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Abstract

Modern computer systems routinely present information to the user as a combination of text
and diagrammatic images, described “gsaphical user interfces”. Practitioners and
researchers in Human-Computer Interaction (HCI) genetmlieve that the value of these
diagrammatic representations is derived from metaphorical reasoning; theyuodrate
abstract information by depicting a physical situation from which the abstractions can be
inferred.

This assumption has been prevalent in HCI research for over 20 years, but has ssttom
tested experimentally. This thesis analyses the reasons why diagrams are believed to assist with
abstract reasoning. It then presents the results of a series of experiments testing the
contribution of metaphor to comprehension, problem solving, explanation and mdasksy

carried out using a range of different diagrams.

The results indicate that explicit metaphors provide surprisitiglg benefit for cognitive
tasks using diagrams as an external representation. The benefits are certainjosmpalted

to the effects of general expertise in performing computatidgasks. Furthermore, the
benefit of metaphor in diagram use is largely restricted to mnemasgistance.This
mnemonic effect appears to be greatesen the user of the diagram constructs his or her
own metaphor, rather than being presentedh va systematic metaphor of the type
recommended for use in HCI.
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Chapter 1: Introduction

These circles, orather these spaces, for it is of no
importance what figurethey are of, are extremely
commodious for facilitating our reflections on this
subject, and for unfolding all the boastedmysteries of
logic, which that art finds it so difficult toexplain;
whereas by means tiiesesigns, the whole isrendered
sensible to the eye.

Letters of Euler to a German Princess,
tr. H. Hunter 1795, p. 454.

For 20 years, newomputer software has presentedformation graphically asvell as in
textual form. The usual justification for this practice has been that the graphical form is easier
to learn,understand and apply becausealiows metaphorical reasoning. Consider these
forthright statements fromintroductory textbooks orsoftware user interface design, all
published within the lasttwo years: “Designers of systems should, where possible, use
metaphors that the uswiill be familiar with.” (Faulkner 1998, p. 89):Metaphors are the
tools we use to link highly technical, complewoftware withthe user’'s everyday world.”
(Weinschenk, Jamar & Yet997, p. 60). “Select a metaphor or analogy tloe defined
objects ... real-world metaphors are most often the tlesice.” (Galitz 1997, p. 84)'Real
world metaphors allow users to transfer knowledge about how things should loakoatkd’
(Mandel 1997, p. 69):Metaphors make it easy to learn about unfamiliabjects.” (Hill
1995, p. 22). “Metaphors help users think about the screen objects much as theyharduld
about real world objects.” (Hackos & Redish 1998, p. 358¢ry few will debate the value
of a good metaphor for increasing theitial familiarity between user and cqmter
application.” (Dix et. al. 1998, p. 149).

The goal of this dissertation is to investigate the psychological evidence for these claims. This
investigation is perhaps overdue. Not only are computer science stuathrised to use
metaphor as the basis for their designs, but software companies routinely basestwsrich
efforts on this assumption (BlackwelP96d), and the most influential personal quter
companies insist on the importance of metaphor in making computers available to everyone:

You can take advantage of people's knowledg#hefworldaround them bysing
metaphors to convey concepts and features of your application.médsaphors
involving concrete, familiar ideas and make the metaphors plain, so that heees
a set of expectations to apply to computer environments.
“Metaphors” from Chapter 1 of tHdacintosh
Human Interface Guideline§Apple Computer, Inc.
1992).



Familiar metaphors provide a direct and intuitive interface user tasks. By
allowing users to transfer their knowledge and experience, metaphors make it easier
to predict and learn the behaviors of software-based representations.
‘Directness’, fromWindows Interface Guidelines for
Software DesigiiMicrosoft Corp. 1995).
The conclusion of the research described in this dissertatibrioe that the case for the
importance of metaphor is greatly over-stated. This should not be interpreted as a deprecation
of graphical user interfaces. Graphical user interfaces provide many advantages — the
problem is simply that those advantages are misattributed as arising from the application of
metaphor. A more prosaic explanation of their success can be made in termsehnefiés
of “direct manipulation”, which indicates potential actions via the spatial constraints of a 2-
dimensional image. The concept of direct manipulation has tre@oughly described and
analysed (Shneiderman 1983, Lewis 1991). It will not be discussed in any detail here, but the
implication of the current investigation is that, if the expected benefits of metaphobéane
exaggerated, these laevel virtuesand by-products of direct manipulaticare evenmore
important than is usually acknowledged.

Overview of the Thesis

Chapter 2 considers previous work in HCI, but it afsviews heories that havebeen
proposed to describe diagrammatic graphical representations and to describe metaphor. It
then considers the manner in which diagrams and metaphors can be used as doglstive
before returning to the question of HCI.

Chapter 3 presents the results of three contrassumyeys, investigating how cqruater
scientistsand professional programmers regard their useisafal programming languages.
Researchers developing these languages are greatly influenced by cognitive theories,
including some theories of metaphor, but professional users appear to have little awareness of
the potential cognitive implications of diagrammatic representations, ingegrhasising

more pragmatic benefits.

Chapter 4 describes two experiments which manipulated the degree of metaplagrams.

The metaphor was used to teach elements déwal programminglanguage, then ofnore
general diagrams, to people who had ngqwegrammed computers. Their performance was
compared to that of experienced computer programmers, in order to judge the effect of the
metaphor on learning. The use of metaphors provili#ie benefit relative to that of
experience.



Chapter 5 investigates which properties ww$ual representationgssistthe formation of
complex abstract concepts in visuo-spatial working memory. The value of mental imagery as
a design strategy for abstract problems is an underlying assumption of much of the literature
on visual metphor. Four experimentaere conducted to measure productivityhen the
appearance of theisual representatiomwas nanipulated. Metaphorical content appeared to
have little influence, and there was also little consistent evidence for significant benefits from
mental imagery use.

Chapter 6 returns to the type of explanatory diagram introduced in chapter 4, and presents
the results of three further experiments which manipulated both the metaphoricaisaad
content of the notations. Diagramgere described wth and without instructionametaphors,

and both memory and problesolving performancewere measured. Metaphor halittle

effect on problemsolving, andmemory was improved far more by pictorial content in the
diagram than by explicit metaphorical instructions.

Chapter 7 concludes that the main potential advantage arising from metaphor in diagrams is a
mnemonic one, rather than support for abstract problem solving or desitn mental
images. Furthermore the mnemonic advantage is greater if diagram users construct their own
metaphors from representational pictures, rather than receiving metaphorical explanations of
abstract symbols. This finding has considerable importance for the future stuliiggofim

use and human-computer interaction.



Chapter 2: Diagram and Metaphor as Tools

As no image can be formed of abstract idebsy are, of
necessity, represented inour mind by particular, but
variable ideas; and if an idea beany relation toquantity
of any kind, that is, if itadmit of themodification of
greater andless, though the archetype, as itcalled, of
that idea be nothing that is the object mfr senses, it is
nevertheless universallgepresented irour mind by the
idea of some sensible thing.

A Description of a Set of Charts of Biography,
J. Priestley, 1804, p. 5.

This chapterreviewsprevious research that has investigated the application of datgram

and metaphor as cognitive tools. Much research into the use of diagrams kasmsidered

the possibility that metaphor might be involvadkewise, much research into metaphor has
explored metaphor in language rather than in diagrams. The chapter is dicicedlingly.

After brief definitions of diagrams and of metaphor as subjects of psychological research, the
bulk of the review considers how each can be studied as tools.

The section that discusses diagrams as tools considers general theoriesteofal

representation use in problem solving, then addresses two specific cases that have been studied

in greater detail: graphs andsual programming languagesThe section that discusses
metaphor as a tool concentrates on the previous reseatamian-computer interaction that
has motivated this study, as described in the introduction to chapter 1hik research that
suggests a possible relationship between theories of metaphor and of diegradespite the
fact that there is relatively little empirical evidence to support some of the main theories.

Diagrams

Although this project originated in the study of graphical user interfaces, the methods and
conclusions are applicable to a broadtass of cognitive artefact(Norman 1991,Payne
1992) — diagrams. Diagrams are familiadgsociated ith instruction manuals Gombrich
1990), electronics (Newsham 1995, Petre & Green 1990), software design (Martin & McClure
1985), architecture (Porter 1979), geometry (Lindsay 1989, Netzréss), general
mathematics education (Pimm 1995, Kaput 1995) and symbolic logic (Shin B528dg
1993) as well as informal problem-solving (Katobh®40). Insights fronthese various fields
are slowly being integrated in the interdisciplinary study of ThinkingthwDiagrams



(Glasgow,Narayanan & Chandrasekaran 19%ackwell Ed.,1997), with conclusions that
are more widely applicable to other notations;luding such examples as music notation
(Bent 1980), board games (Ellington, Addinall &erBival 1982) or proposals for a
pictographic Esperanto (Shalit & Boonzaier 1990).

Representational Conventions

<< >

More arbitrary More homomorphic

TEXT PICTURES
/ N\

e D

Figure 2.1. Continuum of representational conventions in cognitive artefacts

Within this huge range of applicability, the common nature of diagrams is appsopriately
defined by contradistinction. Diagrams form the middle part of a continuumebéettwo

other classes of cognitive artefact: text and pictures (see Figure 2.1). If we adigdmete as
markings(lttelson 1996) on some surface (settiagide the tasks to which they might be
applied), diagrams can be distinguished from text by the fact that some aspea&gfam

are not arbitrary but ardhomomorphic tothe information they convey. They can be
distinguished from pictures by the fact that some aspects must be interpreted by convention,
and cannot be deduced from structural correspondences.

A simple distinction underestimates the complexity of text and pictures, however. The
cognitive processing of text is closely related to auditory verbal comprehension, and therefore
inherits homomorphic features of speech: onomatopoeia, for example (Werndfaflan

1963), aswell astypographic conventions and conjecturegstematic origin of all abstract
verbal concepts in spatial experien@dackendoff 1983, Johnson 1987, Lakoff 1987). The
construction and interpretation of pictures also relies on some arbitrary dejgigtiventions
(Willats 1990), everthough those conventions may simply refléetsic perceptual abilities
(Kennedy 1975) andhave been supplemented by the mechanical determinism of
photography (lvins 1953). For the purposes of the current argument, text and pictures can be
regarded as ideals — extremes that are never observed in actual communicati@rkings.
Instead, all texts are to some extent diagrammatic, and all pictures are to exbems
diagrammatic. Even aphotograph, despite the implied objectivity ofmechanical
reproduction, conveys information diagrammatically through its composition, its context on a
surface and other factors (Stroebel, Todd & Zakia 1980).



As diagrams share aspects of both text and pictures, they can be analysetkcsinigues

and theories from either extreme of the continuum. Firstly, diagrams can be regarded as two-
dimensional graphical languages, composed from a lexicon of geometric elements. The
relationship between these elements can be described in terms of a maugxorating

various subsets of proximity, ordering, spatial enclosure and topologicahection.
Interpretation of a diagram is therefore a process of deriving semantic intention from the
syntactic relationships that have been created between the lexical elements (Bertin 1981). This
view of diagrams suggests that researchers should use the structural analysis of Saussure
(Culler 1976), or the semiotic trichotomies of Peirce (1932).

Alternatively, diagrams might be regarded primarily as representations of physical situations.
If they communicate any abstract information, this would involve metaphorical reasoning, for
example relating théupward” direction on the page to an increase of some abstract
guantity (Gattis & Holyoak 1996, Tversky, Kugelmass &Winter 1991). The individual
elements of a diagram may also be actual pictures, in which case they migiteipeeted
metaphorically as representing abstract concepts (Barnard & Marcel 1978).

Metaphor

Is it justified to apply the wordanetaphorto diagrams? Metaphor is usually understood in a
verbal context; specifically as a figurative literary devicetrope. Like irony, hyperbole and

other tropes, metaphor is identifiable by the fact that the literal meaning efottts is not

the meaning intended. There is instead a figurative meaning, which the hearer must establish
by deduction from the context of the utterance, from knowledge ofwihitd, and by
constructing theories regarding the speaker’s intention. The cognitive resowoked in

this interpretive process are sophisticated — children have difficultyn@erstandingboth

irony and metaphor (Winner & Gardner 1993).

Aristotle’'s Poetics accords great respect to the valuenetaphor(“... by far the greatest
thing is the use of metaphor. That alone cannot be learnt: it is the tolgemifs” xxii. 17),
and contains a detailed analysis of the way that metaphor works:

It is the application of a strange term either transferred from the genusapptied
to the species or from the species and applied to the genus, or from one species to
another by means of analogy.

Aristotle, Poetics xxi. 7

Modern cognitive theories of metaphbave often emphasised only a single aspect of this
analysis. Glucksberg and Keysar (1993), for example, emphasise that metaphors are
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expressed and understood as statements aibasd inclusion (i.egenus and species), where
the target of the metaphor inherits attributes frelsewhere in some categoridailerarchy.
Gentner, Falkenhainer and Skorstad (1988), on the other hand, emphasised#ratanding
a metaphor is the same as drawing an analogy irvailves themapping of structure and
attributes from one domain to another.

A third cognitive theory of metaphor emphasises the metaphors that'foagdised” into

idiom. Lakoff and Johnson (198@Jaim that individual idioms can be related to systematic
collections of metaphorical concepts. For example, when Aristotle describes Empedocles’ use
of the metaphor “the evening of lifg(Poetics, xxi. 13)Lakoff and Johnson might observe

that there are many other idioms relating stages of life to time of day, and that these reflect an
underlying conceptual metaphor such agE IS A DAY”. Johnson (1987) andackendoff
(1983) have bothproposed theories in whicall abstractlanguage must be derived from
embodied physical experience. Johnson descriiés process as metaphorical, but
Jackendoff objects (1983 p. 20®at the equation of physical analogythwmetaphor is

facile. The necessargrounding ofabstraction in physical experience isviaw that Black

(1993) attributes first to Carlyle. It is supported by Lakoff and Johnsocdsceptual
metaphor proposal, and by Gentner and Wolff897) “career ofmetaphor” hypothesis,

but these are vigorously debated in cognitpgychology; Murphy (1997), for example,
claims that Lakoff andlohnson’s collection of metaphoravolving the verticaldirection

simply neglects the polysemous multiple meanings of the wopd, while Gibbs (1996)
defends conceptual metaphor from raview of experimental investigations of idiom
comprehension.

There are numerous other theories of metaphor interpretation, some of whlpamted

by experimental evidence. Chomsky’s anomaly model of metaphor processing, for example,
suggests that we first evaluate the literal meaning of the metaphor, then reject that as a result
of identifying an anomaly. Pynte et. a]1996) studiedthe time-course of mtaphor
comprehension, and found evidence from event-related potential observations that the literal
meaning of a metaphoric phraseas indeed evaluated before the figurativeeaning.
Tourangeau and Sternberg’s interactiview of metaphor (1982)claims that aptness is
increased by semantic separation between the source and target domainsmetaplkor,
because an apt metaphor mustolve reorganising the hearer’'s understanding of tdrget
domain. These and other theories of metaphorlemgcommonly investigated in cognitive
psychology, and to my knowledge have never been applied either to diagrams or to HCI.
They are not considered any further here.

This discussion provides several alternative models for addressing the roletapphor in
diagrams. If Gentner’'s structure mapping theory of analogy (1983ls@ involved in
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processing metaphor, it might be better to describe diagramanak®gies rather than
metaphors. The value of diagrams in solving problems of structumalogy hascertainly

been demonstrated (Beveridge & Parkins 1987}hi is the only sense in whiachiagrams

are metaphorical, they can be described in terms of structural geometric propathies,

than requiring any consideration of pictorial depictioflternatively, if diagrams are
interpreted in terms of their resemblance to physical objects and situations, they should be
analysed in terms aoflassinclusion. If this is thecasethere is perhaps a mormppropriate

term applied in the visual arts. A painting in which the elements represent abstract concepts in
the class they belong to is described aslégory rather than a metaphor.

Is there any good reasomhy we should describe diagrams as metaphors rather than as
structural analogies or pictorial allegories? There are three reasons why it is convenient to do
so. Firstly, the field of HCI has adopted the term metapWbile being unaware of many of

the cognitive theories described above (although Gentner, Falkenhainer and SK98i&)
explicitly reject the suggestion that their model of metaphor applies to usemae®rfand
Jackendoff (1983) insists that metaphor is more complex and subtle than playsitady).
Secondly, there is also a small existing literature outside the fields of pegghand HCI

that has described the interpretation of diagrams as a process of metapleatucation
(Goldsmith 1984) in graphic design (Richards 1997) and in comic book art (Ken@eekyn

& Vervaeke1993). Thirdly, theories of conceptual metaplave been explicithextended

from language to diagrams (Lakoff 1993). Some interpretations of concepteizpinor

claim that even linguistic metaphors are interpreted with the aid of mental images. Gibbs and
O'Brien (1990) foundthat subjects were able teport causal relationships fronmages
formed when interpreting a metaphor, althoughc@ari & Glucksberg(1995) reported that
identification of paraphrased metaphors whsver when such images wefermed. The
implied relationship between diagram use and these theori@setd#phor interpretation is
reviewed in more detail in chapter 5.

Diagrams as Tools

This thesis considers three broad categories of cognitive task in which diagrams are applied as
tools. They are often used for communicating information, both as isolated presentations
(e.g. statistical graphs) and as instructional material supporting a text (ggtbook
illustrations). Secondly, they are used during problem solving, as external representations that
supplement working memory and efficiently express problem constraints. Thirdly, they are
used as an aid to discovery, generating potemafigurations and exploring alternative
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solutions. This thesis emphasises instruction, for which relevant literatureviesved in
chapter 4, and discovery, for which relevant literature is reviewethapter 5. Most existing
research into diagram use emphasises problem solving — that research is summahised in
section.

Diagrams as Tools in Problem Solving

Although diagrams may depict relationships in the reatld, and may stimulatemental
imagery, it is not necessary to assume any resemblance to visual $6endsmén 1969), or
causal relationship to mental images (Scaife & Rod&&6). Most theoretical treatments of
diagram use simply consider their geometric structure, rather thanmgtaphorical
possibilities discussed in this thesis. Larkin and Sin(d887) attributedthe benefits of
diagram useduring problem solving to three maimformation-processing operations.
Diagrams can express correspondencesvdmt elements withoutequiring thatlabels be
defined for those elements. Secondly, they can group together informédrwill be
needed at the same time, thus reducing the amount of search redunied problem
solving. Thirdly, they supportperceptual inferences” by which informatiocan beread
directly from the diagram.

Bauer and Johnson-Lair@ll993) have extended Larkin anfimon’s analysis ofgeometric
correspondences in diagrams. They demonstrated that subjects were faster aadcm@t

when answering a question based on a two-branch electrical circuit diagram than when
answering a logically equivalent verbal question involving double disjunction.g&benetric
strategy used by subjects in tligperiment is even more straightforward than thatdeled

by Larkin and Simon: subjects could use the diagranartewer the question simply by
tracing (or imagining tracing) the lines of the circuit with a finger. Green (1982) has however
noted the restrictions of this type of diagram — there are only a limitederuof “mental
fingers” that can be maintained when tracing flow through a complex diagram.

The perceptual inferences described by Larkin and Simon may simply iniorvkevel

visual processing of boundaries (Ullman 1984) — eithssessing three dimensionsthape
(Hoffman & Richards 1984, Grossberg 1997)teo dimensional figures (Palmer &ock

1994, Shimaya 1997). Thewlso enable impressivperformance on computationally
intensive tasks such theréwvelling salesman” optimisation problem, for whibtacGregor

and Ormerod (1996) demonstratédat untrained experimental subjects couldoduce
solutions that were more optimal than the best available computational algorithms. In the case
of diagrams, Lindsay(1988) has demonstrated that perceptual processes make explicit
information that was only implicit in an original construction. Lindsay also observes that this
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kind of reasoning wh spatial representations avoids ttieame problem — knowing which
aspects of a situation remaimchanged athe result of some action — because the scope of
action is defined by spatial locality. This advantage also underlies the benefitsrett
manipulation”, to which | attributed the success of graphical user interfaces in chapter 1.

Zhang (1997)hasproposed a cognitive model of diagrammatic representationsahlem
solving that integrates the computational aspects observed by Larkin and Simon. He contrasts
the perceptual operations afforded by external representations with rtternai
representations that support cognitive operations, including the retrieuafloofnation from
memory. Both internal and external representations provide different means @bkand

ahead to simulate future problestates, b)applying learned knowledge, or c¢) acting on the
basis of pre-existing biases that apply in a particular modality (Gestalt principles of
perception, for example, are a perceptual bias which reveal certain propertieexteamal
representation). The interaction between internal and external representations Hasealso
expressed in a computational model described by Tabachnek-Schijf, Leonardo and Simon
(1997). This model constructs lines on a simulated blackboard, then inspebiadkboard

to notice emergent properties, such as places where lines intersect. The giaphiozhtion

is stored in a memory array representimigual working memory, but is also related to
propositional knowledge about the meaning of the lines. The latter is stored in an
approximate (non-phonological) model of verbal working memory.

Expert problem solving, such as that studied byabachnek-Schijf and Leonardo, is
characterised by a repertoire of different diagrams and other representations, each of which
may facilitate a different range of tasks (Slom&A95). Cox andBrna (1995) have
demonstrated the importance of teaching studeats to select arappropriate diagram or
other representation, in addition to teaching $kéls required to construct a diagram and
read information off from it. Whether the choice is successful or not depends on the extent to
which the diagram constrains the possible interpretatipieang, Lee & Zeevat1995,
Stenning & Oberlander 1995). Thanalysis of information transfer beteen multiple
representations requires a sophisticated theory of informationywedisas experimental
evidence, however. The Hyperproof system (Barwise & Etchemendy 1990), succassédly

to teach propositional logic, models logical relations both algebraically and imaginary
three-dimensional world. A formal description of the relationship between the modeé&athe
world, and the symbolic system depends on vempdamentalissues in phdsophy of
semantics (Barwise & Perry 1983).
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Diagrams as Tools: The case of graphs

Graphs constitute a class of diagram so conventionalised that a graph can stand alone without
explanatory text. Gihn (1995) has demonstrated that after simple training in gragb,
subjects can successfully interpret complex arithmetic relationshipsothatwise equire
complex problem solving. Graphs are sddely used by experimentapsychologists
themselves that they have perhaps attractedrnalue degree of research attention. Detailed
studies have been made of the semiotic (Kos4§89) and perceptual properties graphs
(Hollands & Spence 1992, Spence 1990, Pisan 1995)ekhsas of interpretativebehaviour

(Zacks & Tversky 1997, Stone &ates1997, Carpenter & Shah 1998) and cross-cultural
analyses (Tversky, Kugelmass & Winter 1991). Some of these studies have provided practical
advice about when to use graphs in presenting research results (Carswell & Ramzy 1997, Shah
& Carpenter 1995).

Applied research tends to focus on the question of what notation will be most suitabien
where a choice can be made. In the case of graphs, this has been a focus of attention for
many years. Washburrn@927) made a classic comparison of numeridala presented as
graphs andtables, showing thafiraphsallow more rapid judgements. Meyer (1997) has
recently reinvestigated Washburne's dakmwever, showing that higonclusions were
unjustified — they have simply not been questioned becausewbeyunsurprising. Similar
problems pervade this type of researdhufte’'s (1983, 1990) books othe design of
guantitative graphs and other diagrams have been hugely influential in software désgn.

are not unequivocally supported by empirical evidence, however (Spence 1990, Zacks et. al.
1998). Tufte expresses various assumptions about readability and usability, baimbent

largely to the personal (moderniggstes of agpractitioner. In recent years, thet#stes are

being supplanted by post-modestylesincluding pictures, tables and diagramihin the

same frame (Wurmarl997). Although fashionable ahe time of writing, post-modern
information graphics have no more foundation in empirical research than Tufte’s work. This
is unlikely to prevent their increasing adaptation from American news media to applications
in software design.
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Figure 2.2. Examples of graphical presentation styles recommended by (a) Tufte and (b) Wurman.
[Sources: (a) from Tufte 1983, (b) from Wurman 1997]

Diagrams as Tools: The case of visual programming languages

This study originated in a commercial software product development project, designing a new
visual programming language [&kwell 1996d). \isual Programming Languages (VPLS)
often resemble the diagrams used by computer programmers during the plesigss, but

they are used directly by the computer ¥RL specifiesprogram behaviour to &vel of

detail sufficient that th@grogram can be executedtivno further manual intervention. The
development of VPLs can be traced to research by Sutherland (1963natid (1977); the
range of VPLs created since then has been surveyed by Nh@86) and byPrice,Baecker

& Small (1993). Researchers generally draw a distinction between VPL research, and the
range of programming environments marketed by Microsoft Corporation, includisigalVi
Basic, Visual C++and Visual JavaAlthough those productsvere presumably named to
reflect the endeavours of VPL research, they differ from VPLs in thapribgram behaviour

is specified using a conventional textyaiogramming language rathénan any kind of
diagram.

Visual programming languageare an interesting topic of study in cognitipaychology,

both because programming is a complex problem-solving activity, and becausdn¢Ride

a widerange of alternative diagrammatic representati@@iackwell, Whitley,Good & Petre,

in press). Psychological research into the use of diagramprégramming predates the
development of VPLs, in fact (Fitter & Green 1979). As commercial VPLs have become more
widely available Greerhas, withvarious collaborators, published a substantial body of
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research investigating their cognitive implications (e.g. Green 1982, Gilmore & G&3fa,
Green, Petre & Bellamy 1991, Green & Petre 1992, Green & Blackwell 1996a).

Green’s work has emphasised the nature of programming languages as information structures
(Green 1990) — the gquestion of whether the structure of the notation does or doestciot

the structure of the task is more important than the question of whether text or diagrams are
used (Gilmore & Green 1984b). Green’s analysis of information structures amndayhéhey

are used has been unified and extended in the Cognitive Dimensions of Nofi@iors/ork

(Green 1989, Green & Petf®96). This approach to comparing thelative advantages of
different programming languages is contrastdth ¥he superlativistclaims often associated

with VPL research — that VPLwill be superior for all possiblegorogrammingtasks (Green,

Petre & Bellamy1991). The contrast bgeen empirical results and the superlatiyissition

will be investigated in detail in chapter 3.

Diagrams as Tools: Empirical investigations

If graphs lie at one extreme of the diagrams that are studied experimentally, the other might
be programming languages. Graphs are widely used, can often be interpreted independent of
context ortask,and might be considered a requirement of basic liter&@wpgramming
languages, on the other hand, support complex problem solving and interaction between
specialist users. Othatiagram applications considered in human factors research, such as
vehicle instrumentation or design of instructional material, generally fall between these
extremes. Major themes in the empirical investigation of thinkirtgy diagrams areoften
represented by experiments at each point alongctimsinuum of complexity anatontext.

As an example, Lohse (1997) has used gaze fixation analysis to identifyayis¢hat layout
conventions modify working memory requirements in graph interpretation. Chandler and
Sweller (1996) have estimated workingnemory requirements (in the context ‘@fognitive

load”) that arise from the attempt to integrate text and diagrams in instructicatzirial.
Davies (1996) has investigated working memory requirements in programming by modifying
the environment in which a programwusitten, thereby changing the extent to whiekperts

can use the notation as an external representatioassstproblem solving. Afurther
example is the various investigations that have been made of structure in diagrams, and how it
influences interpretation. Bennett and Fla@d®92) have reviewed various perspectives on
interpretative processes of information displays, such #&kens and Carswell’'s(1995)
proximity compatibility principle relating display location to function. Green’s Cognitive
Dimensions of Notations (Green 1989, Green & Petre 1996) dedbebeay that notadinal

design can affect the tasks involved danstructing and modifying asell as inerpreting
programming languages and other notations.
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Metaphor as a Tool

Metaphor is often thought of as a literary device; in the context of literature it is certainly a
tool used deliberately to achieve specific effects. It is also intentionally applied as a tool to
other communicative contexts — most notably to educatidh.education is a process of
communicatingnew information to students in such vaay thatthey can assimilate it and
relate it to whatthey already know (Gallaghet978). Metaphor is used by teachers to
communicate novel concepts, but always brings the danger that students may over-extend the
metaphor anddraw inappropriate analogies (Nolder 1991). Ideally metaplares used to
develop newconcepts by a process of triangulation (Petrie & OsH883) — students
recognise anomalies between their existing knowledgenamdinformation provided by the
metaphor, and createew knowledge by correcting their model to accommodatath
sources. Spiro et. al. (1989) propose that sophisticated students can be assistqurocebss

if they are given multiple metaphors, each correcting invalid extensions that mighbéane
based on a single one.

