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Abstract—We present Multiverse Explorer, a domain-specific
probabilistic programming language presented as a visual lan-
guage integrated with a domain world model. The interactive
visualisation presents a Monte Carlo simulation over a causal
graph, allowing the user to gain an overview and query alter-
native outcomes in a counterfactual manner. Separate graphs
express the policies attributed to multiple heterogeneous agents.
The outcomes of actions are visualised in an interactive 3D
animation of the environment; in this work, we apply the Multi-
verse Explorer to multi-agent driving scenarios by extending the
CARLA simulator. The Multiverse Explorer has been evaluated
with a sample of technical non-specialists, demonstrating the
potential of this approach to be used in design, audit, policy,
litigation, and other contexts where the outcome of multi-agent
decision scenarios must be investigated by professionals beyond
a specialist AI audience.

Index Terms—Programming, Visualisation, User centered de-
sign, Graphical user interfaces

I. INTRODUCTION

Probabilistic programming languages (PPLs) implement a
programming paradigm in which the programmer specifies a
probabilistic model as a set of relationships between random
variables, and execution involves running an inference algo-
rithm to characterise and sample from the resulting distribu-
tions. Since the original development of the BUGS language
[27] as an implementation of Judea Pearl’s Bayesian causal
graphs [22], there has been an explosion in development and
deployment of PPLs, especially for use as statistical tools
[9], [21], [27], and in AI applications that combine symbolic
reasoning and machine-learning functionality [12], [16], [30]
(sometimes described as “neuro-symbolic”) [13]. In terms of
historical programming paradigms, probabilistic programming
is perhaps most closely related to logic programming, which
also involves declarative specification of a model as relations
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between variables, and execution by running an inference
algorithm to establish possible values for variables that are
unknown.

As yet, there has been very little research into the human-
centric design of PPLs. An agenda-setting paper was presented
at the 2019 workshop of the Psychology of Programming In-
terest Group (PPIG), with authors including several developers
of leading PPL projects [2]. The project that we report here
builds on the recommendations of that paper. In particular,
we explore the potential of the PPL approach to be offered
to end-user developers (EUD). Following a common research
strategy in EUD, we have created an experimental PPL that is
targeted at a specific domain, illustrating how a programming
language approach can deliver enhanced capabilities to users
working in that domain. We suggest that this class of tools
should be described as domain-specific PPLs, or DS-PPLs. We
believe that DS-PPLs can become a valuable addition to the
set of machine learning tools available to end-users, offering
enhanced controllability, explainability, and learnability for
machine learning applications.

The DS-PPL that we present in this paper offers the
following contributions: 1) a novel visual syntax based on
a temporally-ordered causal graph, where line widths indi-
cate likelihood; 2) a novel visual rendering of the world
model, where multiple possible outcomes are shown as semi-
transparent “ghosts” of moving agents; 3) a novel interactive
environment where alternative sequences of events specified
by the causal graph are animated as ghosts in the rendered
world model; and 4) a novel interaction paradigm for counter-
factual model exploration and explanation, where the causes
and likelihoods of possible outcomes can be explored using
queries within this environment.

We call the combination of these innovations the Multi-
verse Explorer paradigm. This paradigm could be applied to
many different DS-PPLs, but we illustrate them in a single
domain case study: understanding interaction between multiple



Fig. 1. Overview of the Multiverse Explorer prototype, showing the main elements of the user interface in a simple scenario involving two vehicles.

autonomous vehicles in an urban environment, where the vehi-
cles are guided by different decision policies. We conducted a
user study where participants (n=18) used Multiverse Explorer
to explain behaviors and outcomes in this domain. We found
evidence that our approach assists users in reasoning about
the domain, and suggest design principles and opportunities
for future DS-PPLs.

We discuss related work, including design precedents that
our novel contributions have built on, toward the end of the
paper.

II. OVERVIEW OF FUNCTIONALITY AND FEATURES

The Multiverse Explorer1 is an interactive application con-
sisting of two linked visualisations (Fig 1) which we refer to
as the rendering and the timeline.

