Catch Me If You Scan: A Longitudinal Analysis of
Stalkerware Evasion Tactics

Anahitha Vijay
Computer Laboratory
University of Cambridge
Cambridge, United Kingdom
av697@cam.ac.uk

Abstract—Stalkerware—mobile software that enables covert
surveillance, especially in intimate partner relationships—persists
as a significant threat on the Android ecosystem despite platform-
level policy and security enhancements. We present the first
multi-application longitudinal analysis of the stalkerware ecosys-
tem. We analyse 82 APKs from four prominent stalkerware
brands sourced from official, third-party, and modded market-
places, mapping their technical evolution against key policy and
OS updates from 2012 to 2025. We find a strategic dichotomy in
developer behaviour based on distribution channels. Applications
distributed on third-party channels, away from Google Play,
consistently target older, less-secure APIs to preserve invasive
functionality, effectively ignoring platform policies. In contrast,
developers on the Google Play platform respond reluctantly, often
employing malicious compliance (e.g., obfuscated notifications) or
strategic re-architecting (e.g., ‘split-app’ models) to circumvent
rules while maintaining a market presence. Our findings suggest
that platform policies displace rather than eliminate abusive
functionality. By systematically documenting how stalkerware
developers navigate and subvert platform governance, we provide
a nuanced understanding of their adaptive capabilities, offering
critical insights for developing more robust, future-proof detec-
tion and mitigation strategies.

Index Terms—Android, mobile apps, stalkerware, policy

I. INTRODUCTION

‘Stalkerware’ remains a persistent vector for technology-
facilitated abuse, particularly in the context of intimate partner
violence [1]. Mobile phones can provide perpetrators with
access to location data, communications, and live camera
feeds, allowing for invasive coercion and control over an
intimate partner’s physical and digital lifestyle. Stalkerware
mainly targets the Android ecosystem, due to the ability to
‘sideload’ apps from third-party sources as opposed to solely
downloading apps from a proprietary marketplace like i0S [2].
In response to growing public awareness of the existence
of stalkerware and high-profile data breaches of stalkerware
vendors [3]-[5], Google has implemented countermeasures on
the Google Play platform. In 2018, Google restricted access to
sensitive SMS and Call Log permissions within on-platform
apps.! In 2020, stalkerware was explicitly banned from the
Google Play platform.”

Uhttps://support.google.com/googleplay/android-developer/answer/102088
20

Zhttps://support.google.com/googleplay/android-developer/answer/100654
87

979-8-3315-8969-1/25/31.00 ©2025 Crown

Luis A. Saavedra
Computer Laboratory
University of Cambridge
Cambridge, United Kingdom
luis.saavedra@cl.cam.ac.uk

Alice Hutchings
Computer Laboratory
University of Cambridge
Cambridge, United Kingdom
alice.hutchings @cl.cam.ac.uk

Despite these interventions, stalkerware remains widely dis-
tributed and operational. Avast report a 239% global increase
in mobile stalkerware encounters from 2020 to 2023, despite
ongoing removals of samples from Google Play [6]. While
academic research on stalkerware classification and detection
has advanced [7], researchers typically analyse contemporary
samples in isolation. As a result, little is known about the
evolution of stalkerware—particularly how developers adapt
their products in response to policy changes or permission
restrictions.

To address this gap, we present the first longitudinal
analysis of multiple stalkerware families within the Android
stalkerware ecosystem. We analyse how stalkerware products
evolve across versions and distribution platforms, and how
they respond to policies and technical changes in Google Play
and the Android ecosystem. By investigating how features are
removed, obfuscated, or reintroduced as apps shift between
Google Play and less-regulated marketplaces, we generate
insights into shared adaptation strategies amongst developers.
We address the following research questions:

RQ1: How have stalkerware apps evolved over time in
response to changes in Android security features and Google
Play policies?

RQ2: How do technical features of stalkerware apps diverge
across distribution platforms, namely Google Play, developer
websites, and modded markets?

RQ3: What common technical and distribution strategies
are shared across different stalkerware families to maintain
functionality and evade detection?

We analyse 82 app versions from four prominent stalk-
erware families sourced from online repositories and two
academic datasets [8], [9]. We compare these versions across
each app family, mapping technical adaptations and contextual
evidence from website archives and developer communications
to corroborate developer responses to platform enforcement,
and adaptations to key policy and platform milestones. We also
compare on-platform (Google Play) and off-platform (side-
loaded) variants to chart developers’ adaptive strategies and
investigate technical convergence across competing products.
We identify features that are stripped, hidden, or enhanced,
illustrating how developers adapt to platform constraints.
Lastly, we explore whether recurring technical behaviours

and evasion techniques exist across families by checking
code reuse, parallel feature development between families,
and the existence of shared backend infrastructure to identify
overlaps that may indicate common development practices,
coordinated strategies, or competitive mimicry. We find that
developers operating off-platform, away from Google Play’s
oversight, consistently engage in strategic stagnation, targeting
older, less-secure APIs to preserve invasive functionality and
effectively ignore platform policies. In contrast, developers
maintaining a presence on Google Play employ tactics of
‘malicious compliance’, such as exploiting developer policy
loopholes to circumvent platform rules while maintaining a
market presence. Despite operating as commercial competitors
with no evidence of shared backend infrastructure, we identi-
fied a significant cross-family convergence on core technical
features for persistence and stealth. Most notably, multiple
families independently weaponise Android’s Accessibility Ser-
vices to bypass modern data access restrictions, enabling key-
logging and screen-reading capabilities. Our findings indicate
that platform policies primarily displace rather than eliminate
abusive functionality, and future work is needed on the Google
Play platform to behaviourally analyse stalkerware samples to
effectively guard users.

In subsequent sections, the user acting as the monitoring
party installing the stalkerware is referred to as the
“perpetrator”. The target being monitored is referred to
as the “survivor”.

II. BACKGROUND AND RELATED WORK

A. Stalkerware and Intimate Partner Abuse

While technology’s role in facilitating abuse has been
recognised for over a decade, research focusing specifically
on stalkerware is more recent [10]-[12]. Chatterjee et al.
provide one of the first examinations of mobile spyware in the
context of intimate partner violence, categorising apps as either
overt spyware or ‘dual-use’ tools (e.g., parental monitoring)
that can be repurposed for surveillance [13]. Parsons et al.
document how vendors promote their tools for intimate partner
surveillance [14].

Detecting stalkerware is challenging. Chatterjee et al. found
that while antivirus platforms often flag stalkerware, ded-
icated mobile anti-spyware tools detect fewer than 7% of
samples [13]. To address this, Han et al. introduce a semi-
supervised learning system that achieved high accuracy in
detecting stalkerware from app descriptions and metadata [15].
However, the focus on non-technical features limits detection
of code-level adaptations. Liu et al. analyse 14 Android spy-
ware apps, documenting how stalkerware abuses core Android
APIs to covertly activate phone cameras, hide app icons, and
persist across device reboots [16]. While these studies provide
a valuable foundation for identifying stalkerware’s technical
behaviours, their analyses are static snapshots, not examining
how features evolve over time.

B. App Distribution and Evasion Strategies

A recurring challenge in stalkerware analysis is distinguish-
ing legitimate dual-use apps from tools repurposed for abuse.
Chatterjee et al. note this line is blurred by developers who
actively market their dual-use apps for intimate partner surveil-
lance [13]. Almansoori et al. conduct the first multilingual
study of dual-use apps on Google Play, identifying 3 988 apps
across 27 countries [17]. Stalkerware features and Google Play
search results vary significantly by region and language, and
Google’s 2020 policy enforcement against intimate partner
surveillance search queries was inconsistent.

To evade official oversight, developers often distribute more
invasive versions of their apps via their own websites, a
practice known as ‘sideloading’. A comparison of sideloaded
and Google Play-hosted parental control apps found that
sideloaded variants are more likely to lack basic safeguards
like encryption and privacy policies [18]. Another evasion
vector is ‘modded’ apps—unauthorised or modified versions
of legitimate Android apps, often distributed via third-party
marketplaces. We use the ModZoo dataset, introduced by
Saavedra et al. as the first large-scale collection of such apps
from 13 different markets, to analyse stalkerware families
appearing in modded forms and how their capabilities differ
from official versions [9]. At the time of publication, ModZoo
comprised over 146,000 modded apps, with nearly 9% flagged
as malicious by VirusTotal, highlighting their potential danger
compared to official app versions.

C. Platform and Policy Countermeasures

Google has implemented two major policy updates to
prevent stalkerware’s publication on Google Play, under
the Google Play Developer Programme Policy. In October
2018, Google restricted access to the READ_CALL_LOG and
READ_SMS permissions, limiting these to apps demonstrating
a core functional need. Developers were required to justify
their use of these sensitive permissions, with non-compliance
by January 9th, 2019 resulting in removal. This move received
backlash from stalkerware developers [19], suggesting the
policy had some material effect on the surveillance features
they could publish.

In October 2020, Google explicitly banned stalkerware,
requiring legitimate monitoring apps to provide persistent,
visible notifications, include disclosures as to data collection in
the app description, obtain verifiable user consent, and ensure
the app cannot be hidden. Whilst these requirements should
have hindered stalkerware developers, Google Play listings
continued to host apps with covert surveillance capabilities
well after it came into effect [20].