Where the intemdbn is to communicate purely abstract concepiswever, it may be
unreasonable to expect that pure abstractions can be derived from physical exBmpies.
(1995) observes that it is unhelpful to consider mathematical concepts asrmkpgndent

of their representations, and describes the goal of mathematics education as learning to
manipulate representations. If the goal is specific to the representation, then the use of
physical metaphors (common in mathematics education) may even be detrimentabtalthe

of learning to do symbolic mathematics. lessabstract domains — physics for example —
physical metaphors may of course help to form a simplified mental model of the situation
being described. Mayer (1993) describes an experiment in which recall of physical principles
was improved when radar operation was described metaphorically.

Metaphor as a Tool in Human-Computer Interaction

The application of metaphor to user interfaces can also be justified on educgtionals.

The main obstacle associated with user interfaces is often describeédleasnang curve” —

the quotes from user interface textbooks in chapter 1 make it clear that metapkpedsed

to remove this obstacle by allowing users to build on their experience from other areas. A
secondary advantage of metaphor in HCI may lie in support for problem solving. When users
experience problems with thaevice,they can solve thosproblems by analogy to solutions

that might be applied in the metaphor domain. There is a substantial literature describing this
analogical approach to problem-solving, based vanious theories of analogy (Gick &
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Holyoak 1983, Gentner 1983, Holland et. al. 1986, Mitchell 1993, K&&98&). Thevisual
representations of a graphical user interface, besidesducing pictorial metaphor, can also

help users to form appropriate analogies by matching the problem to the surface features of
an appropriate source domain (Keane 1988, Heydenbluthe€sd1996). Beveridge and
Parkins (1987) carried out an experiment in which subjeetre more successful dorming
analogies after seeing diagrammatic representations that depicted the regufigdiration.
Schunn and Dunbar (1996jave claimed, in fact, that the value @halogy lies simply in
priming of an appropriate solution — that no transfer of abstractions is involved.

In the HCI literature itself, justifications of metaphor in the user interface are usually made in
terms of one of theskvo researchperspectives; either thmetaphorassistghe user to learn
the underlying abstractions of the computer system, or it provides a bapiobBiem-solving
while performing a specific task. Amarly analysis by Carroll and Thom&k982) said that
the importance of metaphor implied a fundamental critique ofiledbhel at which pgchology
is applied to user interface design. Metaphor wasessential attribute of good user
interface, and this could only be appreciated in termssfchological theoriesEarly
textbooks and collections of readings on human computer interaaiti@ysincluded some
representation of thisiew (Carroll & Mack 1985, Carroll, Mack & Kelloggl988) and
detailed cognitive models have beproposed as a framework for evaluatingetaphorical
interfaces (Rieman et. al. 1994).

Several attempts have been made to systematise the process of user interface design from
metaphorical foundations. Carroll has provided several sets of guidelines for designers, in the
texts listed above. Wozny (1989) advises the designer above all to make the metaphor explicit,
so that it is accessible to the user. Mad$&894) has written a practicatfcookbook”
instructing user interface designers on how to choose and apply a metaphor to their design. A
European research project has defined the formal characteristics of usable metaphors (Smyth,
Anderson & Alty 1995). A layered structurdas also beerproposed for the design of
database user interfaces, in which the data model is situated at the bewenof the
hierarchy and the metaphor at the top level (Catarci, Costabile & Matera 1995).

There have also been critics of the metaphorical user interface. Halasz and (H86&#)
claimed that users need to develop an abstract conceptual model, and that metesuhdy
of passing value in building that model (in the sense of Lakoff and Johnson (1988a) all
abstractions have some linguistic metaphorical basis). Halasz and Moran claimed that drawing
new analogies from a user interface metaphor in ordesdwe problemswas dangerous,
because so many invalid conclusions might be derived. SimosBuattwell (1998) have
revised thisargument in terms of Green’s Cognitive Dimensions of Notations (Gi&&9,
Green & Petre1996). As notedabove, Gentner,Falkenhainer and Skorsta¢l1988)
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specifically discount the application of their structure mapping theory of metaphor and
analogy to the analysis of user interfackmhnkern (1997a) considerthat a metaphor is
useful only as a bundle of user interface affordances (Norman 1988)thahdleeper
systematic metaphors are likely to be misleading. It is certainly possible tarfisguided
applications of (mixed) metaphor, such as the (possibly disingenuous) observation by
Akoumianakis and Stephanis (199Mat a pull-down menu is based on anderlying
“restaurant” metaphor, or that the desktop metaphor is basedsbaets of paper called
windows”.

Empirical Investigations of Metaphor in HCI

The generally assumed theoretical benefits of user interface metaphor are supported by
surprisingly little empirical evidence. Instead, one finds studies Hpgiear to haveet out

with the goal of demonstrating the value of metaphor, but are eventually publishechwdgth

weaker claims. Simpson and Pellegrino (1993), for example, carried o@x@ariment
comparing a geographical metaphor ofila system to anunadornedflow chart. Despite
participants’ subjective preferences for the metaphor, no difference was observed in the
performance of experts using either notatiorovides performed slightly better using the
metaphor: the authors conclude only that direct comparison dfvthérms is not justified
because the tasks are not equivalent. It seems that a study which set out with the intention of
demonstrating the benefit of metaphor failed to do so, and was published on other grounds.

Similar results are reported,ittv some surprise, by the human factors editor IBEE
Software Potosnak (1988)eviewsstudies in which iconic interfacgserformed poorly by
comparison to command interfaces. She notes that these unexpected requithaioey due

to the fact that the iconic interfacasere poorly designed, and that thesults do not
necessarily cast doubt on the value of mpbkta. Other studies have attributadsatisfactory
performance of metaphor tgpecific sub-groupswithin an experimental populationRohr

(1987) for example, reports complex interactions between personality characteristics and
experimental task performance with graphical user interface metaphors. Those studies which
have reported unambiguous benefits from metaphor use do not assume too much about the
educational benefit of the metaphor. Schweiker and Muthig (1987), for example, describe the
spatialmetaphor as supporting “naive realism” — a concept apparéaeiytical to direct
manipulation. As mentioned at th&art of this chapter, there is littidoubt thatdirect
manipulation is responsible for theuccess of graphical user interfaces; it is there
substantial claims about metaphor that give cause for doubt.
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Origins of Metaphor in HCI

The idea that a user interface should be metaphorical is so widespread that it is dangerous to
attribute it to a single source. Most general concepts in computing (the “bug”, for example),
far predate the invention of computers; anecdotal reports of their invention (Goageer
discovers short circuit caused by moth) are usually eittpocryphal orepiphenomenal.
Nevertheless, David Canfield Smith makes a strong claim (Smith 1996) to the invention of the
“desktop” metaphor that has inspireal of the research described here. HGMALION

system (Smith 1977) was developed in the Stanford Al Lab, providing the basis Xérbe

Star (Smith et. al. 1982, Johnson et. al. 1989), and subsequently the Mpplatosh.
PYGMALION's status as an Al project meant that it originally expressed a thea@ygaiition,

and was never simply a software tool. It was not based on empirical studies of metaphor and
analogy, however. Smith considered tRAMGMALION would finally allow computers to be

used for creativaasks,becauseits graphical nature corresponded directly ttee mental
imagery that forms théasis of creativahought. He basediis argument in psychological
theories of aestheticArnheim 1970, Koestlerl964) rather than problem-solving. The
“metaphor” iInPYGMALION’s graphical interfacewvasthere because “visual imagery is a
productive metaphor for thought” (Smith 1977, p. 6). Smith’s theory of creativagl@om

cited directly in the HCI literature, but it appears to have been influential in other areas of
computer science, as will be seen in chapter 3.

Alternatives to Metaphor in HCI

This review has focused on the arguments that might be made for the valisg@Emmatic
metaphor in contexts such &Cl. It has not considered sonfendamentally different
approaches to the analysis of coamitation and representatioBlackwell and Engelhardt
(1998) have made a more detailed study of the many different typologies thatbeave
proposed for classifying and studying diagrammatic representations. Sorttesef are
impressively detailed semiotic analyses of the potential space of graphical configurations (e.g.
Twyman 1979). Alternative reviews have included cognitive historical analyses ofithes

of graphical representations (Gregory 1970, chapters 89gndaive classification of visual
representations by experimental subjects (Lohse etl984) and classifications of the
interaction between media types and sensory modalities (Stenning, Inder & Neilson 1995).

Many studies of HCI place it within d@roader communicative context, in which the
effectiveness of supposed metaphors can be criticised on social grounds (BgdkeNare®91,
1993, Nardi & Zarmer 1993), or in terms of the user’'s conversational interacttbnthe
interface (Payne 1990, Strothotte & Strothotte 1997, Bottoni efl98&#6). Touse the word
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metaphor in a differensense,each of these analyses describes HCI in termssarhe
contextual metaphor: a conversation metaphor, a social interaction metaphotheos.
Reddy (1993) has analysed the implications of “dt@nduit” metaphor for commnication
between people, and shown how it influences communicative intent. There have been similar
critiques of HCI. Laurel (1986) deplores the fact that most user interfaces insist thestethe

is manipulating a tool, when people do not want to manipulate tools: they wplatytgames

or search databases. Hutchii®89) has made a collection tife different metaphors that
might be applied to HCI — not only using a tool, lmslding a conversation, but making a
declaration, acting in a model world or collaborating with an intermediary. The topic of this
thesis addresses raetaphor that is far more central in HCI — thger-interface-metaphor
metaphor. ltrelies on twoassumptions: that graphical representations are metaphorical, and
that metaphors are valuable as cognitive tools.

Summary

This thesis evaluates the benefits dddgrammatic metaphor as a cognitive tool. Diagrams
share some structural properties of language, and many of these can be anatygddiro

how their structural characteristics assist with certain types of reasoning task. They can also be
interpreted pictorially, in which case interpretation is a metaphorical process. Metaphor is an
important educational tool, but the claims made for the valumethphor in graphical user
interfaces are more contentious. Thieesis aims tosupplement the studies dftructural
characteristics of diagramse,some of which also provide sufficient explanation for the
benefits of graphical user interface. The research described here explicitly manipulates the
metaphorical content of diagrams, while leaving the structure unchanged.

These results are applicable to many classes of diagram, even though they address the specific
claims made by the HCI community. The point at which thtdaégms become most relevant

to other diagrams is in the discussion of vispgdgramming languages — complete and
sophisticated diagrammatic toolsthva clearly defined semantics that can be applied to a
broad range of problem solvingsks. The instructional benefits ofietaphor should be

clearly apparent in this class of diagram.
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Chapter 3: Metacognition among Diagram Users

These paradigms change the very way younk. They
lead to new habits and models of behaviour trat more
powerful and prodetive. Theycan lead to ahuman-
machine synergism.

Smith, Irby, Kimbal, Verplank & Harslem
(1982), p. 272.

As described in chapter 2, a classdiigrammatic tools which support particuladgmplex
problem solving is the class of visual programming languages (VPLS). VPLs arenaisoal

in that they have a relatively recent histawgmpared to other types of diagram, and it is
therefore possible to investigate the reasahy they have been developed andmpted.
Green, vith various collaborators, has made many empirical studies of VPL Tisie.
empirical approach to comparing the relative advantages of different programming languages
can be contrasted it superlativist claims for the superiority of VPLs (Green, Petre &
Bellamy 1991). Several studies haveupported Green’s contention that superlativism is
unjustified — the empirical evidence isviewed by Whitley(1997), and dates back to
comparisons finding no difference in performance between flowchart users and those writing
plans in English (Soloway, Bonar & Ehrlich 1983).

Despite the paucity of empirical evidence, and the availability of analytic tools such as
Green's Cognitive Dimensions, superlativism has been widespread in VPL research. At one
level, superlativist claims might appear ridiculous, bheugh someonevere advocating the
replacement ofwritten language wth images (Dondis 1973, Barker & Marijp89). Infact,

some researchers candidly acknowledge the lack of empirical evidence for the benefits of
their work, and suggest that novelty is sufficient justification f@w notations to be
developed (e.g. Hyrskykari 1993). Other developer&/BLs report negative findingafter
empirical evaluations of their own projects, but this is seldom regarded as a reason to abandon
the project (e.g. Ladret & Rueher 1991, Grant in press). It is far more conimoweyer, to
expend considerable effort on designing graphicarméitives to existing textualotations
without ever questioning why the textual notations are inadequate (e.g. Missikoff &
Pizzicanella 1996).

This chapter does not evaluate the empirical evidence for and agenat languages, nor

the theoretical considerations that cause an information structure teebesuited to a
particular task. Instead, it investigates theetacognitiveassumptions that underlie the
superlativist claims made in VPL research. Those assumptions are generally based on the
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beliefs that VPL researchers hold about the nature of problem-solving and programming, and
about the nature and uses of diagrams. These metacognitive beliefs — beliefs almaitirhe

of our ownthought processeflavell 1979) — are important foseveral reasonsFirstly,
metacognitive beliefs can have significant effects on wag that people choose cognitive
tools. For example, many people believe that hiding an object in an unusual place will make it
easier to remember. This particular metacognitive belieghfsunded (Winograd & Soloway
1986), a fact which is useful to know when planning one’s household affairs.

Secondly, the metacognitive beliefs of VPL designers influence the choices tham#iey

when designingnew languagesand hence affect the characteristics of tamguages
themselves. These beliefs may not be questioned where they aceoirdance ith popular
introspection, as observed by Meyer (1997) in his reanalysis of Washburne’s classic study of
graphs. Thirdly, metacognitive beliefs influence the strategies that people use when solving
problems using diagrams (Schoenfeld 19833%ers of a VPLwill similarly use the tool in

ways determined by theirown beliefs about the value of diagrams.nfartunately,
metacognition is notalways anaccurate guide for performance in comprehension and
problem-solving: Glenberg, Wilkinson and Epst€ir®82) foundthat 92% ofexperimental
subjects were certain they had understood a passage that was actually self-contradideory, w
Metcalfe andWiebe (1987) foundthat success in solving insightoblemswas umelated to
subjects’ expectations of their performance.

This chapter presents three studies of metacognitive beliefs. All three survepitiens of
experts regarding the cognitive advantagesd/Bts, but the three survey populations have
very different experiences ofisual programming. The first survey investigates the
metacognitive beliefs of VPL researchers, as published inviteal programming research
literature. The second compares the opinions of experienced programmers who haddot
a visual programming language. The third investigates the opinions of programwmersre
experienced users of a commercially available VPL.

Survey 1: Metacognitive statements in the computer science literature

This first study investigates the systematic nature of metacognitive beliedsigarPL
researchers. Other fields of computer science exaggeratettiite’zeness of thennovations

they introduce, but the underlying assumption is often a straightforward simplifiqatich

as the contention that an “object” in object-oriented programming is as easy to identify and
manipulate as an object in the real world — Blackw8B®3). A corresponding simplification

in VPL research (as in research into diagrams and illustration) might be an appeal to the
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1920s marketing slogamow would-be Chinese proverb “a picture is worthth@musand

words” (Mieder 1990, Blackwell 1997a). The justification foPL research is seldom so
simple, however. This study investigates the range of statements that have been made by VPL
researchers.

The results of this study have previously been published in Blackwell (1996b).

Population

The main source of data for this survey was a two-volume collection of well-known papers in
visual language research, published by the IEEE (Glinert, Ed. 199980b). This was
supplemented bygeveraltextbooks onvisual programming languages (Shu 1988b, Chang,
Ed. 1990a, 1990b, Burnett, Goldberg & Lewis, Eds. 1995)twwyvolumes of theJournal of
Visual Languages and Computingnd by a search for visupfogramming articles in two
popular computer science journalSofnmunications of the ACMnd IEEE Softwarg over

the period after the publication of the Glinert collection. Approximately f4bBlications

were considered in all. The original publication dates ranged fd#i7 to 1995, with a
median year of 1988.

Method

The first stage in data collection involved the identification of passages in these papers where
the research was justified, or the significance of the results discussed, in termsendy di
derived from the technology described. Thesessages generally appeared in either the
introduction or the concludingsections of the paper. A statement such “asual
programming languagewill result in improved productivity because the human mind is
optimised for vision” (not amactual quote from the study) would be a typical target for
analysis.

Once these passages had been collected,wkey divided intoindividual phrases, andach

phrase was classifiedccording to the theme that it addressed. This segmentation and
classification was repeated @to different stages of the research. The initial classification
(described inBlackwell 1996b) considered onlthe material collected in the current survey

(i.e. it did not include distinctions discovered during the analysis of surveys 2 and 3), and was
not based on any external reference point. The second classification considered material
collected in all three of the surveys that are described in this chapter, and prowidedran

coding framework forall threesets of data. It ishe later of thetwo classifications that is
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described here. An analysis based on this second classification has been puylrbsieasly
by Whitley and Blackwell (1997).

The classification framework was based on an initial sample (20%) of the material from all
three surveys, which waonsidered bytwo coders — coding decisions regarditigs sample

were discussed at length, order to clarify the interpretation of each theme. A separate
sample was used to assess inter-rater reliability at the end of the third survahe®ratical
motivation for the framework was mixed, addressing relatively independese¢arch
guestions arising from the respective projectsVdiitley and myself. Neverthelessgach
phrase in the survey materialas allocated uniquely to one theme in the classification
framework. The allocation of phrases to independent research questions is most relevant in
survey 3, and is discussed further there.

Sample responses

40 passages describing metacognitive beledse identified in the corpus of 14@esearch
publications surveyed. In the following summary of the themes tiiate addressed,
publications are identified by an index number. The actual publications are listed in table 3.1,
with page numbers identifying the locations of those passages wigohfound wthin

longer texts — full citations can be found in the bibliography.
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1 Baroth & Hartsough (1995), p.22 2Gutfreund (1987)

2 Brown & Sedgewick (1984), p.178 22 Huang (1990), p.68

3 Burnett & Ambler (1994) 23 Ichikawa & Hirakawa (1987)

4 Burnett, Baker, et. al. (1995) 2&Karsai (1995)

5 Chang, Ungar & Smith (1995), p.186 25 Kimura, Apte, et. al. (1995)

6 Chang (1987) 26 Kopache & Glinert (1988)

7 Chang, Costagliola et. al. (1995) 2[odding (1983)

8 Chang. (1990), p.2 28Lord (1994)

9 Costagliola et. al. (1995) 29 Myers (1986), pp.59-66

10 Cox (1986), p.158 30 Pong & Ng (1983)

11 Cox & Pietrzykowski (1988) 31 Repenning & Sumner (1995)

12 Diaz-Herrera & Flude (1980) 32Schiffer & Frohlich (1995), p.201

13 Dillon, Kutty et. al. (1994) 33 Shu (1986)

14 Duisberg (1988) 34 Shu (1988a), p.662

15 Edel (1986) 35 Shu (1988b), pp.1,6

16 Ford & Tallis (1993) 36 Smith (1977)

17 Glinert & Gonczarowski (1987) 37 Tanimoto & Glinert (1986), p.534

18 Glinert & Tanimoto (1984) 38 Tripp (1988)

19 Glinert (1990), pp. 145, 148,170 39 0dd & Wood (1987)

20 Goldberg, Burnett & Lewis (1995), p.11 40 Yeung (1988)

Table 3.1. Survey sources in visual programming literature

Themes

The following discussion describes the themes thate used in the final classification of
phrases from all three surveys. An overall hierarchical arrangement of the themes is illustrated
in figure 3.1. Where superscript index numbers in brackets appear in the theme descriptions

(e.g. ©™) these refer to specific sources cited in table 3.1.
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Figure 3.1. Hierarchical organisation of classification themes

A) Contextual significance
This category includes several themes describing the benefits that might be found when VPLs

were applied to an actualask, possibly in a commerciabrogramming environment. It is
broken down into three themes: the first describes the general impaePb$, the second
specifically considers the benefits of VPLs in learning to usevalanguage, and théhird
considers the productivity that can be achieved using a VPL.

Al) General impact

Many statementfound inthis survey describeglisual languages as being easy to use (user
friendly”®, helpful*®, straightforwarf, reliablé” etc.) without mentioning any specific
benefits or justifications. Often these statements w&tended to claims about thparticular

relevance of VP to classes of users whay find textualprogramming to beoo difficult

(e.g. students® “end-users®”, “common users”?, or pre-literatechildred’”). As no

reasons are given for these statements, they camedsagded as direct expressions of the
superlativism described by Green, Petre and Bell@®@1). These statements providigtle
further ground foranalysis,although it is interesting to note that it is apparently easy to
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publish unsupported statements such as this in well-regarded sciéntifins. Furthermore,
the positive attributes described are not recognisably specific to programming.

A.2) Learnability
A very common statement of the main advantage of VPLs is thatwhieyo longer equire

effortful learning or traininG™*”, because they use skills that comaturally’” use native

]

intelligencé® or are intuitively meaningful® even to people who are not familiar with

computer§’or computer illiterates™. Software developers often claim the virtue of
intuitiveness for their interface designs, while being unclear of how this has been achieved. In
the statements here, the main justification seems to be that the VPL candbestood
immediately by analogy from previous experience. This belief is considered amatime
concern of theme I, but it should be noted at this point thregw notations are famore

likely to require lengthy acquisition of expertise (Petre & Green 1993), rather bibisugy

accessible, immediate and obviBlis

A.3) Productivity
Professional programmers are highly concernatth their productivity — how fast they can

complete a project. For the professional, this is even more important than the ésemioly
a newlanguage, because learning a language isoghwhile investment if it results in
increased productivity. This issue sgularly mentioned in théwvo surveys ofprofessional

programmers, but alsceceives some attention in the research literdtife These are

generally simple statements opinion or anecdotal reports of widespresutcess’, rather
than citing any empirical evidencalthough one of the papers covered in the sumdegs
report an empirical comparison of projects usingRL and a textdnguag®. The reasons

[29]

why a language might increase productivity inclugase of us& of writing™, and of

modificatiod’®. Readability (theme B.1) possibly has even more impact on productivity, but it
was the professional programmers in the sectwd surveys who weremore likely to
consider software development tasks other than coding.

B) Notational characteristics
This category includes those statements that concentrate on the characteristics of the notation

itself, ratherthan the context in which it is used, or the cognitive processes involved in
interpretation and creation. These other issues are always implicit, of course, so thiatisra

of emphasis rather than discontinuity. The category is divided into six themes, most of which
can be related to one or more of Green’s cognitive dimensions (Green 1989, Green & Petre
1996): readability (hidden dependencies, visibility, diffuseness) is the ecoasthon concern

when evaluating a notationdocumentation (secondary notation, role expressiveness)
describes the value of a notation for communicatinity ether people; and syntaceduction
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(repetition viscosity, premature commitment) describes thayw in which anotation can
obstruct manipulation. Modularity (abstraction gradiekbock-on visceity) and power
(diffuseness, abstraction gradient) consider whether the notation supports standard software
engineeringpractice, while reabrojects also requirgrograms that mix notationfiecause

most software must process text, whether or not the program is created diagrammatically.

B.1) Readability
Respondents in the surveys of professiopabpgrammers(surveys 2 and 3) paid great

attention to the value of a VPL in reading programs, rather than in creating them. They also
tended to consider specific syntactic constructs or oveidls of program function.Those
responses are discussed in more detail later — the research literature sampled in this survey
emphasised more general questions. Graphical notatiens dscribed as beingenerally

f41'37]

easier tocomprehend thanext ", largely because they explicitly represemeaningful

relationships between eleméfits. This is in accordance with Larkin and Simor(3987)
model of locality and connectivity in diagram use. There is an element of overstatement,

however — complex systems are unlikely to be trivially easy comprehen”, even when
presented visually, because it is seldom possible to represent all possible relationships in two
dimensions (the cognitive dimension of hidden dependencies).alsdssuggested that a
visual notation can better express the structure of the compitgelf, so that we can

understand its internal stdfe— this is a proposal which is investigated in experiment 1 in the
next chapter. Readability is alsompromised by the cognitive dimension of diffuseness —
but researchers tended to claim that visual notations are less diffuse than text i.e. “a picture is
worth ten thousandvords”, but wth a scientificgloss “Pictures are more powerful than

words as a means of communication. They can convey more meaning in a more goricise

of expression®”

B.2) Documentation

Programmers generally object to tHaudgery of documentinghe behaviour of code they

have written. If a visual notation successfully communicates the intention of the d&sfgner

then additional documentation may be unnecessary. This question was of far more concern to
professional programmers than rtesearchers, who weraore likely to describe the same
notational attributes in terms of theray that they directly express semantiaduring
programme construction (B.3) ofacilitate communication beween members of a

programming team or between designers and users of a 8ystem

B.3) Syntax reduction
In the ideal intuitiveprogramminglanguage, no work would be neededwnte aprogram.

The user can expresshat they want naturally,and the programming workwould be
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“automatic’®*. New programming languages have been described as aut@metisince
the development of FORTRAN. The way in which VPLs achievedbs is oftenexpressed
in a comparison between syntax and semanticspthgrammer need not be concerned with

the syntax of a progrdffl, which is of interest only to the computer. It is the semantics of the
program, vhat it is supposed to do, that is important. Thesews perhaps reflectsome
confusion about the nature of linguistic syntax — some discussions suggesiettigh
notations contain purely semantic information, which iarlated’ into syntaxvhen the
program iswritten (this is addressefirther under theme C.2). This is taken to meaher

that the translation process is unnecessary when a Veéei' or that semantics anslyntax

can be divorced and even written down side-by-side wisaal environmerif®”. The real
concern underlyingthese statements is likely to come frgmmogramming languages that
require syntactic elements purely for the convenience of the compiler: making sure that

keywords are used, variable types defined or lines terminated by a setficdtos as these

“low-level” syntactic constructs are obviated by more intelligent comfit&tshat themain
advances are achieved in each generation of ‘automatic’ programming.

B.4) Modularity
Support for modularity is an important attribute of gmpgramming languageSurveys 2

and 3 were conducted during a period when modularity was being given paramount emphasis
via the promotion of “object-oriented” programming languages. iggussions of the
advantages of VPLs sometimes attribute those advantages toaglsehat VPLsencourage
modularity or object-orientation: by presenting modules as icons on the screen or by
physically enclosing modules within diagrammatic boundary, for example. Research
publications tended to make a clear distinction between the advantagedsuail
programming and the advantages of modularity, however.

B.5) Power and scalability
Respondents in survey 2 often commented YRits wereunlikely to be as powerful as the

languages they already used. The definition of “power” in this case is open to debate.
programmers consider the most powerful languages to be those which encouraighdise
level of abstraction. Research publications do claim that VPLs gwed at showing

abstractioff, or communicate a highdevel of abstractioff’, while others note that abstract

data is challenging for VP precisely because it is not inherently Visaal will be discussed
in survey 2, these respondentere more likely to be concerned about reducactess to
lower levels of abstraction within the computer.
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B.6) Retention of text
Respondents in surveys 2 and 3 often noted situations in which text would continue to be

necessary, even when using a VPL. Research publicationsisaal programming were
unlikely to make this criticism of KFLs, however. It is an observation that tends to be
assumed, rather than being an interesting subject for comment.

C) Cognitive processes
This category includes three themes that describe cognitive aspectsmbgnammingtask,

rather than notational elements. Classification decisions for these themesonservative: a
statement saying that visuEinguageswere easier to reador example, is classified as a
statement about the notation rather than about the cognitive processes invoheadling.
The category is divided into three themes: the first dedls perception ofvisual languages,
and short term visuahemory. The second includes descriptions of mental modelssuial
terms, and the third includes questions of affect.

C.1) Perception and memory
The statements central to this theme claim that VPLs take better advantage \o$utde

sensory modality than do textual languages. It is observed that the human mind is

“optimised” for vision®*”, making shapes easier to process thand$’>'®. Many of these
statements refer to mental processes in specifically computational terms. In computer science
research, image processing algorithms are often implemented using parallputeom
architectures, wheredanguage parsing algorithms seldom are. Some compmdientists
appear to draw a direct analogy to human cognition, saying that vision makes the fullest use
of the parallel computational architecture of the human Braiff
drawn in descriptions of visual memory. Visual percepts are considered to prosigee@or

basis for mnemonic chunking, because an entire image as treatédiagla unit” by the

. Similar analogies are

brain, thereby providing a high communication bandwidthencompared towvords, which

must be recognised one at a tiffieAlthough it must be a tempting speculation, only a few
writers suggest that VPL&mploy right hemisphere resourcesile textual programming

languages employ left hemisphere linguistiesourced”. Perhaps increasegopular
awareness of functional localisation in neuroscience may cause such speculatiomdoebe
common in the VPL literature in future.