A. Rendering

The rendering, which denotes the upper half of the display,
is a 3D representation of the world in which the agents are
acting. In our current implementation, the rendering shows city
streets with vehicles driving along them. Generalisation of the
Multiverse Explorer paradigm in the future could visualise any
situation with interacting agents, whether realistic rendering
as in our case study, or symbolic rendering of more abstract
domains. Our choice of a driving simulator, where multiple
agents are controlling vehicles, was determined in part by the
availability of the open source driving simulator CARLA [14],

1A video demo is available at
https://www.cl.cam.ac.uk/∼afb21/publications/multiverse-explorer/

which we have extended with the multiverse rendering func-
tionality described below. Although the domain itself is not
the main focus of our own research, it is well understood that
reasoning about the behaviour of other agents is a fundamental
problem in driving [6], [7], and that there is a significant
challenge in explaining the behaviour of autonomous vehicles
to people, including their own drivers [10].

B. Timeline

The timeline, which denotes the lower half of the display,
visualises agent decisions in an augmented causal graph. Each
horizontal band in this visualisation defines the decisions of
a single agent, which can be compared to the “swimlane”
convention for visualising events in parallel processes (e.g. the
UML sequence diagram, or GANTT charts). The left-to-right
dimension corresponds to time and the blue, vertical cursor
indicates the point in time at which events in the rendering
are paused. Time is mapped as a metrical axis, meaning that
locations along the swimlane are not only ordered in time (to
reflect causality), but relative durations separating them can be
judged by comparing distances between points on the display.
The rectangular nodes in each swimlane represent points at
which the agent has either observed some occurrence in the
world, or formed an intention to act. As for any other causal
graph, connections between the nodes can be considered to
represent information flow within a Bayesian process model
[28] - for example, an agent may form an intention such
as slowing down the car, on the basis of something it has
observed, such as another car turning in front of it as seen in
Fig. 1. Generalisation of the Multiverse Explorer paradigm in

https://www.cl.cam.ac.uk/~afb21/publications/multiverse-explorer/


the future could use these temporally-ordered causal graphs
to model many other types of probabilistic behaviour that are
conditioned on likelihood of observations.

C. Multiverse Representation

The functionality described so far can be used to visualise
a single course of events, such as a car driving and making
a turn. However, the core functionality of the Multiverse
Explorer is to visualise multiple possible courses of events,
rather than a single set of events happening concurrently.
The nodes do not represent deterministic specifications of
behaviour that have been defined to take place at that time,
but potential events, where outcomes are conditioned on prior
(uncertain) observations and physical processes, as well as
the policies or biases that make any given agent likely (with
some uncertainty) to choose particular actions and responses
following a given observation.

D. Underlying Model

The computational model of the Multiverse Explorer is
a Monte Carlo simulation, in which a possible series of
events is determined by sampling from each of the probability
distributions associated with the random variables in the
timeline [19]. In the current configuration, the simulation is run
1000 times, resulting in 1000 possible histories of interaction
between the multiple agents over the timeline. Where there
are branches in the causal graph that are dependent on the
values of particular observations, the number of history paths
in each branch is counted, and the width of each line adjusted
so that widths are proportional to relative likelihood. The
rendering of the causal graph, with varying widths of lines
between the nodes, resembles a Sankey diagram, or the famous
Minard visualisation of Napoleon’s march, where line width
is proportional to some quantity [31]. In our novel variant of
Bayes networks, the width of each connecting path does not
represent a measured material flow, but the relative likelihood
of that path.

E. “Ghost” Cars

The Monte Carlo simulation of multiple histories is also
used to generate a distinctive behaviour in the rendering,
in which multiple possible universes are overlaid2. For each
moving vehicle controlled by an agent, there is uncertainty
associated with the position of that vehicle. These uncertainties
may result either from decisions made by the agent, or
from embodied processes (for example, the driver inaccurately
steering around a corner, or pressing the brake or accelerator
pedal more or less hard than intended). Based on these
uncertainties, the Monte Carlo simulation generates a range
of possible locations for the vehicle at any point in time.
After sampling over 1000 simulation runs, some locations
will be relatively unlikely, while those near the centre of

2Although our prototype is the first time this visual device has been used
to illustrate probabilistic computation, there are some precedents of similar
devices in popular culture, such as this sports example to visualise possible
ball trajectories resulting from a baseball pitch: https://www.youtube.com/
watch?v=jUbAAurrnwU.

