with ECREATE,
EADD, and EEXTEND; the value is finalised and stored in the SECS on EINIT. This value
depends on the exact content and ordering of the enclave’s EPC pages. As long as the

enclave’s source remains the same, so will its MRENCLAVE.

MRSIGNER, also known as the enclave’s Sealing Identity, is generated during the en-
clave build process — all production enclaves need to be signed using an RSA key
provided by the compiling user (the Sealing Authority). The public key from this pair
is stored in SIGSTRUCT, the Enclave Signature Structure. During an enclave’s launch

13



Execution Mode | Instruction | Function
ECREATE | Generate and copy the SECS structure to a new
page in the EPC, initialising a new enclave.
EADD | Add a new EPC page for the current enclave; this
is used to load initial code and data.
Ring 0 EEXTEND | Updates the enclave’s measurement during attes-
tation; modifies the SECS.
EINIT | The terminal instruction in an enclave’s initialisa-
tion, finalising its attributes and measurement.
EREMOVE | Permanently remove a page from the EPC; usually
invoked during enclave destruction.
EENTER | Transfer control from the host application to a
pre-determined location in an enclave.
ERESUME | Re-enter the enclave after an interrupt/exception
and resume execution.
Ring 3 EEXIT | Restore the original operating mode at the loca-
tion EENTER was triggered and flush the TLB.
EGETKEY | Access platform cryptography keys required for
attestation and sealing.
EREPORT | Generate a report for an enclave’s attestation key

for an attestation process.

Table 2.5: Overview of notable SGX x86 instructions in an enclave’s lifecycle. [22]]

14




its signed compile-time MRENCLAVE value (held in SIGSTRUCT) is decrypted and cross-
referenced with a freshly-computed runtime MRENCLAVE value to detect tampering.
MRSIGNER is the same for all enclaves signed by the same Sealing Authority.

Local Attestation Two enclaves resident on the same system are able to attest their
identities to each other using their MRENCLAVE and MRSIGNER values; this usually pre-
cedes the establishment of a shared secret (using a variant of Diffie-Hellman backed by

the platform’s master SGX key) for confidential communication between them.

Remote Attestation The Intel specification also enables an enclave to attest its iden-
tity to a remote party. The system’s Quoting Enclave verifies an enclave’s local quote
and creates a digital signature of it using the CPU’s permanent hardware SGX private
key. Using an Enhanced Privacy Identifier (EPID) [24] allows this process to complete
anonymously, relying on information encoded in the CPU during manufacturing. The
Provisioning Enclave assists in this process, especially as production enclaves are re-
quired to attest with Intel’s provisioning service [23] before executing. Remote attes-

tation is not explicitly required in this project, hence will not be covered further.

2.2.5 Sealing

Sealing is the encryption of data using a key unique to the generating enclave on a
particular platform. SGX offers two policies for deriving the encryption key based on
the platform’s Root Sealing Key — relative to the current enclave (MRENCLAVE) or the
current enclave’s Sealing Authority (MRSIGNER). These serve many use cases, including

allowing state to persist through enclave upgrades.

2.2.6 SGX Versions

There are currently two versions of SGX available — the details given here relate to
v1 as this project will be compatible with both. v2 offers a number of improvements on
which this project does not rely, including: dynamic memory management, eased pro-
duction enclave restrictions (‘Flexible Launch Control’), increased PRM size support,

and support for virtualisation.

15



2.3 Aspects of the Linux Kernel

Linux needs little introduction. Created in 1991 as an open-source alternative to
UNIX, it now powers over 90% of the cloud and 85% of smartphones. With almost
25,000 contributors to the kernel, it is immensely complex, with numerous interlocking
parts. This section provides a brief overview of a small subset of them to support the

information given in § 4]

2.3.1 Virtual File System

Linux represents almost every component as a file, including sockets, terminals,
and driver interfaces. The VFS is the transparent layer that provides this abstraction,
routing requests to the correct underlying implementation. This virtual interface relies

on the following mechanisms.

Superblocks The superblock attached to an entity represents the characteristics and
properties of the filesystem in which it sits. An important marker held in the su-
perblock is it’s magic value; this predefined codd?|indicates the underlying implemen-

tation the filesystem belongs to.

Inodes The inode data structure represents information about a single file existing
on a file system. All objects, not only files, are backed by inodes. No pathname is
assigned at this level; this is provided at a higher level of abstraction. An inode does
however indicate ownership, access restrictions and content type, and is identified by

its inode number.

Dentries Each item in the direct entry cache (dcache), shortened to dentry, represents
a connection between an inode its path in the VFS. This glue layer is responsible for
building the tangible folder structure, and as the name suggests, metadata caching. A

file consists of a dentry-inode pair.

File descriptors Whenever a process opens a file, it is presented with a file descriptor

by the kernel. This structure is unique to a process, providing the gateway between

®Defined in include/uapi/linux/magic.h.
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the process and the underlying file it describes. All active descriptors can be viewed at
/proc/<pid>/fd/; for standard processes 0 globally refers to stdin, 1 to stdout, and 2
to stderr. Reads and writes to a file (or socket, pipe, etc.) are performed on the relevant

file descriptor, not the object directly.

2.3.1.1 Extended Attributes

Files can have additional, external, key-value pairs attached to them. These at-
tributes, shortened to xattrs, are permanent and saved to disk alongside the file’s con-
tent. Values must be in the form of a null-terminated string, however they are op-
tional and may be left empty if the attribute is just a flag. xattrs are namespaced
to define different classes of functionality; the user namespace is open to all (e.g.
user.example attribute), but trusted, system, and security are reserved for

specific uses by the kernel — the security namespace belongs exclusively to LSMs

5232

2.3.1.2 sysfs

sysfs is a pseudo-filesystem provided by the VFS, that the kernel uses to export its
subsystems via a virtual file interface (/sys). Specific instantiations of sysfs are used

for various purposes — for example, LSMs and SecurityFS (/sys/kernel/security).

2.3.2 Linux Security Modules

Linux supports the inclusion of third-party security models in the kernel itself using
a unified framework, LSM. This provides developers with hooks into kernel functional-
ity at every point a userspace syscall is about to access fundamental kernel primitives,
such as inodes or task control structures. Each of these hooks can influence the be-

haviour of the kernel by allowing or denying the operation.

LSM attaches a void* security field to every instance of kernel primitives, such as
struct inode, to allow security implementations to attach additional state to each,
tracking them as appropriate. Decisions taken within an LSM affect all aspects of a
Linux system; superuser privilege cannot override it and every component in the sys-

tem can be restricted.
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2.3.2.1 Integrity Measurement Architecture

Linux’s IMA subsystem is responsible for calculating the hashes of files and pro-
grams as they are loaded (measurement), verifying them against an allowed list if re-
quired (appraisal). Its driving purpose is to detect if files have been maliciously altered
remotely or locally; the file’s hash is stored as an xattr (security. ima). IMA supports
many use cases, the majority of which are complementary to the LSM framework, but

we shall focus on one here — EVM.

