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Abstract. Many technical approaches for detecting and preventing cy-
bercrime utilise big data and machine learning, drawing upon knowledge
about the behaviour of legitimate customers and indicators of cyber-
crime. These include fraud detection systems, behavioural analysis, spam
detection, intrusion detection systems, anti-virus software, and denial of
service attack protection. However, criminals have adapted their meth-
ods in response to big data systems. We present case studies for a number
of different cybercrime types to highlight the methods used for cheating
such systems. We argue that big data solutions are not a silver bullet
approach to disrupting cybercrime, but rather represent a Red Queen’s
race, requiring constant running to stay in one spot.

Keywords: Cybercrime; crime prevention; displacement; big data; machine
learning

1 Introduction

In this chapter, we consider how commercial organisations are using ‘big data’
processing to detect and prevent cybercrime. Typically, a large dataset is cre-
ated to hold information about how customers interact with the organisation.
Known instances of crime are then considered, with the aim of determining what
differences in behaviour can be identified when comparing criminals with all the
legitimate customers. Going forward, the organisation will use these differences
to flag up behaviour which matches the criminal profile with a view to preventing
further crimes. While this type of big data approach is used by national security
and policing agencies (Chan & Moses, 2017), we focus on established uses by
financial institutions and technology companies.

Displacement occurs when offenders or crime changes as a direct result of
preventative actions, and can result in crime changing and evolving (Cornish &
Clarke, 1987). Online, offenders do not have to physically relocate in order to
displace their activities. Smith et al. (2003) characterised the different types of
displacement that can occur online. These including moving to new locations,
times, targets, methods, offenders or offence types.

Displacement has been noted in relation to a number of cybercrime types as
a direct result of prevention measures. For example, offenders providing denial of
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service attacks for a fee (known as ‘booter services’) have come across a number of
obstacles designed to stymie their activities, such as patching the servers being
used to reflect traffic and blocking the accounts they use to receive payment.
In these situations, offenders have displaced by changing the methods used for
denial of service attacks (Hutchings & Clayton, 2015) and accepting new forms
of payment such as bitcoin (Karami, Park, & McCoy, 2016).

Displacement is very evident following website takedown, a popular disrup-
tion method for a number of cybercrime types, most notably phishing (Moore
& Clayton, 2007). Hutchings, Clayton and Anderson (2016) explored the dis-
placement effects observed following website takedown. These include displac-
ing to new domain names or new hosting providers, including ‘bulletproof’ and
abuse tolerant providers. Offenders also selected different targets, such as dif-
ferent brands, and diversified phishing targets away from financial institutions
towards other online services. New methods included technical approaches to
make takedown harder. As well as displacing, websites are also simply replaced,
reappearing in the same location. This typically occurs with malicious pages
hosted within compromised websites, when the vulnerability that lead to the
initial compromise is not fixed. As a result, takedown is often described as a
‘whack-a-mole’ approach, as websites tend to pop back up soon after (Hutchings
et al., 2016; Chia, Chuang, & Chen, 2016).

Some crimes that are commonly detected using big data solutions, such as
fraud detection systems, have also been seen to displace in response to inter-
vention. For example, credit card fraud used to be the main method for fraud-
ulently obtaining airline tickets. However, as detection of these unauthorised
transactions improved, offenders changed their operations, including: compro-
mising loyalty point accounts; phishing travel agencies for their access credentials
for booking systems; and compromising business accounts (Hutchings, 2018b).

While these are relatively straightforward examples of displacement, in this
chapter we instead focus on more complicated ways that criminals have designed
ways of circumventing big data systems to avoid detection. We demonstrate the
practical limitations of machine learning and big data approaches in adversarial
settings. To do this, we explore how online crime and crime prevention techniques
have co-evolved over time.

2 Cybercrime risks and big data approaches

The systems we describe here use algorithms to detect unusual activity that
may point to active instances of particular types of cybercrime, namely use of
compromised credit cards, access to compromised accounts, malicious communi-
cations, unauthorised access to computer systems, malware infection, and denial
of service attacks.