OS-level security enhancements in Android also directly
impact stalkerware. Central to Android’s security posture
are API Levels, integers identifying platform revisions and
corresponding to a new version of Android [21]. Develop-
ers declare a targetSdkVersion in their app’s manifest,
signalling which API Level the app is designed for. This ‘opt-
in’ model allows Google to introduce breaking changes, as
many security enhancements only affect apps targeting the

newer API Level. However, some security enhancements are
implemented as system-wide behavioural changes or user-
facing controls that apply universally, regardless of an app’s
targetSdkVersion. These are often critical privacy fea-
tures enforced by the OS itself when running on the respective
Android version, representing a more direct and unavoidable
challenge for stalkerware. Even if a stalkerware app targets an
old API Level, it cannot circumvent system-level protections
when running on a newer device. Key OS-level enhancements
that could challenge stalkerware functionality include:

e Android 8 (API 26): Mandated persistent notifications
for foreground services, such as camera or microphone
access, making background activity visible.

e Android 10 (API 29): Required apps using foreground
services for camera or microphone access to declare a
specific foregroundServiceType in their manifest,
preventing developers from obscuring the intent of their
used foreground services. Also introduced Scoped Stor-
age, restricting apps to their own media and content
directories and preventing broader file system access,
potentially hindering data exfiltration.

o Android 11 (API 30): Restricted an app’s ability to query
other installed apps via the QUERY_ALL_PACKAGES
permission, which is subject to Google Play review
before app publication. This could prevent the monitoring
of social media activity and the detection of anti-virus
software.

e Android 12 (API 31): When an app requests the
ACCESS_FINE_LOCATION permission as well as the
ACCESS_COARSE_LOCATION permission, the user is
now presented with an option to grant either precise or
approximate location access within a 10-20 km radius.
Stalkerware developers would either need to account for
this reduced accuracy or find more sophisticated methods
to triangulate a precise location, if a precise location is
not granted upon installation.

e Android 13 (API 33): Replaced single
permission READ_EXTERNAL_STORAGE that
granted access to all media files with separate
permissions for image (READ_MEDIA_IMAGES),
video (READ_MEDIA_VIDEO), and audio files
(READ_MEDIA_AUDIO). While a perpetrator may
grant all permissions during installation, this change
leaves a clearer trail to a survivor, who could see that
the app has specifically been granted access to ‘Photos’
and ‘Videos’ from specific sources, rather than a single,
ambiguous ‘Files and Media’ permission.

storage

These policies and features are enforced by (and alongside)
Google Play Protect, Google’s built-in security service. Fol-
lowing the October 2020 policy, legitimate monitoring apps
must now declare an isMonitoringTool flag in their
manifest, allowing Play Protect to differentiate these tools
from stalkerware. However, Play Protect’s effectiveness in
detecting stalkerware is contested; after building and publish-
ing InstaCam, an experimental spyware app, on the Google

Play platform, Hutchinson et al. [22] found the app evaded
Play Protect’s detection for weeks, remaining downloadable
on the official marketplace. The ineffectiveness of such tech-
nical enforcement mechanisms allows stalkerware to persist,
motivating our analysis of adaptive strategies.

D. AndroZoo and ModZoo Datasets

To gather app versions for analysis, we use two large-scale
Android app datasets: AndroZoo [8] and ModZoo [9]. Andro-
Zoo is a continuously maintained dataset that, as of 2024 [23],
contains nearly 24 million APKs. AndroZoo contains Android
apps from a range of official and alternative marketplaces,
including Google Play, Anzhi, AppChina, and F-Droid [8],
retaining historical versions of apps spanning over a decade
of development. We use AndroZoo to find historical versions
of stalkerware apps that are no longer widely available through
Google Play, developer websites or other platforms. Mod-
Zoo [9] focuses on modded apps, and is a growing dataset
currently comprising over 280,000 APKs. ModZoo [9] gathers
modded APKs from 13 popular third-party markets, matching
them with their closest AndroZoo counterparts using package
names and version codes, enabling comparative analysis of
modded apps in line with the objectives of this study.

III. RESEARCH METHODOLOGY
A. Application Selection and Gathering

We began our analysis by grouping apps into ‘families’ to
enable a structured study of their evolution. A family encom-
passes all temporal and functional variations of a product from
a single developer, including platform-specific versions (e.g., a
feature-limited Google Play app vs. a fully-featured sideloaded
one), ‘lite’ or trial releases, and rebranded clones designed to
evade enforcement.

We gathered a long-list of candidates identified from indus-
try reports (e.g., Kaspersky’s The State of Stalkerware [24]),
academic literature [16], and the Echap group’s Stalkerware
Indicators of Compromise repository on GitHub [25]. Echap’s
repository maintains a list of stalkerware developer websites
and associated domains, providing a starting point for iden-
tifying active families. We shortened this long-list to four
stalkerware families, chosen for their recent activity, data
availability, and because each represents a distinct trend within
the stalkerware ecosystem:

e Cerberus: Selected for its history of leaving and then
returning to Google Play [19], marketing a compliant,
feature-limited version on the platform while offering
more powerful versions on its website. This provides a
case study in navigating Google’s policies through feature
stripping and platform diversification.

o TrackView: Chosen for its ‘split-app’ model, where a
compliant ‘viewer’ app available on Google Play con-
nects to a full-featured, sideloaded surveillance app, high-
lighting a key evasion strategy of keeping more potent
features off-platform.

o mLite/mSpy: Active since 2016, mLite is marketed on
Google Play as a parental control and monitoring tool.

However, it is developed alongside mSpy, a premium
surveillance app associated with poor data security prac-
tices and invasive features.

o TheTruthSpy/PhoneParental: Included as a prominent
family [26] with no Google Play presence, TheTruthSpy
serves as a baseline to study adaptation to Android
OS changes without direct policy pressure. TheTruthSpy
family recently rebranded to PhoneParental, shifting its
marketing to appear as a more legitimate parental moni-
toring tool.

After selecting these families, we located and downloaded
their corresponding APKs across multiple versions, distributed
across both Google Play and vendor websites to address
RQ2. APKs were first searched for in AndroZoo (§II-D),
which includes samples from malware repositories such as
VirusShare, helping identify older versions removed from offi-
cial platforms. Public APK archives were also consulted, such
as APKMirror and APKPure, as well as developer websites via
the Wayback Machine. To address RQI1, gathering versions
released immediately before and after the major policy and
platform milestones identified in §1I-C was prioritised. Minor
bug-fix updates were consolidated to retain only significant
monthly or quarterly version updates, keeping the dataset rich
yet feasible to analyse.

Finally, we use the ModZoo dataset (§II-D), searching for
variants of the selected stalkerware families using package
names and brand names. Targeted Google search queries
were also employed to discover potential variants hosted
on platforms not indexed by the ModZoo dataset, such as
searching for ‘Cerberus premium free’ or ‘MSpy no ads’.
Relevant modded APKs were downloaded directly from the
respective marketplace.

B. Static Analysis Methods

Each gathered APK was statically analysed, inspecting its
code and resources without execution. The results are used
for both temporal analysis within families and horizontal
comparison across them. Our analysis combines automated
tools and manual inspection. Each APK was decompiled using
JADX [27] which converts APKs into human-readable Java
source code. This allows inspection of each app’s logic and
behaviours, making it possible to identify surveillance func-
tions (e.g., background location tracking, data exfiltration) and
stealth features (e.g., hidden icons). To complement this, we
use the Mobile Security Framework (MobSF), an automated
scanner that statically identifies vulnerabilities, dangerous per-
missions, and insecure coding practices. Combining JADX for
deep, contextual code understanding with MobSF for broad,
efficient pattern detection ensured a thorough inspection of
each app.

1) Permissions and Receivers: Static analysis began by
examining the AndroidManifest.xml file to identify
requested permissions, with special attention paid to those as-
sociated with surveillance. Key permissions of interest include:

¢ ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION: to track the device’s
physical location.

e« READ_SMS, SEND_SMS: to read and send text messages
covertly.

¢ RECORD_AUDIO, CAMERA:
dio/video surveillance.

e READ_CALL_LOG, READ_CONTACTS: to access call
histories and contacts.

e SYSTEM_ ALERT_WINDOW,
RECEIVE_BOOT_COMPLETED:
content or persist after reboots.

to enable real-time au-

to overlay harmful

This list is not exhaustive, as stalkerware also ex-
ploits less obviously dangerous permissions. For instance,
BIND_ACCESSIBILITY_SERVICE can be used to mon-
itor all Ul events, capture keystrokes, and read on-screen
messages [16]. Tools like MobSF provide a more context-
aware list of potentially harmful permissions and code features
based on Android policies and threat intelligence, which we
use to identify further features in code. We also examine
broadcast receivers, which allow apps to respond to system
events like device boots, enabling persistence by silently
reactivating surveillance features. We use JADX to trace where
and how any identified permissions were invoked in the
source code. We manually search for permission-protected
API calls, analysing service classes linked to declared re-
ceivers, and tracing execution paths from onReceive () or
onStartCommand () methods to understand how the app
responds to system events.

2) Network Endpoints, Data Flows and Third-Party Con-
nections: Previous research shows stalkerware often trans-
mits data to remote command-and-control (C2) servers [28].
We extract hardcoded network endpoints using JADX and
MobSF to understand external communications and identify
any shared infrastructure between families, which could in-
dicate coordinated distribution networks. MobSF provides an
initial overview of embedded URLs and IP addresses.