The Linux Extended Verification Module (EVM) protects xattrs in the security names-
pace — this covers both the IMA hash and any labels created by security modules. Two

tamper-detection methods are provided:

1. The HMAC-SHAT1 hash of the security namespace is stored as security.evm

for reference, and

2. A digital signature of this value is stored alongside using a key that is sealed

either using a Trusted Platform Module [25] or passphrase.
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Chapter 3

Related Work

3.1 Flume and CamFlow

Both Flume [[10] and CamFlow [5] present practical DIFC systems for generic, OS-
level protection in Linux. Their models are not dissimilar, with CamFlow refining the
basic Flume approach. A detailed overview of the CamFlow model has already been
presented in § but there are important differences in the implementation of the

two works.

Flume Flume takes the form of a userspace reference monitor. Processes confined
by Flume are not able to perform most syscalls directly — an interposition layer replaces
syscalls with Interprocess Communication (IPC) to the reference monitor, which en-
forces IFC policies and ensuring operation safety on processes’ behalf. The majority of
complexity lies in the reference monitor, with its LSM only a small auxiliary compan-

ion. The authors report a 30 — 40% overhead.
CamFlow In contrast, the CamFlow core IFC implementation lies entirely within its

LSM, efficiently exploiting kernel functionality to minimise the overhead it creates.

File operations in microbenchmark tests produce an 11% average overhead.
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3.1.1 Other IFC Systems

Many different approaches to IFC have been published; the most influential to this

project will be briefly summarised.

Asbestos is a prototype OS by Efstathopoulos et al. [26] that provides entity labelling
and isolation as an OS primitive. Applications express individual policies via a custom
kernel interface, and all dataflow is protected, including IPC and system-wide infor-
mation flows. Additionally, a novel event abstraction and sub-process security contexts
allows processes to act on behalf of multiple entities. HiStar (Zeldovich et al. [27])
builds on the Asbestos model, minimising the size of the system’s TCB — the system
has no notion of superuser, with no code other than the kernel being fully trusted. An
important consequence of this is that the risk of data leaking via covert channels is dras-
tically reduced. DStar (Zeldovich et al. [28]]) translates HiStar into a distributed context,
translating labels between IFC-enabled hosts with the help of a globally-meaningful
set of tags. In contrast, Aeolus (Cheng et al. [29]), derived from Asbestos, deploys a
common TCB across all nodes in a distributed system to enforce IFC; it filters I/O and

both inter- and intra- process communication.

Laminar (Roy et al. [30]]) takes a similar approach to Flume, using an LSM for policy
enforcement, but extends it with customisation to the Java Virtual Machine (FVM). [31]]
to support thread-level isolation and heap-object protection. This approach has proved
powerful in applying DIFC to popular processing systems such as MapReduce [32] and
Hadoop. [33]

3.2 Interoperation between Linux and SGX

The relationship between SGX and Linux has at times been difficult; Intel has been
attempting to upstream isgx, the SGX driver, into the mainline kernel for six years A
source of extreme friction lies in the fact that enclaves are not operable in ring-0, forc-
ing research seeking to use SGX to harden the kernel itself to be creative integrating

it.

The linux-sgx patch-set has seen 32! revisions; https://lore.kernel.org/linux-sgx/.
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The TresorSGX [34] project was one of the first to consider the practicalities of this
relationship seriously, constructing an externalised interface for kernel functionality
to be offloaded to an enclave via a specialised kernel module. Mainly focusing on
disk encryption, the prototype achieved its security goals but struggled with perfor-
mance, only performing at 1% the bandwidth of its kernel-embedded counterpart. The
most prevalent performance hit came from kernel <> enclave communication over-

head, made worse by the need to exit and re-enter ring-0.

Various other studies touch upon these issues, including:

« Custos (Paccagnella et al. [35]); tamper-detection for audit logs using SGX. The
design attaches itself to the pre-existing Linux Audit Framework, deliberately

avoiding execution tied to the kernel. Performance overheads are 2 — 7%.

+ DelegaTEE (Matetic et al. [36]]); credential delegation between two computer sys-
tems by enforcing either centrally brokered or peer-to-peer. discretionary access
control. The system does not operate at the OS-layer, but presents an effective

capability-sharing system for modified applications via an SGX mediator.

« NeXUS (Djoko et al. [37]); practical access control for remote storage systems
such as Google Drive. The design uses a stackable filesystem to interface with
encrypted volumes — SGX is used to protect and share these encryption keys.

Performance overheads are 100%.

3.3 Dataflow Protection using SGX

Research into applying the protections afforded by SGX to large-scale distributed

computation accelerated recently — the most prominent projects are detailed here.

« SCONE [38] presents a secure container framework for Docker. [39] Using a se-
cured version of the standard library for C it transparently encrypts/decrypts I/O
crossing the container’s boundary. The authors claim x0.6—1.2 the performance

of native throughput.

« VC3 [40] secures Hadoop MapReduce computations — the Hadoop platform is

not considered part of the TCB, thus allowing the system’s security invariants
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to remain unaffected if it were to be compromised. The reported performance

overhead is 8% (for full read/write integrity).

The Maru project [41]] added support for running distributed Apache Spark in
SGX enclaves. Data residing outside of a worker in HDFS is sealed, removing
the needs for the need for Hadoop to be a part of the TCB. A notably difficulty
was porting the JVM to function efficiently inside an enclave; SGX v1 restricts
the EPC size to 128MB, severely penalising applications that struggle to run in

relatively small memory footprints.

Ryoan [42] provides a distributed sandbox environment to confine untrusted ap-
plications running on sensitive data in the cloud; a specific use case is computa-
tion outsourcing. It uses confining labels to create a weakened form of IFC track-
ing; processing nodes must be stateless and once tainted by a request cannot
access resources outside the execution environment. Enforcement is managed
both by SGX and NaCl [43] for the host application.
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Chapter 4
CIiTADEL

In this chapter we shall introduce and detail a prototype implementation of a modu-
lar, SGX-protected reference monitor — CITADEL. We start by considering this project’s
motivation and discussing the challenges faced. Then, we explain the three-part ar-
chitecture, relating design decisions to its DIFC model. We discuss the architecture’s

performance and effectiveness in §[5

4.1 Motivation

Since its introduction in Anderson’s 1972 report, [44] the reference monitor concept
has proved a reliable workhorse for many security models. It does not refer to any
exact policy, nor limit itself to any particular implementation — its abstractness is one
of its greatest strengths, reserving any judgement about what policy is appropriate in

a particular setting. [45]]

Fundamental Properties of a Reference Monitor

« Always invoked. To guarantee that adversaries are unable to bypass the system’s

security policies, every access to the system must be mediated

« Evaluable. It “must be small enough to be subject to analysis and tests, the com-

pleteness of which can be assured”; [44] to be trustworthy, it must be auditable,
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with, ideally, a restricted TCB.

« Tamper proof. To ensure that an attacker cannot disable the authorisation mech-
anisms mandated by the security policy, the integrity of a reference monitor

cannot be in question.

No computer system is ever completely secure, and Linux is no exception. Having
grown by 1.7 million lines of code (LoC) in the past year alone, to 27.8 million LoC in
total bugs are inevitable — almost 2000 have been reported in the past year and 662
severe bugs are still outstanding| Therefore we must question whether Linux alone
can provide a reference monitor implementation the guarantees it requires, [46} 47]]

thus motivating the use of SGX.

Applying SGX to this problem brings two attractive benefits;

+ The system’s IFC policy can be evaluated both during offline analysis and online

using attestation, building other enclaves’ confidence in the underlying system.