Machine learning approaches may use one of a variety of techniques, including
supervised, unsupervised, and reinforcement approaches (Robert, 2014). Super-
vised approaches require training data that have been pre-labelled. Unsupervised
learning involves a fully automated approach without any pre-labelled training
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data, with the aim of identifying interesting patterns. Reinforcement learning
involves reward or punishment signals.

While many of the specifics of how these systems work are the ‘secret sauce’
of the commercial organisations that provide them, we do know that many use
big data approaches, typically learning from what ‘normal’ behaviour looks like
(and therefore detecting unusual behaviour), as well as ‘red flags’, or activities
that are indicative of crime.

We start by describing the crimes and detection systems. We will later demon-
strate how these mitigations can be circumvented by motivated offenders, leading
to displacement and offence evolution.

2.1 Use of compromised credit cards

The risk: Credit cards can be compromised in a number of ways, both online
and offline. Methods include data breaches, skimmers installed on point of sale
terminals and ATMs, malware, phishing, theft, and physical mail interception.
Depending on the methods by which it is obtained, credit card data can come
in a variety of forms. ‘Dumps’ include the data read from the magnetic stripes
on the back of cards, obtained by skimming, and can be used to create card
clones. Credit card numbers, expiry dates, and card verification values, found on
the back of the card, are required to process card-not-present payments. ‘Fullz’
refers to the full information associated with the account, including data relating
to the account holder, such as name, address, and date of birth (Hutchings &
Holt, 2015).

Stolen data markets provide platforms for the sale of compromised credit card
data (Franklin, Paxson, Perrig, & Savage, 2007; Holt & Lampke, 2010; Hutch-
ings & Holt, 2015; Motoyama, McCoy, Levchenko, Savage, & Voelker, 2011).
Cloned and stolen cards can be used over the counter, or at ATMs if PINs are
also obtained. However, card-not-present transactions require data that can be
obtained without physical contact with the card, and can be completed online,
by phone or by mail order. The main objective is to monetise the compromised
cards, such as by selling on purchased goods and services (Hutchings & Holt,
2015).

Fraud detection systems: Fraud detection systems are used to detect credit
card fraud at the time of the transaction (Abdallah, Maarof, & Zainal, 2016;
Phua, Lee, Smith, & Gayler, 2010). These systems use algorithms to score the
potential risk. They identify patterns that do not match the cardholder, such as
the IP address and location, address provided, browser, language setting, and
spending patterns. They also identify patterns that match known frauds, such
as the type of purchase and associated variables. A risky transaction can then
be reviewed, and attempts can be made to confirm its legitimacy by making
enquiries with the cardholder. If there is confirmed fraud, or significant doubt,
the transaction may be cancelled, or another payment method requested.

Fraud detection systems may be used by the merchant, as well as by financial
institutions attempting to detect fraudulent transactions on their cards. Third
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party vendors and payment processors may also have their own fraud detection
systems. Multiple parties operating their own fraud detection systems is ben-
eficial, as while one party, such as a merchant, may see deeply into fraud on
their own systems, another party, such as a bank or third party vendor, may see
more breadth, with attempted transactions across multiple targets (Hutchings,
2018b).

2.2 Access to compromised accounts

The risk: There are a variety of accounts that may be compromised, such
as bank, email, social media, merchant, and gaming accounts. There are also
a number of ways accounts can be compromised, either at scale or by target-
ing particular account holders. For example, data breaches may provide access
to large numbers of online accounts. Furthermore, if username and password
combinations are breached, these may be checked against other online systems
to gain access to accounts where credentials have been reused. Therefore, ac-
counts may be compromised due to opportunity, as well as through targeted
attacks. Accounts may also be compromised through the use of malware or
phishing (Onaolapo, Mariconti, & Stringhini, 2016). Account recovery systems
can also be misused to gain access to particular accounts, particularly where
‘secret’ questions can be inferred through other public or known information.