C.2) Mental models
Statements were assigned to theme C.1 when they referred to cognitive processes involved in

perception of visual languages. A number of statements considered the progeseiatting
new programs, starting from the premise that the mental model of the program atnegdy

be in a visual rather than a linguistic fofre an introspection that is also reported dxpert
programmers (Petre &lackwell 1997). AVPL might therefore represent thissual mental
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model better than text c&h If there is a“semantic gap” beteen theprogrammer’s
conceptual model of mat their program shoulddo, and the computational model of the

program itself®”, this gap can bébridged” because the VPL depicts concepts diréctly
This discussion is obviously related to theme B.3 (syntax reduction), but statements were
assigned to the current theme where they expressly described the nature of the mental model.

C.3) Preference and affect
Many of the respondents in survey 3 simply stated that the VPL they used was more fun than

textual equivalents. This is a perfectipod reason to choosepaogramminglanguage, and
may directly facilitate improved performang¢Petre, Blackwell &Green 1998). Publications

in the visualprogramming literature note that visugbrogramming is moresatisfying”,
appealin§” or allurindg® than text, which is timeconsuming, frustrating andabour-

intensivé”. The spirit of the advertising slogan “a picture is worth a thousenidis” may
be better captured by statements of attitude thamfofmation content -theseresearch
publications observe theisual bias of rmdern society, in which people generallgrefer

pictures to wordd’, motion pictures to booK&, and graphs to tabl&%

D) Metaphorical comparisons
This category contains themesgtiwa direct bearing on the discussion of chapterThese

authors are of course familiar with the desktop metaphor, and with the school oé$t@kch

that teaches the importance of metaphorical interfaces. It is divided into three themes: the first
refers to the analogical processesotlygh which we can understand computers by relating
them to our experience of the real world. The second refers to the claimsnoéptual
metaphor, that we understand abstractions in terms of concrete physical experienterdlhe
refers to the metaphors of communication by which we compare human-computer interaction
to natural language and conversation.

D.1) Applying real world experience
As in other HCI contexts, direct manipulation interfaces are a valuable aspect of a VPL. The

reasons why this might be so are described in different ways, however. It is unlikeigotist

are more “intitively meaningful™ than words for manyprogramming constructs, but
Larkin and Simon’s (1987) description of location as a coding mechanism (one which avoids

hidden dependencies in reasonablyaknplanar diagrams) is echoed by these resp6fises
Direct manipulation employs manipulatiskills based onordinary actions in thehysical

world™*”, but VPLs also usenetaphors based on more specialised experiefieehnical
specialists in many fields choose to draw diagrams in order to help them understaptéx
situation§”. Reference is made to the standard diagram forms used by software engineers as
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being “familiar™, or even “traditiona®”. Perhaps other graphical representations such as

33



musical scores, recipbooks and construction schedliiéxould also be used directly as
metaphors for programming.

D.2) Making the abstract concrete
Several of these extracts stated that people find it easier to dbathes concrete than the

abstracff], and that solutions are easier to perceive if abstrdotmation is converted to a

concrete (i.e. visual) for{. This may simply be reflecting an extension of the principle of
direct manipulation, but more detailed cognitive theories are advanced, for example that
abstract mental models are more easily processedelhstructured problems, but that

concrete models are better for semi-structupedblem&”. This sense of abstraction as
distinct from concrete representations has been separated in the theme classification from
level of abstraction, which is usually used in a more specialised sensentputerscientists

(and is included in B.5).

D.3) Comparisons to natural language
The high-level contextual metaphor of user interface as a dialogue between the user and the

machine is even more seductive whprogramming —where the form of interface is
described as a “language”. Programming languages are often compared to human language,

as are the visudhnguages considered in this sul&yVisual languagesre, of course, far
lesslike human language than earlier computer languages suC®BOL, but this has not
prevented attempts to extend the metaphor. Spassage$ound inthis survey suggest that

people havealways found it natural to communicate ittv image&”, that pictures are a
universal form of communicati6fl, and that VPLs will transcend language barriers altaiv
exchange of programs hegen differentnations” (although the vocabulary must first be

designed not to be culture-specifly. Support for these arguments comes framme
interesting sources — although some writers observe that widttgnages have evolved from

hieroglyphics to more advanced modern fdfthothers suggest that logographic scripts such
as Chinese are superior to the scriptdnafo-Europeanlanguages which are constrained by

the need to follow phonetic structufés

E) Miscellaneous observations
A few statements in surveys 2 and 3 could not be assigned to any of the thesceibed

above, either because they could not be interpreted, or because they expressedea
opinion that did not touch on any of the defined themes. These are not analysetheén
detail.
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Results

Each statemenivas allocated to one of the themes, and classified as to whether it drew a
negative or positive conclusion about VPLs within the terms of the theme. (Stateroatds

also be classified as equivocal ambiguous). Notehat the tallieseported below count the
number of respondents addressing ettedme, not the total numer of statements. If one
respondent made multiple statements on the ghemae, thiscontributed a count of one to

the tally. If a respondent made bopositive and negative statements on the sahsme
however, this wouldcontribute to both tdes. Figure 3.2 illustrates the distribution of
statements among the themes in survey 1.

A.1) General impact
A.2) Learnability

A.3) Productivity

B.1) Readability

B.2) Documentation
B.3) Syntax reduction
B.4) Modularity

B.5) Power/scalability
B.6) Text retention
C.1) Perception/memaory
C.2) Mental models
C.3) Preference/affect
D.1) Real world

D.2) Abstract/concrete
D.3) Natural language
E) Miscellaneous

J

|

|
(] 5% 10% 15% 20%

Percentage of statements

09

=

Figure 3.2. Distribution of statements between themes in survey 1

This distribution is compared to surveys 2 and 3 below. ditoportion ofstatementsdund
in each themewasvery different in eachsurvey, as was th@roportion of positive and
negative statements; figure 3wl show that the statementsund in research publications
included very few negative statements regarding any aspect of VPL use.

The classification category containing the largest total number of statements seress
themes was category A (contextual significance) — YHlts would have a positivgeneral
impact, producing improvements in productivity while also being easy to learn.

The theme receiving most attention overall was that of readability — this is obviously seen as a
fundamental reason for introducingisual programming. Other notational properties
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(category B) are not emphasised to the same extent, espeadiedhg they describéeatures
that VPLs share ith other programming languages (modularity, for example). Notational
characteristics that affect program writing, such as syntax reduction, also receive less attention.

Statements regarding category C (cognitive effects of VPL use) include substamtibéers
addressing all three themes. Mental models and perception/memory are partitetzubnt,

with levels of attention similar to those devoted to learnability and general impact. The three
themes withincategory D, metaphorical correspondenceswéen VPLs andprevious
experience, abstraction, and natural languageeive approximately equal amounts of
attention.

These themes are considered in more detail when contrasted with surveys 2 and 3 later in this
chapter.

Discussion

The number of non-specific statements that are made about the general advantéges of
programming can be seen as a quantitative estimate of the predominance in the VPL literature
of superlativism, as defined by Green, Petre and Bellgi891). This type of statement may

also occur in other scientific disciplines — wherever it is necessary to describmgnifecance

of research in general terms, even if the research itself isapplied. It is a matter for
concern,however, where claims ameade with no empirical support, when they could have
been tested empirically. This is particularly true of the claims for learnability of VPLs —
learning effects could be evaluated experimentally, but this has not been done in the
publications surveyed.

Across the three surveys, a relatively wide range of themes addressed the ngpatipadies

of VPLs whencompared to textual languages. This is an important comparison to make —
Green’s work on cognitive dimensions (Green 1989, Green & R8©6) hasdemonstrated

the profound influence that notational structure can have on the ability to pediéfienent
cognitive tasks. In this surveynowever,one type of task is addressed more often than all
others. Despite the fact that readingcamputer program is rathdess demanding than
writing or modifying one, it is the readability of VPLs that attracts most attention here. The
reasons for that imbalance will not be addressed in the rest ahdsis,but the possibilities

are worth considering. It is not that researchers are unaware of the neetk farograms as
well as read them: the themes in categories C and D address issues repategtam writing.

It is possible that improving readability is considered to be a mandaimental or tractable
research issue than writability — either because writability is little affected byatigriage
used, or because writingpgogram requireshat the author continually read the cdaeing

36



generated (Green’garsing-gnisrapmodel — Green, Bellamy & Parker 1898 Alternatively,
researchers may suspect that VPLs are less writable than textual languages, but choose not to
comment on this in their publications. There is some evidence for this latter possibility in the
statements made by professional users of a VPL in survey 3.

The themes in category C include most of the more explicitly metacognitive stateiments f

in this survey about mental processingvifual languages. These statements are veoch
statements of psychological theory, but psychological research is almost never cited in their
support. What is their status, in that case? They include a consistent range of arguments, and
could be described as a theorynafive psychologyHayes 1985) analogous McCloskey’s

(1983) observations ohaive models of physicabhenomena. The populatiomnder
consideration in this survey have a rather unuswedis for theirpsychological theories,
however — as computer scientists, their simulation of mental processes (Gordon 1986) may be
influenced by their experience of computefast as Watt (1997) suggests thatnon-
programmers understand computers on lilisis of anthropocentric psychological models.
Computational metaphors of mind do occasionally appear in the literature on reasoning with
diagrams (e.g. Waisel, Wallace and Willemain’s (1997) description of Johnson-Lziedigal

models as “analogous to a Structured Query Language databasethelatatementsoiund

in this survey tend to be less precise. This is particularly notable in the statementibidg

human cognition in terms dfbandwidth”, “efficiency” or “parallel processing”. When
computer scientists speak of cognition, they may be unduly influenced by the nature of their
work, as claimed by Roszak:

[The computer] brings with it certain deep assumptiomisout the nature of
mentality. Embodied in the machine there is an idea of what the mind is and how it
works. The idea is there because scientists who purport to understand cognition and
intelligence have put it there ... The subliminal lesson that is being taught whenever
the computer is used (unless a careful effort is made to offset that effect)distéhe
processing model of the mind.

Roszak (1986), pp. 245,246
The metacognitive models found this survey are not derived solely from observations of
computers, however. The terminology used in some of the publications does imdigate

in psychological research — use of the téchunking”, for examplé®. It is possible that

many of these statements can be traced to the earliest researchisur@gbprogramming,

which was directly motivated by the same cognitive theories that have been influential in HCI.
Chapter 3 considered the influence of Smith’s theory of metaphor as a taolafdpulating
abstraction in graphical user interfaces (Smi®96). The PYGMALION system that he
developed to express those theories (Smith 1977) was not only dhe e#rliesgraphical

user interfaces, however, but one of the earliest VPLs. Popular descriptions of his work on the
Xerox Star (Smith, Irby, Kimball & Harslem 1982, Smith, Irby, Kimball, Verplank & Harslem
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1982, Johnson, Roberts et. al. 1989) may be partly responsible for broad dissemination of his
theories of mental representation, visuabrsfterm memory, creative use of mental images,
and other related topics — Hi®ok cites the sources of thegsychological theories, but few

of those that follow him do so.

Survey 2: Professional users of conventional programming languages

This second survey was designed atoswer the main question raised by the first. Are the
metacognitive beliefs expressed by VPL researchessnmonplace among cquater
programmers, or do they simply reflect the research traditions of the atRldemic
community? In order to answer this, | selected a survey population who were unlikely to have
been exposed to the research literaturevéhs, but whowereboth familiar with conputer
programming and accustomed to comparisons of different programming languages and
techniques.

The results of this study have previously been published in Blackwell (1996c).

Population

This survey was conducted at a treafoworganised by a computer magazine — the EXE
Developer’'s Show — held in London on June 15-16, 1995. The nature of the magjaeme
some insight into the survey populatidBXE Magazineis a popularBritish programming
magazine, similar to (but with a smaller circulation than) the American publicatioresican
Programmeror Dr. Dobb’s Journal — it contains a mixture of opinion columns and
educational articles and is widely read by professional programmersyethsas by
knowledgeable hobbyist programmers. It does not publish acadpapers, but would
discuss topics such as visygmbgramming inthe context of a produateview. Sich reviews
would normally be based omanufacturer’'spress releases rather than academic analyses,
however. Readers of the magazine might therefore have amaeness of new conarcial
trends inprogramminglanguages, but wouldrobably nothave encountered the cognitive
theories motivating VPL research. Although theras asmall conference associatedtiwthe
show,the speakers addressed commer@ales rather than scientific ones -pr@grammer
with a strong interest in programming language research would have chosen to attend one of
the many more technical conferences held in London in 1995, rather than this one.
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Method

The survey was conducted using a written questionnaire, reproduced in Appendix A. It started
with two qualifying questions. The first questiotested whether the respondents were
professional programmers, as expected by the trade show organisers. The title secbtite
introductory questionwere worded inorder to avoid confusion be&een VPLs and the
Microsoft Visual Basicand Visual C++ products (which would have been very familiar to
most respondents). The body of the questionnaire consistently used thégtaphical
programming’ ratherthan ‘visual programming’, and the secondntroductory question
explained this as follows:

Do you have any experience of a graphical programming languagere the
programmer does almost all programming anipulating diagrams instead of
typing text? Please note that this definition does not include tools like \Baisit,
where the program logic is created using a text language.

In order to ensure that the point about VisBakichad been assimilatedgspondents were

asked to name a VPL that they had used, seen or read about.

The third question asked respondents to compare a graphical and a pEx@IEMMINg
language alondive different dimensions: ease afse, powergnjoyability, readability and
changeability. They were asked to name the text language they were comparinge#hdrto
name a graphical language write “guess” if they did not know the name of one. Two
Likert scaleswere provided for each dimension, so that the respondent made separate
assessments of graphical and textual languages on each dimension. The extremes of the scales
were labelled separately, as follow&ard to write/easy to write”, “weak/powerful”,
“irritating/enjoyable”, “unreadable/readable”, “hard ¢bange/easy tchange”. A further
three unlabelled scales were provided, so that respondents could make comparistimsr on
dimensions that they might consider to be important. A differential respgasencouraged

by using six point scales, with no mid-point.

The final question was designed to elicit statements about the cognitive nature of the
programming task, as investigated in survey 1. It read:

Please explain in a few sentences how you think a graphitagramming

language might make a difference to the "brain-work" involved in programming.
The responses to this final questiarere analysed using the same coding frame that was
described under the heading of survey 1. As for survey 1, an initial analysis of the results was
published before survey 3 was carried outa¢Bwell 1996c). Theresults eported here are
based on the single coding frame that was formulated later to encosyasys 1, 2 and 3
(Whitley & Blackwell 1997). Theresults that are presented in the following section are
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therefore organised according to the same structure of themes and categories that was
described earlier.

Results

The number of people attending the EXE Develop&f®w was somewhat lessan 1000

people (the organisers did not release exact figures). | distributed 506 questionnaires to
visitors as they arrived at the show, and 88 of these me¢wuened, either to a collectigmoint

on one of the exhibition stands, or by post afterwards.

According to theiranswers to Question 1, aftlut two of the respondents (98%) were
professional programmers. This is as expected from the target reader&Xi dlagazine

Despite the instructions given in Question 2, 25% of the respondents did name \4sical B
(or a similar product) as the VPL that they were familiar with. This is a severe difficulty when
surveying opinions about novprogramming languages. Althoughe questionnaire never
used the word“visual” and explicitly excluded VisuaBasic, respondents who were
unfamiliar wth visual programming tended to respond confidenthyt by reference to
languages that they knew. The responsese divided intothree groups according to
reported experience with VPLs. (Seven respondents did not complete this question).

Group | had seen, or were familiar with, a VPL (N=23).
Group I had no prior experience of VPLs (N=37).
Group Il named Visual Basic or a similar product as a VPL (N=21).

The three groups of respondents differed significantly in only some ofelh@ve ratings
that they assigned to text and graphical languages, as shown in figure 3.3.
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Figure 3.3. Mean rated advantage of graphical over text languages, sorted by VPL experience

All groups of respondents considered VPLs toldsspowerful than text (the averagating

for graphical languages was lower b8 on thescale of 6), but easier to use (theerage

rating for graphical languages was higher by 0.77). The enbje for which therevas a
significant difference between the groups was the rating of whether graparm@liages
would be enjoyable to use. Group | gave graphical languages a slightly higher rating on this
scale (by 0.35 out of 6While groups Il and Il gave graphical languagesvér ratings: by

1.14 and 0.33respectively,F(2,78)=3.51,p<.05. When theindependence of thdifferent

rating scales was compared, the strongest correlations (both pogidikefound betveen the
ratings of power and enjoyability<.55, p<.001), and between readability anbdangeability
(r=.53, p<.001).

Although a significant difference was observedwsstn some of the ratings given by
different groups within the sample, a quantitato@nmparison of the number of gtive and
negative statements made in response to the open quéstiod no significantdifference

between the three groupﬁz,(z, N=6)=0.69, p=.71. The statements made by respondents to
this survey are therefore considered as a siggheip whencomparing them to thoseade

by VPL researchers (survey 1) and professional VPL users (survey 3).follbeiing
discussion describes the differences in emphasisweetfound within eachcoding theme

for this survey. The variation in distribution of statements between surveys 1 and 2 is shown
in figure 3.4.
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Figure 3.4. Theme distributions in surveys 1 and 2 — % of total statements in each survey

A) Contextual significance

Respondents in this survey were more likely to describe VPLs as having limited applicability,
or only being appropriate for use in certain contexts.

Al) General impact
Where VPL researchersften made superlativist claimegarding the benefits o¥/PLs,

programmers in this survey were more cautious about the advantagesw@iteeglsoreadier

to impute practical disadvantages tdD\s, including increased effort, reduced quality, or
difficulty of maintenance. The motivation for this hostility might be partly explained by the
concern expressed by some respondents that the ultimate objectifeLefwas tomake
professional programmers redundant &fowing other employees of aompany to do
programming work.
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A.2) Learnability
Whereas VPLresearchers often claimed that VPLs are naturaiiyitive, the only

professional programmerho mentioned intuitionstated that VPLs werkess intuitive than
text.

A.3) Productivity
Professional programmers generally accord greater importance to productivity than to ease of

learning. Responses to this survey considered that VPLs were intended for casual users, with a
shallow learning curve that limits productivity.

B) Notational characteristics
Some respondents, having used many different programming languages, considered that their

work is little affected by théanguage that they use. They observed #iatanguages are
equivalent in their computational potential, and apparently have no regard for the cognitive
ergonomics of the notation they usadeverthelessmany respondents did make statements
on notational issues.

B.1) Readability
Some respondents to this survey did agraéth WPL researchers that VPLs canlarify

relationships within aprogram. Many also expressed reservations about whetvisual
programs would scale up to large programs, or could contain more complex information.

B.2) Documentation
Where documentation was mentioned, respondents considered that a VPL would be beneficial,

because easier to read.

B.3) Syntax reduction
While researchers proposed th@PLs allow direct manipulation of semantimformation

without syntax,programmers did not describe them threse terms. They did say that the
programmer may béetter able to concentrate on design and functionality rather than
coding. Thisview wasalso commonly found insurvey 3, and it interactsitiv theme C.2,

which proposes that the suitability of the VPL for design tasks arises because of a
resemblance to the mental model of the programmer.

B.4) Modularity
Many respondentsvere particularly concerned ith the principles of structured design,

stating that VPLs mightencourage modularisation, decomposition, assemblysaffware
components or object-orientation. All of these are topics that were of common concern in the
industry at the time the survey was conducted, and might have been attributed to any new
product.
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B.5) Power and scalability
The tone of statements addressing this theme was divided: 33 respondents made positive

comments regarding thpower of VPLs, while 40 weresceptical or completely negative.
Many limitations were mentioned, including tha¥PLs did notallow direct access to the
machine, that large programs exceeded or cluttered vibe area, orthat program
functionality is fragmented and obscured by event-driven code.

B.6) Retention of text
Severalrespondents pointed out th®PLs still require typing; for names, expressions, or

component customisation.

C) Cognitive processes
Question 4 in the survey explicitly asked respondents to comment on the brain work involved

in programming. This should haveproduced a strondpias toward the type of statements
found in survey 1 on the themes related to cognitive processes. Despiadbigagement,
respondents in survey 2 mageoportionally fewer statements on these themes than were
found in survey 1.

C.1) Perception and memory
Some programmers proposethat VPLs might reduce cognitive load, freeing the

programmer to think about other problems. Nmtements werenade about peeptual
resources or working memory.

C.2) Mental models
Severalprogrammers did describ€PLs ascorresponding totheir mental models. As in

surveys 1 and 3, some respondents said\ats could directly express ideas peoperty
described in one case as ‘direct stimulation of the brain’.

C.3) Preference and affect
As noted earlier, groups Il and Il (who had no experience of VRIesg more likely than

group | to give a poor rating to the enjoyability of vispabgramming.This is borne out in
responses to this open question. Where researchers stated that a major benefit wbMBLs
be programmer’s enjoyment imsing them, a nuber of respondents in survey dbjected
that VPLs would reduce the quality of their work, makaintenance more difficultwaste
their time, and reduce the intellectual challenge in their work.

D) Metaphorical comparisons
Do the statements made by VPL researchers about the valoeetaphor reflect general

belief among professional computasers, or are they specific to the reseacommunity,
perhaps due to the influence of only a few publications, as suggested in the analysis of survey
1?

44



D.1) Applying real world experience
Respondents in this survey never observed that VPLs might resemble the real world. They did

make some comments about the use of direct manipulation interfaces, butvdresdten
negative — objecting that iconsvere hard to remember and manipulate. Group Il
respondentsvere positiveabout the general benefits of graphical user interfaces, but this is
unsurprising, given that for Visudasic/C++programmers, the creation of graphiaaer
interfaces is their livelihood.

D.2) Making the abstract concrete
Where VPL researchers stated tipstople find it easier to dealitww the concrete than the

abstract, and that solutions are easier to perceive if abstractions are converted to farmsual
some programmers mentiongdat the use of diagrams can restrict the development of
abstractions.

D.3) Comparisons to natural language
One respondent in group lll did echbe ambitions of VPL researchers, that VPLs might

help to cross language barriers by belagsdependent on English. As aisdal Basic/C++
user, thisconcern was probably derived frothe emphasis on internationalisation those
tools.

E) Miscellaneous observations
A few respondents made comments relevant to only product. Thesewvere not analysed

any further.

Discussion

The assessments made t@gpondents in this survey can be reasonably summarised by the
relative ratings they made of VPLs and textual programming languages on Likert scales. The
attitude towards VPLs was generally sceptical, and even hostile in some respects. Thig was

for each of the three groups identified in temple,although respondentwho had ateast

seen a VPL werenore likely to be charitable, particularly in perceiving VPLs basng
enjoyable to use — the same attitude is observed on a larger scale in survey 3. It is notable that
Group I, with no experience aall of VPLs, werecompletely convinced that they would be
unpleasant to use. This type of response is consistent with other studpefe$sional
computerusers, whichind that their attitudes to their tools are often a mattevigbrous
allegiance — this effect is strongest when the new tool is substantially different to the old, as in
the case of the Macintosh (Jones 1990).

This attitude appears to be linked to the niche that VPLs are considered to fill Spabgum
of software tools. Respondents expressed the main advantage of VPLs as being that they were
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easy to use. This ease of usehigught to be achieved to the detriment of the topbsver,
however. For these professional tamers, it is the power of the tool that is mosbisgly
correlated with their assessment of whether they would enjoy using it — this corretldliba
seen again in survey 3.

The responses to the open question follow the shroad pattern of opinionVPLs are
described as easy to use in some respects, but deficiemany aspects important to
professional programmers. The general impacVBLs (category A) is defined by thiact

that they are designed for casual users, but at the expense of reduced productivity. They even
threaten the livelihood of professional programmers,ebgouraging non-professionals to
meddle with programming.

Statements made about the notational advantages of Ytltegory B)were generally
realistic, indicating that programmers have some appreciation of the charactedstcibed

by Green’s Cognitive Dimensions. Rather than appealing to intuition, it is more reasonable to
attribute the advantages of a visual representation to the fact that it clarifies relationships, and
expresses functionality in way lessobscured by typographical syntaXhis advantage is

offset by the fact that the visual representation na#lgw a more limited repertoire of
expression, or may not scale up to the description of larger systems.

Despite the fact that the open question specifically asked respondents to speculate about the
cognitive processes involved programming, most of them restricted their comments to
aspects of programming with which they were familiar — the notation itself, and the context in
which it is used. The proportion daftatements describing cognitive processes (category C)
and the use of metaphor (category D) was éaver than had beefound insurvey 1. The

few respondents who did mention themssues seemed to do so on the basissofe
familiarity with HCI research (for example, in referring to cognitive load). The exueption

in these categories was theme C.2 - mental models. Of those respondents who made any
statement about cognitivéssues,the great majority describedisual representations as
corresponding tdhe mental model they had of the design. This is in accordaiittetive
introspective statemenfeund by Petre andBlackwell (1997) in their analysis ofexpert
programmers’ descriptions of mental imagery. The respondentsthis survey did not
elaborate their descriptions, so it is not possible to tell whether they are referring to the
complex images described by Petre anthcBwell, or simpler representations such as
flowcharts — further evidence on this question was found in survey 3.
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Survey 3: Users of a visual programming language

A large difference was found lraten the opinions expressed in surveys 1 & 2. This result
does not give any support to the hypothesis proposed in the analysis of survey 1 — that there
are widespread and consistent metacognitive theories of pajahology regardinghe way

that programmersuse visualrepresentations. The responses in survey 2 appeared to be
heavily biased, however, by the hostility that the respondents expressed toward VPLs. It may
be the case that survey 2 respondents have similar metacognitive theories to VPL researchers,
but they chose not to express tharancentrating instead on negatiaspects of VPLs. In

order to test this, a further survey was made of experienced users of visual languages

This study was used to collect data two relatively indepndent projects — theecond
project being an investigation of the computational advantagdsl¥IEW, conducted by
Vanderbilt University PhD student Kirsten Whitley. It has previously bpablished by
Whitley and Blackwell (1997).

The population of survey 3wvere users of LabVIEW L@boratory Virtual Instrument
Engineering Workbench), a programming environment marketed by National Instruments for
development of data acquisition, analysis, display and control applications. LabVIEW features
a dataflow-based VPL, called G, which is promoted as being usable by scientists and engineers
having limited programming experience, but who need torite software tointeract with
laboratory equipmentLabVIEW has been commercially available for 10 years, and has
enjoyed relatively wde successompared to othe¥PLs, the majority of which argesearch
prototypes. It is therefore an ideal candidate for studying a VPL with a sigapldation of
experienced users.

There have also been previous empirical studies of LabVIEW. Baroth and Hartsd2@h)
describe the experience of their company usitRl.s. In one case study theympared the
progress oftwo developmentteams,one using LabVIEW and the other using the textual
language C. The teams developed systems concurrently, to the same specification. After three
months, the C team had not yet achieved the specificatibite the LabVIEW team had
exceeded it. On thdasis of this and othestudies, Barothand Hartsough report that
LabVIEW projects are 4 to 10 times faster than those using a tgxtogtamming language.

They attribute this superiority to the fact that VPLs are easier to read, and that the style of
LabVIEW makes it familiar to the electronics engineers in their gaomg. In contrast, an
experimental study by Green, Petre and Bellgi1991) revealed noperformance benefits
resulting from LabVIEW'’s visual notations faronditional logic. Infact, their sample of
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experiencedLabVIEW users and electronic designevere uniformly faster at inérpreting
conditional logic written in a textual language than in LabVIEW.

The clarification of these apparently contradictory findings was one of the main concerns in
the design of survey 3. It is possible that Baroth and Hartsaeghincorrect in attributing
performance improvements to LabVIEWgsual notation. It may be that LabVIEWoes
improve programmingbut that the cause of the improvement stems from langteagares

other than the visual syntax. These issues are the concern of Whitley’s project (Whitley 1997),
and are described byvhitley and Blackwell (1997, 1998). Thosgarts of survey 3 which
relate to Whitley’s project are not described in any further detail in the current discussion.