« SGX’s hardware protections are very capable of defending a reference monitor’s
state, even if adversaries have ring-0 privileges or in the presence of a kernel

bug.

4.2 Challenges

The natural location for a reference monitor is embedded directly into the kernel,
in the path of syscalls’ control flows. CamFlow does this using the LSM framework,
silently tagging processes and other entities as they are encountered by the kernel, and
additionally providing an external LSM-interface for any active changes. However, an
SGX enclave is incompatible with this workflow (§ as it cannot execute along-
side kernel code. Thus a significant, unavoidable design feature is that the reference
monitor must be distributed across rings 0 and 3 — an enclave policy component, and

an LSM for enforcement.

"https://www.theregister.com/2020/01/06/1inux_2020_kernel_systemd_code/
“https://bugzilla.kernel.org/
*https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
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Figure 4.1: Abstract syscall control flow route. Grey components show the natural
Linux design. Green additions highlight the externalised enclave LSM component.

The disruption this change causes could severely impact performance; Figure
highlights the significant change to overall control flow. Most notably, externalising
part of the LSM to an enclave forces, in the worst case, an additional pair of context

switches for each syscall.

Given a ring-3 component is unavoidable, we seek to minimise the overhead caused
by its integration, while maintaining safety (every operation must be mediated). This
situation is reminiscent of exokernels; [48]] forcing a portion of the system into userspace

could, if treated carefully, help overall performance. [49]

Two architectures, as illustrated in Figure were initially considered.

1. An isolated extension of the LSM. Only the security implementation commu-
nicates with the policy enclave, acting as a naive reimplementation of a fully

self-contained LSM, and using an additional kernel module as an I/O relay.

2. An integrated userspace service, through which permission is requested ahead
of time and decisions stored in the LSM until needed. Backflow of information

is facilitated asynchronously, but no additional kernel relay is required.

Architecture 1 can be implemented without changing the IFC model presented in
§[2.1.3] reducing concerns regarding correctness and safety. However it adds significant
overhead to the critical sections [50] of core LSM functions, in most cases while the

kernel holds locks for various objects being accessed.
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(a) Architecture 1 (b) Architecture 2

’Enclave ‘ | Application |<— ’Enclave H Application |<—

1 f Ring 3
A A 4 . A Rlng()
’ Kernel Module ‘ | Kernel Interface | | Kernel Interface |
¥ ; v
LSM | ey LSM |
v v
| Kernel Operation |— | Kernel Operation |—

Figure 4.2: Two possible enclave integration designs.

Architecture 2 is more flexible, requiring all negotiation be conducted ahead of time,
and importantly, without leaving userspace: any overhead only impacts the applica-
tion, leaving the kernel’s critical sections to execute with minimal interference. A
notable downside, however, is that the system’s security model will need an extension

because policy decisions and enforcement are no longer one and the same.

Preliminary experiments showed that performance of the two architectures was sim-
ilar in light workloads, but that Architecture 1 degrades significantly due to resource
contention. Additionally, as will be explained in §[5.2.1} the dependence on a kernel
module conflicts with the desired constrained TCB of the system. For these reasons

Architecture 2 forms the basis of the prototype.

An additional challenge is one of incomplete information — an enclave is not privy
to internal kernel datastructures such as task_struct, which will store the taint and
capabilities of processes. A potential solution would be a request-response model via
a custom kernel interface for any queries, though the performance impact would be
severe, requiring additional context switches. Instead, the approach adopted creates
an abstract interface that purposefully removes the minutiae of the underlying system.
Any solution must be trustworthy and safe, and malicious entities must not be able to

exploit any eventually consistent components. [51]]
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As a final comment, it must be noted that SGX is not flawless; § discusses the

impact of this on the project.

4.3 The CitapEL IFC Model

Before work on the final CITADEL implementation began, we constructed a formal-
isation describing the distributed nature of its design. A model helps reason about
the safety and correctness of the final system, and provides the notation to properly
discuss its features. Our model directly extends the one presented in §[2.1.3]

4.3.1 Reservations

Previously we defined the concept of a safe flow, A — B, which underpins our IFC
restrictions. In previous works permission is granted while implicitly considering how
the flow is to take place (4.1). An isolated enforcement component does not understand
the concept of flows, forcing policy decisions to be defined explicitly; CITADEL uses
reservations for this purpose (4.2). This distinction is simple but very important when
introducing laziness and other optimisations between the two halves of the reference

monitor.

decision

operation — ’ reference monitor‘ ——{0,1} (4.1)
operation — | policy —= "y enforcement decision , {0,1} (4.2)

Let €2 be the set of all operations mediated by the reference monitor, for example,

file read or socket _open, and R, the set of all reservations, as followsﬂ

R =T x £(Q)

Further, we define a shorthand, ¢%;

reR.(r=({ta)=t* = teT AN aCQ)

*Recalling that 7T is the set of all tags.
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For a process A, A, C R defines the set of all reservations it holds. Once a decision
has been made, it is important for a reference monitor to be able to change it, revoking
access if required. Thus we specify validity with an indicator function, V : R + {0, 1}.

A reservation can only be used if valid; invalid reservations are discarded.

4.3.2 Permissible Operations

Satisfiability To determine if an operation is permissible, the constraint reservation
representing it is compared against reservations held by the process. For example,

tifileread} jg the constraint for reading a file tagged .

A constraint 77 is said to be satisfied by a reservation 7Y (7% 3 7Y) if the tags match,

the reservation is valid, and y permits at least the required form of access (4.3).

P EeER (0277 <= =7 A alB AVT)) (4.3)

From here we define a permissible operation, A —~ t; process A may perform oper-
ations w on an entity tagged ¢. An operation is only permissible if the process holds a

reservation explicitly granting permission (4.4).

At = Tt €A = Y3t (4.4)

To bridge the gap between permissible flows and operations, a final definition is
required; a specific permissible flow, A —s B, meaning that A may send information

to B using operations w, via entities tagged with 7. Thus:

(Qu,7. A% B) = A B (4.5)
Ani>B:>(Elw'.ALT/\wgw') (4.6)

Together, these define the relationship between an abstract policy space (A — B,
§ and concrete implementation (A —~ 7, §. A policy decision may grant
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a greater set of permissions than asked for (4.6) — e.g. allowing both read and write

when only write was explicitly requested. [10, 52]]

Some small updates are required to make the existing rules consistent with the new:
reservations are not transferred when creating a new entity (4.7), and reservations
are not affected by capabilities as they represent a centralised component of the DIFC

system.

4.3.3 Transient Entities

Alongside active and passive entities, we introduce a third type; transient entities.
These are passive entities that are privately held by an owning active entity; they are

used to model Linux functions such as pipe () and unclaimed tainted files.

To facilitate this, all processes are assigned a unique tag p € 7T, and any files it
creates are initially also be tagged with p. Using P as the set of all process identifiers,

we define 7 as the function returning a process’s transient identifier;

T:Pw—T (4.8)

The expression for a permissible operation now becomes;

At = Z(A) =tV 3t"c A, = 3t (4.9)
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Figure 4.3: High level overview of the CITADEL architecture.