Some account credentials are offered for sale in online criminal markets, while
others may be released publicly on websites such as Pastebin (Onaolapo et al.,
2016). However, accounts can also be used by those that obtained them, or their
accomplices. Accounts can be used to commit other types of offences, such as
email and social media accounts for the purpose of sending malicious communi-
cations (as detailed in the following section).

Onaolapo et al. (2016) monitored the way compromised Gmail accounts are
used by purposely leaking accounts under their control and observing the subse-
quent activity. Most visitors appeared to be simply curious, and did not perform
any further actions after accessing the accounts. However, other visitors using
the leaked credentials searched for potentially sensitive information that could
be monetised, or they sent email spam, and some attempted to lock out the
account holder by changing the password.

Behavioural analysis: The Messaging, Malware and Mobile Anti-Abuse Work-
ing Group (M3AAWG) is an industry group that develops cooperative approaches
for the purpose of combating cybercrime. Among their ‘best practice’ guides,
M3AAWG (2014) have recommendations for detecting the types of unusual ac-
tivity associated with compromised accounts. They recommend using systems
that require big data solutions, which can then detect unusual account activity,
such as access from different locations or devices. While this analytic approach
compares activity to the usual behaviour of the account holder, other approaches
compare behaviours with the activity that typically occurs after compromise.

Indications that an account may be compromised may differ by account type.
For example, for email accounts, indications could include sending messages
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to all contacts, or the deletion of sent mail. For some other account types, a
typical pattern associated with compromise is immediate steps to lock out the
account holder. Changing passwords and associated email addresses rarely occurs
spontaneously, which facilitates detection.

2.3 Malicious communications

The risk: As identified above, some accounts may be compromised for the pur-
pose of sending malicious communications. Other accounts may be specifically
set up for this purpose. Malicious communications can be sent on many different
platforms, and can take the form of email, chat, text messages, or social media
posts. The malicious purpose of the communication may include disseminating
spam or phishing URLs, distributing malware, or attempts at social engineering
for fraudulent purposes.

Moore and Clayton (2015) analyse how malicious communications have spread
across instant messaging and social media systems. The messages analysed con-
tained URLs, and when the website was visited by the recipient, they could also
be infected with malware, and those in their contact lists were in turn sent a
copy of the malicious message. By monitoring the command and control (C&C)
channel that was issuing instructions to the malware, they found that offenders
changed their methods in response to efforts made to take down websites that
the URLs directed to, such as using URL-shorteners for malicious links.

Spam detection: One way to detect malicious communications is to measure
behaviour that is different to the purported sender (Egele, Stringhini, Kruegel,
& Vigna, 2017). In addition to the behavioural analyses that may indicate that
an account has been compromised (as discussed above), anomalous patterns can
be identified in the messages that are sent, and the associated metadata.

Patterns can also be detected for similar messages to known malicious com-
munications. For example, for malicious messages sent over social media, this
could include the message content, and the presence of suspicious URLs (Egele
et al., 2017). Additional factors may include attachments, and for email, ‘spoof-
ing’ (a term used in computer security to refer to events in which an attacker
masquerades as another party) the header information, to make it appear it had
been sent by a legitimate organisation (Fette, Sadeh, & Tomasic, 2007).

2.4 Unauthorised access to computer systems

The risk: Remote exploitation mechanisms rely on system vulnerabilities to
gain unauthorised access to a computer system. Exploitation usually consists of
three phases: scanning the network, sending the exploit, and post-exploitation.
Prior to triggering an exploit, offenders usually scan networks (or the whole
Internet) to find vulnerable machines. Once a vulnerability is discovered, a
crafted network packet containing the corresponding exploit is sent. The post-
exploitation phase usually involves the compromised system connecting to a
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remote server (also known as command and control, or C&C server) for further
instructions, for example, to download additional malware which will persist
after the machine reboots.

Another way of gaining unauthorised access to a machine is by means of
escalation of privileges, where users with restricted permissions gain access to
unauthorised assets within the same system or network. Vulnerable machines,
weak passwords and weak security policies (e.g. those that do not enforce access
control or have configuration flaws) are the most common causes that allow for
escalation of privileges (Affinity IT Security Services, 2017).