3) Obfuscation, Anti-Analysis Techniques, and Other Points
of Interest: We assess APKs for code obfuscation and anti-
analysis techniques designed to hinder reverse engineering. We
identify obfuscation via non-descriptive class/method names
(e.g., a.a.a.a), encrypted strings, and reflection; these tech-
niques are frequently concentrated around critical functionality
like data exfiltration or C2 communication [16]. Additionally,
apps are examined for explicit anti-debugging mechanisms,
such as emulator or root detection, which enable more intru-
sive surveillance features in compromised environments.

C. Dynamic Analysis Methods

To complement static analysis, we dynamically analyse each
app’s runtime behaviour. All dynamic testing was conducted
in a controlled and isolated environment to minimise risk
and avoid exposing personal data. Two physical Android
devices were used: one rooted and one unrooted, allowing for
observation of different runtime behaviours in cases where full
functionality may be gated behind root access.

Apps were installed and managed via ADB (Android Debug
Bridge), enabling consistent control over the test environment
and direct access to app logs and device responses. Net-
work traffic was intercepted and analysed using Burp Suite
Community Edition, and the Frida dynamic instrumentation
toolkit was used to bypass certificate pinning protections to
enable decryption of network communications. For apps re-
quiring paired device interaction, we use BlueStacks emulator
instances to simulate a second party.

We use dynamic analysis to detect runtime behaviours
associated with surveillance, data exfiltration, and stealth.
Key areas of investigation include covert background service
initiation, icon hiding, real-time network activity, and the
abuse of Accessibility Services or overlays to covertly interact
with the device under a legitimate guise. We also identify
persistence and stealth mechanisms with dynamic analysis
methods. For instance, if an app was designed to relaunch itself
after being force-closed or after a device reboot, this behaviour
was observed by restarting the virtual device and monitoring
which services were reinitialised. Similarly, UI suppression
techniques are assessed by checking whether the app removed
its icon from the app drawer, disguised itself using a system-
like name, or overlaid decoy screens, among other deceptive
visual tactics.

D. Contextualising and Evaluating Stalkerware Evolution

To meaningfully evaluate the adaption of stalkerware over
time, we consider the broader ecosystem in which these apps
operate. This includes, but is not limited to:

o Investigating the legal or organisational structure of each
developer or distributor (e.g., registered business names).

o Reviewing timelines of Google Play presence and re-
movals, using the Wayback Machine and app metadata.

« Analysing how apps are marketed over time, including the
use of euphemisms such as ‘parental control’, ‘employee
monitoring’ or ‘anti-theft’, to understand how developers
attempted to comply with or evade policy scrutiny.

o Identifying any documented incidents, takedowns, or
controversies involving these apps, as reported in media
coverage or public abuse reports.

These sources give us a more comprehensive understanding

of stalkerware’s development lifecycle.

E. Ethics

We avoid financially supporting or legitimising stalkerware
developers by ensuring no paid apps or subscriptions were
purchased. This mitigates risks from their often unreliable and
exploitative subscription models [2], where users frequently
report difficulties cancelling payments. Any app exclusively
available behind a paywall is therefore out of scope.

Apps are only collected for analysis, and only used in a
controlled, isolated environment. Physical mitigations, such
as covering device cameras or spoofing device location, were
employed to prevent accidental capture of compromising data.

Furthermore, our research is strictly observational. No pene-
tration testing or vulnerability disclosure is performed. There is

no attempt to exploit weaknesses or access backend systems,
particularly given the stalkerware industry’s history of poor
security practices.

IV. RESULTS

We present our findings from the static, dynamic, and
contextual analysis of the four stalkerware app families.

A. Overview of Selected Application Families

Across the four families, a total of 82 APKs are analysed—
75 official releases and seven modded variants. Full details of
all analysed apps are provided in the Appendix (Table I). To
quantify the perceived risk of each app family prior to analysis,
every official APK is scanned using VirusTotal, with average
scores also listed in Table I. With one exception, at least one
security vendor flags every family as malicious, suspicious, or
Potentially Unwanted Application (PUA). TheTruthSpy is the
most widely detected, with an average of 32 out of 66 ven-
dors flagging each sample. Google Play-exclusive mLite was
recognised at an average of two out of 66 detections. The only
family to entirely evade detection was the modern Cerberus
Google Play variant, whose versions were not flagged by any
security vendors.

The Cerberus family, marketed as an anti-theft tool,
includes features allowing for remote device wiping, location
tracking, and covert picture-taking. We analyse 21 versions
of Cerberus spanning from initial release in March 2012 to
its latest versions in mid-2025. Cerberus was removed from
Google Play in 2019 for violating Call and SMS Log policies,
transitioning to a sideload-only distribution method via its
website. In October 2023, a new, compliant version (starting
with vl.1.2_play) was re-released onto Google Play, mar-
keted as Cerberus: Anti-theft Alarm. However, the developer
maintained a dual-distribution strategy, continuing to offer
Cerberus Standard and Cerberus Disguised, which share a
version code of 3.8.0 and are positioned on the developer’s
website as fully-featured alternatives to the v1.2.6_play
release, providing a direct point of comparison between on-
platform and off-platform feature sets. Two modded versions
of Cerberus were discovered on third-party marketplaces; their
version codes suggest they are based on older releases of the
app, prior to its 2023 return to the Google Play.

TheTruthSpy is openly marketed for intimate partner
surveillance and designed to covertly exfiltrate a wide range of
personal data, including social media messages, location data
and call and text logs. Ten versions from the TheTruthSpy
family are analysed, from October 2016 to its February 2024
rebrand as PhoneParental. The PhoneParental app is func-
tionally and visually identical to its predecessor, effectively
a successive version. The APKs’ digital certificates are signed
by ‘iSpyoo Teams’, developers behind a parallel suite of
nearly identical but less well-known stalkerware products. A
single modded version of the original TheTruthSpy was also
found, reporting a version code later than any official release,
highlighting the brand’s potential circulation on unregulated
marketplaces.

The TrackView family is represented by 22 versions
spanning July 2018 to June 2025. Unlike other families we
analyse, TrackView’s core functionality centres on live remote
surveillance. Initially, the full, all-in-one TrackView app was
available on Google Play; 12 versions are analysed from this
period (July 2018-December 2021). Following its removal
from Google Play in late 2021, the developer adopted a “split-
app’ strategy. This model consists of two components; the
limited TrackView Viewer app is available on Google Play
and acts as a remote control to monitor other devices. The
full-featured TrackView HomeSafe app must be sideloaded
from the developer’s website, functioning as a surveillance
tool when installed on a target device, but also having viewer
capabilities, allowing for a direct connection without needing
the Google Play Viewer app.® In addition, two modded Track-
View APKs are discovered on third-party marketplaces.

Lastly, the dataset analysed includes 22 versions from the
mLite/mSpy ecosystem. This includes 21 versions of mLite,
sourced from Google Play and spanning July 2016 to May
2024, and a single version of the full mSpy suite. mSpy has
a similar feature set to TheTruthSpy; mLite, however, has
a long-standing Google Play presence, also featuring real-
time location tracking and app usage monitoring under the
context of ‘child safety’. The mSpy APK was opportunisti-
cally gathered via a publicly accessible QR code linked on
the official mSpy website. Additionally, two modded mSpy
versions are discovered on third-party markets: one advertised
with unlocked premium features for free, and another claiming
to track WhatsApp messages.

We categorise the advertised capabilities of each family
into four main groups, with a full summary available in
Table II (Appendix). These include: Communication Mon-
itoring (e.g., call/SMS logging, social media tracking); Live
Surveillance (e.g., GPS tracking, remote camera/microphone
access, keylogging); Data Exfiltration (e.g., accessing stored
photos, videos, and contacts); and Stealth/Remote Com-
mands (e.g., hiding the app icon, remote device wipe/lock).
A distinction emerges between the claimed feature sets of on-
platform and off-platform apps. Off-platform families such as
TheTruthSpy and mSpy advertise the most extensive surveil-
lance capabilities, claiming to monitor nearly every aspect of
device activity. In contrast, apps available on Google Play,
such as the Cerberus variant, offer a more limited feature set,
focusing on location tracking and remote commands framed
as anti-theft measures. However, a core set of features is still
consistently present across almost all variants, centred on live
surveillance and location tracking. This suggests these capa-
bilities form the foundational offering for modern stalkerware.
Cerberus is the only family that advertises remote device wip-
ing, aligning with its ‘anti-theft’ branding. Conversely, com-
prehensive communication monitoring and data exfiltration are

3The developer also offers a third app, TrackView Sender, which must
also be sideloaded. However, Sender is a stripped-down version of HomeSafe
that only contains camera-related features. As HomeSafe already includes all
of the family’s off-platform surveillance capabilities, it was selected as the
representative sideloaded app for this analysis.

almost exclusively the domain of the commercial stalkerware
families mSpy and TheTruthSpy, which are designed for in-
depth interpersonal surveillance rather than device recovery.
RQ2 (§IV-D1) explores the technical implementation strategies
that account for this divergence further.

B. Commercial and Operational Models

All four families rely on a paid subscription model, lock-
ing their most invasive features behind a paywall. Offerings
vary, from limited free tiers (TrackView) to time-bound trials
(mLite, Cerberus, TheTruthSpy). While ethical constraints
prevent the purchase of these apps for live dynamic testing,
our static analysis of the app code allows for a complete
examination of all potential capabilities, including paywalled
ones. Beyond their payment structures, all families require
the perpetrator to gain temporary physical access to the
survivor’s device for manual installation and configuration.
Once installed, the families employ one of two operational
models. The most common is the web portal model, used
by Cerberus, mSpy, and TheTruthSpy, where the survivor’s
device transmits data to a remote server for the perpetrator
to view via a web dashboard. In contrast, TrackView and
mLite use a peer-to-peer model, requiring an app on both the
survivor’s and perpetrator’s phones, which connect directly to
each other. Both TrackView apps need to be logged into the
same Google account, allowing the Viewer app to remotely
access and control the features of the linked HomeSafe app.
Conversely, mLite uses a single app installed on both phones;
during setup, one device is designated as the ‘child’ (target)
and the other as the ‘parent’ (monitor).