Core Kernel

4.4 Implementation

CITADEL consists of its LSM, citadeld, and 1ibcitadel. Each plays an essential,
symbiotic role in the reference monitor’s operation. The prototype is over 9,000 lines
of C and C++, extending the Linux kernel build system (§ [4.4.6). This section presents
CrrapeL’s architecture, guided by Figure

Analogy The system is well illustrated by the will-call system used by theatres —
customers (processes) reserve tickets (permission) to attend a show (perform an opera-
tion) ahead of time via phone or the internet (citadeld), but only receive their tickets

(reservations) at the venue (LSM) on the day (at the point of execution).

Crraper’s LSM comprises its enforcement domain (§[4.4.1), and citadeld its policy
domain (§4.4.2). Enforcement is policy-agnostic, implementing an abstract, tagged taint
tracking system that exposes decision points to policy influence via reservations. Pol-
icy components need not be aware of the enforcement strategy to successfully express

their protection schemes. Inter-domain communication is discussed in §
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Figure 4.4: Accesses across the taint boundary taint the untainted party.

4.4.1 Enforcement

The CitaDpEL LSM tracks all entities within the Linux system by attaching a small
data structure (< 48 bytes) to each; it computes and tracks a conservative notion of
taint for each to ensure safety. Tainting in CITADEL is dynamic and additive — enti-
ties are only policed if involved in a successful operation crossing the taint boundary
(Figure[4.4). In additional to automatic propagation, the policy domain may amend the

taint for most entities.

The following metadata is tracked for each entity:

— Active. Processes only — these require many markers and flags, including; taint

and its reservation list.

— Passive. There are many forms of passive entity, the most prevalent being files
and other inode-backed structures. These carry taint, an identifier (tag), and an

anonymous flag. Non inode-backed tracking is discussed in §4.4.2.5

4.4.1.1 Identifiers

Entities are tagged with a single, randomly-generated 128-bit identifier, A security
policy may maintain internal pseudonyms for secrecy and integrity, but must convert

back to the system tag for enforcement.

4.4.1.2 Extended Attributes

An inode-backed entity’s taint flag and identifier are copied to xattrs. These occupy
the security.citadel namespace, and ensure that taints and identifiers persist be-

tween boots. Certain entities may be anonymous, indicated by an anonymous flag, if
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their identifier is not present as an xattr, either because the entity does not support

xattr or those with temporary identifier (§[4.4.1.5).

4.4.1.3 Permissions

Tainted processes must hold a valid reservation to perform any operation allow-
ing data to flow to another entity — enforcement strictly follows the rules in §
Untainted processes bypass all checks, and thus lie outside the IFC model; security
implications are discussed in §5.2.2]

4.4.1.4 Reservation Cache

When the system’s policy enclave presents a new reservation to the LSM, it is stored
in the reservation cache. Implemented as a red-black tree, this maps a process’s identi-
fier to a linked list of its pending reservations. This intermediary storage is necessary as
LSMs are event-driven, and thus can only access an entity’s state when it is presented
for review. Before a permission check is carried out, the LSM updates the process’s

reservation list by;

1. Installing pending tickets. All reservations are moved to its internal reservation

list, ready for inspection.

2. Disposing of expired entries. When a reservation is inserted into the reservation
cache, it is timestamped with an explicit expiry date — this lifetime is 15 seconds

by default.

4.4.1.5 Entity Creation

Every newly spawned process is privately tagged by the LSM as if it were a passive
entity (§[4.3.3). The purpose of this identifier is to enable association any private, pas-
sive entities it creates. This includes the file descriptors provided by pipe (), and any
new files it creates using open(). Processes always have permission to access their

transient entities, and external entities can only gain access rights if they;

1. Are a child processes requesting access to their parent, or
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2. The process officially claims them via the policy enclave, giving them an inde-

pendent tag and removing the entity’s status as transient.

fork() In Linux, child processes are initially exact clones of their parent, with ac-
cess to the same state and file descriptors. Thus children of tainted processes are also
tainted, but importantly without the same rights as their parents — open file descrip-
tors will not function without revalidation (§ , and children must request the right
to their parent’s transient entities to use pipes or similar. It is the policy enclave’s
responsibility to validate that the security contexts of the parent and child have not

diverged.

4.4.2 Policy Components

citadeld represents the policy counterpart to the LSM’s enforcement, including
the core SGX enclave. citadeld is modular, hosting an independent policy module

sitting on top of an enforcement translation library (Figure 4.5).

4.4.2.1 Abstract Policy Module

The policy module is presented with a simple, event-driven interface; this stream-
lines their implementation, allowing more emphasis to be put on correctness. Their
implementation is based around a single method, through which their permission is

sought when required; asm_handle _request(3).

The simplest possible policy is that any operation is permissible. The request param-

eter, amongst other things, holds the target identifier and set of operations.
citadel_response_t asm_handle_request (pid_t pid,

struct citadel_op_request *request, void *metadata) {
return CITADEL_OP_APPROVED;

This can be considered to determine the validity of an operation, A ~~ t, based on

its knowledge of any implicated flows (A — ).
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Figure 4.5: Overview of the components inside citadeld.

Operations Entity operations, €2, are presented as citadel operation_t, a simple
bit mask over the operations CITADEL recognises. Similarly, policy decisions are rep-

resented using citadel_response_t; these may be approved, rejected, error, invalid,

granted and forgedﬂ

4.4.2.2 Host Application

There are several steps before presenting requests to the resident policy module
(§ [4.4.3). Requests often refer to absolute filepaths, requiring retrieval of their tags, if
they exist — security xattr serve these requests. Translation is performed pre-emptively
depending on the operation requested, and results are cached in a translation cache to
minimise overhead. This is implemented using sparsehash[|and great care is taken to

detect stale entities that may confuse the internal decision process.

> Approved, and confirming that the process is recognised as the owner of the entity.

6See §[4.4.5

"https://github.com/sparsehash/sparsehash
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4.4.2.3 Enforcement Interface

The policy module is interchangeable, but the enforcement interface acts as the en-
clave’s backbone. All requests are routed through it to detect forgery or invalid data,
and all information leaving it is formatted and signed’| as appropriate. The process of

installing reservations created by the enforcement interface is detailed in §

4.4.2.4 libtomcrypt

We ported libtomcryptﬂ a leading open-source cryptography library, to function in-
side an SGX enclave as citadeld requires many encryption mechanisms on top of
those provided by SGX. Porting was achieved by replacing libtomcrypt’s backing preci-
sion arithmetic library with an SGX-aware version of GMP["|and forcing it to statically
allocate its memory (as SGX v1 lacks support for dynamic memory management). Fur-
ther changes rewrote the internal random number generator to use the one provided
by SGX, and rework its exception strategy to remove abort (), an illegal instruction

inside an enclave.