Fig. 2. The partitioned causal graph (timeline) explaining the sequence of
decisions being made by a single agent in a simple example. Time is ordered
from left to right, and the vertical cursor indicates the point in time at which
events in the rendering are currently paused. As ‘random choice’ nodes are
added (corresponding to undetermined or unknown factors in the explanation),
the space of possibilities branches out according to prior probabilities of each
outcome. The width of the each coloured flow represents the proportion of
universes represented by the preceding sequence of events. In this example,
the agent has 3 possibilities: driving north, or driving east in one of the two
road lanes. The bottom flow is associated to driving east in the southernmost
lane, and the prevalence of universes with this possibility is reflected by the
resulting opacity of the overlaid ghosts in the rendering. On the right hand
side, we have facilities for manually adding explanatory nodes to the timeline
- in deployment of the approach these may be policy definitions, automatically
generated from AI traces, or investigative hypotheses.

the outcome distribution will be likely. These likelihoods
are displayed in the rendering as semi-transparent “ghost”
cars, with likely outcomes being more solid, and the unlikely
ones more “ghostly”. As a result, pressing the play button in
the Multiverse Explorer might show an animation in which
the ghosts of a given car diverge, perhaps with one ghost
turning left and another proceeding straight ahead, and the
relative transparency of the two ghosts reflecting their relative
likelihood. Fig. 2 illustrates an example of this.

The ‘ghost’ rendering convention also provides a way to
reason about uncertainty in the intentions of other agents. If
one agent is expected to act with some prior likelihood, for
example whether to turn left or proceed straight ahead, and
also conditioned on observations, for example to avoid another
car that has turned in front, the Monte Carlo simulation will
calculate multiple paths that result from those intentions and
observations. These paths are also counted, and ghost cars
rendered with transparency depending on the likelihood of a
particular course of action. Fig. 3 shows an example where
multiple ‘ghost’ instances of two agents navigate an intersec-
tion. Generalisation of the Multiverse Explorer paradigm in
the future could use transparency to indicate ‘ghostliness’ for
many kinds of representational or abstract visual elements.

III. OPERATIONAL MODES

The Multiverse Explorer has two operational modes - one
in which alternative policies and expected behaviours of the
agents can be explored by modifying the timeline, and one
in which the probabilistic space of outcomes generated by

https://www.youtube.com/watch?v=jUbAAurrnwU
https://www.youtube.com/watch?v=jUbAAurrnwU


Fig. 3. Four snapshots of the Multiverse Explorer in a simple two agent
scenario. The blurry cars represent a superposition of multiple possible
states of the agent, where the resulting opacity correlates to the number of
observations/universes with agents coinciding in space and time. These states
can diverge for reasons such as noise or differences in actions taken by the
agents. In this example, the blue car branches out in choosing to turn right
or go straight, whilst the red car branches in stopping or following ahead.

the Monte Carlo simulation can be interactively queried in
the rendering. We present the two modes using scenarios
from the multi-agent driving domain, but generalisation of
the Multiverse Explorer paradigm in the future could use the
same operational modes for analogous end-user tasks in many
domains.

A. Mode 1: Modifying the Timeline

The timeline is designed to represent intentional decisions
at a level of granularity comparable to the instructions that
might be given to a human driver, for example by a driving
instructor or by someone directing a taxi driver to a location
that the passenger is familiar with. Rather than low-level
vehicle controls such as pressing the accelerator a certain
amount or turning the steering wheel to a particular angle,
the intention nodes describe an immediate objective, such as to
drive toward a particular location, then face a certain direction
(as in Fig. 4). The actions required to reach this objective
state, including accelerating to the speed limit and turning
the steering wheel a certain distance, are all automatically
determined using simple Newtonian mechanics. However, each
of these mechanical elements has uncertainties associated with
it, just as in real driving, such as a steering error. All paths of
vehicles are calculated on this basis using discrete timesteps,
to make the Monte Carlo simulation tractable.