Intrusion detection systems: Intrusion detection systems (IDS) are one of
the oldest security mechanisms used to protect systems and networks (Denning,
1987). These systems look for patterns of malicious behaviour in either the net-
work (Network IDS, or NIDS) or the host activity (Host IDS or HIDS). An IDS
will trigger alarms when any suspicious activity is monitored. Prior to exposing
the alerts to human operators for further inspection, IDS alarms might be fur-
ther correlated with other activity gathered from the systems or networks, such
as system or router logs, or even other IDS alarms in Security Information and
Event Management (SIEM) systems.

IDSs are typically classified based on their detection mode. Anomaly-based
IDS compute a model of normal behaviour and trigger alarms when they mon-
itor activity that does not fit within the model. Signature-based IDS analyse
the monitored activity looking for malicious patterns which are encoded in a
predefined set of rules or ‘signatures’. The main challenge for an anomaly-based
IDS is to compute a model that represents faithfully the normality, due to the
current complexity of current systems and networks. This paradigm leads to a
higher false positive rate, i.e. normal activity being tagged as suspicious. On the
contrary, signature-based IDS are more precise when detecting known attacks,
but are ineffective at detecting so called zero-day exploits, i.e. attacks that have
not been seen previously and for which there are no known signatures.

The use of big data technologies for intrusion detection systems is widespread.
This is mainly due to the large number of network packets and system events that
need to be processed. Example analytical approaches include machine learning,
graph analysis, and clustering, which have previously been applied to charac-
terise traffic sent to and from C&C servers (Gardiner & Nagaraja, 2016). Addi-
tionally, the increased use of ‘Internet of Things’ devices and mobile sensors pose
additional challenges which require big data approaches. Previous studies showed
that intrusion detection for Mobile Ad-Hoc Networks (MANETs) can be per-
formed by means of evolutionary computation techniques (Sen & Clark, 2011) or
machine learning classifiers (Pastrana, Mitrokotsa, Orfila, & Peris-Lopez, 2012).

2.5 Malware infection

The risk: Malware, or malicious software, poses a number of risks. Malware
infections can result in stolen data and compromised credentials (Hutchings &
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Clayton, 2017). Malware can create botnets, whereby the connected machines
can be controlled to perform acts in concert, such as denial of service attacks or
phishing campaigns. Malware known as ‘ransomware’ encrypts data, demanding
payment of a ransom if the victim wants to regain access. Attackers using mal-
ware to compromise victims’ machines may have additional motivations, such as
accessing the webcam for voyeurism.

Anti-virus software: Anti-virus programs constantly run in the background
of systems looking for evidence of malware infection. Commonly, anti-virus com-
panies manage a list of known bad applications, such as fingerprints of malicious
files, blacklists of IP addresses, or malicious programs that are known to be
loaded by malware. These lists must be periodically updated by the anti-virus
program from the anti-virus company server to prevent infection from new pieces
of malware.

Anti-virus companies receive a large number of new samples to analyse every
day. There are two approaches for binary analysis: static and dynamic analysis.
Static analysis focuses on the binary itself, analysing the contents without ex-
ecuting it to detect suspicious activity (i.e. without installing and running the
software). Dynamic analysis is performed by executing the malware in a ‘sand-
box’. The term sandbox refers to a controlled machine where the binary can be
safely executed and its behaviour can be analysed (Gandotra, Bansal, & Sofat,
2014).

According to Panda Labs (2017), up to 285,000 suspected malware programs
were analysed daily during 2017.3 Given this threat scenario, big data approaches
are necessary to rapidly classify the analysed binaries. There is a large volume
of research applying machine learning for the purpose of classifying malware
samples. For example, Rieck et al. (2011) applied clustering algorithms to group
malware samples into families and detect botnet campaigns based on the re-
sponses from the Domain Name System (DNS) server. Dash et al. (2016) used
machine learning to classify Android malware into families, based on the activity
monitored during the execution of the samples in a controlled environment.