4.4.2.5 Shared Memory

CrtaDEL also supports the tagging and restriction of shared memory (SHM). This
is managed directly using System V identifiers granted to allocated memory segments
instead of inodes. Internally, restrictions function as files do, but per-access mediation
is not directly possible — we can only detect when segments are allocated and attached.
Thus this workflow requires special consideration, and a new reporting mechanism
from the LSM back to the policy enclave. Using a specialised xattr interface (4.10) to
drive a request-response model, the LSM tracks and reports the PIDs of everything
that has touched an SHM segment.

security.citadel.shm. [shm id] — {145,267,1120,...} (4.10)

8Encryption is discussed in §[4.4.3
%https://github.com/libtom/libtomcrypt
Yhttps://github.com/intel/sgx-gmp
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4.4.3 Communication Pathways
There are three notable I/O pathways between components within CITADEL;

1. APPLICATIONS <— PoLICY ENCLAVE.
All application requests (via libcitadel, §[4.4.4) are sent to the policy enclave
using a standard domain socket; /run/citadel.socket. To ensure that all pro-
cesses can communicate with the reference monitor, a special tag, 7 = 2128 — 1,
is assigned, asserting the reference monitor’s ownership of it and whitelisting it
in the LSM.

2. Poricy ENCLAVE <— LSM.
Communication uses two mediums; SecurityFS and xattrs. All messages are en-
crypted using AES-256-GCM [53| [54]; the key is chosen during initialisation
(sEa3D).
Reservations are installed using a custom SecurityFS interfac and synchronously
inserted into the reservation cache. The policy enclave may invoke an operation
directly on a file using setxattr (), which the LSM intercepts, triggering it to

enact the required changes. One common use of this is entity tagging.

3. LSM — APPLICATIONS.
To verify their identities with the policy enclave, applications present a ptoken
with each request (§ which is generated by reading from a public Securi-
tyFS interface[”
Additionally, 1ibcitadel occasionally needs to check the tag associated with a

path or file descriptor; this is managed using the existing 1ibc xattr methods.

4.4.3.1 Initialisation and Encryption

Whenever the system boots, the LSM is first to come online — citadeld may start
any time afterwards, meaning that the LSM must be capable of operating indepen-
dently. In this case the system will tend towards a state of complete lockdown (for
tainted processes). Thus the mechanism by which the LSM and policy enclave ini-

tialise communication is vital for secure operation; CITADEL achieves this with a pair

1 /sys/kernel/security/citadel/update
12/sys/kernel/security/citadel/ptoken
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of 2048-bit RSA keypairs, one for the enclave (£p/s) and one for the kernel (Kp/s).

SGX does not provide protection against reverse engineering, thus the enclave’s
keys must be provided as a sealed entity; sealing here uses MRSIGNER, allowing any
policy enclave provided by the sealing authority to fully function, and is compiled into
the kernel, available via SecurityFSE]

Once a policy enclave has been initialised it must verify itself; the LSM issues a
random challengd™|encrypted using the enclave’s public key, and expects a reply using

the corresponding private key.

LSM — Enclave : {challenge} s,
Enclave — LSM : {challenge, PID, identifier, aes_key, ...} g

Given FEy is only held sealed, any entity providing a valid challenge is trusted and
considered part of the CitapeL TCB. The challenger’s PID is stored to detect any ad-
versarial replay messages. RSA is only used for this initial exchange; it would be too
slow to use for all messages. Thus the AES key provided in the response underlies all

future communication.

CrrapkL uses AES for protection as all SGX-capable processors supports AESNI; [55]]
this provides hardware-accelerated AES operations to achieve an encryption band-
width over 1 Gbps, far exceeding the capacity required, so adds negligible overhead.
The system’s AES key updates with every message sent from the enclave using an
SGX-approved source of entropy this adds minimal overhead and constitutes good
practice. A copy of the first key presented in the challenge-response is retained and

used in cases when a static key is essential.

13/sys/kernel/security/citadel/sealed keys
4/sys/kernel/security/citadel/challenge
Bpew « old @ update

37



4.4.4 libcitadel

CITADEL provides a userspace auxiliary library to make integrating existing pro-
grams easy and unobtrustive. For each mediated syscall (e.g. open()) it provides a
proxy function (c_open()), thus requiring no major changes to applications’ work-
flows[™| A good example of this in action is the ported version of Nginx (§[5.1.4).

libcitadel performs two main functions;
1. Communication with the policy enclave.

2. Tracking and predicting what permissions it believes the process has.

Communication is facilitated via citadeld’s domain socket. A zero-copy approac
helps minimise latency on both sides; this is optimised for in the protocol design. Each
communicant verifies the PID of the other party (§[4.4.5.1).

Caching at this level has a tremendous impact on overall performance. When read-
ing a large file a program may make thousands of calls to c_.read () — always calling
to citadeld would be wasteful, as processes usually have enough information to infer

their current position.

Therefore every process maintains a list of expectations — the reservations it be-
lieves it has, including their validity — and inferred taint status. They cannot precisely
know the true values, especially as the policy enclave may grant different permissions
than asked for, but in Nginx over 97% of requests were servable locally in a realistic
workload. Using the same workflow, untainted processes speculatively execute opera-
tions, again removing the need to involve citadeld. The performance gain of requests

served from the cache reduces the overhead from O(10us) to O(100ns).

A core challenge of the cache is relating open file descriptors to the permissions they
require. This involves manual work, including fetching its xattr tag with fgetxattr ()

and estimating the expiration time of the LSM’s underlying reservation. libcitadel

Future work would integrate this directly into 1ibc.
"Excluding copying in the kernel and transferring the request into the enclave.
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int c_open(const char *pathname, int oflag, mode_t mode) {
int fd; bool from_cache = false;
bool creating = access(pathname, F_0OK) < 0 && (oflag & O_CREAT) > 0;

// Pre-emptively attempt access tf I suspect I'm not tainted.
// Alteratively, register a transient file <f we're creating <t.
// —-= close and reopen to ensure it ts independently tagged.
if (lam_tainted() || creating) {
fd = open(pathname, oflag, mode);
if (lam_tainted() && £d > 0)
return £fd;
if (fd == -1 && errno != -EPERM)
return -1;
if (fd !'= -1)
close(fd);

// Request access from the policy enclave. Claim file if not tagged.
if (!citadel_file_open(pathname, strlen(pathname)+1, &from_cache))
return -EPERM;

// Continue as mormal.

fd = open(pathname, oflag, mode);
citadel_declare_fd(fd, CITADEL_OP_QOPEN);
if ('am_tainted()) set_taint();

return fd;

Listing 4.6: The 1ibcitadel shim function for open().
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attempts to revalidate tickets before expiry to avoid unexpected drops in service; this

is particularly important for applications unaware of CITADEL.

Special care is required with child processes. Children are given a copy of their
parent process’s state, including its 1ibcitadel cache. Although the LSM passes no
reservations to the child, 1ibcitadel maintains the same expectation cache. Entries
in it are marked as invalid, to force the child to revalidate a file descriptor before first
use. Additionally, we assume that a process trusts the initialisation code of its child,
enabling libcitadel to delete the parent’s ptoken (§[4.4.5.1); the c_fork() function

handles this automatically.

4.4.5 Additional Security Features

CrTADEL implements additional security mechanisms to reinforce potentially vul-
nerable aspects of the system. Both the policy enclave and LSM use a process’s PID as
its primary identifier — C1TADEL implements two schemes to protect and prove iden-

tity.