An agent’s actions can be modified directly by editing the
timeline using the facilities on the menu shown on the right in
Fig. 2. The two kinds of action supported in our initial imple-
mentation are either to drive toward a particular position (with
the car pointed in a specified direction after arriving there),
or to position the car relative to another vehicle. The user can
express the intended target location by clicking directly within
the rendering (Fig. 4). After the point has been selected, a
rotation control is used to rotate the vehicle into the target
orientation. The second kind of action is a common situation
in city driving - for example overtaking, pulling alongside,
or pulling up behind another vehicle. However, the intuitive
representation of such intentions is egocentric rather than
allocentric, so the target location is rendered from the driver’s
perspective (Fig. 5). As with the intention to drive toward
a certain location, all of the detailed kinematics required to

Fig. 4. Representation of an agent’s intention to drive toward a certain point
on the street, including the desired orientation of the vehicle on arrival, as
seen by the circled vehicle with a highlight dot on one side of the circle.

Fig. 5. Representation of an agent’s hypothetical intention to position the
vehicle relative to another car, using an egocentric rendering of the 3D scene
to show how this relative position would look from the perspective of the
vehicle’s driver.

complete these manoeuvres are calculated automatically, with
a degree of uncertainty in the parameters.

In addition to agent action nodes, observation nodes can be
added to the timeline. Observation nodes are triggered based
on a specified change in the environment, such as an agent
reaching a certain position or making a turn indication. Actions
that are dependent on what another vehicle is doing may, as in
real city driving, be determined by intentional actions of the
other driver (such as using a turn indicator to signal intention
to turn) or unintentional actions (such as drifting out of their
lane or failing to turn a corner properly).

There are a small number of further features that were
implemented to support the evaluation scenarios in Section
IV, but these relatively straightforward features (e.g. intention
to make an emergency stop, or operate turn indicators) are not
described in detail here.

B. Mode 2: Filtering Specific Universes

The second operational mode of the Multiverse Explorer
allows the user to investigate specific universes by selecting
subsets from among the Monte Carlo simulations. To maintain
the “multiverse” metaphor, each individual trace from the
simulation is described as an alternative universe and given



Fig. 6. Defining query
criteria.

Fig. 7. A filtered universe in which a collision
occurs. Note that the vehicles are no longer rep-
resented by ‘ghosts,’ as this is a representation
of one particular universe.

an arbitrary display name, such as “universe 375”, to reinforce
the user’s understanding that they are inspecting one of many
possible courses of events. Upon selecting a universe, the
rendering updates to show only the vehicle positions involved
in this specific simulation run, rather than the ghosts of the
other multiverse possibilities. Pressing the play button with a
single universe selected allows the user to observe the events
as they play out in this specific version of the probabilistic
scenario.

To aid users in choosing a specific universe to select from
the 1000 possible choices, the user can filter all universes
according to some criterion that specifies a subset of the
possible outcomes, as seen in the modal menu of Fig. 6.
This feature can be used, for example, to investigate universes
where a specific agent crashes (Fig. 7) or where a specific
agent enters a circle placed within the rendering. In scenarios
where multiple universes satisfy the given filters, the UI
renders all such universes.

IV. USER STUDY

We have evaluated the Multiverse Explorer in a user study
designed to investigate whether this style of tool is usable
and helpful in understanding basic principles in probabilistic
programming. 3

A. Study Protocol

1) Participants: We recruited 18 participants from our
university who had no familiarity with the idea of a mul-
tiverse, which was asked as a simple yes/no question prior
to scheduling a session. Half the participants (n=9) identified
as female and the remainder identified as male. The average
age was 22 years. Each participant completed the 40 minute
study in-person, in a controlled environment at the university.
All participants were briefed on the requirements and risks of
participating in the study before consenting. Ethical review and

3The user study script and tasks are available at
https://www.cl.cam.ac.uk/∼afb21/publications/multiverse-explorer/

approval was provided by the Cambridge Computer Science
ethics committee.

2) Tutorial: Participants were introduced to Multiverse Ex-
plorer with a guided tutorial covering key features. Participants
observed as the demonstrator added an agent to the road,
specified its colour, then added commands to make the agent
approach a junction, indicate, check another agent’s indicators,
and safely make a turn. After checking the participant’s un-
derstanding of these basic features, the demonstrator explained
how the application depicts all possible worlds, with all cars
from all worlds shown in the UI.