2.6 Denial of service attacks

The risk: Distributed denial of service (DDoS) attacks involve overloading
a website or computer system with bogus traffic, thereby blocking legitimate
access. DDoS attacks have a wide range of targets, such as corporations, govern-
ments, and gaming servers (Karami & McCoy, 2013). The targets may vary with
the purpose of the attack, such as extortion (demanding payment for ‘protection’
against further attacks), and protest. Booter services provide DDoS attacks as a
service, which is primarily advertised towards gamers, offering them an advan-
tage against their adversaries (Hutchings & Clayton, 2015).

3 We note that statistical data from commercial organisations should be analysed
critically (Anderson et al., 2013).



8

At one time, DDoS attacks were primarily carried out using botnets, fol-
lowing malware infection. However, ‘amplification’ or ‘reflection’ methods allow
attackers to have greater power with limited resources. Amplification attacks
involve spoofing the victim’s IP address, and sending a query to another server.
As it appears the question was sent by the victim, the response is returned to
them. Since the responses are larger than the requests the attacker has amplified
the amount of traffic sent to the victim, reflected from another server, compared
to the resources they actually deployed (Thomas, Clayton, & Beresford, 2017).

Denial of service attack protection: There is now a substantial industry
providing DDoS mitigation services. The basic idea is to place a device ‘in front
of’ the systems to be protected and inspect the incoming traffic. Malicious traffic
is discarded but ‘good’ traffic is passed on the service which can then respond
as normal. This will keep the service available for legitimate users provided the
detection is accurate and provided that the malicious traffic does not exhaust
the available bandwidth. Complex arrangements to reroute traffic are used to
deal with bandwidth issues, and indeed just to arrange that the filtering device
can be put ‘in front of’ the system to be protected. Further information about
the type of systems involved can by found in the survey by Zargar et al. (2013)
and the book by Yu (2014).

Filtering systems originally depended on simple heuristics or used custom
filters specially created by a human to deal with the particular attack. Recently
there has been considerable academic work done on machine learning systems
that use a wide range of traffic characteristics to determine whether or not traffic
is malicious (and whether or not there is an attack going on at all) (Mayhew,
Atighetchi, Adler, & Greenstadt, 2015; Sommer & Paxson, 2010; Zuech, Khosh-
goftaar, & Wald, 2015). However, the actual devices are made by commercial
companies and they provide no details of their technology.

3 Cheating the system

During the course of our research careers, we have identified a number of ways
criminals have cheated big data systems, in order to circumvent detection. In
some of the case studies we outline below, we acknowledge we are deliberately
vague about certain details, in order to protect specific organisations and indus-
try types, and to avoid further malevolent development of these approaches.

3.1 Loopholes

Fraud detection systems are not foolproof. In particular, they have mainly been
developed to detect fraudulent credit card transactions, so few will detect more
elaborate frauds. Many merchants use fraud detection systems within their online
shops where there is a wealth of data that can inform fraud risk, such as IP
addresses and device fingerprints. However, some merchants may also operate
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call centres that do not use such systems, and even if they did, there is far less
data to go on.

Some types of transactions are time-sensitive. However, confirming fraud can
take time. When fraud is identified or suspected, merchants will usually check
with the bank to verify a transaction is not authorised. This introduces delays,
especially when crossing international borders, as there can be timezone and
language differences. This issue is compounded when there is no incentive for
the issuing bank to detect fraud themselves, or respond in a timely fashion. If the
purchase is fraudulent they suffer no financial loss, with the merchant generally
liable for the chargeback for card-not-present transactions.