C. Longitudinal Evolution in Response to Platform and Policy
Changes (RQ1)

To address Research Question 1, we analyse the techni-
cal and contextual changes within each stalkerware family,
correlating them to two distinct forms of pressure: explicit
policy updates from Google Play and mandatory security
enhancements in the Android OS itself.

1) Response to 2018 Call/SMS Log Restrictions: The re-
sponse to Google’s 2018 policy restricting Call Log and SMS
permissions was dictated by an app’s distribution model. Fam-
ilies operating exclusively off-platform—including TheTruth-
Spy, the premium mSpy suite, and sideloaded Cerberus
versions—ignored the policy entirely. The restrictions directly
prompted Cerberus’ initial exit from the Google Play to
maintain its surveillance capabilities for its off-market users,
a strategy evidenced by the fact that these permissions persist
in its sideloaded versions to this day.

In contrast, on-platform families adapted, albeit slowly.
mLite retained the restricted permissions for months after
the January 2019 enforcement date, only removing them in
December 2019. Cerberus exemplifies compliance through re-
architecture, returning to Google Play as a compliant app.
TrackView, which never required the targeted permissions, was
unaffected by this policy.

2) Response to 2020 Explicit Stalkerware Policy: Google’s
2020 stalkerware policy had a negligible effect on off-platform
developers and was inconsistently enforced on Google Play.
Off-platform apps like TheTruthSpy, sideloaded Cerberus
versions, and the premium mSpy suite universally ignored
the policy, consistently failing to declare the mandatory
isMonitoringTool flagin all analysed versions. This non-
compliance extended to Google Play, where every analysed
version of the TrackView Viewer and modern Cerberus app
was published without the flag, years after the policy took
effect. The only family to eventually comply was mLite, which
added the flag in a June 2023 release, nearly three years late.
Beyond the flag requirement, on-platform apps demonstrated
more subtle policy violations. For instance, post-2020 versions
of the TrackView Viewer app contained hardcoded links to the
non-compliant, full-featured sideloaded app, directly violating
the rule in the 2020 policy against linking to non-compliant
APKSs hosted outside Google Play.

We analyse how all four stalkerware families respond to
key OS updates between Android 8 and Android 13, finding
the willingness and speed to adapt is dictated by their reliance
on the Google Play platform. Off-market apps consistently
target older, less secure API levels to preserve their invasive
capabilities. This evolutionary divergence is illustrated in
Figure 1, which plots each family’s targetSdkVersion
over time along with key features released at each API Level.
On-platform families, such as mLite, show a reluctant but
steady upward trend to meet Google’s API requirements.
In contrast, off-market families such as TheTruthSpy exhibit
long periods of stagnation, targeting older, less-secure APIs
to preserve invasive functionality and avoid modern privacy
features. This strategy allows them to maximise their data
collection capabilities on less secure devices that permit it. The
following subsections provide a detailed technical analysis of
the specific adaptations driving these trends.

Android 8 (API 26) — Persistent Notifications: By 2019,
most major stalkerware families were targeting API Level 26
or higher and incorporating the required notification code. For
example, legacy versions of Cerberus before its Google Play
ban made the transition to API level 26 between v3.5.7 (Au-
gust 2018) and 3.5.9 (December 2018), and mLite followed
suit between v2.1.4 (December 2018) and v2.1.5 (February
2019). However, the implementation of these mandatory no-
tifications indicates an intent to obscure rather than inform.
Analysis of mSpy (v8.6.0.1, May 2025) shows its persistent
notification title is set to the generic and uninformative string,
‘Foreground Service’, disguising the app as a generic system
process and ensuring the notification fails to act as a mean-
ingful warning for most survivors.

Android 10 (API 29) — Scoped Storage: Numerous
families, including the TrackView ecosystem and
the premium mSpy suite, explicitly added the
requestLegacyExternalStorage = "true" flag to
their manifests after adopting API level 29. This opts out of
scoped storage and retains broad, unfettered access to the
device’s file system. TrackView’s older Google Play variant

made this transition between v3.5.28-tv (May 2020) and
v3.6.29 (September 2020), immediately including the opt-out
flag. Conversely, the majority of the off-market families, such
as TheTruthSpy and the various sideloaded Cerberus versions,
simply never adopted API Level 29 at all.

Android 11 (API 30) — Package Visibility: Responses to
restrictions were inconsistent, with the primary workaround,
the QUERY_ALL_PACKAGES permission seeing sparse adop-
tion. mLite eventually added this in v3.0.8 (August 2022), and
due to this feature requiring Google’s vetting, this suggests
their justification as a child safety and tracking app was a
compelling enough case to include it. The only off-market
app to utilise the permission was the premium mSpy suite.

Android 12 & 13 (APl 31 & 33) — Granular Per-
missions: Every family targeting API 31 and above
correctly requests both ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION, which is the technical pre-
requisite to trigger the new location granularity-choice dia-
logue. However, dynamic analysis reveals the apps are not
designed to function with the less-permissive choice. If coarse
location is selected during setup, the apps either fail to operate
entirely (mLite) or enter a loop directing the perpetrator
back to the system settings window until the fine location
permission is granted (TheTruthSpy). The adoption of the new
READ_MEDIA_IMAGES and READ_MEDIA_VIDEO permis-
sions in Android 13 was only observed in the premium mSpy
suite. The remaining families that target API 33 and above
do not have functionality that requires them to read or access
media already stored on the phone.

Contextual Changes Over Time: A trend observed across
the stalkerware ecosystem, particularly following the 2020
policy update, is the pivot towards the more socially and
regulatorily acceptable frame of ‘parental control’. For ex-
ample, TheTruthSpy operation has a documented history of
security failures and data breaches, including a still-unpatched
vulnerability in 2022 (CVE-2022-0732) [29]. By rebranding
to PhoneParental, the operators can distance the product from
this negative history, attracting a new user-base searching for
legitimate parental control apps who would otherwise be de-
terred by the record of the original brand. The mSpy ecosystem
employs a similar strategy; while mSpy is repeatedly charac-
terised as stalkerware in media reports and suffered multiple
data breaches [30], mLite, is marketed towards ‘family safety’
and includes emergency features such as a ‘Panic Button’,
distancing itself from mSpy’s negative branding.

D. Platform Adaptations and Feature Divergence (RQ2)

To address Research Question 2 we compare the feature
sets between on and off-platform apps (including modded
apps) with their actual implementations, requested permis-
sions, and implementation techniques.

1) Google Play vs. Developer Website Versions: A direct
comparison of the latest on-platform (Google Play) and off-
platform (sideloaded) versions from the Cerberus, Track View,
and mSpy families indicates a strategy of feature differen-

36

Application Family
—e— Cerberus: Legacy (Pre-Play Store Ban)
34 —e— Cerberus: Current (Play Store Re-Release)
—e— Cerberus: Sideloaded (During Play Store Ban)
—e— Cerberus Standard & Disguised (Current Sideloaded)
—e— TheTruthSpy: PhoneParental (Rebrand)
—e— TheTruthSpy (Sideloaded)
—o— TrackView: HomeSafe (Current Sideloaded)
—e— TrackView (Pre-Play Store Removal)
30 TrackView: Viewer (Current Play Store)
—e— mlLite (Play Store)
—e— mSpy (Full Suite, Sideloaded)

324

28

26

24

22

20

Target SDK Version (Android API Level)

18

Android 10 (API 29)

Scoped Storage

16

Persistent Notifications

-
€
9
£
9
o
£
3
o
€
€

<
>

=
o
a

Android 8 (API 26)

n
=
Q
®
(8]

14

]
i
i
1
1
i
i
1
1
i
i
I
1
i
i
1

12

|

. r Android 14

r Android 12L

r Android 11

 Android 9 (Pie)

] F Android 8 (Oreo)

r Android 7 (Nougat)

r Android 5.1 (Lollipop)

Corresponding Android Release

Android 11 (API 30)
Package Visibility

r Android 4.3 (Jelly Bean)

r Android 4.1 (Jelly Bean)

Android 13 (API 33)
Granular Permissions

r Android 4.0 (Ice Cream Sandwich)

Explicit Stalkerware
Policy Announcement
Android 12 (API 31)

Approximate Location

2012 2013 2014 2015 2016 2017 2018 2019

Release Date

2020

2021 2022 2023 2024 2025 2026

Fig. 1. Timeline of targetSdkVersion evolution for each version in each stalkerware family. The plot tracks the targeted API level (left Y-axis) against
the release date of a particular app version, with the corresponding Android release name to the API level shown on the right Y-axis. Vertical lines indicate
release dates of these key Android OS updates (red) and Google Play policy changes (blue).

tiation tailored to regulatory environment. A full list of the
compared APKSs is available in Table III (Appendix).