3) Tasks: Participants were then given three separate tasks
and encouraged to think-aloud as they completed them. Task
1 mirrored the tutorial by asking participants to add two
agents to the world that drove, indicated, and completed a turn
conditioned on the turn indicator of another agent across the
intersection. This task only used features that were explained
in the tutorial in order to check initial feature understanding
and to give participants practice before the more difficult tasks.
In Task 2, participants were given a new environment that
contained two agents, then randomly assigned a condition,
either Rendering or Timeline. Each group was asked to explain
what would happen in the environment, but those in the
Rendering group (P10-P18, n=9) could only see the top half of
the UI, while those in the Timeline group (P1-P9, n=9) could
only see the bottom half of the UI. Those in the Rendering
group were permitted to select Play to watch the scene play
out. Task 3 presented the most complex environment, with
several agents driving in a city. All participants were asked to
use any available tools in the Multiverse Explorer to identify
a universe where the yellow car crashes, then determine why
the crash occurs and how the crash could be prevented.
All participants could access the entire UI (i.e. neither half
was hidden). Additionally, participants were given a tutorial
that demonstrated the filter feature for quickly identifying
and visualising single universes based on specific criteria, as
described in Section III-B.

To conclude the study, participants were invited to share any
general thoughts and feedback about the tool.

B. Analysis

Throughout all tasks, the demonstrator documented any
notable thoughts that participants shared aloud, as well as
scoring a number of tasks for accuracy. Task accuracy included
checking participant understanding of all the basic features in
Task 1, and if the correct explanation was provided for tasks
2 and 3. Each participant was scored on 10 accuracy checks
(Table I), which were each recorded as correct or incorrect
by the demonstrator. Half of the participants (P1-P9) received
Q7, while the other half (P10-P18) received Q8. This was to
account for the conditions assigned in Task 2. After the study,
using the notes compiled from participants thinking-aloud as
memos, we used open coding to identify themes within the
participant responses.

https://www.cl.cam.ac.uk/~afb21/publications/multiverse-explorer/


TABLE I
DESCRIPTION OF ACCURACY CHECKS

Task Accuracy Check1

Q1 1 Place car
Q2 1 Change car color
Q3 1 Move car to desired location
Q4 1 Coordinating turn times of two vehicles
Q5 1 Set indicator light before turning
Q6 1 Conditional turn: base turn on indicator of other car
Q7 2(a) Describe what is occurring using only the timeline
Q8 2(b) Describe what is occurring using only the rendering
Q9 3 Filter out a universe where the yellow car collides
Q10 3 Describe why the yellow car collides
Q11 3 Describe how to prevent yellow car from colliding
1 Demonstrator asked each participant to complete the action, then

recorded whether the action was executed successfully or not

V. RESULTS

We report our findings about the usability of Multiverse
Explorer based on the task accuracy checks and think-aloud
utterances of the participants.

A. Task Accuracy

Table II shows the accuracy achieved by each participant
on their 10 task accuracy checks, as well as the overall
accuracy on each check. Each row represents performance by
a participant on all accuracy checks that they answered, and
each column represents performance by all participants across
a specific accuracy check. Each box represents an outcome;
green is correct, and red is incorrect. Some boxes are white,
which represents an unanswered accuracy check resulting from
the assigned conditions in Task 2. The percentages along
the right and bottom side of Table II represent the overall
percentage of questions answered correctly in each row and
column.

Participants scored an average of 83%, with five participants
(28%) achieving a perfect score. Four participants (22%)
scored substantially below the average, with one (P14) scoring
below 50%. Of the 11 questions asked, four were answered
correctly by all participants. The most difficult were Q4 (67%
correct), Q8 (44% correct), and Q9 (44% correct).

Participants understood the fundamentals of using Multi-
verse Explorer, averaging an accuracy of 86% across the
six questions in Task 1. The most challenging question was
Q4, because it involved multiple elements: coordinating two
turning cars, understanding how to create actions, identifying
that each vehicle has its own swimlane, and placing the
actions in the correct time order. Q6 similarly involved more
complexity to coordinate one car observing the turn signal of
another car.