Population

The respondents in this survey were recruited from two sources of LabVIEW usemnaithe
source wasnfo-labview a mailing list for LabVIEW programmers. As of January, 19870-
labview had approximately 2,300 subscribers. The second source was an démetiory,
compiled by National Instruments, of academic users of LabVIEW. We sent invitations to
participate to 104 addresses from this directory. The third souaseeaders of thénternet
newsgroupcomp.lang.visual National Instruments also created a link to our survey from
their home page on the World Wide Web.

Method

This survey was administered electronically in two versions: an HTML form accessible via the
World Wide Web, and an e-mail form for which responses could be inserted bejwestion

texts. The majority of responses used the HTML version, which can be ségpaemdix A.

When a response was submitted from Wieb page, aprogram on ourWeb server (a cgi-
script implemented in Perl) analysed the response, checking for congpisteers. If the
script detected missing information, it asked the respondent to fill in the misdargnation.

This precaution resulted in a substantial increase in the number of complete responses.

The questionnaire was divided into four parts. The first requested information about the
respondent’s programming backgrounQuestion 1 asked for an email address (this was
optional — in case clarification was needed — Wwaseventually used only to award incentive
prizes supplied by National Instruments). Question 2, like the first question in surasie?|
whether the respondentsere professional programmers. Question 3 asked respondents to
make a qualitative estimate pfogrammingexperience, in terms of the nber andsize of
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projects completed in LabVIEW and in other languages. Question 4 asked respondents to
name the programming language that they had had the most experience using.

The second part of the questionnaire elicited opinions about LabVIEWwd®la, without
emphasizing its visual aspects. This part was exploratory, and included smamatjuestions
designed to invite comments about non-visual aspects of LabVIEW, if resporndasisiered
those to be important. Questions 5, 7 and 8 asked respondents for their overall opinion of
LabVIEW, examples of how LabVIEW makegsrogramming easier,and examples of how
LabVIEW makes programming difficult. Question 6 directly addressed Whitleyp®thesis
regarding Baroth and Hartsough’s observed productiitreases from LabVIEW use. It
asked respondents #@ssesshe relativeimportance of variousabVIEW features using a 6-
point Likert scale. The visuddnguage G was only one of these features — otimmisided
reusable libraries of LabVIEW code, data acquisition hardware, and imserface
development facilities.

The third part of the questionnaire asked explicit questions aboutisbhal aspects of
LabVIEW (i.e. the VPLG), andwasvery similar to the questionnaire used in survey 2. In
Question 9, respondents are asked to comg@aetong several dimensions against a textual
programming language dheir choice. The first five of the dimensions are identical to the
dimensions used in survey 2: power, easeisd, readabilitychangeability andenjoyability.

We also added two further dimensions specifically to address the findings of Green, Petre and
Bellamy (1991) — these asked respondents to compare supp@rfoin conditional logic (as

tested by Green et. al) and repetitive logic. Finally, question 10 is identical to the final
guestion in survey 2; it asks respondents to explain how and why the graphical naure of
affects the “brain-work” required in programming.

The coding frame used for open questions was described above in the discussion of survey 1,
although thefive theme categories described earlier only constitute half of the themes to
which statements could be assigned in survey 3. A second hierarchy of themes dealt with non-
visual aspects of LabVIEW, as described by Whitey Blackwell (1998). Thosehemes are

not discussed here. Although respondemtye not asked specifically about the effect of
using the graphical language until the end of the questionnaire, some respondesite odiel

to describe cognitive effects when answering the earlier questions. We therefore aggregated all
responses to open questions, and coded them as referrifiguéd or non-visual aspects of
LabVIEW according to the content of the response, rather than the context qudiséon

being answered. This is consistent with the approach taken in surweyete metacognitive
statements were found in contexts ostensibly describing questions of computer szikace

than questions of psychology.
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Results

The survey was advertised on 11 March 1997, and we received 227 complete responses by
1 April. The majority of respondents (13%)ere professional programmers, as in survey 2.

Of the remainder, 75 said thatogramming was onlyart of their job, 14were academics

and 6 gave ‘other’ responses. No significant differences were foundedretthese groups in

their responses to any of the questions discussed below.

As expected, LabVIEW users held far more positive opinions abéRLs than the
programmers questioned in survey 2. When the relative differences between the ratings given
to text languages and LabVIEW/ere compared to theelative differences in survey 2,
multivariate analysis of variance (MANOVA) indicates a significant difference aaibsive

rating scalesk(5,297)=0.317,p<.001. The rating differences between th surveys are
illustrated in figure 3.5. LabVIEWprogrammers ratedabVIEW as superior to text in all
respects, including those where survey 2 respondents thought that VPLs would be worse than
text: power, readability and enjoyability(305)=8.53, p<.001, t(306)=5.80, p<.001 and
t(302)=8.18, p<.001 respectively. Although survey 2 respondents consid&felds less
powerful than text, they did accept that VPLs might make progreassger to write. Survey 3
respondents also considered that LabVIEW improved ease of writing more pthaer,
t(225)=7.70,p<.001. The relative size of this difference is greater in survey 2 than in survey
3 howevert(305)=3.51, p<.001. Both survey 2 and survey 3 respondents considered that
VPLs facilitated writing programs more than reading them(80)=3.95, p<.001 and
t(226)=2.90,p<.005 respectively.

B Survey 2
easy to change
] Survey 3
easy to write
enjoyable
powerful ‘__j
readable

20 -15 -10 05 00 05 10 15 20
Rated superiority of graphics over text

Figure 3.5. Relative ranking of text and VPL factors in surveys 2 and 3
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In survey 2, thesub-groupwho had neverencountered &/PL were found to bemore
negative in their opinions. A complementary effect was observed in this sirespondents

who werenot familiar wth any textual programming languagevere instructed to enter
“guess” when naming a textual language to compare to LabVIEW. The 21 respondents who
did so gave significantly poorer ratings to textual languages than other survey 3 respondents,
especially regarding thpower of text relative to LabVIEW(224)=4.68, p<.001). As with

survey 2, programmers who know little about a language are likely to have a poor opinion of
how powerful it is. This hypothesis isupported by correlations beten the amount of
experience reported by respondents and the total rating marks given. The total rating given to
LabVIEW was positively correlated ith amount ofLabVIEW experience, but there was no
correlation vith general programmingexperience,r=.35, p<.001. The reverse was true of

total rating given to text which was only correlatedhvwgeneral experience,=.34, p<.001.

This suggests thgirogrammers do not normallgssesprogramming languages bgritical
generalisation from their experience of other languages, but rather bytca sivopinion

from scepticism to comfort and familiarity.

One of the objectives of this survey was to find out whether LabV{E@grammers were
aware of its weakness iexpressing conditional logic, as observed by Green et al. (Green,
Petre & Bellamy 1991; Green & Petd®92). If so, they should give a lower rating to
LabVIEW when comparing its conditional logic to text languages than they do when
comparing repetition constructs. In fact, respondents’ awareness of this issue depended on the
amount of familiarity they had mt textual languages. Those who entergpliess” in
guestion 9were significantly more positive than other respondents in their assessment of
conditional logic inLabVIEW, t(224)=2.76,p<.01, but not in their assessment rafpetition
constructs. Similarly, respondents whaported having completed more projects waither
languages than ith LabVIEW generally gave a negative assessmentlLabVIEW'’s
conditional logic (poorer thatext by 0.36),while the rest of the sample gave it a positive
assessment (better than text by 0.39224)=3.13, p<.005. Thesetextually-experienced
respondents gave a neutral assessment of LabVIEW’s repetition constructandétme
assessment differed only by 0.008 from that given to text languages).

The coding framework for responses to open format questions has been discussed in the
presentation of surveys 1 and 2. The version of the framework described in this thesis was
created to encompass all threerveys, however. In the case of survey 3, the sample was
sufficiently large toallow a simple assessment obding reliability between théwo raters.

One rater coded all responses, then the second rater coded a randomly selectath@%bo
excluding those responses that had been wdezh creating thecoding framework. The

codes assigned by the second rater agreed with the first in 92% of the statements.
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The total proportion ohegative and positive opinion®und in survey 3 wadntermediate
between surveys 1 and 2, as shown in figure 3.6. Survey 3 respondents were more likely to be
positive about VPLs than in survey 2, bessthan in survey 1. Theweremore likely to be
negative than survey 1, but less than survey 2. This is consistent with the assessments made on
the rating scales of surveys 2 and 3. The following paragraphs compare the level of interest in
each of the themes across the three surveys.

M Positive [ ] Negative m Other

3.0% 7.5% 1.5%
28.5%

56.0%

9
96.8% 70.0%

36.6%
Survey 1 Survey 2 Survey 3

Figure 3.6. Proportion of positive and negative opinions expressed in each survey

A) Contextual significance
Figure 3.7 summarises the relatippoportion ofstatements made on contextsdnificance
themes in surveys 1, 2 and 3.

] % negative statements O % positive statements
General impact -:’ .7
Learnability ‘ .] -7J
Productivity J 5 J

.
-5% 0% 5% 10% 15% -5% 0% 5% 10% 15% -5% 0% 5% 10% 15%
Survey 1 Survey 2 Survey 3

Figure 3.7. Attention to contextual themes in surveys 1, 2 and 3
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Al) General impact
As with statements found in survey 1, LabVIEWbgrammers often mentioned geneealke

of use as an advantage of VPLs. Survey 2 respondents more often stated that this goal would
not be achieved — that VPLs would make no differencesers, or even bmore difficult to
use.

A2) Learnability
Both VPL researchers and LabVIEWogrammers citecase of learning as a benefit of

VPLs, where survey 2 respondentgere more likely to criticise the timeequired to learn
simplistic languages. LabVIEW programmers did express reservations about the difficulty of
learning the dataflow paradigm of LabVIEW, which was very different to languages that they
had used previously.

A.3) Productivity
LabVIEW programmers reported productivity benefits not only in coding, but in the design,

debugging and maintenangehases of software development. The survepr@grammers
believed the reverse — that the advantages of visual programming would be found only during
coding and that these other phases would see no change or even decreased productivity.
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B) Notational characteristics
Figure 3.8. summarises the relatpmportion ofstatements made on notational themes in

surveys 1, 2 and 3.

] % negative statements | % positive statements
Readability | | | |
Documentation ] :I I]
Syntax reduction :I ‘ ‘
Modularity L :‘

Power/ scalability j
Text retention J !/
T A v T T T A Lottt bt b e b by

-10% 0% 10% 20% -10% 0% 10% 20% -10% 0% 10% 20%
Survey 1 Survey 2 Survey 3

Figure 3.8. Attention to notational themes in surveys 1, 2 and 3

B.1) Readability
Respondents in all three surveysgularly noted thatvPLs clarified the structure of a

program. LabVIEW programmers were more likely than survey 1 or 2 respondents to discuss
“Gestalt” views or the “big picture” of a progranThey were alsomore likely todescribe

the negative aspects of LabVIEW'’s readability; @baning about rassy, cluttered code —
literally resembling “spaghetti”.

B.2) Documentation
Only a few respondents in each survey referred specifically to the role \isatal

representations can play as a documentation and communication medium. Baroth and
Hartsough's (1995) opinion thaabVIEW facilitates ommunication beteenprogrammers
and their clients is not widely supported.

B.3) Syntax reduction
VPLs do mitigate the problem of minor syntax errors in programmlings aspect of VPLs

was not often mentioned bYPL researchers, however. The professiopedgrammers in
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survey 2 and 3 were concernedhaminimising syntax. In facttwo LabVIEW programmers
complained about the novel syntactic demands in wiring up large programs.

B.4) Modularity
Survey 2 respondents mentioned modyapgramming more oftethan survey 3. This is

not a major emphasis ibabVIEW, whereas survey 2 wasnducted at a timahen object-
orientation was the main technical trend being adopted in commercial programming.

B.5) Power and scalability
Survey 2 respondents appeared concerned that highV@led mightdeny themaccess to

the low-level facilities of themachine that are so important in P@gramming. This has

often been a matter of concerrittwnew geerations of programmindanguage, and it was

most uniformly seen as a disadvantage by survey 2 respondents. Neither researchers nor
LabVIEW programmers appeared as concerned.

B.6) Retention of text
A few survey 2 respondents seemed to find it hard to believe that an arloirautational

operation could be represented graphically; stating that there vebub/s besome level
where the visual representation would be inadequate. This is not the case in LabVIEW.

C) Cognitive processes
Figure 3.9. summarises the relatipeoportion of statements made on cognitiy@wocess

themes in surveys 1, 2 and 3.

| | % negative statements O % positive statements
Perception/ memory ] j
Mental models ‘ liJ .
Preference/ affect ‘ ! E
L1 I I L1 L1 I I I L1 I I I |
0 % 5 % 10% 15% 0 % 5% 10% 15% 0 % 5% 10% 15%
Survey 1 Survey 2 Survey 3

Figure 3.9. Attention to cognitive themes in surveys 1, 2 and 3
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C.1) Perception and memory
Survey 3 respondents seldom mentioned perceptual processes. One respondent explicitly

discounted the type of statement made in survefthe humanbrain is massivelyparallel
but basically operates in a linear fashi@nis parallel, but not in the least bit linear.”

C.2) Mental models
As in surveys 1 and 2, LabVIEWWrogrammersalso stated that the designs they construct in

their minds are in some sense pictorial or that VPLs are closer in nature to their thoughts than
are textual languages. These opinions may be influenced bypthdominance of
diagrammatic notations in software design, but they sarpported by the introspective
evidence reported by Petre and Blackwell (1997).

C.3) Preference and affect
Survey 1 researchers stated that VPLs woulgdeular simply because people wowdjoy

using them. Several LabVIEWWrogrammerssaid that they think using LabVIEW is fun, but

the conservativeoding policy followed inthis survey meant that those statememése not
interpreted as relating to tl@ language unless respondents explicitly said so — it may be the
case that respondents consider the editing environment or the front panel assembly in
LabView to be fun, rather than tlt& language.

D) Metaphorical comparisons
Figure 3.10. summarises thelative proportion of statements made ometaphorical

comparison themes in surveys 1, 2 and 3.

[ ] % negative statements O % positive statements
Real world ‘ .j -
Abstract/ concrete ‘ j
Natural language .l ‘ j
| L1 L1 I — I | L1 L1 I | | I L1 i L1 I

0% 2 % 4 % 6 % 8% 0% 2% 4 % 6 % 8% 0% 2% 4% 6 % 8 %
Survey 1 Survey 2 Survey 3

Figure 3.10. Attention to metaphorical themes in surveys 1, 2 and 3
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D.1) Applying real world experience
LabVIEW exemplifies the principle of presenting abstraction in terms of real-veoridepts

that are already familiar to thprogrammer. Several LabVIEW users agreed that their
previous experience in engineering or electronic circuit-building had been very important to
them in learning the wiring metaphor that is central to LabVIEW.

D.2) Making the abstract concrete
The claim made by VPL researchers, that VPLs make abstract concepts easiderstand

by presenting them in the form of concrete images, was handigtioned by respondents in
either survey 2 or 3.

D.3) Comparisons to natural language
Survey 3 respondents seldom compakéels to human languages; amparison that was

found in survey 1.

E) Miscellaneous observations
In survey 3, some issues specific to LabVIEW weot compared directly to othesurveys,

despite the fact that they can be seen as general problems in VPLs — for example, the fact that
it can be difficult to produce a paper print-out of a visual program. This type of issue may be

a significant irritation to professional users oW/BL, but neither researchers noon-VPL

users would be likely to consider it.

Discussion

The results of this survey have emphasised the conservatism of profegmiogaghmmers’
opinions about their tools. In both surveys 2 and 3, responderes most positivabout the

tools that they had most experience using. Their opiniomesf techniques or unfailiar
languages was generally sceptical and even hostile. These opiwenesoften expressed
confidently, but appear to be associated with lack of experienceuaderstanding of the

tools being discussed. The reasons for this attitude have not been investigated here, but there
are several obvious candidates: the highly competitive market for software tools, stemnexi

of support groupswhere programmers meet to reinforce their allegiance to specific
languages, and the desire to protect one’s professional specialist knowledge of ¢xidsing
among other factors. In the context tifese attitudes, it is not surprising that s@any
respondents in survey 2, rather than echoing the opinions of VPL researchers about the
benefits of visuaprogramming, deniedhat VPLs wouldbring any advantages at all. The
balance of opinion was restored in survey 3, where, with much the same motivation, LabVIEW
programmerswere highly positiveabout VPLs andderided textuaprogramming languages
(especially if they had not used them).
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In cases where the survey respondents analysed landacitiges on a more criticabasis, it
seems that the area of improvement most interesting to professional programfaeiiitiés
that might improve their productivity duringiundanetasks. These improvements can be
analysed in terms of relatively well-understood usability measures, espeGafien’s
Cognitive Dimensions. Survey 3 respondents with experience of both VPL andriguages
confirmed the finding ofGreen, Petre and Bellam{1991) that experimental subjects are
slower to interpret conditional logic in LabVIEW than in BASIC.

There are further observations made by respondents that have not yet been investigated
empirically, and may be worthy of research. The VPL researchers in survey 1 appear to
consider that the main advantage vo$ual representations is that they are easieretad.
Respondents in both surveys 2 and 3, however, reported that the main contribution is that they
are easier tavrite, with readability being relatively poor. Aimilar distinction between the
appearance of comprehension aactual lack of understandingas also beerfound in

studies of English text reading (Glenberg,ilkiison & Epstein 1982). Another theme
expressed in both surveys 2 and 3 is the perceived trade-@fédretpower and usability in
programming languages. There is nbvious theoretical reason why a powerfahguage

should be difficult to use. It would be interesting to investigate whethepénteption comes

from the dichotomous marketing of programming toolsstudent” or “end-user” versus
“professional” categories, or whether the perceived trade-offsea from cognitive
dimensions such as diffuseness and abstraction gradient.

Professional programmershile aware ofpotential improvements in productivity from new
languages, give little attention to the theoriescofjnition that are mentioned by soany

VPL researchers as motivating the development of VPLs. The one topic in this area that is
addressed regularly in all three surveys is the belief that programming involves the creation of
image-like mental representations. This intuition is supported by in-dieptiviews with
expert programmers, as reported by Petre Biatkwell (1997). Despite thiscommon
intuition, it is not a necessary fact that the formation of image-like mental madelse
facilitated by the use a diagrammatic external representation — what Scaife and (R9§&s

call the resemblance fallacy The relationship between mental imagery adigrams
motivates the first experiment to be discussed in chapter 3, and is investigatatsiderable

detail in chapter 4.

The hypothesis that VPLs are essentialigtaphorical is seldom raised by tpeofessional
programmers ofsurveys 2 and 3. LabVIEW includes a quite specifietaphor — of
programming asthe creation of an electronic circuit (the cursor, wheannecting
components, resembles a spool of wire). Despite this emphasis, relddvwelyabVIEW
programmers mentioned it as an important benefit. If the idgaragramming languages as
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metaphors is not widespread amongst programmers, why is it so roftetioned by VPL
researchers? The researchers do not cite specific sources, so it would appear that this
metacognitive theory has been transmitted through the VPL research commuinitfproyal

means, perhapsriginating from Smith’s (1977) description efsual programming as a
“metaphor for thought”. After completinthe formal analysis of survey 1, atldroughout

this research project, dontinued to find statements in the research literature making even
more explicit claims about the relationship between abstraction, mental imagery and
metaphor. These migheasily have appeared in Smith’s original publication. A typical
example is:

Rather than forcing the programmer to make his concepts of hsystamshould

work conform to a given programming language and environmentenk#onment

and language should conform the programmer’'s concept$...] Attempting to

have programmers directly [sic] with their conceptualizations has several interesting
implications: The environment has to be graphical. People often thsikg
pictures. Many of the conceptualiews of programming aretwo-dimensional,
graphical ones. The programmer must be ablewtrk using the pictureshat
compose his conceptualizations and to assign meaning to these pictures.

Reiss (1987), p. 178

The remainder of the curremhesis principally investigates this premise of VPL research. If

the intuitive claims of VPL research are justified, and if Smith’s original insights are
supported by empirical evidence, then the use of metaphor must be treated far more seriously
as a fundamental design principle fall types ofdiagram. The experiments in theext

chapter and in chapter 5 undertake this investigation.
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Chapter 4: Diagrammatic Metaphor in Instruction

The giving form and shape, to what otherwigauld only
have been an abstract idea, has, in many cabegn
attended with much advantage.

The Commercial and Political Atlas
W. Playfair, 1801, p. xi.

The experiments reported ihis chaptertest the findamental claim of the usénterface
metaphor, and one of the underlying assumptions of visual programming language advocates
— that novel abstract concepts can be presented diagrammatically in terms of falnyifiexal
experience. In the context of building user interfaces, it may be reasonable to claim that an
interactive diagram imitates hat Gibson (1979)called the perceptual affordances of the
physical world. As in the physicakorld, graphical affordances indicate potential actions
within the interface(Norman 1988, Larkin 1989). Affordances do not require explicit
metaphor (Mohnkern 1997a), and meyen fail if metaphors are drawn too far from their
source domain(Lewis 1991). Theories ofuser interface affordances have oftéeen
conflated with the role of visual structure in forming analogies. This role was demonstrated in
a more general investigation by Beveridge and Parkins (1987), showingrihidgical
solutions are more easily discovered when their structure is presented visuallythodmit
findings have not been tested in user interface applications.

Many theories of diagrammatic reasoniofaim, however, thaknowledge of thephysical

world is used to interpret diagrams even when they do not support interaction. These are
often related to theories of conceptual metaphor and thematic relations claiming that all
abstractions, even linguistic ones, are derived fembodied experience (Jackenddf®83,
Johnson 1987, Lakoff 1987). Conceptual metaphor theories attract considerable debate, with
theoretical and experimental evidence both for (Gibbs & O'Brien 1990, Gibbs 1996, De
Vega, Rodrigo & Zimmer1996) and againstMurphy 1996, 1997, McGlonel996,
Rumelhart 1993).Spatial representations are equally contentious wpmposed as a
cognitive basis for grammar (proposed by Talmy 1983, but challenged by Choi & Bowerman
1991) or for memory (proposed by Glenberg 1997, and sure to be challenged soon). Despite
the disputed status afonceptual metaphoheories, HCI researchers such as Tayi&87)

and Hutchins (1989) arguthat user interfaces similarly reflect spatial representations of
abstract structure. Gattis &lolyoak (1996) makethe same argumentegarding the
interpretation of Cartesian graphs. Lak¢1993) has also extended his observations on the
linguistic consequences of spatial experience to encompass the use of diagraxpsess
abstraction.
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The experiments reported ihis chapter address these claims by testing whether spatial
representations, when used in the context of vigualgramming, dofacilitate abstract
problem-solving. Surveys 1 and 3 discovered a range of beliefs that appear sirsianen
ways to the claims about conceptual apdtor. Infact, programming is dar more complex
activity than those that are used in typical metaphor experiment#ingVa conputer
program is a loosely constrained problem solving exercise rather than beirggtikeation

of natural language (Green 1980, Green, Bellamy & Parker 1i8%er 1992 Koenemann

& Robertson 1991). Mangtudies ofproblem solvinghave demonstrated the potential for
using one or more external representations as a cognitive tool (Katona 1940, Sd&i9wartz
Carroll, Thomas & Malhotra 1980Anderson 1996, Cox 1997, Zhang 1997). In solving
programming problems, the languagacts both as the solutiomedium and theproblem
solving representation. Aisual programming languageanust therefore be effective as a
diagrammatic tool for problem solving.

The two experiments in this chapter compare the effect of metaphor in the representation to
the effect ofprogrammingexpertise. Many studies have observed that expertise in using a
specific notation has a significant effect on both problem-solving strategies andnpmaréey,

in fields including not onlyprogramming (Adelson 1981McKeithen et. al.1981) but
electronic circuit design (Egan &chwartz 1979, Petre & Green 1998)eteorology (Lowe
1993b), abacus use (Hishitani 1990) and blindfold chess (Saariluoma & Kalakoski 1997).

Visual programming languages,however, arenot primarily designed for use bgxpert
programmers. Graphical representatioase expected to be more appropriate for
inexperienced computer users (van der Veer, van Beek & Cruts 1987, Sohn & THfafe
and the value of visuaprogramming languages for inexperiencagsers hasbeen
demonstrated in studies by Cunniff & Taylor (1987) and Mendelsohn, Green &(B2Sa),

as well asheing an explicit claim whemprogramming languageare promoted foruse by
novices without any empirical verification (Bessa 1986Bonar & Liffick 1990). Nardi
(1993) onthe other hand, has strongly criticised the notion of prggramminglanguage
being suitable for novices or “end-users”.

The experiments reported here have used participants wifimgramming experience
partly in order to separate thssue of notational expertise from the effectmétaphor in
learning to use a notation. They also compare experts and noviogserienced
programmers have knowledge about programmtimgt is indepndent of theepresentation
being used as noted by Mayer (1988), and they apply consistent strategiesdier
comprehensioreven when using #&nguage that does not explicitlgveal theirpreferred
structures (Boehm-Davis, Fox & Philidg996). The design aofhese experiments is based on
the premise that expeprogrammerswill out-perform novices, even using aotation they
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have not seen before, and that the degree of ghaiformance differencewill provide a
reference scale for the degree by which metaphor improves the performance of novices in the
same task.

Experiment 1. Programming with an implicit pictorial metaphor

Despite surfacesimilarities, the process of learning programming language hditle in
common vith learning a naturallanguage. Inappropriate generalisations from natural
language are a major source of confusionptogramming novices. Bonar and Soloway
(1985) report that novice bugsfound in think-aloud protocols ofterresult from
generalisations of natural language, while Scapin (1981) found that novices make more errors
when using a text editing command set derived from natural languagevtii@amusingmore
“computational” terminology. Theuse of metaphor in a computer languagal$® unlike

the use of metaphor to extend the expressive potential of natural languages (Gentner &
Clement 1988). Natural language tropes such as metaphor rely on the poterdiabiguity

in language (Empson 1984yvhile computer languages are designed to urambiguous
(Green 1980, Cohen 1993%entner, Falkenhainer & Skorstad (1988), in describing their
structural model of metaphor interpretatiomarn explicitly that the interpretation afser
interface “metaphors” involves a different process to the interpretation of linguistic
metaphors.

In what sense, then, cgirogramming languages be metaphoricdl?e metaphor that is
addressed in this experiment is an explanatory metaphor by which those learnis® ttee
programming language understand its operation. Users of any device form a mental model of
its behaviour, explainingvhy it responds as it does to their actions. This is trueoofiplex
machinery (Moray 1990), pocket calculators (Young 1981, 1983), commyerating
systems (@uber 1987) and automatteller machines (Payne 18P The mental model is
sufficiently detailed to explain the observed behaviour, but does not describe all the details of
the device’s design (du Boulay, O’Shea & Monk 1981).

In computer science terminology, the model that defines the behaviourpodgaamming
language is a “virtuamachine”. @gnitive ergonomics (van der Ved990) andprogram
understanding (Tenenberg 1996) dependwdrether the user's mental model is consistent
with the virtual machine.Programming languages for use kyovices havetherefore
attempted to make the virtual machine more explicit (e.g. Esteban, Chatty & Palb9@be
perhaps most originally in the form of cartoon characters acting in a computatamalof
function houses and message-carrying birds (Kahn 1996)ouice programmers are not
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explicitly given a virtual machine, they create their own metaphors to explaibetineviour

of the language (Jones 1984). Even in languages which supposedly describe computation in
purely mathematical terms, novicesaint to know how factions will be evaluated (Segal &
Schuman 1992). Ifovices are not given a model of a virtual machine, they may invent an
inappropriate explanation (Booth 1992, Eisenberg, Resnick & Turbak 1BBeénstadt,
Breuker & Evertsz 1984), working from sources of information such as observing a debugger
(Canas, Bajo & Gonsalvo 1994) extrapolating from tutorial code examples (Noble 1992), or
imagining the behaviour of the machine from the viewpoint of an internal agent (Watt 1998).

Programming languagemust thereforeserve a dualpurpose: a notation for solving a
problem in some problem domain, as well as representation of some virtual mgchyher

1990, Blackwell 1996a). Their effectiveness depends on how well information caianeed

from the problem domain to the notation, and from the notation tovifieal machine
(Payne, Squibb & Howes 1990, Norman 1991). The structure of the virtual machine, and the
nature of the mapping, combine to formhat isoften called thé'programming paradigm”

— families of languages that support the sgmegramming techniques. v@rly complex
mappings can easily compromise performance (Nardi & Zarmer 1993), but one rofithe
challenges in improvingorogramming languageisability is providing metaphors that are
appropriate for the user (Carroll & Olson 1988, Pane & Myers 1996, Pa@eé). Viual
programming languages can potentially achieve this goal by depicting the virtual machine as
if it were aphysical machine (Glinert 1990) which can be understood by analogy from the
user’s experience of real world machines (Tauber 1987, Treglown 1994).