Feature Stripping: Off-platform variants consistently re-
quest more permissions than their Google Play counter-
parts (see Figure 2). Capabilities stripped from on-platform
apps are typically those used for direct communication
surveillance (e.g., READ_CALL_LOG, READ_SMS). Permis-
sions used to covertly monitor general activity, such as the
SYSTEM_ALERT_WINDOW permission, which enables vari-
ous malicious capabilities such as capturing screenshots with-
out triggering notifications [16], were also generally stripped.

Feature Enhancement and Deception: Beyond stripping
features entirely, developers also modify the implementation
of shared capabilities to be less overtly malicious. We com-
pare the code snippets of features that exist in both on-
platform and off-platform variants, observing a pattern of
enhancement within sideloaded versions and restraint within
Google Play versions. In the sideloaded 2024 version of Cer-
berus Disguised, the com. surebrec.AccService abuses
accessibility service methods to read the content of other
apps on screen; the off-platform mSpy app shows similar
behaviour. Whilst the on-platform Cerberus version also uses
Accessibility APIs, the findings are confined to benign func-
tions like reading the text of its own UI elements (e.g.,
chip.getText ()) instead of the content of other apps.
The sideloaded Cerberus Disguised version is also designed

I Google Play Variant [Sideloaded/Off-Platform Variant

mSpy 78
*g Cerberus (Standard and Disguised) 49
> TrackView HomeSafe
g 37
E-]
_g Cerberus (Google Play Store) 34
a
&
< mlLite 30
TrackView Viewer 15
0 20 40 60 80

Number of Declared Permissions

Fig. 2. Number of total permissions requested by application variants, on and
off-platform.

to respond to remote commands from its online control panel
to call a TAKEPICTURE method covertly. The on-platform
Cerberus app retains the ability to take a picture, but re-
frames it as a safety feature that can only be triggered by a
failed phone unlock attempt. Whilst the underlying capability
is the same, the trigger mechanism is modified to appear
legitimate. On-platform apps also tend to use the modern
and battery-efficient FusedLocationProviderClient
API in location services, which is Google’s recommended

best practice. Conversely, off-platform apps use the older
LocationManager API, which allows for more direct and
aggressive control over location polling.

2) Analysis of Modded APK Variants: The seven modded
variants analysed present a varied risk profile compared to
their official counterparts. Four of the seven—Cerberus 3.6.4,
Cerberus AntiTheft App (v3.7.8), TheTruthSpy (v9.41), and
TrackviewApk (v3.7.06)—appeared to be functionally iden-
tical to official releases re-hosted on unregulated platforms.
This conclusion is supported by matching package names,
digital certificates, network behaviour in relation to known
domains used by standard versions, and average VirusTotal
scores, although a direct byte-for-byte comparison was only
possible for TrackviewApk v3.7.06 due to version availability.

The remaining three APKs were significantly altered. The
modded TrackView (v22.23) variant, though not flagged by
VirusTotal, resembled adware. Its original surveillance func-
tionality was removed entirely and its Ul triggered intrusive
Google Ads dialogues upon any user interaction.

The two mSpy mods, mSpy MOD Premium Unlocked
and MSPY WhatsApp, were flagged as malicious but were
revealed to be incomplete ‘dropper’ apps. Upon launch, they
present a simple interface with marketing ‘tips’ that ultimately
instructs the user to ‘go to site official and download apk’. De-
spite requesting permissions, dynamic analysis confirms they
make no network calls, contain no surveillance or downloader
code and are thus classified as PUAs.

E. Shared Technical and Distribution Strategies Across Fam-
ilies (RQ3)

To address Research Question 3 we analyse the 75 non-
modded apps both technically and contextually according
to release date, examining whether families independently
converged on a shared set of features or implementations.

Ul Suppression and Stealth Features: ‘Stealth features’
hide the app’s presence and obfuscate its notifications
from a survivorr A common implementation for
programmatically hiding an app’s icon from the device’s
launcher uses the PackageManager.setComponent-—
EnabledSetting () method with the
COMPONENT_ENABLED_STATE_DISABLED flag. This
removes the app’s icon from the app drawer, and is adopted
by initial and sideloaded Cerberus versions (v2.2, March
2012 through to all sideloaded v3.8.0 variants in May 2024)
as well as all TheTruthSpy versions analysed from October
2016 onwards.

Other implementations within this category are more app
specific. mLite versions from v2.1.2 (May 2018) consistently
use android.R.color.transparent in their notifica-
tion iconography, effectively making icons invisible in the
status bar to stop serving as a clear visual warning that a back-
ground service is active. Early versions of TheTruthSpy from
March 2016 to September 2018 use the disableKeyguard
method, a now-deprecated function that bypasses the device’s
lock screen, potentially allowing the app to perform actions
while the screen was off.

Persistence Mechanisms and Boot-Time Behaviour: An-
other core shared strategy across all families is ensur-
ing the stalkerware’s persistence across various events. The
most fundamental persistence mechanism across nearly all
apps is the ability to automatically start when the device
is turned on. From the earliest Cerberus versions (v2.2,
March 2012) to PhoneParental (v1.0, February 2024) and
mSpy (v8.6.0.1, May 2025), all register a BootReceiver
to automatically launch on device startup by listening for
the android.intent.action.BOOT_COMPLETED ac-
tion. Upon receiving this signal, the receiver’s code is exe-
cuted, typically with the sole purpose of starting the main
surveillance service. All versions of TheTruthSpy and mSpy
also listen for the QUICKBOOT_POWERON action, which is
non-standard but commonly used by device manufacturers for
faster boot cycles [31].

Once running, we find all families universally employ
Android’s AlarmManager to schedule recurring surveil-
lance tasks, such as restarting services or uploading data.
AlarmManager sets alarms that wake the app at various
intervals, ensuring continued operation even when the de-
vice is idle, as seen in Cerberus v3.8.0 (May 2024) using
setAndAllowWhileIdle () to guarantee execution, even
when the device is in sleep mode. TheTruthSpy (from Octo-
ber 2016) employs AlarmManager to trigger the periodic
synchronisation of data, such as live location information via
the SYNC_TLOCATION_ACTION.

Obfuscation, Anti-Analysis Techniques and Root Detec-
tion: To evade detection and hinder reverse engineering,
developers consistently employ several shared techniques.
Reflection is a pervasive method used to access hidden
Android APIs and obscure functionality from static analy-
sis tools, present in sideloaded apps from early Cerberus
versions (v2.2, March 2012) to its v3.8.0 release in May
2024. Older Cerberus releases (until v3.2.1, April 2015)
and TheTruthSpy (October 2016) use reflection to toggle
system settings such as mobile data usage and to dismiss
system notifications, while modern Cerberus versions use it
within the com. surebrec.SuCommands class to interact
with a wide range of powerful system services, including
the IPackageManager and IDevicePolicyManager
to grant permissions and block app uninstallation.

Debugger and emulator detection techniques appear
consistently across all the Cerberus families and
mLite, particularly from 2018 onwards. These checks,

which look for signs of an analysis environment (e.g.,
Debug.isDebuggerConnected () or hardware names
like generic_x86), serve to prevent dynamic analysis by
security researchers. We confirm that these checks are almost
exclusively located within the proprietary code of the app
(e.g., 12.AbstractC1230h in Cerberus) rather than being
inherited from third-party libraries, indicating a deliberate,
in-house effort by these developers to build anti-analysis
capabilities into their core product.

Older apps also used root detection to acquire elevated
privileges. In proprietary packages in Cerberus’ 2012 versions,

the app searches for the su binary in /system/bin/su
or /system/xbin/su, whilst TheTruthSpy versions
from October 2016 to September 2018 contain a
com.1ispyoo.common.root.RootPermission class
that, on a rooted device, executes commands such as am
force-stop com.bbm. This command forcibly terminates
the BlackBerry Messenger (BBM) app, likely to unlock its
database files from an active process and allow TheTruthSpy
to exfiltrate a survivor’s private chat logs. However, from July
2018 onward, root check practices shifted, almost exclusively
appearing as an incidental feature inherited from third-party
SDKs (e.g., io.fabric.sdk.android) rather than being
part of the stalkerware’s proprietary code. This suggests
that developers may no longer see significant benefits in
building dedicated features for rooted devices compared to
their other surveillance capabilities and their continued need
for debugger and emulator detection.

Use of Accessibility Services: Our analysis reveals
that off-platform stalkerware families—Cerberus, mSpy,
and TheTruthSpy—have converged on the use of An-
droid’s Accessibility Services as a primary mechanism
for data exfiltration and surveillance. The implementa-
tion follows a consistent, shared blueprint across the oth-
erwise distinct families, and has persisted in versions
from 2018 onwards in all three families. First, the app
requests the BIND_ACCESSIBILITY SERVICE permis-
sion and declares a custom service extending Android’s
AccessibilityService. Once enabled by the perpe-
trator, this service monitors all Ul interactions by imple-
menting the onAccessibilityEvent callback method,
listening for events like TYPE_VIEW_TEXT_CHANGED to
detect when new text appears on screen. The stalkerware can
then use the AccessibilityNodeInfo API to traverse
the screen’s view hierarchy and read the content of other apps.
For example, a 2018 version of TheTruthSpy explicitly uses
source.findAccessibilityNodeInfosByViewId-
("com.whatsapp:id/message_text") to locate and
extract the text from WhatsApp messages. Similarly, the
2024 versions of the Cerberus Standard and Disguised apps
implement a class, com.surebrec.AccService, which
recursively traverses the AccessibilityNodeInfo tree
to find and log text content, effectively creating a keylogger,
which is not one of its advertised capabilities.