Task 2 showed a significant difference (t-statistic = 3.16,
p-value = 0.006) in performance between the rendering group
(Q7: 100%) and timeline group (Q8: 44%). This discrepancy
was due to participants not being able to understand the
environment well without the rendering, an idea we explore
further below in our analysis of the themes. Task 3 caused
considerable confusion at the start, with Q9 (44%) indicating

TABLE II
ACCURACY CHECK STATISTICS

1 2 3 4 5 6 7 8 9 10 11
P1 80%
P2 90%
P3 80%
P4 70%
P5 100%
P6 80%
P7 100%
P8 90%
P9 100%

P10 50%
P11 90%
P12 80%
P13 100%
P14 40%
P15 90%
P16 100%
P17 70%
P18 80%

100% 100% 89% 67% 83% 78% 100% 44% 44% 100% 94% 83%

Q7 was only answered by the Timeline group (P1-P9), while Q8
was only answered by the Rendering group (P10-P18).

that participants had trouble understanding how to identify
and view a single universe using the filtering tool. Once
participants managed to apply the filter, either on their own
or, if truly stuck, with a small nudge from the demonstrator,
they accurately used their skills and experience with the tool
to answer Q10 and Q11 with a combined accuracy of 97%.

B. Themes

1) Filter Feature Confusion: The consensus among the
majority of participants was that the filtering feature was
confusing. P3, for instance, “found the filters very confusing.”
and went on to point out that “I want to see a plain English
definition that tells me I am filtering all worlds where the
yellow agent has collided before 22 seconds. Then I can
edit the words ‘yellow’ and ‘22’ to be ‘red’ and ‘30’, or
whatever I want to find.” P4 shared this sentiment: “Searching
for a particular universe was not intuitive for me, as I was
constantly changing the universe by one and then checking
if that universe was behaving the way I wanted it to for the
task. I think I can use the filters to do this more easily, but
they are confusing to use.” P6 was similarly confused by the
filters: “Intuitively, I know that filtering the specific universe I
want will help me solve this task, but I don’t think I added that
filter correctly.” It is clear that the ability to filter universes is a
feature that participants would like use in completing common
tasks with the Multiverse Explorer, but several participants
found this difficult to do in the current UI.

2) Ghost Cars Proved Effective: Several participants
pointed out that the ghost cars added clarity to the idea that the
environment depicted all worlds. P12 was particularly excited
about this feature: “For the first time, I can conceptualise the
idea of a multiverse. The key was the visualisations - seeing the
ghost cars made it click for me that I was seeing all worlds
at once.” P17 added: “The transparent cars are the cars in
other universes, right?” After the demonstrator confirmed this,
P17 continued: “Wow, it’s just like racing against the high
score in a video game, but it’s sort of like you are seeing
all possible scores. Makes sense now, really cool.” P1 had a
different perspective on the visualisations: “Are the ghost-cars
meant to show me the right way to drive?” Upon explaining



that they were actually to see all other possible outcomes,
P1 replied: “I see it now, so the ghost cars let me explore
the multiverse. That helps me out a lot.” Additionally, once a
filter was applied to only depict a single universe, participants
related the new view back to the all-worlds view. For instance,
P13 noticed that “this is much different than seeing all the
ghost cars. It makes sense though, I’m just looking at only
one of the ghosts now, which means this is a single universe
within the multiverse.” P4 noted that “I was a bit confused
by all the see-through cars, but now I realise that I was just
seeing a bunch of simulated universes all at once, and now
I am looking at a single one of these universes.” P17 even
continued the video game analogy: “Now, it’s like I’m just
watching one of the high scores, not all of them.” It is evident
that grasping the concept of a multiverse was facilitated by
the juxtaposition of the all-universes view with the filtered,
single-universe view.