Metaphors of the virtual machine have been used for some time when tepchgrgmming

as well as other aspects of computer use: the effectiveness of metaphor hderheaatrated
experimentally when learningrogramming languages (Mayer 1975), commdadguages

(Payne 1988) and system behaviour (van der Veer 1990). Chee (1993) has proposed a theory
of analogical mapping from metaphor to programming languageenWthe metaphor is
incorporated into the language as a pictorial diagraowever, it isconstantly available for
inspection, unlike the situations in which mental models and virtual machineom jextural
cognitive structures. For a visual programming language, the programming paradigm and the
user interface metaphor should ideally become indistinguishable.

The way that thistype of metaphor is interpreted magvolve very different cognitive
processes from those used in interpreting texpralgramming languages. Diagrammatic
representations of physical machines are often interpreted via a processtal animation.
Hegarty (1992) usedhis term to describe experiments in which the gaze of subjects
reasoning about the motion of pulleys in a mechanical diagram followednthgined
direction of motion. Similar results have beeaparted by Fallside and Jugi994),

63



Narayanan, Suwa and Motoda (1995) and Sims and Hegarty (1997). Schwartz has shown that
making a visual representation of a mechanism more or less pictorial can influemt®ite

of a mental animation strategy (Schwartz 1995, Schwartz & Black 1996a). In his experiments,
subjects asked tassessengths on either side of a hinged joint appeared to mentathte

the joint into place if it was presented pictorially, but used an analytic stratetjyréaction

time consequently independent of joint angle) when the pictorial detail was removed.

In the experiment presented here, two forms of a visual programming notation aré&aoiged.
express a virtual machine, and both express it diagrammatically. One of themyehow
depicts the virtual machine as a metaphorical physical machimrecasimended in many of

the publications cited above for teachipgbgramming orassisting novicgprogrammers. |t
usescartoon-like representations of physical machines, intendegraduce mentaimodels
corresponding closely to the virtual machine. It is also intended to encourage reasoning about
program behaviour using mental animation strategieshef kind described by Schwartz
(1995) and Hegarty (1992).

Notation

The diagrammatic notation used in this experiment was based on the most cparadigm

for visual programming languages. In a “data flow” language, computational operations are
represented by nodes in a graph. Hnes between these nodes indicate potential transfer of
data between different operations. The overall behaviour ofptbgram is defined by the
topology of the graph. Data flow languages are considered to be particularly appropriate for
describing concurrent computation (Finkel 1996), but the claim that they provide advantages
to any particularclass of user by assistingpmprehension, problem-solving qrogram
design is still under investigation (Karsai 1995, Good 1996).

eal_nurnber _input

‘!_Tj'r_f — current_valug

loop_logical_control

[TF]

Figure 4.1. Example of LabVIEW program
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Figure 4.2. Example of JavaStudio program

Dataflow is already considered particularly appropriate for exploitation in commerisiell
programming languages, however. Two examples @bmmercially available visual
programming languages employirdpataflow are illustrated in figures 4.1 and 4RBoth
describe dataflow in a metaphoricalay, although the metaphors are presentgsing
different modes. The LabVIEW language, shown in figure 4.1, depicts the paths between
nodes as simple line&@lthough these arecoloured to indicate the type of data). The
documentation folLabVIEW, howeverdescribes these lines metaphorically asrési like

those connecting components in an electronic circuit. The JavaStudio langhage, is

figure 4.2, depicts paths as miniature pigasluding visible plumbing joints. The mtaphor
implicit here is that data flows from one component to another like a fluid through plumbing.
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a) without metaphor b) with metaphor

Figure 4.3. Comparison operations without and with metaphor

Two different presentation modesere also used in thisxperiment. In one of thermodes

were connected together using unadorned lines, and the nodes themselves were represented as
abstract symbols. An example of one of these nodes, representing a comparison operation, is
shown in figure 4.3a. The symbol provides somaemonic assistance usingnathematical
conventions, but there is no explicit physical metaphor. In the second presembatit
nodeswereconnected by tracksith balls rdling along them. The nodes themselves were
fanciful “Heath Robinson” mechanism$&iaving a computational function implemented by
controlling the motion of balls, as in the proposed ball-bearing computer described by Pilton
(1971). A comparison operation, in which an arrivingll is weighed against predefined

value to determine the outcome, is shown in figure 4.3b.
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Repetition

Selection

Figure 4.4. Examples of computational operations

Thesetwo versions of the dataflow notation, one depicting dataflow metaphorically as the
motion of balls,and the other using a relatively simple geometric depicticgre otherwise

made as similar as possible. The component nodes and connections betwegrerthgiven

to participants in the form of paper cut-oughose profileswere identical in eaclversion.

Figure 4.4 shows a selection of computational operations, comparing the two verseashof

(the full set of components is reypluced in Appendix B.l)Participants arrangethese cut-

outs on a tabletop by matching the convex data outputs on the right hand side of node and
path profiles to the concave data inputs on the left hand side of another node dfigaté.

4.5 shows an example of a complete program (using the metaphorical notation) which would
simply display the numbers from 1 to 10.
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Figure 4.5. Example program: display numbers from 1 to 10

Tasks

The task domain used in this experiment was intended to be equally famipaogrammers
and non-programmers. Following the advice of Lave (1988), | designed four tasks based on a
regular householdtask — the inspection of bank statements. Participamie asked to
interpret or write programs that would carry out the following functions:

* add total credits and debits on a statement;

» find missing cheque numbers in the sequence of those included on the statement;

e print out the locations in which cash withdrawals had been made; and

e automatically write cheques for the same amount as in the previous month.

A transcript of the instructions and task specifications is included in Appendix B.1.

Equipment

Although thetasks wereperformed using paper cut-outs rather than a competiting
environment, the table top was arranged in a way résgmbled typical visugirogramming
languages. Figure 4.8hows trays athe right hand side of thtable, made to resemble a
software “palette”. The trays were divided into compartments, each containing a pile of one
type of component.
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specification tape
recorder

component
descriptions

Figure 4.6. Experiment 1 working environment

The behaviour of each component was described on individual printed pages.uding a
component for the first time, participantgere givenone of these descriptions to read, but it
was then placed out of view of the participant, who could ask to see it again at anyHime.
was intended to be similar to the operation of an on-line help facility.

Participants were also givennaock-up of a bank atement to be used for referendering
the bank statement processing tasks.
Hypotheses

1. That the provision of a diagrammatic metapalf make it easier for novices to
learn to write computer programs.

2. That this assistancwill reduce the differences iperformance that would
normally be expected between novices and expert programmers.

3. That noviceswill think in terms of the metaphowhen reasoning about the
computational virtual machine.
Participants and design

Twelve participantswere recruited from volunteers registeredttwthe Applied Psychology
Unit Subject Panel, and from amongst staff at the Unit. They were divided into two groups on
the basis of their priorexperience of computer programming. Foparticipants had
previously worked as professionaogrammerseight had never written a computgrogram
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(“novices$). The second groupwere bpadly matched in educational achievement and
intelligence to the experienced programmers (they were educated to tegieand during
previous experiments at the APU, their scores on Cattell's Culture Fair tesbhasponded

to an 1Q of between 120 and 140).

The second independent variablasthe version of the data flomotation given to the
participant, either with or without the rolling ball metaphor. Assignment was balanitieid w
each experience group: | presented each version of the notation tomdatprogrammers,

and totwo of the programmers. | madghis allocation in the expectation that thestaphor
would bring novice performanceloser to that of the expert programmengiereas itwould

have little effect on the experts. If thigere the case,the expert programmers could be
aggregated into a single group for analysis, and the performance of this grouppnmibte

a point of reference for the claim that metaphor can improve the performance of novices with
respect to experts.

Performance was measured using two dependent variables. The first was ttiméataht the
participant took to complete each of the faativitiesdescribed below. The second was the
degree ofelaborationthat the participanproduced inthe two program constructiortasks.

The program specificationhat they were given allowed severalifferent solutions, but
complete solutions had similar degrees of complexitiiile incomplete solutions oitted

some of the required components. Tietative quality of the solutions might be subject to
interpretation, but the degree of completeness could be estimated by the simple measure of
the number of nodes included. The third dependent variable was the numberesfthat
participants asked teeview component explanations after they had initially read them.

Three further dependent variables were used to measure awareness of the metajpimi- A
aloud protocolwas recordedwhile the participant worked on each task. | compared the
vocabulary of these protocols in order to identify flequency \ith which the participant
referred to the problem domain, to the computational metaphor, and to abstract mathematical
or computational terms. Thesavere compared using three differentvocabulary
classificationsinounswere classifiedaccording to the domain they referred terbswere
divided into physical and abstract behaviour, and descriptionowfwere classifiednto
references to the virtual machine and references to the problem domain.

The first two hypotheses were assessed on the basis of the tinedabodation perfanance
measures,comparing performance ohovices to that of experts, and alsmmparing
performance wth and without diagrammatic megthor. The effect of the metaphor on
learning was evaluated in terms of the Mmem of review requests made by participants.
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Vocabulary in the think-aloud protocols was used to evaluate the extent to which participants
used the metaphor when reasoning about the program.

Procedure

Before the start of the experiment, | instructed participants inptbeedure for“thinking

aloud” during problem solving, using the instructional procedure prescribed by Ericsson and
Simon (1993). Aghe participantperformed eachask, the tap&ecorder seen in Figure 4.6
recorded this verbal protocol. In order to confirm the assumption of task domain familiarity,
| asked all participants to confirm that they were familiar with bank statements.

For the firsttask, | demonstrated the creation ofpaogram to addiotal credits and debits,
describing the operation of the program as each component was added. | rdadctigtion

from a script that was identical in theo versions of the language (this script is included in
appendix B.1). The participant was shown a description of each component as it was added to
the program, which they read at their own pace. The layout ofdhmgponent descriptions is
shown in figure 4.7. Only the picture was changed intiéh@versions of the language — the
description textswvere identical(the full set of component descriptions is reproduced in
Appendix B.1). After the program was complete, | shuffled the paper componentasiaed

the participant to reassemble to program while thinking aloud.
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Wait

At first, this part does nothing with
its input value

When the control input arrives, the
original input value will be passed
through to the output

It waits until a
control input
arrives here

Figure 4.7. Layout of component descriptions

In the second task, | showed a completed program to the participant, printed to the same scale
as the paper cut-outs on the tabletop. | told the participant thatrdiggam wasdesigned to

find missing cheque numbers in a sequence, and asked them to éxgMaib worked. The
program contained an errdit compared each number iself rather than to therevious

one in the sequence), and | asked them to find this error and suggagtad fixing it. This
program includedtiwo more components that had not been used in the thAsd¢, and |
described the function of these components in the same way as before.

In the thirdtask, theparticipant was given a description ofpeogram that would check the
locations of cash withdrawals, and display any that had been made outside Cambridge. | then
asked the participant to createpeogram that would carry out thigunction. As before, |
described a further component that would be required in this task.

In the final task, theparticipant was given a description ofpaogram that would find a
cheque paid to a particular recipient, and automaticaliye another cheque for the same
amount. | did not describe anyew components, but told the participant that some new
components would be required. When this occurred, they were to use “mystery components”
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that could be defined to carry outew operations, as whetlesigning an encapsulated
function in a real programming language.

Throughoutthe experiment, eacbomponent was described only ondearticipants read at

their own pace, but the description page was then placed beyond reading distance. They were
able toreviewthe description of angomponent by asking teee the page again, as in an
online help facility.

Results

The experimental hypotheses express the expected improvemeerformance resulting

from use of metaphor in terms of time taken to comphdtethe tasks,and elaboration in
construction tasks. The effect of metaphor on these measures is considered with respect to the
differences between novices and experts.

The four expert participants are considered as a single group in this analysis. | dxpeact

to find a large effect of metaphor on expert performance, and the experiment was intended to
assess itstility for novices. Two of thefour experts used the metaphorical version of the
notation, andiwo used the geometric version. Tiperformance measures fdnesegroups

were, as expected, similar — they are summarised in table 4.1. No significant differences were
observed, but the size of the groups is too small to draw any further conclusions regarding the
assumption of homogeneity.

Performance measure isW metaphor No metaphor
Time to complete four tasks (h:mm:ss) 0:28:27 0:41:50
Elaboration in construction tasks 23.5 23.0
Number of review requests 5.0 6.5

Table 4.1. Performance measures within expert groups (N=2)

There were significant differences between the two novice groups and the expert group in the
levels of performance observed. Novices took an average of 57 minutes to complietarthe
tasks, whilethe overall average in the expeagtoup was 35minutes,F(1,10)=6.07, p<.05.
Experts alsoproduced solutionghat weremore elaborate: 23.25 components arerage,
versus 18.13 fomovices, F(1,10)=19.66, p<.01. The difference between the rluen of

review requests made by novices and experts was not significant, for reasons discussed below.
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Performance measure itWmetaphor ~ No metaphor

Time to complete four tasks (h:mm:ss) 0:53:42 1:00:19
Elaboration in construction tasks 17.8 18.5
Number of review requests 7.0 17.0

Table 4.2. Performance measures within novice groups (N=4)

The main hypothesis in thisxperiment was that the noviggoup given the metaphorical
version of the language would be intermediateperformance beteen novices ¥h no
metaphor and experts. Thelative performance othe three groups is compared figure

4.8. Although there is a significant difference between the expert and novice groups in task
completion time, there is no significant difference between tiwe novice groups,
F(1,6)=0.33,p=.586. The same is true of the elaboration meas(de6)=0.57,p=.477.
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Elaboration - number of components
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programmers nom etaphor metaphor programmers m etaphor no metaphor
Group Group

Figure 4.8. Comparison of expert performance to novices with metaphor

The first hypothesis referred specifically to the effects of metaphor on learning, rather than
on performance. There is an effecttire expected direction on the mean numbetimis

that novices asked to review the component explanation (see table 4.2); the mean number of
requests is much higher in the novigeoup wth no meaphor. This difference is not
statistically significant, howeveF(1,6)=3.35,p=0.117. The large difference is in fact due to

only two of the four participants in the no metaphor condition — the dgthemade review
requests no more often than those in the metaphor condition. The effect of metaphor on
learning is investigated ith a largersample of novicggrogrammers in the nexxperiment,
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and in the experiments discussed in chapter 6, wherdadtigl to be a significant source of
variation.

In order to measure the extent to which the dataflow metaphor was used in readomirig

the notation, | compared the vocabulary used nmyices in the verbal protocolsThis
involved three separate comparisons. The fingi were comparisons of the categories of

noun phrases anderbsfound in the protocol transcripts. Noun phrasesre dividedinto
references to the virtual machine, references to the metaphor, references poolthem

domain of bank statements and references to other material (material outside the scope of the
experiment). Figure 4.9 shows the mean number of references made in each category by the
three experimental groups. The most significant observation is that none of the participants in
the metaphor group ever referred to the implicit metapiaite thinking aloud. Neither are

there any other significant differences between novices inmb&phor andho-metaphor

group. Experts do, however, make significantly more references than novicespimtihem

domain while thinking aloudf(1,10)=12.12p<.01.

1000

O programmers
[l novices - no metaphor
] novices - metaphor
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Number of references per 1000 words

Domain Machine Irrelevant
Referent category

Figure 4.9. Distribution of transcript noun phrase referents

In a second analysis of vocabulary, all verbs in phetocol transcriptsvere classifiedinto
categories comprising references to motion, propulsion, decision, alteration, exprstsg®n,
change, observation, layout, arithmetic, ownership, mental process, and necessity. If
participantswerethinking of avirtual machine in terms influenced by the metaphor, they
should be more likely to use verbs of motion or propulsion.

Most participants used a rather constrained vocabuwdmie thinking aloud, some othem
using certain verbs continually. This resulted insleewed distribution ofcategory sizes
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between subjects, and wbcabulary within the categories.tierefore based this analysis on

log transformed frequencies werbs within each category, relative to the total hamof

verbs used by that participant. The log frequencies for each verb category are illustrated in
figure 4.10. No significant differenceserefound betveen themetaphor andno-metaphor

cases in these distributions.
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Figure 4.10. Log frequency distribution of transcript verb categories

A third comparison of the verbal protocols concentrated specifically on occasions when
participants described interaction betweemponents. Theseere dividedaccording to the

type of information orentities that weralescribed as moving between components: they
could refer to progranvalues (eithercontrol information or specificlata), to entities in the
problem domain (such as account numbers), or to abstract entities (stitdmds “value”

etc.). The number of references that fell into each of these categories is shown irdfigure
There are no significant differences between the st categories in the metaphor and no-
metaphor conditions, but there is a large difference in the number of references thaidare

to abstract values moving between compondf(s,6)=12.07 p<.05.

76



100 ] no metaphor
W with metaphor

10

Interactions described between components

Abstract Entities Control Data Domain Entities Non-  Control Data

Interaction type

Figure 4.11. Descriptions of interaction between components

Discussion

The measures used in théxperimentwere successful iimeasuring differentlevels of
performance — they clearly distinguished between the expert and rgreigps. Despite the

fact that the measures appear to be sufficiestnsitive,the expected improvement in
performancewhen novices were givenraetaphorical diagram was not observed. This is a
new finding in HCI. Some previous experiments in HCI areas other ghagramming have
failed to find improvements in performaneghen metaphors aratroduced (e.g. Eberts &
Bitianda 1993; Sutcliffe &Patel 1996), but those studies have generally suggested that
specific usability problems reduced the benefits expected of an otherwise vahiakdetion
metaphor.

The design of thigxperiment did assume that exp@rogrammer performancgould be
relatively consistent, whether or not thaeyere given anexplanatory metaphor. This
expectation was derived from studies of expprogrammers such athat of Scholtz &
Wiedenbeck (1992), who observed that experts learningeva language used strategies
already familiar to them, rather than learning how the features ohdiaelanguage might
require a different approach. A similar effect mhgwever, haveesulted in theunexpected
consistency in novice performance. Studies of novice programh@ass observed that,hie

they cannot transfer strategic knowledge from otipeogramming languages, they do
transfer the structures of everyday tasks into the programming domain (Eisenstadt, Breuker &
Evertsz1984) andthat thisproduces strategic preferences for procedural explanations even
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where a programming language (Prolog) encourages declarative explanations {Bl@b)e
This type of strategic transfer may have reduced reliance on the metaphor in this experiment.

It is possible that novices simply ignored the illustrations, as their attention was never drawn to
them explicitly. This behaviour has been observed in studies of illustratiof'right, Milroy

and Lickorish (in press). It may be a sensible strategy for readers whopeeb@msion and
reading speed would otherwise beduced by the effort involved in integrating text and
illustrations, as observed Byillows (1978) instudies of reading speed in children, and by
Mayer and Simg1994) in a comparison oftudents wth high andlow scores on spatial
reasoning tests. Advice on illustrating educational material also recognises that some students
are likely to follow a text without attending to illustrations (Da®69). Furthermoreseveral
participants in thisexperiment commented that thégund the illustrationsunsympathetic

(the expertshowever,found them entertaining)This element of affect may havweaused
novices to give less attention to the illustrations. The problem of metaphors that users simply
do not like has previously been noted in HCI by Halewood & Woodward (1993), and
Pinkpank and Wandke have observed anxiety when users are asked to use interfaces that they
expect to be difficult (1995)These effects may inhibit use of graphical metaphors in the
same way thaHesseKauer and Spier§1997) have noted reductions in analogidaansfer

when the source domain has negative emotional connotations.

Evidence taken from the verbal protocols in thigperiment does suggest that novices may

not have been aware of thmetaphorical illustrations. Alternatively, participants may have
reasoned about the motion of the metaphorical machines using mental animation strategies
that are not accessible to verbalisation, as noted by Schwartz and (BR@&a). Lowe
(1993b) makes a fundamental criticism of the use of verbal protocols in diayeniments

for this reason, although other researchers have defended their use in more general studies of
HCI (Fisher1987). The critiques ofSchwartz and Black or Lowe are relativabenign,
however. A more worrying possibility is that verbalisation alterpdrformance by
“overshadowing” insightghat might otherwise have been derived from the visoalerial.

Early studies inproblem solving considered that verbalisation improyetformance by
forcing participants to think (e.g. Gagné & Smith 1962, Berry 1990), but Schaoldding

with severalcolleagues has foundhat verbalisation impairperformance on non-verbal
memory tasks (Schooler, Ohlsson & Brooks 1993, Brandimonte, Schooler & Gab®®Tg
Melcher & Schooler 1996).

The requirement of verbalisation may also have imposed an unnecessarily linear structure on
the way that participants used the visual representation. The imposition of narrative structures
on visual and spatial material vgell documented in experimentsviolving description of
geometric structures (Levelt 1981) and of building layouts (Linde & Labov 18RBpugh
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Taylor and Tversky(1996) notedthat the study by Linde and Labov may simply have
reflected linear structures in their experimental td3&viesand Gstell (1992) have also
noted that expert programmers tend to rationalise their problem solving processespiy
with recommended design methoa¢hen thinking aloud during programmindasks. In
recognition of these concernthink-aloud protocolswere not used in any of thether
experiments described in this thesis.

Notwithstanding any possible effect of verbalisation on reasoning strategyyishel
metaphor used in this experiment may have imprave@monic performance asresult of
dual coding effectqPaivio 1971, 1983), Two of théour novices working without an
explanatory metaphor made many more requestsretgew the diagram component
definitions. This may indicate that lack of a metaphor made the definitions more difficult to
remember, but it is not possible to draw definite conclusions when the effeconhas
observed among half of amall treatmentgroup. The potential effect oéxplanatory
metaphors on memory for diagram definitions is examined in far metal in chapter 6.
No similar effect was observed in experts, but thisnisurprising.Firstly, thecomputational
domain provides a familiar context within which expertaild encode the definitions of the
components. Secondlgtudies of experts in other domains have shown that theynare
likely to attend to configuration imbstract material while novicesttend to surface detail
(Hekkert & van Wieringen 1996, Lowe 1993b).

The interaction between representational detail and abstraction is perhaps the most interesting
observation to be drawn from the verbal protocol datahis experiment. It appears that
novices may have inhibited abstract descriptions of the problem when usingethphorical
representation. Several observers have noted that the use of concrete representations can limit
the formation of abstractions in fields such as mathematics education (Pimm [E29B6)ng
programming (di Sessa 1986) and more general educational contexts1@B&le This may

lend support to theories describing the limitationsvidual representations foreasoning

about abstractionfWang, Lee & Zeevat 1995, Green &lackwell 1996b) or negation
Dopkins (1996). A more prosaic potential explanation is that the version of the notation with
geometric symbols, having a cultural association with technical matters, may heveraged
participants to use‘technical” terms that would not otherwise beommon in their
vocabulary. Similar instances of novicadopting an overtly technical vocabulanavebeen
observed before by van der Veer, van Beek & Cruts (1987) and Sdf8a). Theapparent
relationship between geometric notations and abstract reasoning is investigatedmiaréar

detail in chapter 5.
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Experiment 2: Comparison of systematic and nonsense metaphors

Experiment 1 failed to find the anticipated benefitsiraforporating a metaphoricalirtual
machine in the design of \asual programming languagelhose benefitsvere expected on

the basis ofmuch previous research describing mental models and virtual machines in
programming. Experiment 1 could be refined aegtended, further to investigate the
cognitive tasks involved in programming, such as those reviewed by Oa@@8). Themain
concern ofthis thesis, however, is texplore the claims thatisual representationsupport
abstract problem solving through their metaphorical reference to entities and structures in the
physical world. The validity of those claims is widely assumed in vigualgramming
language research, as described in the surveys of chapter 3. The reshilisirfestigation

can therefore be relevant to visygbgramming language designithout covering the same
ground considered in many other theories of program construction.

This second experiment therefore considers experimésms&s that do not, on the surface,
resemble computer programming. Neither were participants told that the experiment had any
relationship to computer programming. Instead, it attempts to isolate the unsetagfhor to
represent abstract concepts in physical terms. In this experiment, moreover, the diagrams do
not resemble physical machines. The metaphorical interpretation is providegblanatory

text, in a way that is more typical ofsual programminglanguages, where the diagrams are
displayed using simple geometric elements, and users are omlse @i themetaphor as a

result of explicit instruction.

Notation

The four diagrams used in théixperiment did not refer specifically to computaograms,
although they expressed concepts that are more &ftemd in computer programs than in
everyday life. | presented the diagrams to participants using (slightly contrived) non-software
task contexts where the concepts could be applied. The four computational concepts were:

» closure (a set of values that is defined for use in a specific context);

« database join (combining tables of data on the basis of common values in each table);

» flow of control (sequences of execution states such as repetition and choice); and

» visibility (hiding working material within a function to simplify its interface).

| developed four diagrams to express these concepts, based on verbal descriptions of the
concept by Finkel (1996), and employing conventional symbolic elements fietss other

than software, as collected in Dreyfuss (1972). The explanation of each diagrarparated

either asystematianetaphor that compared the graphical elements to some physical situation
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with an appropriate structure, or ronsensemetaphor that compared them to an irrelevant
physical situation.

The diagram expressing closure is shown in Figure 4.12.t83le context described a sports
team on tour, where a playing side is allocated for each game. The diagoavaeachgame

as a separate line,itw the original tour team at the bottom of the diagram, aundcessive
games drawn above that line. The introductionnet players is shown as ‘@ump” in the
appropriate position corresponding to the player in the original team who has been replaced.

Second half

)

Third game First half ; ; ; : PN
Second half ; ; : : /‘\ ' ' t

Second game First half ; @
Second half ; N ; ; ; ; ;
First half ; ; @ + + " " +
Qriginally selected team { Smith Jones Brown Black Cole reen lare right

Figure 4.12. Diagram showing closure in terms of sports teams.

Eg: Cole plays in the first game, but is replaced by Biggs for the second and third

For this diagram, the systematic metaphor describedirtbs as layers of new dacing laid

on top of a road, so that the inclusion of new material is visible as a bump in later layers. The
nonsense metaphor described the overall shape as an ice-cream cone with jelly beans stuck in
it, and the junction at the left of the diagram as a fork.
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The diagram expressing database joins is shown in Figure 4.13. The task context described an
airline booking system, in which a flight information table must be matched witdssenger
booking table and a checked luggage table. Each table of informatiblows s a vertical

line of connected data items. Where tables are joined on particulaitetata hose items are

linked together by a line drawn between #ypropriate items. The daiems thatwill be

returned as the result of the join are indicated by a funnel shape at the side of each selected
item.

Flight Info.

Passenger Info. Luggage Info.
O Fragile O

QO Departure Q

QDestination @

Figure 4.13. Diagram showing database join in terms of airline bookings.
Eg: find all records of passengers and luggage on a particular flight, and match them by seat number

For this diagram, the systematitetaphor described theertical lines as tagthreadedonto

pieces of string, with matching tags joining the pieces of string together. Output of data items
was described in terms of the tady®pping into funnels. The nonsense metaphasdibed

the lines as cracks in a flagstone, and the circles as manhole coverswenictiangerous

when missing.
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The diagram expressing flow of control is shown in Figure 4.14. The task context described a
washing machine cycle, in which a range of processes mustalied, stopped or repeated a
certain number ofimesaccording to conditions such amter leveland temperatureEach

process is shown as a circle, which may include other sub-processes. The signal to start a
process is shown by a line with a star at the end, while a stop signal is shown by an arc at the
end. One process can be made to start when another stops, shown by a jagged line at the first
process.

Figure 4.14. Diagram showing flow of control in terms of a washing machine cycle.