F. Shared Ecosystem Patterns

Beyond analysing individual families, we investigate the
extent seemingly separate developers operate within a shared
ecosystem below, finding that these stalkerware families op-
erate without collaborative commonalities but are posited as
distinct competitors.

Infrastructure and Common Libraries: To investigate po-
tential technical ecosystem overlaps, a two-pronged analy-
sis across the 75 non-modded APKSs is performed. First, a
script iterates over each decompiled app, searching for shared
infrastructure indicators, including hardcoded IP addresses,
C2 domains, developer emails, and unique non-standard code

libraries via regular expressions. This was complemented by
dynamic analysis, where captured network traffic was cross-
referenced to identify any shared C2 communications or other
endpoints that emerge only at runtime. Neither approach
found significant evidence of shared infrastructure across the
four distinct ecosystems (Cerberus, mSpy, TheTruthSpy, and
TrackView). Beyond standard Android development libraries,
analysis identified no common domains, IP addresses, or cus-
tom libraries that would suggest a shared technical backend.
This null finding suggests that despite operating in the same
market and adopting similar high-level strategies, these major
stalkerware developers maintain distinct and separate techni-
cal infrastructures. The lack of overlap indicates they likely
develop their core backend systems and surveillance features
in-house, positioning them as direct commercial competitors
rather than collaborators.

Contextual Evidence: Contextual evidence from privacy
policies and marketing content corroborates that these de-
velopers operate as competitors, revealing their strategies for
managing legal risk and market positioning. This competitive
posturing is evidenced by marketing content. The mSpy and
PhoneParental websites, for example, host blogs that rank their
products against rivals (Figure 3). These articles, often styled
as ‘Top 10’ lists, position their own product as superior by
highlighting the perceived shortcomings of competitors. This
strategy implies a direct commercial rivalry, reinforcing the
idea that these are distinct, competing entities, not collabora-
tors.

Think Your Texts Are Private? SMS
Tracker Apps May...

All About Facebook Monitoring
Apps: A Complete Guide

How to Check if Any Spy App Is
Installed...
by Agnes W Linn in

by Agnes W Linn in by Agnes W Linn in

ted 12 May, 20 Jpdated 01 May, 2025

!

S
I

2025's 6 Best Android Monitoring
Apps for Stealth Tracking

iPhone Monitoring Software
Comparison: Features, Pricing,
and More

If Someone Blocked You, Can You
Still See Their...

by Agnes W Linn in by Ag

by Agnes W Linn in Jpda

Fig. 3. mSpy’s most recent blog posts, featuring how-to articles on general
surveillance topics and product comparisons against rival products.

Lastly, a comparative analysis of privacy policies reveals
divergent approaches to transparency and legal posturing. The
mLite/mSpy policy uses dense, GDPR-focused language to
project robust compliance, claiming survivors are not ‘data
subjects’ because their data is encrypted—a questionable

interpretation of the regulation.* Cerberus and TrackView
offer some specifics on data collection but include broad
liability disclaimers, with TrackView’s policy being partic-
ularly generic about its surveillance purpose. Both disclaim
any security warranties. PhoneParental’s policy is the most
opaque, omitting any details on data collection, security, or
legal adherence, while asserting that all data is gathered with
the subject’s explicit consent.

V. DISCUSSION

Our study, motivated by the continual growth in stalk-
erware’s user base, which persists despite recent platform
countermeasures, analyses the longitudinal and technical evo-
lution of Android stalkerware. We investigate how developers
adapt their apps in response to platform policies, OS security
enhancements and differing distribution channels. Through a
multi-faceted analysis of four distinct app families—Cerberus,
TheTruthSpy/PhoneParental, TrackView, and mLite/mSpy—
across 82 APKs from various sources, we explore the key
technical, strategic, and contextual patterns that define the
modern stalkerware ecosystem.

1) RQI: Longitudinal Evolution in Response to Platform
and Policy Changes: Analysis of RQ1 reveals a dichotomy in
evolutionary strategies based on an app’s distribution model. A
primary takeaway is that the effectiveness of Google’s policies
is largely confined to its own marketplace. For developers
operating exclusively off-platform, such as TheTruthSpy, both
the 2018 permission restrictions and the 2020 explicit stalk-
erware policy were met with non-response. These families
consistently chose to target older, less secure Android API
levels for years, a strategic stagnation that likely allows them
to bypass modern privacy controls like Scoped Storage and
granular permissions, thereby maximising their surveillance
capabilities for longer periods of time.

Conversely, apps with a presence on Google Play, such as
mLite, TrackView Viewer and the modern Cerberus Google
Play variant, demonstrate a pattern of slow, and often re-
luctant, compliance. For example, the delayed adoption of
the isMonitoringTool flag by mLite, nearly three years
post-policy, suggests that enforcement may be inconsistent or
developers wait until direct pressure is applied. This tactic,
much like the prohibited practice of funnelling users from
a Google Play app to a non-compliant sideloaded version,
highlights a persistent failure in Google’s policy enforcement.
It also indicates that stalkerware developers perceive platform
policies not as ethical guidelines, but as technical obstacles to
be navigated with minimal functional compromise.

Overall, analysis of RQ1 demonstrates that current pol-
icy pressure often redirects rather than eliminates covert-
surveillance functionality, a problem compounded by inconsis-
tent platform governance. Google’s granular permission bans
and isMonitoringTool flag create visible compliance

4Under GDPR (Recital 26), encrypted data is typically considered
pseudonymised, not anonymised. As long as a key exists to decrypt the
information and re-identify the individual, the data remains personal data and
is subject to the regulation’s protections.

incentives for developers who value Google Play reach, but
off-platform actors can ignore these rules entirely, or create
compliant variants that can sidestep intent by funnelling users
toward sideloaded builds. Our findings suggest that store-
level policy must be coupled with robust device-level guard-
rails. To account for perpetrators bypassing initial installation
warnings by design, Android should implement periodic, non-
dismissible system alerts if an app exhibits high-risk be-
haviours post-installation (e.g., hiding its icon while accessing
location data). This provides a persistent warning to the
device’s primary user, complementing stronger install-time
checks based on permission bundles or known stalkerware
hashes. Enforcement lags, such as mlLite’s three-year delay
in adding isMonitoringTool, indicate that Google Play
Protect and Google’s app review systems for stalkerware-
like products remains insufficient. These processes should be
reviewed and examined in further detail to evaluate their true
efficacy in combatting stalkerware proliferation.

2) RQ2: Platform Adaptations and Feature Divergence:
We find a deliberate strategy of feature differentiation across
platforms in our analysis of RQ2. Direct comparison of on-
platform and off-platform variants from the same families
(Cerberus, TrackView, mSpy) reveals Google Play versions
are consistently stripped of their most invasive functional-
ities. Static analysis reveals invasive capabilities exclusive
to sideloaded versions; this ‘feature stripping’ is an act of
strategic re-architecting. TrackView’s ‘split-app’ model, where
the compliant Google Play Viewer app acts as a remote control
for the fully-featured sideloaded HomeSafe app, is an example
of developers leveraging Google’s platform for distribution
and legitimacy while keeping prohibited functionality eas-
ily available. Similarly, the enhancement of features in off-
platform versions, such as Cerberus Disguised version’s use of
Accessibility Services to implement screen-reading and key-
logging (capabilities absent from its on-platform counterpart)
underscores that developers maintain a separate, more potent
development track for their unregulated products.

The analysis of modded APKs reveals that third-party
modifications often introduce new risks, such as adware or de-
ceptive downloaders, rather than enhancing core surveillance
features. This suggests that the threat from the official develop-
ers, who tailor their products to evade detection, may be more
potent than that from opportunistic modders. Overall, findings
from RQ2 underline how platform governance displaces, rather
than removes, abusive functionality.

3) RQ3: Shared Technical and Distribution Strategies:
Cross-family analysis confirms the existence of shared tech-
nical blueprints for core stalkerware functionality. Despite
operating as commercial competitors, developers have inde-
pendently converged on a set of common and highly effective
techniques for achieving persistence, stealth, and surveillance.
These features also emerge and persist at the same time
across developers — the universal use of BootReceiver to
ensure operation after a reboot, AlarmManager to schedule
recurring tasks, and the abuse of Accessibility Services, points
to a set of established ‘best practices’ within the stalkerware

industry.

This technical convergence is contrasted by a lack of
shared infrastructure. We find no evidence of common C2
servers, code libraries, or developer certificates across the
four main families. This, combined with contextual evidence
such as comparative marketing blogs hosted by mSpy and
PhoneParental, indicates these developers operate as distinct,
competitive entities rather than collaborators within a unified
malware economy. They may learn from one another’s public
techniques, but their commercial operations remain siloed.

While static identifiers, including package names or file
hashes, are easily altered between releases, underlying ma-
licious functionalities are core behaviours within stalkerware
products and remain consistent across all OS versions. These
persistent indicators, such as the abuse of high-privilege APIs
or similar implementations of stealth techniques, should be
weighed more heavily than static cues by malware scanners,
detection engines and Google Play Protect to determine if
an app could be stalkerware. Additionally, having observed
that families operate distinct infrastructures, IP or domain
block-lists need to be vendor-specific; generic ‘stalkerware
C2’ lists risk high false-negatives, presenting another issue
in using static indicators over active malicious behaviour.
Effective scanners must examine runtime behaviour—what an
app actually does with its permissions—to correctly flag abuse.