4.4.5.1 ptokens

Before a process may interact with citadeld, it must retrieve its ptoken from the

LSM[®| The purpose of this (4.11) is twofold;
a. Inform libcitadel about the process’s metadata in the eyes of the LSM, and

b. Provide an authenticable access token to present to citadeld, verifying the pro-
cess’s identity. This encrypted using K, the system’s designated static AES key,

which is unknown to the process.

ptoken — (citadel pid, identifier, token, {identifier, token, pid} x) (4.11)

Whenever a process connects to the citadeld socket, its identity is retrieved from
the underlying transport mechanism (Listing [4.7). At both the sender and receiver
the identity of the other is verified using this method, and additionally 1ibcitadel

Read from /sys/kernel/security/citadel/ptoken
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// Get PID of sender.

struct ucred cred;

socklen_t len = sizeof(struct ucred);

getsockopt (socket, SOL_SOCKET, SO_PEERCRED, (voidx)&cred, &len);
uint64_t pid = cred.pid;

Listing 4.7: PID retrieval from an active domain socket.

expects the decrypted token to be returned by citadeld, inspiring confidence that the

response is legitimate.

4.4.5.2 PID Protection

The LSM also watches for PID forgery, as it is possible for PIDs to be modified with
the help of a malicious kernel module (Appendix [A). This would be detrimental for the
LSM'’s integrity, allowing a process to silently assume another’s identity. Therefore the
LSM stores a process’s PID within its security structure and routinely checks to ensure
it does not change unexpectedly[”] Any process deemed to have an illegitimate PID is

denied access to all entities, effectively killing it.

4.4.6 CITADEL Build System

Building C1TADEL requires both the kernel and policy enclave to be in agreement
about the shared RSA keys; without this compilation will fail. A preparatory script
achieves this by;

1. Downloading the kernel’s source and inserting the CitapeEL LSM.

2. Generating two OpenSS 2048-bit RSA keys in DER format — the kernel’s Crypto
AP requires keys to present themselves as ASN.1 structures[]

3. Compiling and launching CITADEL’s preparatory enclave, signed with the same
signing identity as any policy enclaves generated. This ingests the two keys and

generates a sealed keyset to be presented to initialising enclaves.

19 A valid change would be on fork (), in which case the stored PID should equal the parent process’s.
Phttps://www.openssl.org/
2Ihttps://tls.mbed.org/kb/cryptography/asnl-key-structures-in-der-and-pem
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. Generating an interface file (keys.h) in the kernel’s source directory — this file
contains the kernel’s keypair, the enclave’s public key, and the aforementioned

sealed keyset. The key files are deleted.
. Building and signing the poicy enclaves.

. The kernel may now be compiled.
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Chapter 5
Evaluation

Three core questions hang over CITADEL’s viability — its security, expressivity, and
performance. This chapter presents a thorough investigation of the prototype’s per-
formance and a discussion of its security implications and application to real-world

scenarios.

5.1 Performance

The CrTAaDEL prototype demonstrates impressive performance, matching, and in
places surpassing, related approaches, despite its the architectural disadvantage. We

present its behaviour relative to native Linux kernel as follows;

1. Application-level microbenchmarks, tracing the duration of syscalls both na-

tively and through 1ibcitadel. (§5.1.2)
2. IPC bandwidth microbenchmarks in both intra-and inter-process contexts. (§5.1.3)

3. Real-world NGInx performance benchmarks for both low-latency and high-bandwidth

configurations. (§

The following results are best compared to Flume [10] — CamFlow, although imple-
mented similarly, has a different scope that this project. Flume reports ~ 40% decrease

in real-world performance; we report ~ 25% (§ .
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Figure 5.1: Control flow inhabitation for 1ibcitadel’s c_open() function, n = 100.

5.1.1 Evaluation Environment

The research machine used for evaluation contained a quad-core Intel® Core™ i5-
6600 (supporting SGX v1), 16 GiB RAM, and a 1-Gbps NIC. The primary disk provided
389 MBps read and 210 MBps write[| For all experiments running under CITADEL,
citadeld was running via systemd — all debugging tools were disabled and the en-
clave was built in hardware pre-release mode with the transition_using_threads opti-

misaton. [56]] Linux v5.6.0 was used as the base kernel.

Both Tables[5.2]and [5.6| report the sample mean and standard deviation. Figures
and [5.5] plot the sample medians and interquartile range (IQR) for each point. The
Wilcoxon paired signed rank test was chosen to determine statistical significance at
5% confidence. [57]]

5.1.2 syscall Microbenchmarks

A custom benchmark tool was built to assess the overall impact CiTADEL has on
syscall performance — for example, the duration of open() compared to c_open().
Table [5.2| presents these results. To give a fair comparison, two figures are reported
for C1TADEL. Amortised refers to the normal operation of 1ibcitadel, in which the
majority of queries are served from the cache; overhead arises from both local cache
operations and added kernel latency from the LSM. The other column, Cache Miss, gives

the overhead when caching is disabled, thus including communication with citadeld.

!Reported by the dd tool.
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CITADEL

NATIVE

Amortised Cache Miss 99" gile
open() 1.675 £ 0.076 6.083 £ 0.129 50.133 &+ 1.482 2.38 %
read() 5.724 + 0.206 7.010 £0.192 54.736 £+ 1.556 1.26 %
write() 14.340 £+ 0.208 15.597 £ 0.250 63.824 4+ 1.902 1.05%
close() 0.651 4 0.005 0.718 = 0.011 1.10x
socket () 1.446 +0.179 3.156 £+ 0.291 1.02x
bind () 0.762 £+ 0.023 1.911 +0.183 49.110 + 1.746 2.78 %
listen() 0.705 £+ 0.015 1.882 £ 0.149 48.411 4+ 1.386 2.91x
connect () 16.570 £ 0.278 17.961 £+ 0.330 66.273 + 2.147 1.05x
shmget () 1.880 £+ 0.122 1.913 +0.111 49.326 + 1.466 0.98x
shmat () 0.420 £ 0.005 1.575+£0.134 47.997 £+ 1.560 0.99x
shmctl () 0.418 4+ 0.005 0.743 £+ 0.083 45912+ 1.114 0.97x
shmdt () 0.415 £+ 0.003 1.342 £+ 0.040 1.01x
pipe() 1.110 & 0.061 1.288 + 0.069 47.334 +1.147 1.02x
mkfifo() 3.865 & 0.048 11.509 £+ 0.405 59.623 + 1.788 1.93x
fork() 47.866 = 3.175 48.647 + 3.457 81.174 4+ 3.829 15.77%

citadel_init ()

0.801 £ 0.009

34.940 £ 1.329

Table 5.2: 1ibcitadel microbenchmarks.
All values are in ps and the sample standard deviation is shown alongside the mean.
For C1TADEL, both the amortised and average cache-miss durations are given. Only
one value is given if the operation is not affected by a cache miss. The difference
between CrtapiL and Native Linux at the 99" percentile is also presented. n = 10°.
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Figure 5.3: Effective read () /write () bandwidths for both the native Linux kernel
and CiTaDpEL. The percentage overhead is also presented. n = 200 per buffer size.

Overall 1ibcitadel contributes ~ 1us of overhead (amortised) on average — this
rises to ~ 40/s on a cache miss. Figure[5.1]presents a more detailed view of where ex-
actly this overhead arises, approximately plotting where the control flow for c_open()
moves (on a cache miss). Interestingly, the slowest component is the communication
channel between libcitadel and citadeld (median 26us)E| as a result, the core ref-
erence monitor functionality only adds a median penalty of 24us. The final Kernel
call before terminating is the internal call to open (). Additionally, the 10" percentile
demonstrates that the first Kernel call is not always required if the entity’s metadata
is resident in the citadeld cache. During these experiments, citadeld showed to
reliably handle over 30,000 requests/second and between 90 — 100% usage of a single
thread.