Eg: Once filling has completed, start washing, until a fixed time has elapsed

For this diagram, the systematic metaphor described the proiceles asirning cogs. The

star showing when a process starts resembles a startingvbieg,the arc showing when it

stops resembles a brake shoe. The jagged line is a spring which rebounds when the cog that it
is attached to stops. The nonsense metaphor described the circles as rock pools,stétls the

and jagged lines resembling starfish and worms. As in experiment 1, the dynamic nature of
the systematic metaphor this case was intended to support depictive mental animation as
proposed bySchwartz and Black (1996al996b), whose experimental investigation of
reasoning from mechanical diagrams did in fact describe a diagram based on turning cogs.
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The diagram expressingisibility is shown in Figure4.15. Thetask context described a
telephone switchboard in a large organisation. There are some people in the organisation who
would never deal directly with queries from the publidile others would often do so. This
diagram is a modification of an organisation chart, showing which people ararguepo

deal with the public (a circle by their name, rather than a square or half-circle), anchlfow

might be referred by the receptionist from one person to another (dashed lines).
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| I7jperator | | I'AT)'prentice |

Figure 4.15. Diagram showing visibility in terms of a telephone switchboard.
Eg: one of the accounts assistants will always take queries from the public, while the other never will

For this diagram, the systematic metaphor described the chart as a railway netwakchnd
person’s office as a station. Thaircle represented a public revolving door, the square a
closed door, and the half circle a door that was ajar. The different dasbsdepresented

the relative priority of railway lines and roads. The nonsense metaphor describdidhghem

as representing an airport, with circles being bicycles, the squares garages, and the half circles
as aircraft hangars. The dashed limesedescribed as rows of people sitting behiedch

other on an aircraft.

Tasks

After reading the explanations of the diagrams, participants completed three diffeskst
using each diagram. In the firssk, participants answered cqmrehension questions relating
to an example of the diagram. These questiomse phrased to involve an element of
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problem solving using the notation, rather than simply providing definitiongli@ajram
elements, or reading information directly from the diagram.

In the secondtask, participants completed an incomplete diagram. The diagram was
accompanied by text stating, in terms of the problem domauatiwformation was missing.
Participants then completed the diagram by drawing the missing graphical elements in
appropriate places. An example constraint for the closure diagrdfloggs played in the

whole of the first game, and also in the second half of the third game. Biggs was substituted
for the whole series after Cole was injured.” (This is the constraint shown in figure 4.12).

The third task also involved completion of an incomplete diagranthigntask,participants
completed the diagram by writing missing labels onto a diagram that was otherwigketsom
As before, the position of the labels weduced from text describing a problesituation,
and listing the labels thatere to beadded. An example for thdsibility diagramis: “The
service managecan be contacted sometimes, but does not pass on querisgprmanager
would always pass omgueries to thestoreman The production directorcan only receive
qgueries from thehairman”

All task instructions, together ith the diagram they apply to, are reduced in Apendix
B.2.
Equipment

The experimental material was presented as a bound booklet containing both explanations of
the diagrams and camehension dsts. Participants werimstructed to work through the
booklet in order, without turning back to look at previous pages. At the top of each page was
a box where the participant wrote the time when they started work on that page. Participants
read the time from a large stopwatch placed on the table in front of them.
Hypotheses

1. That experts would perform better than novices.

2. That metaphor would bring novice performance closer to expert.

3. That metaphor would have little effect on experts.
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Participants and design

Sixteen participantsvere recruited fromtwo different populations. The firsindependent
variable was level of expertise in thep®pulations: eight participantsvere volunteers
registered wh the APU Subject Panehone of whom had any experience of quter
programming (hovices). The other eightwere experiencedprogrammersemployed at the
Advanced Software Centre of Hitachi Bpe Limited. A furthertwo programmers were
recruited from the sampopulation aftertwo of the expert cohort did not complete the
experiment. This was as a result of work-related interruptions. The two whorepdaeed are
not considered any further.

The second independent variable was the type of metaphor provided in the explanation of the
diagram. This was varied as a repeated measure: each participant reesivexplanations

with the systematianetaphor, and two with theonsenseDiagrams could not be presented to

a given participant with both forms of the explanation, however. This deggtherefore a
balanced confound between diagram and metaphor type.

The order of the four diagrams was balaneathin eachgroup of eight participants. The
order of the instruction types was not varied; a pilot experiment had shown that if participants
received the nonsense metaphor first they would ignoraetteof the metaphors deeing
irrelevant. Presentation order was therefore: systematic, nonsense, systematic, nonsense.

The third independent variable was the typetask performed: answeringcomprehension
guestionsdrawing missing graphical elements on an incomplete diagramwaitithg missing
text on an incomplete diagram. The three types of task were always presented in this order.

There were two dependentvariables. The first was thepeedwith which participants
completed each comprehension task. The secondaeeasacyon the comprehensiontasks.

The possible total score for each diagram type and comprehetasibrvariedaccording to
diagram complexity, but the balancembnfound designmeant that it was necessary to
compare scores between different diagrams. | therefore calculated a normalised score for
each task, in which the lowest score was assigned a normalised value of zero, and the highest a
value of 100. All other scores were normalised by a linear interpolation between these values.

The three hypotheses are described in terms of relpéfermance, which was evaluated in
terms of both speed and accuracy in order to identify possible speed-actiadeyoffs
made by participants.
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Procedure

Participants read a page of general instructions at the front of the bookletwtr&ad
through at theirown pace, writing the time at the top of each page as instru¢ldo
instructions are reproduced in appendix B.2).

The experimental procedure was determinedth®y order of the pages in the booklet. The
order was as follows:

Page Contents

1 General instructions: completing the booklet, and writing times.
Explanation of an example of the first diagram.
Questions testing comprehension of the first example.
Explanation of an example of the second diagram.
Questions testing comprehension of the second example.
Explanation of an example of the third diagram.
Questions testing comprehension of the third example.
Explanation of an example of the fourth diagram.

9 Questions testing comprehension of the fourth example.
10-13 Drawing missing elements on examples of each diagram.
14-17 Writing missing text on examples of each diagram.

O ~NO Ol WN

Table 4.3. Booklet presentation order

The comprehension questionsere scored by awarding one point for each item of
information thatcorresponded tdahe worked solution, and subtracting one point éach
incorrect piece of information. Dramg tasks werescored by awarding a mark fagach
element added in an appropriate place and a further mark if the element wamrde

shape. A mark was subtracted for each unnecessary element, and a further mark if the
additional element violated either the task constraints or the original diagram definition. The
writing task was scored by awarding a mark for each labiglen in the correct place, and
subtracting a mark for each label written in a place that violated the constraints.

Results

The first hypothesis was that experts would perform better than novices. The times taken by
each group to complete the three tasks, as well as the mean accuracy achieveddrpugach

are shown in Figure4.16. Analysis of variance (ANOVA) indicates that experts were
significantly more accuratef-(1,14)=5.48, p<.05. Experts did not finish the tasksore
quickly - in fact they spent slightly longer, but this difference was not significant.
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Figure 4.16. Relative performance of experts and novices

The second hypothesis was that a systematic metaphor would bring novicemperder
closer to that of the experts. Figure 4.%Rows the interaction between expertise and
metaphor type. As expected, accuracy is poorer when the nonsense metaphor lgigeneen

This difference does appear to be greater for novices than for experts, but the interaction is
not significant. The effect of this interaction on the time taken to complete the tasks indicates
that novices spend more time trying to use the nonsense metatilerexperts spendess

time. This interaction is not significant either, however.
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Figure 4.17. Interaction of systematic metaphor with expertise

There was a significant interaction of task type with experief@&28)=5.60,p<.01. Experts
performed best in the task where a diagram was completed by drawing in missirentsl.
Novicesperformed more poorly othis task than on othetasks, with anaverage drawing
score of 34%, versus 65% for experts. If the effect of metaphor is considered separately for
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each task type within the novice sampiegtaphor appears toave had no effect at all on
drawing taskperformance. Ast®wn in figure4.18. mean performance abmprehension
and text completiortasks is hgher in the metaphor condition, bthis interaction between
task and metaphor is not statistically significdf(2,6)=0.95,p=.436.

100%

0  Nonsense metaphor

80% Il  Systematic metaphor

60%

40% Foooo T

Accuracy

20% |

0%

Drawing Comprehension  Text completion
Task

Figure 4.18. Effects of metaphor by task type for novices

Discussion

As in experiment 1, the performance measures used irexpesriment provide aneaningful
distinction between novice and expgrerformance whichsets areference point for the
amount of benefit that metaphorical instruction provides to novices. Unlike experiment 1,
experts did not perform these tasks significantly faster than novices. They did achieve far
greater accuracy, however. In experimentmktaphor hadlittle further effect on the
performance of experts, and that finding was repeated here. The accuracy of the experts was
near ceiling,however, sametaphor mighthave had more effectith a more difficult task.

That possibility is not of great concern here,tlais thesis concentrates on the benefit that
metaphor can provide for novices.

The difference between novices and experts in this experiment may, however, have resulted as
much from the fact that expertwere better able todentify and ignore thenonsense
metaphors — novices tended to spend more timeaasks for which they had beegiven
nonsensical explanations. This effect is investigated in more detail in experiment 7, which
compares systematic and nonsense metaphors to a further condition in which no metaphor is
given at all.

The final point of interest in these results is the differences observedriormance for the
diagram drawing task. Experfgerformed better thanovices on this task — this may be a
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result of the fact that experienced programmers are more accustomed to drawing diagrams, so
their advantage arose from being comfortable and practised with siadles. In contrast,
several of theexperiments reported in the next chapter asked-programmers taraw
complete diagrams. The participants in those experiments often reported amgatyling

their ability to draw.

In this experiment, novice performance in the drawing task was least affected of all the tasks
by the provision of an explanatory metaphor. This namise from the anxietyfactor
described above — the drawing task may have been subject to a floor effectcamsegquent
reduction in the effect of metaphor, in the samway postulated earlier as arising from a
ceiling effect in experts. Alternatively, participants may have relied on an uninterpisted

image of the whole diagram, treating the drawing task as a short term visual mgrablgm

rather than a comprehension problem. For novices using this strategy, a systesagiban

would be less likely to have any effect on performance. The distinction betwemory and
comprehension, asvell as betveen visual and relational components of diagrams, is
investigated in far more detail in the experiments reported in chapter 6.
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Chapter 5: Diagrams and Abstract Structure Generation

Those weird designs, they only show
What's going on in weirder minds,
Cause when you doodle then
Your noodle’s flying blind.
Every little thing that you write
Just conceivably might
Be a thought that you catch
If while caught in a wink.
Doodling takes you beyond what you think
Then you draw what you feel.

Doodlin’ — Horace Silver

The experiments described in the previous chaftend large differences in perimance

between experts and novices, but only small relative changes in novice performance as a result

of using metaphorical notations. The apparent lack of educational benefits is disappointing. It

is possible, however, that the notations used the wrong kind of metaphors.

In experiment 1, evidence from think-aloud protocols suggesitat noviceprogrammers
paid little attention to implicit visual metaphors, yet aedped the problem ihessabstract
terms when using a physical metaphor. These findings conitirseme of the intuitions of
visual programming language dgsiers and users — one of the themes thftuhd in the
surveys of chapter 3 was the claim thdsual languages would reduce the degree of
abstraction required irprogramming. Diagrams may help users avoid abstraction by
depicting an abstract concept in terms of physical experience (L4K&B8). Alternatively,
diagrams may be more computationally tractable because lihgg lesspotential for
expressing abstraction than symbolic languages (Stenning & Oberlander 1995).

We can thus distinguish between diagrams in which the coems illustrate a simple
physical metaphor, as in experiment 1 and 2, and diagmnose geometric structuracts

directly as an alternative concrete metaphor for some abstract structure. The latter is more like

the case of an electrical schematic where the possible set of causal relationsbipstrsined
by the connection paths in the diagram.

In experiment 1, participants appeared to fmeer abstract terms when using amertly
metaphorical pictorial notation. It is possible that an increased level of visual datatrains
the representation to refer to a specific situation, rather than an abstract set dfalpoten

situations. It is for precisely this reason that pictures have long been considered not to be

abstract representations; Berkeley’'s early 18th century theoryibn (1705/1910)
distinguished between thasible abstractions offeometry and perceptual experience of the
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real world. Bartlett quotes Napoleon as distrusting the use of mental images: “those who form
a picture of everything are unfit toommand” (Bartlett 1932, p.220). Modern work in
cognitive psychologyhas also observed that mental image-based strategies are unable to
represent indeterminacy (Mani & Johnson-Laird 1982), and that generalisation from multiple
examples requires the translation of descriptions from images into verbal abstractions
(Goldberg & Costa 1981) — the consequent loss of these visual-turned-verbal abstractions has
been observed in psychiatric patients durieff hemisphere ECT suppression (Deglin &
Kinsbourne 1996).

The inability of mental images to support abstraction is considered by Stenning &
Oberlander (1991, 1995) to be their princigalvantage, because reducing the range of
possible interpretations (they call thépecificity makes reasoning ith a diagram more
computationally efficient. Restricting the range of interpretations can also be a disadvantage,
of course. Pimm (1995) believes that using concrete representations in mathematical settings
may prevent children from forming necessary abstractions. Otheori¢s, howver,
emphasise that mental images are at lease abstract thamisual percepts because they do

not specify all possible details (Paivio 1971, Mille®93). This observation has aldmeen

made of representational conventions in drawing (Arnheim 1970) and of diagrafiaise,

Lee & Zeevat 1995).

If diagrammatic images are interpreted metaphorically, which of these possibilities would be
the most relevant? The interpretation of metaphdtséf a process of abstraction from one
situation to some interpretive domain (Verbrugge & McCarrell 1977, Gentner & Wolff 1997),
but this abstraction makes metaphor difficult to understand because of the range tlpoten
interpretations (Winner & Gardnek993). If images could be used as intermediavid®en
interpreting metaphors (Beck 1978), this might provide the advantage of specificity —
constraining potential interpretations. fact, many theories of metaphocomprehension
propose that mental images are central to use of metaphor (Cacciari & Gluck€8sg
Gibbs & O’Brien 1990, Kaufmann 197%Y/alsh1990). Tentative proposals have beerade

of a functional relationship between the cognitive resources applied in diagram use and
metaphorical image use (Lewis 1991, Lakoff 1993), but these have not been as confident as
the claims made by computer scientists about the benefits of HCI metaphor.

The use of strategies based on mental imagery to solve yedddems has historicallpeen

one of the central issues in the meritahgery debate. Much of the existing reseaicto
diagram use appears to have been motivatedettyenched positions in that debate, as
reviewed by Blackwell (1997b). This discussion can only briefly summarise that review, which
considered experimentahsks involving picturenaming (e.g. Potter & Faulconer975),
identity judgements (e.g. Theios & Amrhein 1989), evaluating sentences dibguammatic
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situations (e.g. Clark & ChasE72) and problensolving (e.g. Frandsen & Holdet969,
Schwartz 1981). Blackwell also reviewed the main theoretical positions in the d&leias

1978, Pylyshyn 1981, Kosslyn 1981) and some of the philosophical approaches to resolving
it (Dennett 1981, Goodman 1990, Sloman 1995).

The most convincing evidence in the imagery debate has come from purely visuautasks

as mental rotation (Shepard & Metzl£®@71) and map constructiofiKosslyn, Ball & Reiser
1978), but many experiments have investigated the diagrammatic use of imagesesent
logical propositions (Huttenlocher 1968, Shaver, Pierson & Lang 1974/75, Mdoih&son-

Laird 1982, Fuchs, Goschke & Gude 1988, Matsuno 1987). Many computational models of
mental imagery have been constructeds@gporting evidence that images can be used for
logical reasoning (Lindsay 1988, Greeno 198Jasgow & Papadias 1995), asll as for
reasoning about the abstract structure of physical situations (Koedinger & AndE396n
McDougal & Hammond 1995, Novak 1995, Gardin & Meltzer 1995, Forbus 1983, Faltings
1987, Blackwell 1989).

The most ambitious claim®und inthe surveys of chapter 3 exterwdell beyond such
restricted problem-solvingactivities, however. Some researchers apparently claim that all
software design problems are solved thynking in images, and that visugrogramming
languages directly facilitate the solution process. This intuition is consistéht the
introspections of programmemsho use conventional languages (PetreB&ckwell 1997).
Several other studies have affmund evidence foruse of mental imageduring software
design (Gilmore & Green 1984a, Buckingham Shum et. al. 1997, Green & Na\29fm
Saariluoma & Sajaniemi 1994).

When mental images are reported by expert programmersctivitiesthey refer to are not
simple problem-solving, but large-scale design. The processes of system design in
programminghave more incommon vith other design disciplines, such asgineering and
architecture, than ith the type of experimentatasks described earlier in thigview.
Ferguson (1992has described thaay in which thedevelopment of modermengineering
depended on the ability to publish pictorial representations of engineering designs. Ferguson,
along with many eminent engineers whom he quotesljeves thatengineering designs are
constructed as mental images, and that camaoating those designs depends ram-verbal
representations. Similar claims have been made regarding the use of visual representations in
architecture. Goel (1992,995) challengeshe computational theory of mind on tlbasis

that it cannot account for theay that architects use sketches,dasumented inprotocol
studies of architects at work by Goldschmidt (1929294) andSuwaand Tversky(1997).

Fish and Scrivenef1990) haveproposed a general model of thee of sketches in creative
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design — they claim that perception of sketches interacts diredtfty mmental imagery to
enable creative problem solutions.

The use of bothvisual representations and mental images to discover creative solutions has
also beenproposed as a fundamental mechanismsoientific discovery (Dreistadi968,
Gooding 1996, Nersessian 1995, Qin & Simon 1995)welkas inother fields of creativity
(Koestler 1964, Shepard 1978, Johnson-Laird 1988hadt even beeproposed that almost

all problem solvinginvolves structural analogiesonstructed from mental images (Paivio
1971, Kaufmann 1979).Recent experimental investigations of this proposal have
concentrated on a single questidrgwever: once a mental image has been formed, is it
possible to reinterpret this image in order to discover new properties? This questianias

to proposed models of image-basedeativity, and highly relevant to the theories of
engineering and architectural design described abBirde, with various colleagues, has
carried out a series of experiments in which he foamid evidence for discovery of new
structure in images when subjects are shapparently unrelate@lements, then asked to
combine them in working memory (Finke & Slayton 19&8nke, Pinker & Farahl989,

Finke 1996). Other experimenthpwever, havdound that memorised ambiguousnages
cannot be reinterpreted, although the subject can later reproduce the image on paper and then
reinterpret their own drawing (Chambers & Reisberg 1985, Slezak 1992, Walker et. al. 1997).

The experiments in this chapter investigate wWegy thatdiagram use interactsitv mental

imagery during design tasks. It addresses several of the questions that have been discussed in
this introduction, but concentrates on their relevance to diagisenrathethan speculating

on general properties of mental images.

Experiment 3: Visual imagery during planning

Is there any evidence that diagrams are direct expressions of imagevidaal
representations? Onway to investigate thigjuestion is by analysing external signs of
cognition associated with both diagrams and imagery. Brandt and Stark (1997), for example,
found that the same sequence of gaze fixatisasinvolved in imagining a simpldiagram

as in observing it. A second alternative is to use dual-task studies: if a certain tdmehas
observed to impair the formation of mental images (presumably, but not necesssrdyse

it uses the same cognitive resources), will that task also impair the planning of diagrams? This
experiment takes the second approach; if diagram planning is impaired Isedbadary

task, we can infer that diagrams express image-like mental representations.
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It also addressetsvo further questions arising from experiment 1 by ustagks that may
involve different encodings in working memory. The first is related to the possible distinction
between physical information and abstract information. Experiment 1 suggestegictbatl
representations may cause physical information to be emphasised rather than abstract
information. Previous research into workingnemory has found experimental and
neurological evidence thaspatial information is encoded separately from categorical
information (McNamara 1986, Mecklinger & Muller 1996, Kosslyn et. al. 1989) but also that
the two are combinedwhen abstracinformation must be memorised in association with a
spatial context, as when functions are assigned to buildings on a map (McNamara, Halpin &
Hardy 1992). Itseems likely that visual materigilresented in diagram#volves both
categorical and spatiahformation. Must a combination of abstraébformation within a
spatial metaphor hence rely on different working memory resources?

The second working memory question arising from experiment 1 is the distinction between
encoding thespatial arrangement of the elements in a diagram and encoding viseial
appearanceJust as there is strong evidence for separate workiegiory resources for
categorical and spatial information, there is also substantial evidence for a distinction between
the visual and spatial cgonents of working memory, including neurological (Faethal.

1988), developmental (Logie & Pearson 1997), anatomical (Mishkin, Ungerleidea&kd

1983) and functional imaging (Smith & Jonides 19%if)dies, asvell as evidence from
conventional cognitive experiments. An example of the latter is the report by Tresch,
Sinnamon and Seamon (1993) that memory for objects or for location is seleutipalyed

after tasks involving colour identification and motion detection respectively. In experiment 1,
the mental animation process that was postulated as a basis for analysing pictures of a
physical machine can be identified as primanilgual, whilethe process of arrangingodes

and connections into a complete diagrammatic solution is primarily spatial.

There is a diverse spectrum of hypotheses relatingwibalistinctions: coordinate/categorical

and spatial/visual. It iquite possible that there is only a single representational dictyot

but that it is simply poorlyunderstood. Eithedistinction, howevermay be relevant to the

current investigation — the distinction between abstract and physical information, or between
pictorial metaphor and simple geometry, miglatsily interact as a result of their respective
working memory requirementsThis experiment addresses these questionkdnsidering
separately abstract and physical situations, and by using separate secondary tasks that exercise
either visual or spatial short term memory.
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Notation

The notation used in thiexperiment was designed to be as simple as possibie w
maintaining the visual dataflow metaphor introduced in experiment 1. It was intended for use
by participants vith no experience of computer programmingjthout requiring that they

learn any computational concepts. The form of the notation was nodes connedes,ys

in experiment 1, but thesgere givenonly minimal semantics. Four different typesmdde

were defined, but these had no semantic implication — | told participants that citwely
choose whichever node they liked, and use them to stand for anything they likedadesech

type included a selection of terminals to which arcs could be connected. Terminals on the left
hand side of a nodevere dscribed as'inputs”, and those on the right hand side as
“outputs”, so that flow implicitly proceeded from left to right, even though (as in experiment
1) I never explicitly mentioned flow. Each terminal could have any number of arcs connected
to it.

As in experiment 1, thererere twoforms of this notation, each with identical semantics, but
with different pictorial images representing nodes and arcs. The first of these used simple
geometric shapes, connected by plain lines, shown in figure 5.1.

Figure 5.1. Simple geometric nodes and arcs

In the second form of the notation, nodesre connected together by images @flindrical
ducts (actually miniaturised bitmap imagpsoduced fromdigitised photographs of air-
conditioning ducts). The nodes themselves were also @hatbgraphicimages, designed to
be obviously mechanical, and plausibproducing flow through the attached ducts, but
without having any identifiable function. They were produced from digitigeatographs of
air conditioning components and garageols, but the original devices wouldnly be
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identified by an experienced engineer — participants in the experiment dideoagnise
them. This implicit data flow version is shown in figure 5.2.

Figure 5.2. Mechanical nodes and arcs with implicit data flow

Participants created diagrams by manipulating the appropriate set of nodes with an editor on
a computer screen. The editor screen is illustrated in Figure 5.3. The editor included a palette
in one corner with four different node images; participants crea@dnodes by clicking on

any one of these images with the mouse. Nodes could be moved to any location on the screen
by clicking in the middle of the image, and dragging it. Connections between nodes could be
made by dropping one node so that its input coincided with the output of another node, or by
clicking on the output of one node, and dragging from there to the input of another node. If
the node at either end of a connection was dragged to a new location, the arc would move to
follow it.
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Temperature Control

Figure 5.3. Simple node and arc editor

Most participants in this experiment héittle experience of computers, and some had never
used a mouse before. To make it easier to arrange nodes and connect them together, the
screen was therefore divided into a grid of points with approximately 1 cm spacing, as shown
in Figure 5.3 (for the geometrigersion, the grid was simple dotshile for the pictorial

version, it resembled a grid of rivet heads on a steel plate). Whedeawas noved to a new
position, it would “jump” to the nearest location on the grid. This made it relatively easy to
connect terminals together — the participant only needed to wlitthn the 1 cm region

around the terminal.

The editor also included dferase mode”allowing nodes or arcs to be removed (the erase
mode button is at the top right of figure 5.3). If the participant moved the mouse cursor over
any shape on the screen after selecting erase mode the shape would turncliotw a
containing thewords “click me”; clicking would then erase it. When not in eras®de,
clicking on a node caused a selection box to be drmawnondthat shape. For thgeometric
version, this was a simple box and arrow, and for the pictorial version, it was a pipapeof

and a pencil. The participant could assign a label to each node by clicking toitselect

then typing the label. Labels were only required after the diagram was conhgetyer, as

in experiments by Szlichinski (1979).

These various features of the diagram editors are illustrated in appendix B.3.
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Tasks

Participants were asked to use #eitor to draw diagrams describing the workings of six
different devices. Three devicascorporated moving parts amghysical processes, while the
other three had no internal moving parts, and atigtractprocesses. Table 5.1 shows the six
devices used and the categories they were assigned to.

Concrete Abstract
washing machine telephone

motorbike calculator

coffee vending machine television

Table 5.1. Abstract/concrete devices

Participants were told that the diagram should show the way that the named device worked on
the inside, and should not be a picture of the device.

Participants were also asked to perfosecondarytasks whileplanning their diagrams. The
first of these taskspatial tracking was designed to interfere with spatial working memory, as
in the motion detection task described by Tresch ef{18093). The participant moved the
mouse pointer to follow a circle movinglowly around the computer screenttwrandom
changes in direction. If the mouse pointer moved outside the circle, the circle charigad

— the participant was instructed not to let theggopen (morepositive alarms were also tried,
but were found during pilot testing to induegcessiveanxiety). The exact form of this task
was proposed by Professor Alan Baddeley (personal communication 181996 The
second taskyisual noise has been shown by Quinn and McConr{@B96) to interfere with
memory for alist of items specifically when subjects are asked to use a visusmonic
strategy. The participant watched a continuatlyanging random grid of black andhite
squares. In the thirthsk,blank screen the participant simply watched a blank screen with a
fixation cross in the centre.

Equipment

The editor was implemented using the animation packhdgeroMediaDirector, version4.0.
| captured the pictorial node and arc images using a Kodak DC500 digital caethraed
the resolution to 40 pixels square usingilode Photoshop and edited them tgrovide
uniform connection points on each node before importing them as bitmaps for use in
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Director. The animated behaviour of the nodes and arcs in response to user actions was
implemented in thd.ingo scripting language provided with the Director product.

The experiment procedure was controlled by a presentation sequence implemented in
Director. This provided an animated tutorial demonstrating the use of the editdutghal

script is reproduced in appendix B.3), then invoked the egitogram. The editoprogram
maintained a log of all actions made by the participant, with the system(rééperted as the
previous whole second) recorded at the time of each action. The experimental software ran on
a Macintosh PowerPC 8200/120 computer with a 17 inch monitor displaying a resolution of
832 x 624 pixels at 24-bit colour.

The secondarytasks to beperformed while planning diagramswvere also impmented as
movies in MacroMedia Director. The spatial tracking task was designed to have minimal
visual contrast. A dark grey circle slowly followed a randomised path over a lightfigtdy

The speed of motion was kept constant, with the direction of matleanging by small
randomised increments. As long as the mouse pointer was kept over the top nodwime

circle, it would stay the same colour, but if the participant let the pointer move away, the circle
would change to a slightly different shade of grey.

The visual noise task was based on a C program originally developed for the IBM PC by Jean
McConnell (McConnell, personal communication 26 July 1996), as used imetearch
described by Quinn & McConnell (1996). The original program was not reused,cbeated

a close visual equivalent using the facilities of Director. | first wrote a Lp&yram to
generate a series of images consisting of a grid of black and white squares. In each image the
squares of the gridvererandomly coloured either black evhite. These images were then
imported as a sequence of animated frames in Director, with the transition bdtemmas

taking place as a randorade, where the fade gridorresponded exactly tthe grid of

random squares. Theesult of this was aandomly changing sequence of grid squares
practically indistinguishable from the stimulus used by Quinn and McConnell.

Hypotheses

1. Based on thenhibitory effect of pictorial representations on reasongigout
abstract tasks observed axperiment 1, the same effect should result in an
interaction between the type of editor and the type of device being explained.

2. On the basis of the previous literature describing use of mental images,
introducing a secondartask that has been shown to impair visuo-spaiairt
term memory would inhibit planning of the diagram.
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3. That abstract and concrete diagrams might be prepared as differenttypagie
and that different secondartasks would lierefore have differeninhibitory
effects on planning eactlevice type, possibly interactingitiv the two types of
editor.