Our work provides evidence that, while platform policies
can force cosmetic or functional changes, they do not eradicate
the threat. Developers are adept at navigating these restrictions,
often by leveraging the very platforms that seek to regulate
them. The rebranding of The TruthSpy to the benign-sounding
‘PhoneParental’, and TrackView’s use of Google Play to
distribute the benign part of its system, are testaments to
this strategic resilience. Mapping these adaptive strategies is
therefore critical for developing stalkerware countermeasures,
and this work provides a foundational longitudinal analysis
that underscores the need for continuous observation of the
stalkerware ecosystem, which will only continue to evolve as
Android does.

VI. CONCLUSION

Android stalkerware remains a persistent threat, as stalk-
erware developers consistently find new methods to evade
platform-level countermeasures. Given the ongoing risk to
survivors, it is important for platform owners, such as Google,
and security vendors to re-evaluate and innovate their approach
to this challenge. Merely implementing store-level policies is
not a sustainable solution, as our study demonstrates these
strategies are systematically circumvented through shared
tactics such as malicious compliance and feature stripping.
Our research also clearly showcases changes in developer
behaviour across platforms and a technical convergence on
shared strategies for stealth and surveillance across multiple
stalkerware products by differing developers.

We are confident that there is potential for improvements in
user protection when these adaptive patterns are understood
and anticipated across the Android security ecosystem, and

actively prioritised by Google in new Android OS releases.
We underscore the necessity of embracing a more behaviour-
centric perspective to counter these evolving threats, creating
future-proof detection engines to discern malicious behaviours
such as icon hiding or Accessibility Service abuse regardless
of an app’s name. In essence, by harnessing these insights
into developer strategy, platform owners and security tools
can move from a reactive posture to one that can proactively
safeguard users from technology-facilitated abuse.

The primary limitation of this study, imposed by ethical
constraints, is the inability to purchase and analyse the most
recent, premium versions of the stalkerware families. The anal-
ysis therefore relies on publicly available and freely accessible
APKs. While this provides a rich historical dataset, the most
cutting-edge, paywalled features may not be fully observed in
a dynamic context.

Future work could investigate iOS-focused surveillance
tools, which may differ from their Android counterparts in
both technical approach and distribution models. Apple’s
App Store stalkerware presence and review processes are an
unexplored area within this study, so a systematic compar-
ison between iOS and Android stalkerware implementations
could explore whether the adaptation patterns documented in
Android stalkerware emerge similarly under Apple’s ecosys-
tem governance. Such insights could guide platform-agnostic
detection strategies and inform coordinated policy responses.
Future work could also investigate stalkerware apps in non-
English-speaking countries. Previous work [17] and initial
app gathering suggest that certain stalkerware apps may be
advertised under different language marketplaces entirely. Fur-
ther study could clarify whether observed adaptation patterns
hold globally, how powerful Google’s enforcement patterns
are worldwide, and whether novel evasion techniques unseen
in English-language apps and forums exist.

ACKNOWLEDGMENT

This work is supported by Nokia Bell Labs (for LAS)
and the European Research Council under the Horizon 2020
programme (grant agreement No 949127) (for AH).

REFERENCES

[1] M. M. Rogers, C. Fisher, P. Ali, P. Allmark, and L. Fontes, “Technology-
facilitated abuse in intimate relationships: A scoping review,” Trauma,
Violence, & Abuse, vol. 24, no. 4, p. 152483802210902, 5 2022.

[2] C. Gibson, V. Frost, K. Platt, W. Garcia, L. Vargas, S. Rampazzi,
V. Bindschaedler, P. Traynor, and K. Butler, “Analyzing the moneti-
zation ecosystem of stalkerware,” Proceedings on Privacy Enhancing
Technologies, vol. 2022, no. 4, p. 105-119, 10 2022.

[3] A. Shahani, “Smartphones are used to stalk, control domestic abuse
victims,” NPR.org, 9 2014. [Online]. Available: https://www.npr.org/se
ctions/alltechconsidered/2014/09/15/346149979/smartphones- are-used-t
o-stalk-control-domestic-abuse- victims

[4] A. Greenberg, “Hacker Eva Galperin has a plan to eradicate
stalkerware,” 4 2019. [Online]. Available: https://www.wired.com/stor
y/eva-galperin-stalkerware-kaspersky-antivirus/

[5] I. Thomson, “After blitzing FlexiSpy, hackers declare war on all
stalkerware makers: “we’re coming for you”,” 4 2017. [Online].
Available: https://www.theregister.com/2017/04/25/hackers_attack_stalk
erware_{flexispy/

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Avast PR, “Stalkerware grows 239% worldwide over the past three
years,” 3 2023. [Online]. Available: https://press.avast.com/stalkerwar
e-grows-239-worldwide-over-the-past-three- years

P. Mangeard, B. Tejaswi, M. Mannan, and A. Youssef, “WARNE: A
stalkerware evidence collection tool,” Forensic Science International:
Digital Investigation, vol. 48, p. 301677, Mar 2024.

K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo: Col-
lecting millions of Android apps for the research community,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), 2016, pp. 468—-471.

L. A. Saavedra, H. S. Dutta, A. R. Beresford, and A. Hutchings, “
ModZoo: A Large-Scale Study of Modded Android Apps and Their
Markets ,” in 2024 APWG Symposium on Electronic Crime Research
(eCrime). Los Alamitos, CA, USA: IEEE Computer Society, Sep.
2024, pp. 162-174. [Online]. Available: https://doi.ieeecomputersociet
y.org/10.1109/eCrime66200.2024.00018

C. Fraser, E. Olsen, K. Lee, C. Southworth, and S. Tucker, “The
new age of stalking: Technological implications for stalking,” Juvenile
and Family Court Journal, vol. 61, no. 4, pp. 39-55, 2010. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-6988.
2010.01051.x

D. Freed, J. Palmer, D. E. Minchala, K. Levy, T. Ristenpart, and
N. Dell, “Digital technologies and intimate partner violence: A
qualitative analysis with multiple stakeholders,” Proc. ACM Hum.-
Comput. Interact., vol. 1, no. CSCW, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3134681

E. Tseng, R. Bellini, N. McDonald, M. Danos, R. Greenstadt, D. McCoy,
N. Dell, and T. Ristenpart, “The tools and tactics used in intimate partner
surveillance: an analysis of online infidelity forums,” in Proceedings
of the 29th USENIX Conference on Security Symposium, ser. SEC’20.
USA: USENIX Association, 2020.

R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed,
K. Levy, N. Dell, D. McCoy, and T. Ristenpart, “The spyware used in
intimate partner violence,” in 2018 IEEE Symposium on Security and
Privacy (SP), 2018, pp. 441-458.

C. Parsons, A. Molnar, J. Dalek, J. Knockel, M. Kenyon, B. Haselton,
C. Khoo, and R. Deibert, “The predator in your pocket: A
multidisciplinary assessment of the stalkerware application industry,”
Jun 2019. [Online]. Available: http://hdl.handle.net/1807/96320

Y. Han, K. A. Roundy, and A. Tamersoy, “Towards stalkerware
detection with precise warnings,” in Proceedings of the 37th Annual
Computer Security Applications Conference, ser. ACSAC "21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
957-969. [Online]. Available: https://doi.org/10.1145/3485832.3485901
E. Liu, S. Rao, S. Havron, G. Ho, S. Savage, G. M. Voelker, and
D. McCoy, “No privacy among spies: Assessing the functionality and
insecurity of consumer Android spyware apps,” Proceedings on Privacy
Enhancing Technologies, vol. 2023, no. 1, p. 207-224, 1 2023.

M. Almansoori, A. Gallardo, J. Poveda, A. Ahmed, and R. Chatterjee,
“A global survey of Android dual-use applications used in intimate
partner surveillance,” Proceedings on Privacy Enhancing Technologies,
vol. 2022, no. 4, p. 120-139, Oct 2022.

E.-M. Maier, L. M. Tanczer, and L. D. Klausner, “Surveillance
disguised as protection: A comparative analysis of sideloaded and
in-store parental control apps,” Proceedings on Privacy Enhancing
Technologies, vol. 2025, no. 2, p. 107-124, Apr 2025. [Online].
Available: https://petsymposium.org/popets/2025/popets-2025-0052.pdf
R. Hager, “Google’s new SMS and call permission policy is
crippling apps used by millions,” Jan 2019. [Online]. Available:
https://www.androidpolice.com/2019/01/05/googles-new-sms-and-cal
1-permission-policy-is-crippling-apps-used-by-millions/

A. Stevanovi¢, “Why is there so much spyware hidden in the Play
Store?” Mar 2025. [Online]. Available: https://www.techradar.com/vpn/
vpn-privacy-security/why-is-there-so-much-spyware-hidden- in-the-pla
y-store

Google, “Codenames, tags, and build numbers,” 2024. [Online].
Available: https://source.android.com/docs/setup/reference/build-numbe
1S

S. Hutchinson, B. Zhou, and U. Karabiyik, “Are we really protected? an
investigation into the Play Protect service,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 4997-5004.