3) Timeline-only View is Difficult: For most participants
assigned to the timeline-only view in Task 2, Multiverse
Explorer became harder to use. P4 exclaimed: “The timeline
still confuses me a little. I like to pair the timeline’s story
with the visual cues on top to make sure I understand what’s
going on. This version is much harder.” P8 agreed: “Can I
skip to the next part, this is too hard with just the timeline?”
After being encouraged to try one more time, P8 replied:
“It’s like I’m driving the cars blindfolded. I know what the
controls do, but I can’t see what will happen if I use them.”
P7 added that “Even though the timeline gives me a lot of
details, I’m struggling to visualise how this would all play
out in the multiverse.” These responses all indicate that the
participants struggled to visualise how the timeline translates
to actions in the rendering. Additionally, the rendering appears
to be the primary tool that participants use to understand the
environment, with the timeline serving as the control panel.
P5 explained that “I see the timeline like my video game
controller, and the rendering as the screen with the game on
it. I can’t play the game without the controller, and it can’t
see the game without the screen. I need both halves of the
Multiverse Explorer interface to operate it.”

VI. DESIGN IMPLICATIONS

Based on the results of our user study, we comment below
on a few implications that our findings have for the design of
future applications that incorporate probabilistic components
and/or representations of the multiverse.

A. Visualising Probabilistic Environments

We found strong evidence that access to the rendering
when reasoning about the tasks was critical to participant
performance. Probabilistic settings can be difficult to visualise,
so a rendering of the environment is a key component of
Multiverse Explorer and other applications that force users to
control and/or interpret probabilistic agents. Furthermore, the
ghost-cars were a recurring point of positive feedback from
participants during their think-alouds; these visualisations
aided participants by giving an omniscient view that served

as a starting point from which to filter. Further investigation
is needed to extend the ghost-cars example used here to
a broader paradigm for probabilistic visualisations, but the
idea is promising. For example, this concept could apply to
probabilistic samplers by creating a visual representation of
the sample space, or even to simple, everyday scenarios like
weather forecasting where users could be shown how a human
would look as they walk through several simulated worlds
where it may be sunny, rainy, snowing, etc.

B. Leveraging Mental Models of the Multiverse

In applications where users need to reason about numerous
possible outcomes, an idea we refer to as the multiverse in
this work, the interface should align the visualisations with
the mental models of the users. For several participants, the
“aha” moment for understanding the multiverse occurred when
they could connect it back to a previous visualisation, whether
internal or external to the Multiverse Explorer. For example,
we found that the idea of a multiverse became more intuitive
for users once they related it to a past example (e.g. a video
game) or even to a previous visualisation within the Multiverse
Explorer itself, such as comparing the single-universe view
with the all-universes view.

C. Making System State Understandable

There were several instances during the user study where
participants struggled to understand the current state of the
system. Examples include when some participants did not
have access to the rendering in Task 2, when confusion
arose when filtering out a single universe, and when some
participants could not identify what the ghost cars represented
in the all-universes view. In each of these cases, the state of
the system could have been more explicit. Remedies for the
above UI shortcomings could include having a more detailed
timeline view, a more interpretable filtering UI, and having a
label that displayed when the rendering toggled between all
universe and single universe view. These design elements can
be considered in relation to the demands of abstract reasoning
that are inherent in any programming task, such that abstract
specification of behaviour must be related to concrete instances
[3]. In PPLs, where program state is defined in terms of a
distribution of possible values rather than a single value for
each variable, the abstraction demands are substantially higher.
The current version of Multiverse Explorer demonstrates that
this cognitive challenge can be mitigated with visualisation,
even for non-experts, but further work remains to be done.

VII. RELATED WORK

The basic approach of Multiverse Explorer is a novel
paradigm, although the “ghost” style rendering of alternative
histories has occasionally appeared in popular culture settings
including video games. The informal idea of a multiverse,
within which there is a cosmological or ontological relation-
ship between likelihood and causality in alternate universes,
has become far better known through the release of the
movie Everything Everywhere All at Once, described by IGN



as the ‘most awarded movie ever’. (Noting that design and
implementation of the Multiverse Explorer was completed in
Summer 2021, before the release of that movie).

It is interesting to compare the 3D scene rendering of the
Multiverse Explorer, with our inclusion of ‘ghost’ vehicles, to
the rendering style used by Brandao et al [5] to visualise a
motion planning path as a sequence of overlaid renderings of
the moving robot. In that work, alternative paths are visualised
as separate image frames, with one sequence in each frame.
Our approach differs in that alternatives are superimposed
within the same frame, which offers an advantage in the ability
to compare paths (within the the ‘multiverse’ as we call it),
but of course a corresponding trade-off that multiple positions
along the path are seen as moving objects over time as the
animation plays.