Participants and design

Twenty-four participants were recruited from the APU panel of volunteers. None of them had
any experience of computer programmifigvo further participantsvererecruited after two

of the original cohort misinterpreted the description of the ediette,concluding that
each diagram should have exactly four nodes.

One independent variable was assigned randomly between subjeat/e-participantsused

the editor with simplggeometricshapes and twelve used thietorial editor with implicit data

flow. A secondindependent variable was the nature of the diagram drawésk. Each
participant drew six diagrams, three of which explaipégsical processes and thredbstract
processes. The third independent variable was the secorndaky performed by the
participantwhile planning each diagranspatial tracking designed to interfere ith spatial
working memory visual noise designed to interfere ith visualworking memory, andlank
screen in which the participant simply watched a fixation cross in the centre of an otherwise
blank screen.

The experiment included three dependent variables. The first was the deglabaftion—
the number of nodes in the diagram, as measured in experiment 1. The second spagdhe
with which the diagram was created — the average interval between addittmwaobdes or
arcs. The third was the proportion diangesmade to the diagram — the proportionmfdes
or arcs that were moved or erased after their initial creation.

In order totest the hypothesis of an interaction between the type of editor and the type of
process being explained, | tested for different degrees of diagram elaboration for each device
type in the two groups. In order to test the second hypothesis, that the secasttaryould

inhibit planning, | compared the speed of creation of the first ten additions tdidggeam
immediately after the end of the planning period. | also comparegrtportion of changes

made to the diagram. The third hypothesis of an interaction between the tgpeavfdary

task and the pictorial representation or process type was tested in terrdeagrhm
elaboration.
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Procedure

The experiment started with an explanation of the editor functions, at a pace controlled by the
participant. The first part of the explanation covered basic mouse operation — clicking on a
shape and dragging it from one place to anotfidris was followed by ananimated
demonstration of the editor functions, using the approprigé®rietricor pictorial) version

of the editor. The secondampasks werethen demonstrated, so that the participaould
practise following the moving circle, and see the random grid display. Finallpattieipant

was asked to draw diagram as a practise exercise using the editor. The instructions for the
exercise specified that the diagram should show how a toaster works on the inside. It stressed
that the diagram should not be a picture of a toaster, and that it did not need to look like any
part of a toaster — it would simply show how a toaster workedfuiber instructions were

given regarding the intended use of the nodes and arcs.

During this instructional sequenceséat beside the participant, and answered qumgstions
asked by the participant. Most participants had no questions. Some needed assititatiee w
procedure for dragging usinthe mouse. Some asked for clarification of thiéference
between an input terminal of a node and an output terminal. Some asked for clarification of
the instruction that the diagram should show how the toasigts, ratherthan what it looks

like. Several participants were quite anxious abouttalsk, and protested that they would be
unable to draw any diagrams. | reassured these participants in general terms, artieai of
proved able to draw acceptable diagrams using the editor — it was not necessamove

any participants as a result of inability to use the editor.

During the remainder of the experiment, participants worked on their own, dradggams

to describe the workings of the six different devices. The presentation sequence displayed a
description of the required diagram, including a reminder that the diagram stfmidthe

way that the named device worked on the inside, and should not be a picture of the device.
The participantwasthen given 60 seconds to plan their diagram, during which they had to
perform one of the three secondary tasks. The allocation of secondary task to device
description was balanced acromsbjects, and the presentatiemder of both devices and
secondary tasks was also balanced.

After the planning period, the editor screen was displayed. The participant thenpleaihd

of five minutes in which to draw thdiagram they had planned. At the end of ftihe
minutes, they were given farther two minutes in which to type labels for each node in the
diagram. During this second period, the node creation and erase functions were disabled. This
planning / drawing / labelling sequence was repeated six times by each participant.
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When participants hadompleted the diagram drawirigsks, lasked them to complete a
debriefing questionnaire. This questionnaire asked:

* how easy it was to plan the diagrams in advance;

» which was the most difficult diagram to plan;

» whether they felt that the secondary task had made the diagrams more difficult to

plan;

* how they decided which shapes to use;

» whether shapes were chosen during planning, or only while drawing the diagram; and

» whether they had been able to assign names to shapes in advance.

Results

The analysisapproach is amultivariate analysis of variance (MANOVA) ith repeated
measures, havingtwo within subjects factors (abstract/concrete processes llaohk
screen/visual noise/spatialatking secondarytask), and one between subjectactor
(geometric/pictorial editor). The three dependesriables wereelaboration (number of
nodes), initial speed of production, amdoportion of diagramelements changed. The
MANOVA results eported here are calculated using Pillai's Trace method; alternative
MANOVA techniques did not result in any difference of significance values.

Initial univariate tests showed that both the editor type and the type of process had significant
effects on elaboratioir(1,22)=5.74 and 5.8Yespectively,p<.05. As shown in figure 5.4,
abstract processes were drawnitivmore nodes (an average of 8.74) thamare concrete
processe7.90). Diagramdrawn wth the geometriceditor were alsomore elaboratg9.46
nodes) than those drawn with thetorial editor (7.18 nodes). The hypothesised interaction
between these two factors did occur in the predicted direction — diagrams desahbinact
processes wermmore elaborate when using tigeometriceditor. Although the difference in

the means was relatively large, this interactisas not significantF(1,22)=2.33,p=.14. A
similar interaction effect was observed for the otlsggpendent variables. Participants
constructed the diagram more quickly when usingg®emetriceditor forabstractprocesses,

and they made a smallproportion of changes ttheir diagrams, as shown in FiguBe5b.
MANOVA analysis indicates that these interactions when taken together are significant,
F(3,20)=5.77,p<.01.
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Figure 5.4. Effects of editor type and process type on diagram elaboration
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Figure 5.5. Interactions of editor type and process type:
elaboration, speed and number of changes, taken together, show a significant effect.

The second hypothesis was that secondasksduring the planning period woulbdave an
effect on speed of production atige proportion of changes made. There was no evidence
that the secondary task had any effect on either speed of prodb¢#@i)=0.034,p=.96 or

on proportion of change$-(2,44)=0.116, p=.89. There was also no evidence of the
interactions postulated in the third hypothesis — a multivariate analysis of vaftama no
interaction of secondary taskitiv process type-(6,86)=1.373,p=.51 or with editor type
F(6,86)=0.562,p=.21. Univariate ANOVA tests oeach variable alséound no significant
interactions with the secondary task.

When answering the questions in the debriefing questionnaire, only five of the 24 participants
said that they had been able to choose shapes in adwdrle planning thediagram,
although a further six said that they could do so occasionbiglve of the participants said
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that it was‘not easy”, “hard”, *“difficult” or “impossible” to plan diagrams in advance.

The performance of these twelve was then considered separately from the twelve who reported
that advance planning was relatively easy. As can be seen in figure 5.6., there was no overall
difference between thperformance othe groups in any measure, with the MANOM@Ast
resultF(3,20)=0.425,p=.73. Therewere howevemarginally significant covariances of self-
reported planning ith the effect of secondaryasks,F(6,82)=2.074,p=.065. Those who
reported that it was easy to plan in advance actually performed slightly better (mbozatd
diagrams and faster production) when carrying out secondary tasks, while the revetagewas

of those who had difficulty planning.
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Figure 5.6. Effect on performance of self-reported advance planning

Discussion

As in experiment 1, there is evidence this experiment that novices are nobmpletely

happy when asked to use pictorial elements diagrammatically. In experimesevéral
participants commented that they found the level of detail in the pictorial notatioiusing.

At the end of the experiment | showed some of these participants the geometric version of the
language, and they claimed that they would prefer to use that version. | also sivowned

the participants in the geometric condition the pictorial version, and they said that they would
prefer not to use it. This supports tfieding of Strothotte and Strothotte (199@mongst

others, who have noted that pictogram users tend to choose more “abstract” symbols such as
asterisks or arrows when representing abstract concepts.

In this experiment, the informally expressed preference has been supported bynpecir
measures. Participant&ere lessproductive when using a pictorianetaphor to create
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diagrams than when using simple geometric shapes. This difference waprom®tinced in

the case of diagrams describing abstract processes. My explanation for this is that participants
regard the illustrations as being literal rather than metaphorical, and that this results in
incongruity betveen the task and the notation. No participants cented that they dund

the pictorial notation inappropriate for particular tasks, but this hypothesis is tesjechaier

detail in experiment 5.

The main intention of this experimerfipwever, was to test the way in whicioice of
notation affects the user’s ability to form diagrams as mental images. Only some participants
in this experiment appeared to carry out any planning using mental imagery. Secondary tasks
during the planning period had no overall effect on speed of production, despite the fact that
these tasks have reliably been shown to impair mental images in short term visuo-spatial
memory. Those participantwho reported that theyfound it easy to carry outadvance
planning actually improved their performance when a secondary task was given. It is possible
that the plans involved verbal rehearsal rather than images — this is invesfigdbed in
experiment 6B, in which some participants were given no planning time at all.

Overall, this experiment found a reduction in performance when pictorial elemerdsised
to describe abstract processes. A further relationship had been expected betweemapegor
and the use of mental images for diagram planning, but no clear evidence was found for this.

The different reports regarding advance planning reflect @emwrange of individual
differences that are relevant to tleigsperiment. The underlyingauses of thesdifferences

may be complex.Several researchers haveported differences in mental imagery ability
correlated with gender (Casey 1996, Delgado & Prieto 1996, Paivio & Clark 1991, Silverman,
Phillips & Silverman 1996), handedness, or an interaction betweenvthéHalpern 1996).
Further proposed distinctions include the differencewbeh verbalizer and visualizer
“cognitive styles” (Richardson 1977), interaction of cognitstgle withhandedness (Casey

et. al. 1993), cognitive style with gender (Winner & Casey 1992), with age (Joi8&dr) or

self reported vividness ofmental imagery (KatA983). This is a very complexssue,and |

found no obvious correlations with (for example) gender in posttésts. It is certainlyrue

that there was a ide range of individual variation imperformance inthis task,and this
variation has contributed to the marginal significance of the reasonably large effects
observed. Stenning and Gurr (19973ve also observed the difficulty of evaluatiegternal
representation use in the face of individual differences such as these.

Van der Veer(1990) has explicitlyinvestigated the effect of cognitive style on the
interpretation of software diagrams, bistund that individual differences in mathematical
experience had a greater effect than cognitive style. Previous experience of mathematics
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notations has also been identified as a factor in image memokiflyer and Case{y1992)

and by Manger and Eikeland (1998). Most of these studies have also noted an interaction of
experience with gender or gender image. This is in accordance with casual commadets

by many of the female participants in this and later experiments, along the lifiesy ohot

much good wh mathematical things — you should have got my husband/son to do this
experiment”.

Experiment 4: Comparing diagrams to text

Participants in experiment @/ere selected on the basis ththey had no experience of
computer programming — indeedost had littleexperience of computers, and some had
never used a mouse before taking part in the experiment. The training phase @idciakpt

of this, and all participants successfully completed tbeperiment. Nevertheless, the
environment was not one vith which they were confortable. This may have caused
participants to produce diagramnisat wereunusually simple. The use of @mputer-based

editor may also have removed the potential in pencil sketches for discovarygthr
ambiguity, as has been suggested by Goel (1995) in the case of architectural CAD systems. In
this related experiment, participants were therefore asked to explain thalewices,but by

either drawing diagrams using pencil and paper or writing a verbal explanation.

Notation

This experiment retained the minimal prescription of semantic interpretationeagp@riment

3. Participants weranstructed to construct diagrams by drawing simple shapes and
connecting them together ity arrows, as ifeach shape had inputs and outputs. The
instructions included three examples odfiai this wouldlook like — these are repduced in

figure 5.7 (a full reproduction ofthe instructions is included in appendix B.4). As in
experiment 3, participantaere given nofurther guidance regardingjow nodes or arcs
should be interpreted. Participants were asked to write labels next to each shape, but only after
all the shapes in the diagram had been drawn.
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Figure 5.7. Examples of shapes connected by arrows

In a second notational condition, participamtsre asked talescribe devices by ‘fiting an
explanation in words”. No further constraintere givenother than the constraints of time,
and of scale implicit in the size of the paper provided.

Tasks

Participants in thieexperimentwere asked talescribe the same six devicegroduced in
experiment 3, divided in the samay into three that involvedbstractprocesses and three
involving physicalprocesses.

Equipment

In order to encourage free production digrams, participants worked with penciksther

than ink pens. They were not given erasers, however, so that there would be a clear record of
any changes they made to their productions. Both the diagrams amdittee descriptions

were produced on A3 sized sheets of paper. | used a stopwatch to allocate the amount of time
provided for each task.

Hypotheses

1. That the use of pencil and paper woaltbw participants to be more productive,
resulting in more elaborate diagrams than those produced in experiment 3.

2. That written descriptions would bwore suitable for describing abstradgvices,
and that those descriptions would be more elaborate than when alsvas
were described with diagrams.
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Participants and design

Six participantswererecruited from the APU volunteer panel. Thevere no factorsvaried
between subjects, antivo independentvariables within subjects. The firashdependent
variable was the instruction to explain devices either by drawniggram or by writing text
The second independent variable was the nature oflékiees. The use of three devices of
each type, but only two conditions of the first independeartable,produced arunbalanced
design. It was therefore not possible to test directly for interaction between the two factors.

Two dependentvariables weremeasured. The first was the number referents This was
established in diagrams by counting the numbernofles, and in text by counting the
number of noun phrases that referred to independent entities. The second dependent variable
was the number ofelations This was established by counting the twem of arcs in
diagrams, and the number of phrases describing any relationship between two referents in the
text.

The first hypothesis concerned elaboratioslative to experiment 3. It was tested by
comparing the number of nodes in experiment 3 to the number of referents described in this
experiment. The second hypothesis regarding interaction of writithgalystract device type

was measured in terms of the number of referents and relations.

Procedure

The experimental material was assembled into a booklet, and participants sioigd
through this booklet in the order it was constructed. The instructions started with:

General Instructions
In this experiment, you will be asked to explain what happens inside some thing that might
be used around the house. You will be asked to explain what happens either by drawing a
diagram, or by writing your explanation in words.
Written Explanations
When you are asked to make an explanation in words, you can choose whatever way you
prefer to write the explanation.
Diagram Explanations
When you are asked to make the explanation using a diagram, you should make the
diagram by choosing simple shapes and joining them together with arrows. The shapes
you use should be quite simple — they don’t have to look like anything in particular.

After these instructions, the participant completed a practice exercise, drawing a diagram that
shows whathappens inside a toaster. A further page of instructions then repeated the
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instruction that the diagram should “use simple shapes connected together with arrows” and
“does not have to look like the thing you are explaining”.

Six separate pages of instructions then followed — each naming one of theviigs, and
specifying whether the explanation should be a diagramwritten text. Each page of
instructions was followed by a blank A3 page on which to draw the diagranriterthe text.

| restricted the time available both fptanning the explanation, and fg@roducing it. The
participant was not allowed to start drawing or writing for one minute affading each
instruction — theywere told that this time was to be uskm planning. At the end of the
minute, they were then given three minutes in which to complete the task.

Results

There were two different measures of diagram complexitthig experiment: the number of
referents in descriptions, and the number of relations describededretthem. This was
intended to distinguish diagrams that contained the sam#er of nodes, buivere more
topologically complex, as there is evidence thhis type of complexity may not be
represented as a simple image — Chechile e{18B6) reportthat recall of paired associate
network diagrams is poorer for more complex diagrams, even when all other aspetdgef
complexity are rigorously controlled. Ifact, only 6 of the 36 descriptiongroduced inthis
experiment included more than the minimum number of relations needed to calirtbet
referents. The numbers of referents and relations are therefore very highiglated
(r=.848, p<.001), with no significant difference(Z=0.52) betveen the correlatiorfound in
diagram descriptionsr£.898) and in text descriptiong=.854). The remainder othis
analysis therefore uses number of referents as the sole measure of elaboration.

My main concern in designinghis experiment was tdest whether the editors used by
participants in experiment 3 might have reduced their productivity in termdiagfram
elaboration. | therefore compared the number of nodes contained in diagradused in
experiment 3 to the number of referents contained in the diagrameahgroductions of
experiment 4. The mean elaboration in experiment 3 was 8.3 nodes, #rd @rperiment
was 8.8 referents. This difference is netatistically significant, whether or not the
distributions of thetwo experiments are assumed to have equaiances,t(52.6)=.738,
p=.46. The same devicegeredescribed in both experiments, and there was no significant
difference in the overall level of elaboration for each dew¢8,174)=1.185,p=.318. There

was a large difference between the two experiments for two of the devices, however. As shown
in Figure 5.8, the calculator descriptiomas less elaborate in this experiment, and the
motorbike description was more elabord®€l2, 168)=84.4p<.001.
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Figure 5.8. Elaboration of device descriptions in experiments 3 and 4

The second hypothesis was that text descriptions would be more suitabledoribahg
abstract devices. As described above, the unbalanced design of this experiment ddiesy not

a repeated measures analysis of this hypothesis. | therefore analysed the ceetféta6
descriptions produced in thexperiment as independent observations. Text descriptions did
contain more referents than diagrams, as shown in figure 5.9. This efscstatistically
significant,F(1,32)=12.65p<.01. There was not however any significant interaction between
the form of the description and the type of deviegl,,32)=0.093,p=.762.
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Figure 5.9. Text and diagram descriptions of abstract/concrete devices

The text descriptionproduced inthis experiment, if considered as amependentgroup,
appear to have a slightly highdevel of elaboration than the diagramgroduced in
experiment 3 (this is shown in Figu10). This demonstrates that other members of the
same volunteerpopulation do know more about th&ix devices than participants in
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experiment 3 chose to include in their diagrat(s60)=2.67,p<.01. The diagramgroduced

with pencil and paper in this experiment do not however differ significantly in their degree of
elaboration from thoseroduced in experiment 3(178)=0.75, p=.453. This suggests that

the computer editors used in experiment 3 did not inhibit diagram elaboratiofiughgr

than plain pencil and paper do.

b

10

Elaboration (number of nodes)

Expt 3 editor Expt 4 text Expt 4 drawing

Figure 5.10. Text and pencil diagrams compared to experiment 3

Discussion

On the basis of these results, it is possible to discount some potential confoexgeiment

3. Firstly,there is no evidence that participants in experimemteB especiallyaffected by

the use of a computer wraw diagrams — in fact, their diagram&re more elaborate than

those produced simply with pencil and paper. Secondly, there is no evidence that participants
in experiment 3 were constrained by not knowing enough atheutievices beingxplained

— members of the sanmpulationwere easily able tesupply more information about the
devices (but in text) than others had done in their diagrams.

This difference in elaboration between text and diagrams has disturbing implications for
those who claim that diagrams are “intuitive” in some sense. In a previously pubfisiped

| have reported the difference in mean elaboration founthignexperiment asCorrection:

A picture is worth 84.1 words” (Blackwell 1997a). A more intriguing observation isphet

of the difference in elaboration between text and diagrammatic descriptions comes from the
fact that participants generally included either themselves or a third person as an actor in their
text descriptions. Diagrams describing the same operations almost never included an actor as
a node in the diagram. Further investigationtli observation i®eyondthe scope of this

thesis, but it may be of interest when pragmatic conventions of diagram use are studied in the
context of applied linguistics (e.g. Oberlanded96). This observation only accounts for a
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maximum mean difference of one Wween the nuiMer of referents irtext anddiagrams;
even when subtracting one from the text counts, thestllis significant difference between
the level of elaboration in text and diagran{84)=2.67,p<.05.

One further observation can be made about these results dragdiseof other researdhto
drawing. Although participants in experiment 3 mhgve found computeriseddiagram
editors uncomfortable tause, mostpeople also have a very restricted repertoire of
representational devices that are available to them when drawing (van Sormh@&fts
Edwards 1979, Thomas & Silk 1990, Karmiloff-Smith 1990).this experiment participants
wereinstructed to use specific symbols iraygthat werepossibly remote from theiusual
habits of drawing. The basic elememtsreonly lines and simple shapes, but these do have
conventional pictorial implications — whether because of fundamental perceptual mechanisms
(Kennedy 1975) odepictive conventiongWillats 1990). Onthe other hand, mogteople
normally produce even supposedly representational drawings s&sni-diagrammatic
arrangements of conventional pictorial symbols rather than using a naturalisticSstyteer

and Thomas (1997) proposthat these diagrammatic drawings simply refledticient
abstract codings of the environment, a facility that is absent in the highly naturalistic
productions ofautistic children (Selfe 1985, Scott Baron-Cohen 1996). The interaction
between diagrammatic and depictive conventions may provide some explanation factthe
that the hand drawn diagrams of novice diagram users irexipigsrimentwere less eborate

than either those produced with computers or written text, but firm conclusions vequlde
further investigation beyond the scope of this thesis.

Experiment 5: Use of incongruent pictorial nodes

I suggested in the discussion of experiment 3 that the interaction of mechanical and
geometric pictures with explanations of abstract and concrete devices may simply result from
a perceived incongruity bseen the task and the notation. Everyone knows ploatket
calculators do not contain moving parts, so it requires more imagination to describe one using
photographs of complex machinery. Carroll and Thomas (1982) have noted that this type of
incongruity can compromise thase of physical metaphors for computgystems.Many
theories of metaphor claim that metaphors are made more apt when there is greater separation
between source and target domains (d@urangeau & Sternberg 1982), hhis hasbeen
challenged by Heydenbluth andeste(1996), whofound that analogical problem solutions
were lesselaborate when the source and target domaiese dissimilar, evenhbugh the
problem was structurally identical to another relating similar domains.
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In order totest this hypothesis, | carried outfarther experiment along the same lines as
experiment 3, but ith evengreater incongruity beteen the notations provided and the
devices to be described.

Notation

This experiment is based on the same diagram editor program that was used in experiment 3.
Experiment 3 used two different versions of thisgram: in the first the nodesere simple
geometric shapes and the argsre unadornedlines, while in thesecond the nodes were
photographs of mechanical components dhd arcs were duct§providing an implicit
metaphor of flow between the components).

In this experiment there were two further versions of the editor, designed to hampaent
relationship to the devices being explained. The first of these depicted the four diffedmnt
types as vegetables. The amsre shown as lines afpring onions arranged kbeten the
vegetables. An example of the resulting diagram is shown in figure 5.11.

Figure 5.11. Diagram editor based on vegetables

The second new version of the editor depicted the four node types as faramyauals, and
the arcs between them as lines of paw-prints, as shown in figure 5.12.
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Figure 5.12. Diagram editor based on farmyard animals

The animal editor includes an implicit metaphor @&vel between nodes, whilbere is no

such metaphor in the vegetable editor. The metaphor implicit in the animal trasksréas
obvious than it is in the mechanical editahile there is no implicit motion in the vegetable
editor. The geometric and mechanical versions of the editor described in experiment 3 were
also included as alternatives in this experiment.

Tasks

As in experiment 3this experiment comparedievicesincorporating abstract processes to

those incorporating concrete processes. Eight new devices were used, however, and there was a
second axis of variation: in the complexity of the device to be explained. Thedeighes

are listed in table 5.2.

Complexity level Concrete Abstract
1 pencil sharpener electric light
2 construction crane transistor radio
3 central heating system bank account
4 baked bean factory British Parliamentary system

Table 5.2. Second set of abstract/concrete devices
The second and third levels of complexity in these devices were intended to correspond to the

range of devices in experiments 3 andwijle the first level was substantiallmore simple,
and the fourth level as complex as possible while being familiar to a lay person.
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Equipment

The equipment used ithis experimentwas identical to that in experiment 3: digitised
photographs of the node and arc types, edited with Photoshop, and animated in Director. The
secondary tasks used in experiment 3 were removed from the program for this experiment.

Hypotheses

1. That the explicit manipulation of task complexity should resultinicreased
elaboration of the diagrams that are produced.

2. To measure any effect of abstraction and editor sizeobyparison to theffect
of task complexity.

Participants and design

Sixteen participantsvererecruited from the APU volunteer panel. Thesere no between
subjects factors, and three factors varied within subjects. The firgpeéndent ariable was

the type of device being explained. As in experiment 3, half ofdéwices involvedabstract
processes, and half involved physicahcreteprocesses. Thereereeight devicesaltogether,

and the second independent variable was the ordinal degoeenplexityof the device to be
explained — there were four levels of complexity for both the abstract and concrete processes.
The third independent variable was the type of diagram used fortaskh- eitheranimal
vegetablemechanicalor geometric The allocation of diagram type to complexity and device

type was balanced across subjects, producing a balanced confound design as in experiment 4.

A single measure operformance was recorded. As in experiments 3 anthig,was the
degree ofelaboration of the diagram, measured in terms of the hamof nodes. This
measure was used to test both hypotheses.

Procedure

The procedure used in thixperiment was very similar to that of experiment 3ntiuded

an animated explanation of the editor operation, followed by a praetieecise, and then

eight device explanation tasks. liis experiment,however, theanimated explanation
demonstrated the geometric editor to all participants. Participants were then shown each of the
four editor variants and given apportunity to experiment ith them, inorder to confirm

that they all worked in the sanveay, before starting work on the practice exercitimlike
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experiment 3, there was no planning period (or secondary task) between the allocation of the
device to be explained, and the use of the diagram editor.

The eight devices thatvereexplained by participantsvere designed to incorporate large
range of variation in complexity. They includddio extremely simple devices: pencil
sharpener (concrete) and an electric light (abstrdeth corresponded tthe leastcomplex
devices in experiments 3 and 4:canstruction crane (concrete) and a transigtadio
(abstract). Two were more complex: a central heating system (concrete) and acbankt
(abstract). Two were as complex as possilhdle being familiar to a layman: a bakdxkan
factory (concrete), and the British Parliamentary system (abstract).

Results

As in experiment 4, the balancasbnfound design of foutevels of complexity wth four

editor types across only eight tasks did adibw a repeated measures analysis of variance
including both factors. Instead, | directly compared eff@zesfor the factors ofcomplexity

and editor type in a single analysis of all trials. The effect of complexity on elaboration of the
diagrams was highly significant, even with this loss sétistical power,F(3,96)=12.67,
p<.001. The effect of the editor type and of abstract versus concrete devices was very small in
comparison, as shown in FiguBel3. Neither the effect of editor nalevice typereached
statistical significancek(3,96)=1.21,p=.31 andF(1,96)=0.02,p=.90 respectively.
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Figure 5.13. Relative effect sizes of complexity, editor, and device type
In order to check for any interaction between the editor being used and the keiige
explained, | normalised théevel of elaboration, relative to all descriptions that were

constructed of that device. On this normalissthle,the number of nodes in thmost
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elaborate description of that device was assigned a value of 100, and ther mmfrmodes in

the least elaborate descriptisrasassigned a value of zero. | then calculated ntbemalised
elaboration of each diagram linearly along this scale. Fidurdd shows the relative
elaboration for each task/editoombination. As any participant only used one of thar

editors for each device, each point on the graph represents one quarter of the total times that
device was described, N=4. There are certain editors which seprodoce more favourable
results for particular tasks. Farmyard animals can productively be used to describe the British
Parliamentarysystem,for example. These interactions are rspatistically significantover

such a small number of trials, unfortunately.

[0  Abstract devices
10 - T T T
m Concrete devices

Elaboration (number of nodes)

animal geometric mechanical vegetable
Editor

Figure 5.14. Interaction of editor with device type

The normalised scale was used to compare the relative elaboration produced using each editor
in the abstract and concrete devieets. There was no significaniffdrence between the
editors over all devices, F(3,45)=1.12, p=.352, and no interaction between the
abstract/concrete deviamanipulation and the elaboratiggroduced with anygiven editor,
F(3,45)=0.83,p=.482.

Discussion

This experiment was unlike experiment 3, in that each participant used a raulgféerdnt
notations. Every participant experimented with all four editors before the experiment started,
and was therefore quite familiaritiv the distinction between the behaviour of thditor

(which was the same in all four cases) and the appearance of the nodes and arcs (different in
all four cases). This presentation made the distinction between the syntactic conventions and
the arbitrary symbols quite obvious. The instructions given to participants in experiment 3
did imply that theywere to treat thsymbols as arbitrary, by repeating that the diagram did
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not have to “bok like anything”. Nevertheless, thexperience of usingeveraldifferent
symbol setsfor the same purpose makes the arbitrary assignment of symbols oiae
explicit.