3.2 Imitation

Tutorials are available on underground forums and markets which teach others
how to circumvent fraud detection systems. Tutorials found on stolen data mar-
kets by Hutchings and Holt (2015) detailed how to imitate genuine cardholders,
including: using virtual machines to change the operating system; changing set-
tings, such as language and timezone, for operating systems and browsers; and
changing the IP address to one near the victim’s usual residence, by using prox-
ies, anonymity networks such as Tor, or virtual private networks. An example
extract from such a tutorial, translated from Russian, reads:

very simple while working you have to fU....k the security system and for
this reason your comp must be American and namely the language, time
and even the username
everything should be like it is with a real americosa.
in order to reduce suspicion against you to a more acceptable level take
this seriously here every detail is important, the winda language, socks,
browser language even the time must be completely set for the state in
wich we are working. (In certain situations it is necessary to pay atten-
tion to what’s time it is nooww in the cardholder’s country and not type
too late or too early)

Other research has found support for the idea that offenders will imitate
genuine account holders. Onaolapo et al. (2016) found that when the location
of leaked account holders was known, some offenders would connect to the ac-
count using IP addresses in nearby locations. Others disguised their browser
‘user agent’ string, which provides a website with information about the visi-
tor’s browser and operating system.

Another way to imitate a user is through the use of cookies. Cookies are
small pieces of data stored in the web browser. Some malware will steal users’
cookies. These can be used to fool websites into treating an attacker as a logged
in user (Hutchings & Clayton, 2017).

Future ways to imitate include building accurate video and audio models
of targets. Some organisations are investing in voice and facial recognition sys-
tems in order to positively identify customers. However, in the future attackers
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may use the same types of data that are used to train recognition systems for
impersonation of selected targets (Riek & Watson, 2010).

3.3 Appear innocuous

Ways to appear innocuous include changing what is being purchased from some-
thing that is not suspicious, but the offender does not really want, to the real
target after the fraud detection system checks have been completed. This tech-
nique can be used for transactions that are likely to be flagged as high risk. The
offender first completes a transaction that does not raise a red flag. Once the
order has been confirmed, they can then contact the merchant, still posing as
the genuine cardholder, and change the order to reflect what they actually do
want.

Another way of avoiding red flags is to tailor the order to make it appear
less suspicious. Fraudulently obtained airline tickets tend to be booked shortly
before departure, so as to limit the likelihood that the transaction will be flagged
before the flight departs. This resulted in one-way flights being booked for each
route, with bookings for return or subsequent destinations being made sepa-
rately. However, one-way flights then became a red flag for flights. Subsequently,
Hutchings (2018b) found there is often a return flight booked, even if there is
no intention of flying it. As the booking is made using fraudulent means, the
second flight doesn’t come at a cost to the traveller.

In relation to malware, there are techniques to make the software appear
innocuous in the eyes of anti-virus signatures. Packing refers to compressing
malware executables in order to obscure their contents. This makes it harder
for anti-virus software to detect the malware. However, packers can be detected
and some anti-virus software will flag everything that has been packed. More
advanced techniques are possible, such as those that change the morphology of
the binaries so they are not detected, without encrypting the entire file (Kruegel,
Kirda, Mutz, Robertson, & Vigna, 2005).

A common approach to evade intrusion detection systems requires acquiring
knowledge about how it works. This can be done by means of probe attacks,
where the attacker queries the IDSs and analyse their responses (Pastrana, Or-
fila, & Ribagorda, 2011). This information allow offenders to create exploits
that mimic regular network traffic and bypass detection (Vigna, Robertson, &
Balzarotti, 2004; Fogla, Sharif, Perdisci, Kolesnikov, & Lee, 2006; Pastrana, Or-
fila, & Ribagorda, 2010). Some researchers have proposed the use of random
detection functions to combat these mimicry attacks (Wang, Parekh, & Stolfo,
2006). However, such randomised schemes are still vulnerable if the adversary is
able to interact with the detector for a longer period of time and infer random-
ization patterns (Pastrana, Orfila, Tapiador, & Peris-Lopez, 2014).