The basic design strategy of a separate block-code editor
and world model that are integrated into a single IDE is famil-
iar from educational programming environments such as Alice
[11] and Scratch [25]. Continuous execution, with live update
of the world model in response to code changes, provides
substantial advantages for explorability and understandability,
as demonstrated by Tanimoto [29], and subsequently popular
in many software engineering environments [8] that draw
heavily on the design philosophy of Smalltalk [20].

We are not aware of many interactive approaches that
have integrated Monte Carlo simulation into interactive end-
user visualisations, with the notable exception of an early
GPS navigation application, using particle filters for traffic
modelling, that was demonstrated by Williamson et al [32].

Previous work in our group has demonstrated that visu-
alisation of causal graphs can assist with construction and
interpretation of programs in a PPL [17], and others have
shown that live visualisation of distributions can be integrated
into a probabilistic database for data science applications [26].
Following the pioneering work of Erwig and Walkingshaw
[15], our group has explored whether interactive visualisation
of causal graphs, probability distributions, and Monte Carlo
simulations offer educational benefits in the teaching of prob-
ability [1], [4].

We are, of course, indebted to the work of the many
groups who have been developing and extending the concept
of probabilistic programming itself, including but not limited
to the teams developing BUGS [27], Stan, [9], PyMC [21],
Turing [16], Anglican [30] and Gen [12].

VIII. FUTURE WORK

As with the causal graph representation, we have only
implemented a minimal set of query interaction features,
sufficient to verify that the overall approach is effective, and
as a functional basis for an initial user study. There are many
opportunities to extend these exploration facilities, drawing
on visual query languages and query-by-example systems, as
well as interaction techniques from visual constraint editors
and other explanation interfaces.

Earlier work in our group showed that interaction with a
programmatic representation of a causal network, as used in

probabilistic programming languages, becomes an element of
usable explanation [1], [17]. Paired with the idea that the
complexity of the autonomous vehicle domain calls for expla-
nations in human-agent systems [18], [24], a useful extension
of this work would include adding ideas from explainable AI.

We only recruited participants that had no prior experience
with the concept of a multiverse, so future studies should
compare our results to a study run with users who can already
conceptualise the notion of a multiverse. Such a comparison
may uncover additional design implications in order for future
tooling to address the needs of all users, regardless of domain-
knowledge depth.

Finally, an interesting extension of our multi-agent driving
case study would be to test whether this demonstrator might
be valuable for end-users in the broader domain of trans-
portation. Examples might include systems engineers, urban
planners, accident investigators, policymakers, litigators, or
even technically knowledgeable end-users curious to find out
why their own autonomous vehicle responded the way that it
did to a recent unexpected situation. The Multiverse Explorer
paradigm might be a useful tool for many classes of user;
further research is needed.

IX. CONCLUSION

We have presented the Multiverse Explorer, a prototype il-
lustrating a novel, domain-specific probabilistic programming
language. The core elements of this system are the potential
to analyse interaction between multiple heterogeneous agents
(including both human and AI agents); support for causal
reasoning by integrating models of agent intention with a prob-
abilistic kinematic model; support for counterfactual reasoning
within a Bayesian framework by visualising the distribution
of outcomes over a Monte Carlo simulation; integration of
that simulation with a rendering of a physical world view
where alternative courses of action are visualised as ‘ghosts’;
and a query mechanism that allows the user to highlight
and request narrative explanations of causal factors within
any one of these simulated universes. As we have noted,
the Multiverse Explorer paradigm is potentially applicable to
many domains other than multi-agent driving. Nevertheless,
the support for temporal and spatial locality of effect seems
particularly relevant to those domains where agents interact
within a physical and kinematic world model.

This project has contributed to a longer-term research ob-
jective, which is to develop domain-specific PPLs (DS-PPLs)
that allow some of the principles of probabilistic programming
language design to be made more accessible to end-users
[2]. These languages have from the outset been inspired by
the work of Judea Pearl, who argues persuasively for the
importance of diagrammatic causal graphs in order to make
probabilistic causal reasoning more accessible to all members
of the population [23].
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