Included in the Application regions.
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Figure|5.3|plots observed effective bandwidth whilst reading from and writing to a 16
MiB file with different sized buffers; the corresponding percentage overhead inflicted
by CrTaDEL is plotted to the right. The benchmark driving this was adapted for Linux
from one written by R. Watson for FreeBSD. [58] The results clearly show CiTaDEL
having a more adverse effect on performance for smaller buffer sizes; unsurprising, as
smaller buffers force a larger number of calls to read () / write (). It is unclear why
CrTaDEL provides better performance for large buffers with write (), an unexpected
artefact — the difference is statistically significant for buffers in the range 256KiB and
2 MiB, and reproducible. More work is required to determine the root causes, but
hypotheses include the slight optimisation afforded by regular, small delays easing

pressure on microarchitectural caches.

5.1.3 IPC Microbenchmarks

Again using the modified Watson benchmark, we investigated C1TADEL’s effect on
end-to-end IPC performance. We investigate pipes, local sockets (socketpair()), and

regular sockets, between 2 threads (Figure and between a parent and child process

(Figure 5.5).

Overall, the results between the two contexts are similar — both see approximately
20% degradation in the worst cases, tending towards equal performance when using
~ 10°-byte blocks. At first glance it appears that CITADEL affects the performance
between 2 threads slightly more than 2 processes, but in fact CITADEL performs near-
identically in both. Native performance is more heavily optimised when sending be-

tween two threads; CITADEL overshadows any latency gained by the kernel.

In a similar way to write (), CiTADEL unexpectedly outperforms the native kernel
in both contexts using pipe (). The readings are noisy, but statistically significant for
buffers in the range 16 KiB to 8 MiB, and reproducible. The cause is again unknown, but
observing that the native kernel’s throughput halves after buffers of 8 KiB, we suspect
that this is the result of cache exhaustion or inopportune paging. Notably, CITADEL’s
readings exhibit a far larger IQR for large buffer sizes than the native kernel, a side

effect that is repeated in real-world testing.
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CITADEL

NATIVE
Untainted Tainted Overhead

WEBSERVER BENCHMARK, 100-byte packets
Latency 35.73us 36.18us 44.351s 24%
— std. dev. 13.85us 14.12us 13.26s
— max. 53618 5548 508 s
Requests/s 2.748 - 10* 2.717 - 10 2.214 - 10* 19%
Bandwidth 177.28 Mbps ~ 168.72 Mbps 143.04 Mbps 18%
10GB F1LE TRANSFER
Bandwidth 1.404 Gbps 1.410 Gbps 1.413 Gbps ~ 0%
— std. dev. 0.428 Gbps 0.440 Gbps 0.549 Gbps
Duration 56.98s 56.74s 56.62s ~ 0%
— std. dev. 19.45s 18.97s 23.63s

Table 5.6: NGINx performance comparinson between native Linux, and both
untainted and tainted CITADEL, n = 25.

5.1.4 Ncinx Benchmarks

To validate the performance results presented thusfar, we ported the entirety of the
NGIinx Webserve to function alongside CiTADEL. No optimisations were made to the
codebase — the only changes made replaced core 1ibc function calls to use their c_x

libcitadel counterparts.

Two trials were run; a low-latency benchmarkﬁ and a 10GB HTTP file transfer (high-

sure it was exercised to its full extent, and was set up to use the loopback interfaceE] to

*https://www.nginx.com/
*https://github.com/wg/wrk
*http://127.0.0.1/.

eliminate any interference from outside the OS.
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The results are not surprising (Table [5.6). For the low latency tests we observe the
same 20 — 25% overhead as seen from TCP sockets in §[5.1.3|using the same buffer size.
The high-bandwidth tests show CiTADEL performing equally to the native kernel, only
differing by its larger sample standard deviation. This trial is also interesting as this is
the first time we see file descriptor revalidation happening automatically on read ()

and write (). The CPU overhead from citadeld was < 1%.

5.2 Security

5.2.1 CiTabpeL TCB

One of the core initial goals of this project was to build an enclave-based reference
monitor whilst minimising inflation to the system’s TCB; to this end we present the

trusted components of a CITADEL system.
— The SGX Platform, including all libraries and isgx.
— The policy enclave implementation.
— The userspace citadeld application; discussed further below.
— The core Linux kernel, including the CrtapeL LSM and the Linux VFS.

— The Intel AESNI Linux driver.
We also assume that the build environment is entirely trusted. A notable exclusion
from the TCB is the majority of Linux drivers and other kernel modules — this was

a strong motivation for using SGX, as it can effectively defend against malicious and

misbehaving ring-0 parties.

However, how might the system defend against citadeld, an unprivileged, user-

space application, being replaced by a malicious adversary?

citadeld amay be protected in exactly the same way that CiTADEL defends its

socket, /run/citadel.socket, with a reserved identifier. For example, opting to
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mark it with an xattr such as security.citadel.daemon with a nonce value dur-
ing the build process provides the LSM ample confidence that an executable is a valid
product of a CrTADEL build[f|and protects it from tampering. This may also be valuable
for defending the enclave object files themselves; although they cannot be tampered
with, an adversary may try to remove them to deny service. These features would

require extending the CITADEL build system further.

Secondly, can the kernel actually be held to the same integrity level as an enclave?

How trustable is a system that enclaves can only attest to half of?

Enclaves are unique in that their online attestation process inspires absolute trust,
but offline provenance can be equally valuable. Although not SGX-based, UEFI Secure
Boot [59] is an industry-standard mechanism for verifying whether an OS is legitimate.
Ensuring that a CITADEL system’s installation is trustworthy by having it properly
signed by a trusted party defends against many types of attack. Assuming that an
OS installation is verified, trust in CITADEL revolves around the policy enclave — if it
believes the system is legitimate then other enclaves may too. It alone has the power
to decide permissions, meaning its endorsement of its own TCB should carry weight.
This, however, is undermined when running on a hypervisor, as the LSM’s integrity

may be compromised.
Thirdly, does the kernel protects itself adequately from malicious kernel modules?

Effective protection is possible if carefully executed. Appendix [A] presents a proof
of concept kernel module that changes a process’s PID dynamically. This is highly
concerning, as a process’s PID is its core identifier in CITADEL’s eyes; defence was
discussed in §[4.4.5.2] The Linux kernel is a soup of exported and unexported symbols[|
which is exploitable to access internal functions never designed to be called from a
different context. This work does not assess the implications for the LSM framework,

but highlights the potential need for defensive programming when designing the LSM.

Using the bprm_check_security LSM hook.
’Symbols include functions and variables held in the global namespace; exporting is the process of
exposing it publicly to be called by third parties.
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We believe that CiTaDEL, with its restricted TCB, can be trustworthy, creating a
system of integrity checks based upon, and complementing, the trust placed in SGX
itself.