M. Alecci, P. J. R. Jiménez, K. Allix, T. F. Bissyandé, and J. Klein,
“AndroZoo: A retrospective with a glimpse into the future,” in
Proceedings of the 21st International Conference on Mining Software

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Repositories, ser. MSR ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 389-393. [Online]. Available:
https://doi.org/10.1145/3643991.3644863

Kaspersky, The State of Stalkerware in 2023 - A Kaspersky Report,
Feb 2024. [Online]. Available: https://media.kasperskycontenthub.com/
wp-content/uploads/sites/43/2024/03/07160820/The- State- of-Stalkerwa
re-in-2023.pdf

AssoEchap, “Stalkerware indicators of compromise,” Sep 2022.
[Online]. Available: https://github.com/AssoEchap/stalkerware-indicat
ors

Z. Whittaker, “TheTruthSpy spyware found on 50,000 Android devices
- business & human rights resource centre,” Feb 2024. [Online].
Available: https://www.business-humanrights.org/en/latest-news/thetru
thspy-spyware-found-on-50000-android-devices/

skylot, “jadx,” Nov 2019. [Online]. Available: https://github.com/skylo
t/jadx

K. Graf, J. Lerga, and B. Dobras, “Data collection and hiding capabilities
of Android stalkerware,” 2023 IEEE 21st Jubilee International Sympo-
sium on Intelligent Systems and Informatics (SISY), p. 000389-000394,
9 2023.

NIST, “NVD - CVE-2022-0732,” 2022. [Online]. Available: https:
//nvd.nist.gov/vuln/detail/CVE-2022-0732

C. Pallardy, “Sensitive data of millions stolen in MSpy breach,” 2024.
[Online]. Available: https://www.informationweek.com/cyber-resilienc
e/sensitive-data-of-millions- stolen-in-mspy-breach

HTC, “How to use the bootloader,” 2025. [Online]. Available:
https://www.htc.com/lk/contact/productissue/htc/5bf5ade5-d551-94c4-c
09f-57d25d90cbcc/

VII. APPENDIX

This appendix provides supplementary data supporting our
main analysis. Table I details the provenance, distribution, and
VirusTotal risk score for every APK analysed in this study.
Table II catalogues the advertised surveillance capabilities
for each app family, comparing their on-platform and off-
platform offerings. Finally, Table III outlines the specific APK
pairs selected for the direct on-platform versus off-platform
comparison in line with RQ2, and the rationale for their
selection.

TABLE I: Provenance and Distribution of Analysed APKs.

APK Details Family Original Distribution Source APK(s) Sourced Average VirusTo-
From tal Score
Google Play Dev. Site Modded
Market
Cerberus (Pre-Google Cerberus v v AndroZoo 17/66
Play Ban) (Eight versions)
v2.2, v2.3, v2.5, v2.5.1,
v3.2.1, v3.5.1, v3.5.7,
v3.5.9
(Mar 2012 — Dec 2018)
Cerberus (During Google Cerberus v AndroZoo 25/66
Play Ban) (Four versions)
v3.6.5, v3.6.6, v3.6.7,
v3.6.9
(Feb 2020 — Oct 2021)
Cerberus (Google Play Cerberus v Androzoo, 0/66
Re-Release, Current) APKMirror
(Seven versions)
vl.1.2_play, vl.1.7_play,
v1.2.6_play, v1.3.8_play,
v1.4.0_play, v1.4.3_play,
v1.4.5_play
(Oct 2023 — May 2025)
Cerberus (Standard & Cerberus v Cerberus Website 18/66
Disguised Editions) (2 ver-
sions)
v3.8.0, v3.8.0
(May 2024)
Cerberus 3.6.4 (Modded)® Cerberus v Malavida 2/65
v3.6.4
(Jul 2023)
Cerberus AntiTheft App Cerberus v OfflineModAPK 19/64
(Modded)?
v3.7.8
(Oct 2023)
TheTruthSpy (Nine TheTruthSpy v AndroZoo 32/66
versions)
v1.0 (Eight versions)®,
v8.80
(Oct 2016 — Jul 2022)
PhoneParental TheTruthSpy v PhoneParental 29/66
(TheTruthSpy Rebrand) Website
(One version)
v1.0
(Feb 2024)
The Truth Spy (Modded)® TheTruthSpy v APKAdmin 34/66
v9.41
(Jul 2022 — Dec 2022)
TrackView HomeSafe TrackView v TrackView 4/67
(One version) Website
v3.8.65
(Jun 2025 - Jun 2025)
TrackView (Pre-Removal TrackView v APKPure 10/61

from Google Play) (12

versions)

v3.3.17-tv, v3.4.11-tv,
v3.5.03-tv, v3.5.11-tv,
v3.5.19-tv, v3.5.24-
tv, v3.5.28-tv, v3.6.29,

v3.6.45, v3.6.48, v3.6.77,
v3.7.06
(Jul 2018 — Dec 2021)

TABLE I — continued from previous page

APK Details Family Original Distribution Source APK(s) Sourced Average VirusTo-
From tal Score
Google Play Dev. Site Modded
Market
TrackView Viewer TrackView v v APKPure 22/65
(Google Play) (Nine
versions)
v3.7.49, v3.8.02, v3.8.06,
v3.8.12, v3.8.27, v3.8.30,
v3.8.35, v3.8.39, v3.8.42
(Jun 2022 — Apr 2025)
TrackView (Modded)? TrackView v APKPure 0/66
v22.23
(Apr 2022)
TrackviewApk (Modded)® TrackView v LatestModAPKs 13/67
v3.7.06
(Sep 2023)
mLite (Google Play) (21 mSpy v AndroZoo 7/62
versions)
v1.0.1, v1.4.2, v2.1.2,
v2.1.3, v2.14, v2.1.5,
v2.3.11, v2.3.14, v2.3.16,
v2.3.2, v2.3.21, v2.3.22,
v2.3.26, v2.3.31, v2.3.35,
v3.0.8, v3.0.9, v3.2.16,
v3.2.23, v3.2.7
(Jul 2016 — May 2024)
mSpy (One version) mSpy v mSpy Website 3/64
v8.6.0.1
(May 2025)
mSpy MOD Premium Un- mSpy v ApkResult 4/66
locked (Modded)?
v2.01.54.08
(Oct 2024)
MSPY WhatsApp mSpy v APKRabi 3/66
(Modded)?
v6.2
(Oct 2024)

2 Modded versions are designated in red. Unlike official releases, they are treated as distinct, non-sequential snapshots; their version details
and release dates reflect their listings on third-party marketplaces, not a continuous development timeline.

 Most TheTruthSpy APKSs list a static ‘1.0’ version in their manifests. As file comparisons confirm they are distinct updates, they are identified
in this study by sequential labels ordered by their AndroZoo collection.

Some release dates are estimated due to a lack of official changelogs or AndroZoo data. To ensure a sound timeline, these dates were
approximated by correlating several datapoints, including the target SDK version (which corresponds to a specific Android release period),
the APK’s digital certificate validity dates, and its first appearance in data repositories.

TABLE II
ADVERTISED SURVEILLANCE CAPABILITIES BY APPLICATION FAMILY AND VARIANT.

5
]
= =
F 3 £
A2 B
@] 3
w2 £
g 2 %
o wn = L]
= 2 7 L
2] 2] = Q
= 2 0% 2
3 3 = Q Z
s 2 & = z <
. 5 5 = — 7]]
Category Capabilities o0 = E E =
Call Logging & Recording - - vV - v -
Communication & Social Media Monitoring ~ SMS & MMS Monitoring — v v /7 —
Social Media & Instant Messaging Monitoring (e.g. WhatsApp, Facebook) — — v v V —
Email Monitoring e 2 A
Real-Time GPS Tracking v v v v v /
Location History v v v v v /
Geofencing v v v v vV —
Location, Live Surveillance & Input Capture ~ Ambient Listening (Record Surroundings) v v v v v /
Remote Camera Access (Live Photo/Video) v v v v 4 v
Screen Recording —_ v v - /S —
Keylogging e 2 A
View Saved Photos & Videos e 2
Stored Data Exfiltration Browser History Tracking _ - v v /S —
View Contacts - - v v /S =
View Calendar - = v - /S =
View Installed Applications & App Usage Statistics _ - v v /S —
Stealth Mode/Hidden Icon - v vV - vV /
Stealth & Remote Commands Remote Device Wipe/Lock v v - - — —
Remote Alarm v /S - /S — /

v/: Feature explicitly claimed on website, marketing materials, or within app.

2 TrackView’s capabilities are consolidated into a single column, as all surveillance features are implemented in the sideloaded TrackView HomeSafe
application. The separate TrackView Viewer app available on Google Play is a client that only accesses and controls the main app and has no surveillance
features of its own. This is explained further in Section IV-B.

TABLE III: Selected APK Pairs for On-Platform vs. Off-Platform Comparison.

Family On-Platform Version (Google Play)? Off-Platform Version (Sideloaded) Rationale for Comparison

Cerberus Cerberus (Google Play Re-Release) Cerberus (Standard & Disguised) The developer’s website explicitly positions
v1.2.6_play v3.8.0 these versions as direct, fully-featured alterna-
(May 2024) (May 2024) tives to the feature-limited Google Play release.

TrackView TrackView Viewer (Current Google TrackView HomeSafe (Current Represents the ‘split-app’ model. Unlike other
Play) Sideloaded) families, the Viewer app (Google Play) is de-
v3.8.42 v3.8.65 signed to work with the full HomeSafe appli-
(Apr 2025) (Jun 2025) cation, which must be sideloaded. HomeSafe,

however, can also work as a standalone product
without Viewer.

mSpy / mLite mLite (Google Play) mSpy (Full Suite, Sideloaded) mLite and mSpy are developed by the same
Latest Analysed Version v8.6.0.1 company; however, the Google Play app lacks
(May 2024) (May 2025) invasive features compared to the premium

mSpy product.

4 No on-platform versions of TheTruthSpy were available for comparison, as this family has historically operated entirely outside of Google Play.

