Ann Copestake and Aurélie Herbelot

Computer Laboratory, University of Cambridge and Department Linguistik, Universität Potsdam

August 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Session 1a: Outline

Introduction

History

Underlying assumptions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Course outline

Introduction

Outline.

Introduction

History

Underlying assumptions

Course outline

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

- Introduction

Distributional semantics

Distributional semantics: family of techniques for representing word meaning based on (linguistic) contexts of use.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

it was authentic scrumpy, rather sharp and very strong we could taste a famous local product — scrumpy spending hours in the pub drinking scrumpy -Introduction

Distributional semantics

Distributional semantics: family of techniques for representing word meaning based on (linguistic) contexts of use.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

it was authentic scrumpy, rather sharp and very strong we could taste a famous local product — scrumpy spending hours in the pub drinking scrumpy -Introduction

Distributional semantics

Distributional semantics: family of techniques for representing word meaning based on (linguistic) contexts of use.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

it was authentic scrumpy, rather sharp and very strong we could taste a famous local product — scrumpy spending hours in the pub drinking scrumpy - Introduction

- Humans typically learn word meanings (concepts) from context: sometimes perceptually grounded, sometimes not.
- Possibly processed to some different representation, but perhaps mental representation directly reflects context?
- Distributional semantics uses linguistic context to represent meaning (partially).
- Meaning seen as a space, with dimensions corresponding to elements in the context (features).
- Computational techniques generally use vectors (semantic space models, vector space models).

-Introduction

- Humans typically learn word meanings (concepts) from context: sometimes perceptually grounded, sometimes not.
- Possibly processed to some different representation, but perhaps mental representation directly reflects context?
- Distributional semantics uses linguistic context to represent meaning (partially).
- Meaning seen as a space, with dimensions corresponding to elements in the context (features).
- Computational techniques generally use vectors (semantic space models, vector space models).

-Introduction

- Humans typically learn word meanings (concepts) from context: sometimes perceptually grounded, sometimes not.
- Possibly processed to some different representation, but perhaps mental representation directly reflects context?
- Distributional semantics uses linguistic context to represent meaning (partially).
- Meaning seen as a space, with dimensions corresponding to elements in the context (features).
- Computational techniques generally use vectors (semantic space models, vector space models).

- Introduction

- Humans typically learn word meanings (concepts) from context: sometimes perceptually grounded, sometimes not.
- Possibly processed to some different representation, but perhaps mental representation directly reflects context?
- Distributional semantics uses linguistic context to represent meaning (partially).
- Meaning seen as a space, with dimensions corresponding to elements in the context (features).
- Computational techniques generally use vectors (semantic space models, vector space models).

- Introduction

- Humans typically learn word meanings (concepts) from context: sometimes perceptually grounded, sometimes not.
- Possibly processed to some different representation, but perhaps mental representation directly reflects context?
- Distributional semantics uses linguistic context to represent meaning (partially).
- Meaning seen as a space, with dimensions corresponding to elements in the context (features).
- Computational techniques generally use vectors (semantic space models, vector space models).

History

Outline.

Introduction

History

Underlying assumptions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Course outline

Some history

- Early discussion: Osgood (1952), Zelig Harris (1954).
- Firth (1957): 'You shall know a word by the company it keeps'.
- 'distributional semantics' by 1960s: e.g., Garvin (1962).
- Spärck Jones (1964): PhD thesis 'Synonymy and Semantic Classification' (dictionaries for context).
- First experiments on sentential contexts: Harper (1965) inspired by Harris; Spärck Jones (1967).
- Grefenstette (1994), Schütze (1998); Landauer and Dumais (1997) 'Latent Semantic Analysis' (LSA).
- Huge proliferation of papers in computational linguistics (CL) once corpora (and large scale parsing) become available.

Vector representations and clustering

Words represented as vectors of features:						
	feature1	feature ₂		feature _n		
word ₁	<i>f</i> _{1,1}	<i>f</i> _{2,1}		<i>f</i> _{<i>n</i>,1}		
word ₂	<i>f</i> _{1,2}	<i>f</i> _{2,2}		<i>f</i> _{n,2}		
word _m	f _{1,m}	f _{2,m}		f _{n,m}		

Features: co-occur with word_n in some window, co-occur with word_n as a syntactic dependent, occur in paragraph_n, occur in document_n...

First computational application: Spärck Jones (1964)

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
				(example	e from	Jurafs	sky and Mart	in, 2008)

apricot: { boil, large, sugar, water } pineapple: { boil, large, sugar, water } digital: { arts, data, function, summarized } information: { arts, data, function, summarized }

Clustering: group together words with 'similar' vectors.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
				(avample	from	lurofo	July and Martin	

(example from Jurafsky and Martin, 2008)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

apricot: { boil, large, sugar, water } pineapple: { boil, large, sugar, water } digital: { arts, data, function, summarized } information: { arts, data, function, summarized }

Clustering: group together words with 'similar' vectors.

Words co-occurring with words

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	1	0	1	1	0	0	1	0
information	1	0	1	1	0	0	1	0
				(ovomple	from	lurofe	ky and Marti	n 2000

(example from Jurafsky and Martin, 2008)

apricot: { boil, large, sugar, water }
pineapple: { boil, large, sugar, water }
digital: { arts, data, function, summarized }
information: { arts, data, function, summarized }

Clustering: group together words with 'similar' vectors.

Early clustering

Harper (1965): cooccurrence data for 40 nouns from 120,000 words of Russian scientific text: adjective dependents, noun dependents, noun governors.

Harper clustered by:

where V_1 , V_2 are cooccurring sets, F_1 , F_2 are the frequencies of the nouns in the corpus.