5.2.2 IFC Model Implications

The CrtapEL IFC model deviates from the designs of Pasquier et al. and Krohn et al.

in three key ways;
1. Policy and enforcement decision are separated.
2. Passive entities may exist in a temporary transient state.

3. Operations between untainted entities are not mediated.

The first is handled with an extension to the core model to make policy decisions
explicit and communicable (§ [4.3.2). This relationship is this work’s core focus, and
CITADEL relies on conservative assumptions — if not explicitly granted, permission is
withheld. By default the system tends towards complete lockdown, a defensive mea-

sure to preserve safety if subjected to denial of service.

The second point is justified with an extension to the creation flow rule (§[4.3.2] (4.7)).
Transient entities are only created from a secure context, under which they automat-
ically assume the labelling of their parent entities. This may informally be considered
an extension of the process’s internal state, and held to the same restrictions. Such
entities may only alter their security context (via another active entity) after being

declared explicitly, leaving their transient states.

Regarding the final point — tainting in CITADEL assumes the worst, treating any
potential infraction as cause for mediation; only the policy enclave may clear a taint.
Assuming all sensitive entities are correctly labelled, CrtaDEL will protect them against
anything within the system. Unlabelled entities are assumed to be in the public domain,
which allows normal execution and access control to proceed until the taint boundary

is crossed.
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5.2.3 SGX Vulnerabilities

This work assume that the SGX platform is itself secure; a successful attack on SGX
obviously compromises any protection offered by CiTADEL. A number of SGX vulnera-
bilities have been detailed; [60, 61} 162,63, 64] these are effective and highly concerning,

but mitigating them is not within this project’s scope

5.3 Use Cases

Our goals for CITADEL, included using it as a platform for reasoning about the re-
lationship between an enclave and its host. Standard workflows for creating an SGX
application use a library OS, such as SGX-LKL [65] and Graphene-SGX, [[66]] to create
a synthetic Linux environment inside the enclave supporting the primary application
— this approach subjects the enclave to some of the same flaws and issues as the un-
derlying OS. Could we reach a point where the host OS is trusted to hold custody of

sensitive assets, instead of a trend toward pure isolation?

Two hypothetical scenarios are presented — one requiring secrecy, and one integrity

— to illustrate how CrTAaDEL could aid enclave-application development.

Scenario 1 A social-media company provides a GDPR platform to fulfil members’
requests for an archive of their personal data; these may exceed 10 GB. Processing
and collation happen inside an enclave, and an external service authenticates requests.
Must the enclave seal archives after creation, before storage, and unseal them when
requested? A solution using CITADEL may offload unencrypted archives to the cus-
tody of the host OS, using IFC’s secrecy mechanic to prevent unauthorised release. On
request, the webserver requests permission to declassify the archive from the authen-

tication authority — no penalty need be paid for encryptionf]

Scenario2 An Apache Spark application partitions input data into a large number of
shards. Assuming that shard-processing is protected inside an enclave, do shards need

to be cryptographically signed to verify their provenance? CitapeL would entrust this

8Disk encryption should be used for offline protection.
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tracking to the policy enclave, which, once attested, may be considered a part of the

application’s trusted components.
Although CITADEL may not be suitable for the most sensitive processing tasks —

enclaves are still vital here — it offers a lightweight protection mechanism that could

potentially be, in the interest of performance, trusted in a supporting role.
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Chapter 6
Conclusions

This dissertation presented CITADEL, a modular, enclave-backed reference monitor
which securely and verifiably implements IFC methods in the Linux kernel. By sepa-
rating policy decisions and enforcement, we demonstrated a feasible approach to deep
kernel integration using Intel SGX; the prototype leverages Linux’s security frame-
work to realise decisions at the lowest level of the OS. CITADEL optimises for per-
formance via an auxiliary library, which conservatively predicts a process’s security

context, enabling unobtrusive application integration.

A full implementation of the NGINx webserver running on CITADEL validates this
work using real-world performance benchmarks; the most punitive trial produced a
25% overhead, but other scenarios reported performance parity with the native Linux
kernel. Verifying the methods presented here should be the next step, but an extension
of CITADEL in a distributed setting also has great potential; inter-machine attestation

will likely establish an exceptional degree of trust between remote components.
Further is required before CitaDEL is fully realised and production-ready, but this

project successfully demonstrates the viability and potential of a symbiotic enclave-

kernel relationship, which, in the long run, may prove valuable for both.

57



58



10

11

12

13

14

15

16

Appendix A

PID Tampering: Proof of Concept

static void* retrieve_symbol(const char *sym) {

}

Listing A.1: Expose unexported symbols from the global namespace using kallsyms.

static unsigned long faddr = O;

// Compare kernel symbol with query.
int symcmp(void* data, const char* sym, struct module* mod,
unsigned long addr) {
if (!strcmp((char*)data, sym)) {
faddr = addr;
return 1;

}

else return O;

};

kallsyms_on_each_symbol (symcmp, (voidx)sym);
return (voidx)faddr;
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static asmlinkage void (*_change_pid)
(struct task_struct *task, enum pid_type type, struct pid *pid);
static asmlinkage struct pid* (*_alloc_pid) (struct pid_namespace *ns);

static ssize_t change_pid(void)

{
struct pid* newpid = _alloc_pid(task_active_pid_ns(current));
_change_pid(current, PIDTYPE_PID, newpid);
/* current->pid has changed. */

}

static int __init module_init(void)

{
_change_pid = retrieve_symbol("change_pid");
_alloc_pid = retrieve_symbol("alloc_pid");
VA 4
/% On SysFS call ezecute change_pid(void) */
return O;

}

Listing A.2: Exploit unexported symbols to change the PID of the current process.
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Acronyms

AES Advanced Encryption Standard.

AESM Application Enclave Services Manager.

AESNI Advanced Encryption Standard New Instructions.
API Application Programming Interface.

ASN Abstract Syntax Notation.

CPU Central Processing Unit.

DER Distinguished Encoding Rules.
DIFC Decentralised Information Flow Control.

EPC Enclave Page Cache.
EPCM Enclave Page Cache Map. [9]

EPID Enhanced Privacy Identifier.
EVM Extended Verification Module.

GCM Galois Counter Mode. [35]
GDPR General Data Protection Regulation.
GMP GNU Multiple Precision Arithmetic Library.

HDFS Hadoop Filesystem.
HTTP Hypertext Transfer Protocol.

I/0O Input/Output.
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IFC Information Flow Control.
IMA Integrity Measurement Architecture.
IPC Interprocess Communication.

IQR Interquartile Range.

JVM Java Virtual Machine.

LoC Lines of Code. 24]
LSM Linux Security Module.

MEE Memory Encryption Engine.
MLS Multilevel Security.

NIC Network Interface Card. [43]

OS Operating System.

PID Process Identifier.
PRM Processor Reserved Memory. 9]

RSA Rivest-Shamir-Adleman.

SDK Software Development Kit.
SECS SGX Enclave Control Structure. [9}

SGX Software Guard Extensions. 81H14} [20H24] 53}
SHM Shared Memory.

TCB Trusted Computing Base.

TCP Transmission Control Protocol. [50]
TEE Trusted Execution Environment. [1]

TLB Translation Lookaside Buffer. [13]
UEFI Unified Extensible Firmware Interface. [52]
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VEFS Virtual File System.

xattr Extended Attribute.
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