3.4 Insiders

The use of insiders can help offenders circumvent fraud detection systems en-
tirely, or to learn how to reverse engineer and avoid them. Offenders may seek
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to obtain employment at targeted organisations. On one stolen data market,
Hutchings and Holt (2015) found suggestions that specialist knowledge could
be learnt by applying for employment at a company offering fraud detection
systems. There were indications that the news and developments relating to
organisations of interest were being closely followed for the purpose of seeking
such opportunities. For example, the following post related to a consumer credit
reporting agency, which was moving offices and advertising for new staff:

Another change that will be occuring within [company] is the closeure
of all of their regional offices. [The company] is going to consolidate
to one fixed location in [city]. The reason they are doing this is, and I
quote, “To lover overhead costs, and also to increase security.” So don’t
be too overly suprised if [the company] seems to be learning a few new
tricks. The plan is to be completed within 2–3 years, with most of the
outlying sites already closed. One nice note to this... If you live in [city],
look in the want adds, [the company is] hiring Data Entry personnel...
Hmmmm...

Offenders may also target employees and contractors, to either corrupt or
blackmail them into providing assistance. In another post, it was suggested that
employees with knowledge of fraud detection systems and ‘morals that are ques-
tionable’ should be targeted, in order to learn about how to avoid detection:

Right now I would like to get a hold of the [...] program that all the
check cashing places use. With this we could figure out EXACTLY how
there system works, and there is NEVER a callback with the program. If
anyone works for a place that uses this software, or knows someone who
has morals which are questionable, please contact me. I will make it very
worthwhile for you to do so...

3.5 Target the unprotected

Larger organisations will have significant resources available to implement sys-
tems that will reduce the amount of crime they experience. They benefit from
economies of scale, due to the amount of trade that they do. However, smaller
companies are less likely to be able to pay for fraud detection systems, and
there are indications that fraudsters know this. When studying the trade in
fraudulently obtained airline tickets, Hutchings (2018b) found that offenders
recommended purchasing tickets from smaller travel agencies to avoid detection:

its better to go through smaller companies that cant pay for the extra
fraud detection

Unfortunately, smaller companies are also less likely to be able to withstand
the losses arising from fraud, particularly if they are repeatedly targeted within a
short period of time. Some small family-run companies have gone out of business
for this reason (Hutchings, 2018a), contributing to the monopolisation of trade,
and shutting down competition (particularly independent organisations).
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3.6 Adversarial machine learning

Many of the crime detection techniques rely on a model which is constructed
using a training dataset which informs the machine learning algorithms what
should be considered ‘good’ or ‘bad’. In the case of anomaly detection, this model
represents what is normal, and the algorithm aims to detect outliers. In the
case of signature-based detection, this model is a classifier of events into either
malicious or regular events (spam vs regular email, intrusion vs normal traffic,
malware vs benign software etc.). In recent years, researchers have identified
a weakness in the use of machine learning under adversarial scenarios. Since
these algorithms have not been designed with security in mind, a sophisticated
adversary might be able to cheat the system.

A seminal paper by Barreno et al. questioned for the first time the security
of machine learning (Barreno, Nelson, Sears, Joseph, & Tygar, 2006), leading
to a number of researchers working on this problem. Huang et al. (2011) pre-
sented a taxonomy of potential attacks against machine learning algorithms with
three main aspects: the influence (causative, if the adversary targets (‘poisons’)
the training data, or exploratory, if the attacker targets the system once it is
trained), the security violation (availability, integrity or privacy of the data) and
the specificity (targeted or indiscriminate). Biggio, Fumera, and Roli (2014) en-
riched this taxonomy by adding the set of adversarial capabilities regarding its
knowledge about the algorithm or capabilities to modify the system both before
and after it is trained.

In the literature there are examples on how adversaries can bypass spam
filters (Biggio, Fumera, & Roli, 2014) or malware classifiers (Biggio, Rieck, et
al., 2014) that make use of machine learning. In both cases, the adversary is able
to evade the classifier by first acquiring knowledge about how it works and then
a very small number of modifications to the attacks so as to bypass detection
(e.g, by adding or removing specific words from spam messages). However, in the
real world it may be rather more complicated. Miscreants may find it difficult
to obtain sufficient knowledge about the system and its capabilities and may be
unable to run enough tests to scope out its training and detection processes, so
they will not be able to trick the detectors.