Spärck Jones (1967): Harper's similarity coefficient is 'of doubtful propriety'. Instead clustered ('clumped') by Jaccard:

$$\frac{|V_1 \cap V_2|}{|V_1 \cup V_2|}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Early clustering

Harper (1965): cooccurrence data for 40 nouns from 120,000 words of Russian scientific text: adjective dependents, noun dependents, noun governors.

Harper clustered by:

$$\frac{|V_1 \cap V_2|}{F_1 F_2}$$

where V_1 , V_2 are cooccurring sets, F_1 , F_2 are the frequencies of the nouns in the corpus.

Spärck Jones (1967): Harper's similarity coefficient is 'of doubtful propriety'. Instead clustered ('clumped') by Jaccard:

$$\frac{|V_1 \cap V_2|}{|V_1 \cup V_2|}$$

Early clustering

Harper (1965): cooccurrence data for 40 nouns from 120,000 words of Russian scientific text: adjective dependents, noun dependents, noun governors.

Harper clustered by:

$$\frac{|V_1 \cap V_2|}{F_1 F_2}$$

where V_1 , V_2 are cooccurring sets, F_1 , F_2 are the frequencies of the nouns in the corpus.

Spärck Jones (1967): Harper's similarity coefficient is 'of doubtful propriety'. Instead clustered ('clumped') by Jaccard:

$$\frac{|V_1 \cap V_2|}{|V_1 \cup V_2|}$$

-History

Spärck Jones (1967)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

CS history and distributional semantics

- Early distributional work not followed up:
 - limitations of computers and available corpora.
 - 1966 ALPAC report led to diminished funding for CL.
 - "It must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term." (Chomsky 1969)
 - KSJ and others switched to Information Retrieval: KSJ (inspired by classification experiments) and Robertson develop tf*idf measure.
- Early 1990s: influence from IR: large corpora, computer memory, disk space make simple distributional techniques practical.
- Early 2000s: large scale, robust parsing makes more complex notions of context practical.

Characteristic contexts: beer

0.323999::and_c+drink_n
0.323292::alcoholic_a
0.321707::tear_n+in_p()
_♥.321004::and_c+brewery_n
0.31969::and_c+beverage_n
0.317467::bread_n+and_c
_m.315654::recipe_n+for_p()
0.312405::premium_a
0.306168::rye_a
0.30428::have_v+taste_n
0.301791::lite_a
0.300422::in_p()+glass_n
0.299759::style_n+of_p()
0.297687::stale_a
0.297159::be_v+drink_n

Characteristic contexts: ?

- 0.532551::and_c+Perry_n
- 0.475489::sparkle_v
- 0.462226::beer_n+and_c
- 0.324184::be_v+drink_n
- 0.313665::alcoholic_a
- 0.295653::hard_a
- 0.272322::brand_n+of_p()
- 0.268747::wine_n+and_c
- 0.264604::for_p()+star_n
- 0.256199::in_p()+branch_n
- 0.255403::and_c+beer_n
- 0.246708::liter_n+of_p()
- 0.243786::and_c+spice_n
- 0.241399::cloudy_a
- 0.239619::gallon_n+of_p()

- 0.224517::homemade_a
- 0.217018::ferment_v
- 0.215903::pron_rel_+drink_
- 0.215738::and_c+wine_n
- 0.212648::in_p()+Denmark_n
- 0.199628::fruit_n+and_c
- 0.183856::eat_v+and_c
- 0.18323::and_c+apple_n
- 0.183142::and_c+grape_n
- 0.182793::from_p()+Wales_n
- 0.182706::have_v+density_n
- 0.180874::to_p()+production
- 0.180084::in_p()+layer_n
- 0.178431::hazy_a
- 0.178213::Tech_n+and_c

Underlying assumptions

Outline.

Introduction

History

Underlying assumptions

Course outline

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Underlying assumptions

Psycholinguistics

- Latent Semantic Analysis (LSA) popular as a technique for investigating lexical semantics.
- Neural basis of word meaning: functional web of neurons associated with a lexeme connects recognizers, semantics and articulators (e.g. Pulvermüller 2002).
- Hebbian learning principle: paraphrased as "Neurons that fire together wire together".
- Under these assumptions: if two lexemes co-occur frequently this would necessarily lead to strong associations between their functional webs.

Underlying assumptions

Assumptions about lexical semantics

- Limited (if any) role for semantic primitives (*kill* not CAUSE(x (DIE(y))) or similar).
- 2. No hard boundary between linguistic knowledge and world knowledge.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 3. Acquisition must be considered.
- 4. Word meaning is fuzzy, speakers negotiate meaning.
- 5. Senses (other than homonyms) are not discrete.

Underlying assumptions

Why 'Distributional semantics for linguists'?

- Part of an approach to meaning representation?
- More modestly:
 - Semantic classification for investigation of syntax-semantic interface.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Investigative tool for sociolinguists etc.
- Practicalities: free/cheap corpora and ordinary computer hardware are now fully adequate for most experiments.

Course outline

Outline.

Introduction

History

Underlying assumptions

Course outline

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

- Course outline

Course outline

1. Introduction

- a Introduction, historical overview, course structure.
- b Basic distributional models.
- a Classical lexical semantics versus distributional semantics.
 b Collocation. Polysemy. Some linguistic applications.
- 3. a Composition of distributions.
 - b Deeper distributional semantics? 'Lexicalised compositionality'.
- 4. The Generative Lexicon and distributional semantics.
- 5. a Quantification and distributional semantics.
 - b General discussion (time permitting!)