4 Discussion and conclusion

Big data solutions that aim to detect cybercrime rely on humans behaving in
relatively predictive way. Attempts to commit cybercrime will tend to generate
distinctive patterns, and so the good and the bad can each be identified. Offend-
ers will try and cheat the system by trying to make their behaviour blend in,
but the edge for big data solutions is that the business employing them is in a
position to know far more about the behaviour of its customers than the bad
guys ever will.

One of the key features of these big data solutions is the use of continuous
feedback so that the systems learn and adapt in response to known criminal
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activity. However, the systems continually need to know the ‘ground truth’, and
it is necessary for a certain amount of malicious activity to be detected by the
system or by other monitoring, so the system can track and adapt accordingly.

This feedback is why reporting spam leads to improved spam detection, the
reports are used to train the system as to what is or is not spam. However,
this means that the definition of spam is no longer ‘bulk unsolicited email’ but
becomes ‘email the user does not want in their inbox today’. This leads to two
problems. First, the bad guys know the feedback votes matter, so they submit
incorrect votes about their own emails. The response is to build another machine
learning system to identify false votes and eliminate them before training the
main system. Secondly, it is essential to whitelist particular types of mail, such
as boarding passes, electricity bills, and so forth, otherwise a small number of
people reporting these as spam will cause the machine learning system to treat
these as spam for everybody.

These big data solutions are treading a delicate balance between false pos-
itives and true negatives. For example, while spam detectors want to ensure
account holders do not receive unwanted emails, they also want to ensure that
the email account holders do want to receive gets through. Fraud detection sys-
tems want to ensure that fraudulent transactions are blocked, but also that
genuine transactions are quickly processed. If genuine transactions are blocked,
or fraudulent ones are processed, there is not only immediate financial loss, but
increased expenditure in staff time and more annoyed customers. If switching
costs are low, customers may go elsewhere in the future.

Offenders are evidently learning techniques to circumvent big data solutions.
As we show in this chapter, some of this learning is facilitated by discussions that
occur on forums and marketplaces. There is also self-learning, through trial and
error, reverse engineering the systems to identify what methods work and what
does not. Resources are available online for individuals to learn cybersecurity
skills for defensive purposes, however technically inclined offenders can also avail
themselves to these opportunities. As identified, insiders provide another way to
learn about the algorithms powering these systems.

However, the methods used for cheating the system can eventually be iden-
tified, either by the machine learning algorithms themselves, or by those that
operate them identifying that criminal activity has been overlooked. The solu-
tion is to re-engineer the system and retrain it, whilst ensuring that the quality
of the results is maintained. Software packing hides the malicious payload of an
executable program, but once the system learns to identify packers it will rapidly
learn to treat them as a red flag. But here again, there is a delicate balance. Of-
fenders may learn that if they buy time-sensitive orders at the last minute, they
can avoid the process required to confirm if a transaction is genuine. However,
of buying at the last minute becomes a red flag then the organisation will have
to weigh up the cost of inconvenience to genuine customers with the potential
fraud risk. It may be more profitable to allow some fraud to occur rather than
turn away genuine customers.
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Financial incentives play an important part in everything we have discussed.
For example, merchants usually carry the cost of fraud for card-not-present
transactions, such as those that occur online. If they suspect a transaction is
fraudulent, the normal process is to verify this with the cardholder’s financial
institution. To the financial institution, this is often not a priority (as they won’t
carry the cost of the transaction, the merchant will). Hence, verification can take
time, particularly if the cardholder is not immediately available, and if there are
communication barriers, such as different languages and timezones.

Finally, the most important thing to understand is that the use of machine
learning against adversaries is quite unlike the use of machine learning for other
types of prediction, such as the weather. Thunderclouds do not cheat and change
their behaviour just because you have worked out where they are. In Lewis
Carroll’s book Through the Looking Glass, the Red Queen tells Alice “Now,
here, you see, it takes all the running you can do, to keep in the same place. If
you want to get somewhere else, you must run at least twice as fast as that!”.
These big data approaches represent a Red Queen’s race. Running non-stop is
required to stay in one spot.
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