The results of this experiment show practically no variation in the elaboration of abstract and
concrete device descriptions using different symbol sets. It seems likely that this results from
participants consistently treating the symbols as arbitrary decorations of otherwise abstract
networks. Sometimes those decorations are entertaining (in the case of the farmyard animals),
and hence encourage extra productivity, but | do bdteve that those cases reflect any
underlying difference irthe way that thearticipant has conceptualised the diagram. Even

the geometric shapes may be seen as simply another decoration. As Liu and K@rgttly

have observed in recall experiments, even simple geometric shapes such as squares and circles
can be interpreted as having metaphorical associations with associated mnemonic benefits for
recall of congruentassociations. More complex geometric figures have also bmemd to
haveuniform semanticassociations in different cultures (Pickford 1979, Takahd€€8),
explained by Werner and Kaplan (1963) as “concrete-affective” associations.

Experimental work wh children has also shown that they are pesd to regard symbols

they know to be meaningful as being arbitrary for the purposes of play.“gtesobject”

use of symbols has been observed in children using computer drawing packagpdo

1996). Ithas in fact been shown to impede the discovery of representatiglatibnships
between the real world and a physical symbol domain, when children are allowed to play with
a model of a room in which a toy has been hidden (DelLoache & Marzolf 1992). These
observations lend support to the hypothesis that participants in the present experiment treated
the symbols in a more arbitrary way as a resultpdying” with each of the editorgluring

the preparation phase of the experiment.

Experiment 6: Other factors affecting diagram planning

In the discussion of the previous experiment, | have suggested that interaction between
abstract/concrete devices and different symbol tyjmsends on novelty of the symbols. If

this is thecase there were nodifferences in diagram elaboration in that experimieatause
participants had become familiar with the notational differences and therefore treated them as
more arbitrary.

There are several other potential reasons why the interactiord in experiment 3 was not
replicated, however. Firstly, thassignment of devices to tHabstract” and “concrete”
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categories was made on a purely intuitive basis. &pjgoach has been typical of previous
experimental work comparing abstract and concrete categories (e.g. D’Espositol18873].
but the distinction may be more subtle than the experimenter assumes. Experimests6A
this categorisation on the basis of reports from 20 independent raters.

Secondly, the planning time provided in experiment 3 may have contributed diffdrence
observed between abstract and concrete deviegseriment 5 did notllow any planning

time, based on the observation that secondasks had not affectediagram production.
Participants in experiment 3 may however have found it easier to plan abstract devices in the
geometric condition, perhaps using verbal strategies. Experimente$iB the effect of
planning, in an experiment that is otherwise intended to replicate the resekpariment 3

with a different set of devices.

A third possibility is that the experimental situation included a substantial degree of implicit
experimental demand. Participants had a fixed amount of time in whighnottuce their
diagram, and thewereworking in an unfamiliar environment where the addition eafch

node may have seemed laboriouSxperiment 4 has already demonstrated that the
environment itself did notnduly constrain diagram elaboration, but experiment 4 tried to
reproducethe other conditions of experiment 3, including a fixed tilingit for diagram
production. Experiment 6C tests the effect of experimental demand by manipulating the time
that participants expect to spend on each diagram.

Experiment 6A: Verify abstract/concrete classification

This experiment used thassessments dhdependentraters to test the earlie@ssumptions

regarding assignment of devices into abstract and concrete categories.

Tasks

Participants in thiexperiment simply assigned an abstract/concrete rating to each of the
devices used in the previous experiments. The devices that wereverteall 15 devices that
had been used in experiment 3 and experiment 5 (including the practice example; a toaster).

Equipment

The experimental material consisted of a single page questionnaire. It listed fifteiens,
with a line across the page underneath each one (the questionnaireoducepr inappendix
B.6). The devices were randomly ordered on the page. Each line had a marker at both ends,
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with the words ‘abstract’ anttoncrete’ marked abpposite ends. Participants madenark
on each line to reflect their judgement of abstractness or concreteness for each device.

Hypothesis

That those devicedefined as being abstract in previous experiments would be
rated as more abstract.

Participants and design

Twenty participantswere recruited from students registered for postgraduate degrees at
Darwin College, Caforidge. All participantscompleted the same single pagaestionnaire.

The only independent variable was the distinctiorwben the 15 differentlevices,each of
which had been assigned in previous experimengbsbractor concretecategories.

The questionnaire used a single measurement technigue. The abstract/concrete judgement was
treated as a semantic differential scale eoatinuous line which participants could mark at

any position. The dependent variable was the position of the mark. The hypothesis was tested
by comparing whether those devices defined as being abstract were placed toward the abstract
end of the scale, relative to the overall mean.

Procedure

The questionnaire was distributed to students wkee waitingfor a meeting to begin. The
introduction to the questionnaire described the differencevdmet concrete devicgshose

that involve moving parts or physical processes) and abstract devices (those that).do
Instructions to the participant asked them to make a mark on each line to reflect their
judgement of abstractness or concreteness for each device.

Results

The hypothesis was that those devices defined earlier as being “abstract” wouldokalt &

toward the abstract end of the scale, relative to the overall mean. The scdalEOwasnlong.

With the abstract end of the scale defined as 0, and the concrete end as 150, the mean point of
all marks made by participants was toward the concrete end, at 94 mm. All “abstract” devices
from the earlier experiments had mean positions closer to the abstract end of the scale than
this, and all of the“concrete” devices had mean positions closer to the concrete end. The
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toaster, which was chosen as a practice exercise on the basis that it was not too abstract or too
concrete, had a mean position of 108 mm: closer to the concrete end than the abstract.

| alsocompared theelativerankings of thetwo sets of devicessed in earlierexperiments.

The devicesntroducedlater, in experiment 5, generally received more extreme ratings than
those used in experiment 3. Three of the four abstlacices inexperiment 5 fell into the

first quartile. Only the least complex, the electric lamp, had a more ambiguous position in the
second quartile. All four of the concrete devices in experiment 5 fell into the fourth quartile.

Experiment 6B: Planning effect, replicate abstraction effect

This experiment explicitly tested the effect @lanning on diagram production, and is also
intended to replicate the abstraction effeftand in experiment 3 with a differerdet of
devices.

Notation

This experiment used only thawvo diagram editors based on geometric shapes and
mechanical components that had been used in experiment 3, rather than th&amcdrd
animal and vegetable editors introduced in experiment 5.

Tasks

Participants in this experiment drew diagrams to explain six different devices. Wees¢he
six devices that had bedound to be eitheabstract or concreteitlv the leastambiguity in
experiment 6A, as shown in table 5.3.

Complexity level Concrete Abstract
2 construction crane transistor radio
3 central heating system bank account
4 baked bean factory British Parliamentary system

Table 5.3. Third set of abstract/concrete devices
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Equipment

The equipment used in this experiment was identical to that in experiment 3 and 5: digitised
photographs othe node and artypes, edited with Photoshop, and animatedDirector.
Although a planning period was includethjis consisted of a blank screerthwa fixation

cross in the centre — the spatial tracking and visual noise tasks of experimené Benoved

from the program.

Hypotheses
1. That the effect of device complexity on elaboration would be observed again.

2. That the interaction of device abstraction and editor type observexpariment
3 would reappear.

3. That the provision of planning time would increase speed of production, even for
participants who plan using verbal rehearsal, as proposed in experiment 3.

Participants and design

Sixteen participantsvere recruited from the APU volunteer panel. | variedo between-
subjects factors, and two within subjects factors. The first independent variable returned to the
between-subjects allocation of editors as used in experiment 3; each participant used only the
editor based omechanicalnodes and arcs or ogeometricnodes. The second between-
subjects factowaswhether or not participantsere given time toplan their diagramafter
learning what itwas.Half of the participantsvere givenone minute planning timéefore
starting each diagramyhile the other half were givennone. The between-subjedisctors

were balanced across all participants.

There were alsotwo independentvariables designed as within-subjects factors. The
participants explained six devices; these were classified as afikactor concrete and they
included three different levels abmplexity

Two dependent variables were measured — the degrelalmdration measured as the number

of nodes in the diagram, and tepeedof production, measured as the average time interval
between creation of the first ten elements. The fitstexperimental hypothesesere tested

in terms of the effects of device complexity, device abstraction and editor type on
elaboration. The third was tested in terms of the effectplahning time on speed of
production.
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Procedure

The procedure used ithis experimentwas amost identical to that of experiment 8xcept

that participants in the planning conditieoverenot required to carry out a secondary task
while planning their diagrams. Participants wletd an animated explanation of thditor
operation, drew a practice diagram, and then drew diagrams to explain six different devices.

Presentation order was balanced as for experiment 5.

Results

The first hypothesis was that the previously observed effect of device complexdiagram
elaboration would again be found. This was in fact observed. The mean elaboration of the six
devices is shown in figur®&.15. In testinghis first hypothesis, theraas asignificant main

effect of complexity on elaboration F(2,24)=4.92, p<.05. As before, the abstract and
concrete devices at each level of complexity did not result in significantly différesis of
elaboration,F(1,12)=1.00,p=.338, and theravas no interaction between complexity and

abstractionfF(2,24)=0.09,p=.916.
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Figure 5.15. Mean elaboration of diagrams explaining six devices

The second hypothesis was that the interaction between device abstraction and the use of
mechanical or geometric editors observed in experiment 3 would be replicated in this
experiment. The results from théxperiment did not replicate that finding. As before, there
was no main effect of editor typE(1,12)=0.51,p=.489. In this experimentiowever, neither

was there any significant interaction between device abstraction and the editor type,

F(1,12)=1.56,p=.236.
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The third hypothesis was that providing planning time would increase speed of production in
the early part of diagram creation. There was a significant effect of the planning variable on
speed,F(1,12)=7.52,p<.05, but this effect was in the opposite direction to {adicted.
Participants who were giveplanning timedrew their diagrams morslowly than those who

had no planning time. There is an interaction betwglanning time andlevicecomplexity

that may help to explain this. As shown in figure 5.16, devices at diffdes of
complexity are explained ith similar degrees of elaboration when mpdanning time is
provided. When participantswere given aminute to plan the diagram, thegpparently
produced diagrams that were elaborated in proportiotheaocomplexity of the devicbeing
explained. For the simplestevices,there was a tendency for participants to prodiess
complex diagrams when theyere given time tglan the diagram than when thasere not

given planning time. This interaction was only marginally significhotyvever,F(2,24)=4.92,
p=.065.
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Figure 5.16. Effect of planning time on diagram elaboration and production speed

Experiment 6C: Experimental demand

This experiment tested the effect of experimemtamand by manipulating the time that
participants expected to spend on each diagram. These results have previouslypbetad
in Blackwell (1997a).

Notation

In this experiment participants drew diagrams by hand, axperiment 4. The instructions
given to participants about the form of diagrams were identical to those in experiment 4.
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Tasks

This experiment returned to the complete set of eight devicedrfirsluced inexperiment

5. Device abstraction was noonsidered as a factor in this experiment, so tthe simplest
devices, although found to be ambiguous regarding abstract/concrete judgments in
experiment 6A, were included to give a wider range of complexity.

Equipment

Participants in this experiment used pencil and paper, as in experiment 4.

Hypotheses

1. That the variation in device complexity should result in the same variation in
elaboration observed in experiment 6B, despite the fact that diagvamdeing
drawn on paper rather than with a special editor.

2. That the effect of experimental demand might be sufficiently large by
comparison to the effect of device complexity to explain the variations associated
with the planning factor in experiment 6B.

Participants and design

Eight participantswere recruited from the APU volunteer panel. Themere no between
subjects factors, and two within-subjects factors. The first independent variable wiegtiee

of complexityof the devices to be explained, asekperiment 5Device abstraction was not
considered as a factor in thexperiment. The second independent variable was an implicit
manipulation of experimental demand. While drawing four of the diagrams, participseds

a stopwatch to monitor the length of time that they smatving, providing an implicit
concern withspeedof drawing. When drawing the other four, subjects were explicitly told that
time was not important, and they should make the diagrardstagedas possible.

There was a single dependent variable — the degrellobration in terms of the number of
nodes in the diagram. The two hypotheses were tested with respect to this variable.
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Procedure

The procedure fothis experiment was similar to that of experiment 4, in whithgrams

were drawn in abooklet containing A3sheets of paper. The booklet first described the
required form of diagram, using the same text that was used in experiment 4. Participants
then completed a practice exercise, explaining the internal workings of a toaster.

Participants then drew four diagrams in #pmeedcondition. The booklet asked them dtart
a stopwatch, draw the firébur diagrams, and thewrite down the time that they haspent
drawing. Afterthis, the booklet instructed them to stop the stopwatch and paival, then
spend as much time as they liked drawing four more diagrams, wildoh to bemade as
detailedas possible. The presentation order of the eiglvices,and allocation of devices to
the speed/detailed conditions were balanced across all participants.

Results

The first hypothesis was that the variation in device complexity should result in the same
variation in elaboration observed in experiment 6B, despite the fact that diagermiseing

drawn on paper rather thanitv a special editor. As shown in figure 5.17 there was a
significant variation of diagram elaboration, in the direction expectd imcreasing device
complexity, F(3,21)=6.57,p<.01.
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Figure 5.17. Variation in elaboration with device complexity and experimental demand
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The second hypothesis was that the effect of experimental demand might be comparable to
the effect of device complexity. As can be seen in figure 5.17, the differenel@lioration
between thetwo demand conditions is significan&(1,7)=13.06, p<.01. There isalso,
however, alarge interaction effect between complexity amg@mand condition. When
participants are working itthh an implicit time constraint, there is relatively little variation
between the elaboration of the least complex and most complex descriptibes. agked to

make their diagrams more detailed, participantye able toproduce far more aborate
diagrams for the more compledevices. This interaction is only marginally significant,
however:F(3,21)=2.97,p=.055.

Discussion

These three experiments investigated several areas of uncertainty arising from experiment 3, 4
and 5. Firstly, the categorisation of devices into those involving abstract apdcrete
processes appears to have been quite straightforward. The discovery that the second set of
devices (first introduced in experiment 5) were more strongly differentiated than the original
set alsoencouragedhe attempt to replicate the original interaction with a differseit of

devices.

Experiment 6B failed to replicate the result of experiment 3, however. There was no evidence
at all in support of the previously observed interaction. This suggests thantiction
observed in experiment 3, if Wwere to be verified as robugprobably resulted from the
specific set of devices used in that experiment. In fact, a single device contributed most of the
interaction effect. The pocket calculator was explained to a far griatelr of elaboration

when geometric symbols were being used; an average of 13.0 nodes, comparediddes.8

in the pictorial condition. This was the largest difference in means fordamice, but the
interaction over all devices was oniyparginally significant,F(5,110)=2.24, p=.055. On
inspection of the diagramgroduced inthat experiment, it seems there isstaaightforward
explanation why the calculator should be a special case. Geometric symbols areusedily

to express mathematical operations, so the diagrams produced often included several elements
representing each arithmetic operation. The pictorial hodes were used to represent processing,
but were less likely to represent individual mathematical operations.

The most surprising result in experiment 6B was that participants drew less cohigudeams

when they were given time to plan in advance. This effect appeared to be restricted to the least
complex devices, however. Isuggests that participants who drew diagratoe the fly”

simply elaborated them until they looked sufficiently complex, rather than thinking in
advance about th&evel of elaboration that was justified. This proposal suggests that the
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observed effect is due to experimental demand rather than any performance deficit associated
with planning. Experiment 6B also confirmed an unusual observation made in experiment 3.
In experiment 3, those participanigho reported no difficulty with planning actually
producedtheir diagrams more quickly when theyere given asecondary task. A similar

effect is observed here — when participants were given no planning timeprbeyced their
diagrams more quickly. This suggests that speegbrofiuction is not a good measure of
whether a diagram has been planned in advance. In this case, lack of planning also resulted in
greater consistency between tasks — perhaps because participants resortexdtaroaad
schema rather than planning a more original diagram.

All of the experiments described in this chapter have involved participants describing the
operation of some devicander time constraints. Furthermore, none of é&xperiments
included any explicit instructions on thevel of elaboration that participantsere expected

to produce. The level of elaboration that they did produce was therefore influencedliyot

by their knowledge of the device, by their planning strategies and by the tools that they were
given, but by the implicitequirements of the experimental context — tereunlikely to
expend much more effort on each diagram than they believed was required of them. This
factor is likely to have affected all tasks equally, but may have had the effeetiwfing the

range of elaboration produced. As rasult, the manipulations of editor and task
characteristics in these experiments may have had larger effects in citmstances.
Despite this caution, if there was an effect of pictori@taphor ortask abstraction in the
experiments reported ithis chapter, it was too small to be observed. It was certainly far
smaller than either the effects of device complexity or experimelgiaand as observed in
Experiment 6C.
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Chapter 6: Metaphor for Mnemonic Diagrams

The advantages proposed Htyis mode ofrepresentation
are to facilitate the attainment of information, aadl the
memory in retaining it: which twopoints form the
principal business in what we call learning.

The Statistical Breviary,
W. Playfair, 1801, p. 14.

Chapters 4 and 5 have described investigationsvofwidely held theories of diagram use:

that novices can use diagrams as physical metaphors of abstraction to gain expertise, and that
diagrams accommodate the use of mental images in problem solving. Neither series of
experiments found convincing evidence fire expectedstrategies, but this does not
necessarily mean that the claimed advantage of metaphorical diagranmeyieased in
chapters 1 and 2, is completely unjustified. Even if metaphors simply providaeanonic

aid when learning to use a diagram, this could result in substantial improvements in task
performance.This could explain the result®und in experiment 2where anonsensical
metaphor may simply have prompted bizarre (but effective) mnemonics.

In experiment 1, | tested for differences in memorability between metaphoricahamd
metaphorical diagrams. Of the four noviagso used thenon-metaphoricalersion, two of
them asked far more often for reminders about component functions. The fact treffettis
was only observed for half of an already small experimegtalp made firmconclusions
impossible, but it supports the possibility that metaphors suppm@monic perfanance
rather than problem solving.

The literature certainly includes numeroclsims (besides those reviewed in survey 1) that
metaphor makes representatiegstems easy to learn. Pay(£988) describes imroved
memory for abbreviated command languagésen they have a metaphoricakplanation,
while Simpson and Pellegrino (1993) describmall (10%) improvements in recall when
novices use a visual representation involvingemgraphical metaphor. hére memory for
visual representations isoncerned, however, it may be the case that any systematic
interpretation will improve memory. Bower, Karlin and Dueck (1975) found that
reproduction of abstractisual riddles was famore accurate when participant®re given a
meaningful interpretation of the picture. Liu and Kenngd@94) foundthat verbal recall
was improved when the wordsere nscribed within simple geometrical symbdisving
stereotypical interpretations congruenithwthe words. Bartlett(1932) also proposed that
memory for abstract shapes would be improved by seeing them as real objects.
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Experiment 7: Comparison of good / bad / no metaphor

In experiment 2, participants carried out a combination of problem-solvingmaremonic
tasks,using four diagrams composed of abstract shapes. The meaning of each diagram was
described either with the addition of a systematic metaphor,itbramonsensicametaphor.

The quality of the metaphor given appeared to miikle difference in performance to
novice diagram users. This result can be seen as supporting the occasional critiques of
metaphor use irHCI. Kieras and Bovair claimed thatnderstanding of complexievices

would not be improved by a metaphor or analogy becauséunlikely to support precise
inferences” about specific actions that the user should make (Kieras & Bovair 19842)p.
Furthermore, Kieras and Bovair warned that the metaphor might be poorly designed, or that
novices may draw invalid conclusions from it, in which case it would impaiformance by
comparison to more precise instructions. This might certaiglye been expectedittv the
nonsense metaphors of experiment 2.

This experiment further explores the result of experiment 2, by introducing actmdition

with no metaphor at la It also modifies the tasks thatere used to evaluatdiagram
understanding in experiment 2. that experiment, one of the tasks involveaimpleting a
diagram by drawing missing graphical elements. The drawing taskeastsaffected by the

use of metaphor. Iseems possible that some participants treated it as a sifigpiee
reconstruction task, perhaps as a result of having carried out visually similar tasks (such as the
Rey-Osterrieth complex figure recaéist) in previous experimenencountered during their
membership of the APU volunteer panel. If the drawing taskdremburaged participants to
rely on image-based memorstrategies, rather than using theetaphor to interpret the
diagram, this might have resulted in a modality-specific interference effect, similar to the
finding by De Beni,Moé and Cornoldi (1997)hat using the mnemonic method of loci
interferes with recall of written texts, but not oral presentations of the saméntexterence

of this type might also suggedual-codingeffects (Paiviol971) governingthe mnemonic
benefit of the symbols. This is explored further in experiment 9. In the cusrg@riment,

the diagram drawing task used in experiment 2 was simply removed.

Notation

This experiment used novel diagrams: the four that had been used in experiment 2, and two
further diagramsthat, as inexperiment 2, expressed computational concepts in familiar
situations. As for the original four diagrams, the explanation of each diagmund
incorporate either aystematicmetaphor that compared the graphical elementsdime
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physical situation with an appropriate structure, aroasensemetaphor that comparetthem
to an irrelevant physical situation. The original four diagrams expressed the following
concepts:
» closure (a set of values that is defined for use in a specific context);
» database join (combining tables of data on the basis of common values in each table);
» flow of control (sequences of execution states such as repetition and choice); and
» visibility (hiding working material within a function to simplify its interface).

The two new diagrams were designed to be ati@bgedifficult extreme of those used earlier.
They expressed the concepts of:
* remote execution (defining an algorithm that can spread ac®ssalcomputers);
and
» selection (choosing the next state of the program based on some logical criterion).

The diagram expressing remote execution is shown in Figure 6.1. The task casenbetl

a car manufacturing operation, where the manufacture of some parts or sub-assemblies might
be subcontracted to other factories. The diagslwmwseach sub-assembly as a box that can
contain other sub-assemblies (a recursive definition). A rectangle without decoration indicates
that the assembly will take place in the same location as for the containing bextafigle

with a“V” marked across the top indicates that the assemtiilytake place in aifferent
location.

Fully Assembled Car
Chassis

Body —
Transmission
| Boot | | Doors |
Differential
| Brakes |
| Bonnet ” Seats | | Gearbox |
|Suspension |
Dashboard —
| Ignition ” Spark Plugs |

|Carburett0r ” Pistons |

Figure 6.1. Diagram showing remote execution in terms of car manufacture.
Eg: Seats are made in a different factory from the body, but the bonnet is made in the same factory

For this diagram, the systematitetaphor described the plain rectanglessiasets ofpaper

which could be used to instruct the factory workers about assembly operationsectdregle

with the “V” at the top was described as resembling an envelope in which instructions would
have to be posted to a different factory if the assembly was being done elsewhere. The
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nonsense metaphor described the boxes as toolboxasthe/“V” being an open drawer
allowing you to see what is inside the box.

The diagram expressing selection is shown in Figure 6.2. The task context described a
decision in planning a dinner menu: the decision of whether or not to eat salad depends on
the weather, and on whether some combination of appropriate ingredients are available in the
garden, at shops or in the refrigerator. The diagsowscontributing factors linked by

lines, where several linesan be combined conjunctively (shown as a series of links) or
disjunctively (shown as a twisted rod).

Eat salad for dinner

Lettuce at market

Figure 6.2. Diagram showing selection in terms of menu planning.

Eg: leftover salacr some other combination results in eating salad for dinner

For this diagram, the systematic metaphor described the diagram as a system obstriggs
pulled. The conjunction symbol resembled a chain — if one link in the chain breaks, it will not
pull the string attached to its end. The disjunction symbol resembled a rope — any number of
strands can break, but so long as one remaingll ipull the string attached tits end. The
nonsense metaphor described the disjunction symbol as resembling a furled umbrella, and the
conjunction symbol as resembling a string of sausages.

Tasks

As in experiment 2, participants answered poahension questions for examples ezch

diagram. These questiongere phrased to involve an element pfoblem solving using the
notation, rather than simply providing definitions of diagram elements,reading

information directly from the diagram.
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In a second task, participants completed incomplete diagrams by writing in missing labels. A
list of the missing labels was provided, alonghwsome problem-domainconstraints stating
where those labels could be placed.

Experiment 2 had also includedtest in whichincomplete diagramsvere completed by
drawing, but that task was omitted from this experiment, for reasons explained in the
introduction. This also reduced the nimar of tasks using eacHiagram from three to two,
thereby providing sufficient time in the experimental session to learn six diagrams rather than
four as in experiment 2.

Equipment

As in experiment 2, material was presented to participants in booklet form. Participatds w
directly in the booklet, and used a stopwatch to record the amount of time theywspkimg
on each page. Pages from the booklet are reproduced in appendix B.7.

Hypothesis

That performancewhen no metaphor was provided would bitermediate
between the systematic metaphor and nonsense metaphor cases.

Participants and design

Twelve participantswere recruited from the APU volunteer panel. Thenere no factors
varied between subjects, ahdo factors within subjects. The firshdependent variable had
three values in this case: diagramsere presented to participantsitiv either thesystematic
metaphor, thenonsensemetaphor, ono metaphomt all. As in experiment 2, the design was a
balanced confound, ithh the allocation of metaphor condition to each of e diagrams
balanced across subjects. The secondependent variable was the form of task:
comprehensiomuestions ocompletionof incomplete diagrams.

As in experiment 2two dependentvariables were used tmeasure performance: thmpeed
with which participants completed comprehension and completasks, and accuracy in
those tasks. Accuracy scoregreagain normalised for eactask, so that treatent effects
could be compared usingcores on different tasks. The first hypothesisgarding
performance was tested in terms of both shorter task completion times and rgmaised
scores.
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Procedure

Participants in this experiment worked through a booklet, as in experiment 2. Theafjest
instructed them to work through the booklet in order, and to write at the top of each page the
time that they started work on that page.

The main part of the booklet contained 18 pages: three pages for each of the six diagrams. In
each group of thregages, the first page explained the diagram with dlp@ropriate
metaphor condition, the second page askedptehensionquestions, and the thirgage

asked the participant to complete a diagram by adding text.

The assignment of metaphor condition to each diagram was balanced across participants, as
was the presentation order of metaphor condition. The six diagremesalways pesented in

the same order for all participantsitwthe least difficult (those that had resulted in the best
performance in experiment 2) presented first in order to incrélaseconfidence of
participants at the start of the experimental session.

Completed booklets were scored by comparison to ideal worked solutions,aakihgnwas

done while blind to the metaphor condition itk which diagrams had beerxplained.
Comprehension questions were scored by awarding one mark for each piaéermftion

that was in accordance with the worked solution, and subtracting one mark fadditipnal

pieces of informatiorgiven, if it was inconsistent ith either the problem constraints or the
definition of the diagram. Diagram completidgasks werescored by awarding one mark for

each label that was in the same place as the worked solution, and subtracting one mark for
each label in a place that was inconsistent with the problem constraints aiatjam
definition.

Results

The hypothesis for thiexperiment was thaperformance Wwh no metaphor would be
intermediate between that in the systematigtaphor and nonsense metapbases. In fact,
there was no significant difference in speed between the tasesF(2,22)=0.31, p=.735.
Furthermore, the mean accuracy in the no-metaglase was actually slightly higher overall
than in either of the otherases, ash®wn in table 6.1. This difference in accuracy was not
significant either, howeveFE(2,126)=0.37 p=.694.
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Metaphor type Combined mean score

Nonsense 46.2
None 51.8
Systematic 47.4

Table 6.1. Mean scores in experiment 7 metaphor conditions

Why might the absence of a metaphor improve performance? Participants mightohiaeel

that thenon-metaphorical explanationwere shorterthan the others in the booklet, and
realised that some systematic motivation for the choice of symbols had been hidden from
them. They may well have constructed their cewplanatory metaphor #his point. A self-
generated explanation may even be a superior mnemonic to the metaphor providedr in
explanations (as argued in the discussion section below). In ordesttthis, Icompared the

time that participants spent reading the diagram explanation. Reading time mauhclly

be shorter in the condition itk no metaphor, as the text is shorter. If participants were
constructing their own explanations, reading time should be longer for the conditonow
metaphor.

Reading times for eacmetaphor condition arehewn in table 6.2. Reading time is fact
shorter for theno-metaphor condition. It is longest fohe nonsense conditiorsuggesting
that participants spend more time trying to make sense of the nonsensghonetThe
variances in reading times are very different, however — the variance in reading timehs
greater for the metaphor conditions than for the condition with no metaphor. Levese’s
for equality of variances confirms that variances in reading times are significhffdyent:

a) whencomparing variances of theno-metaphor andsystematic metaphor reading time
distributions, and also b) whewmomparing no-metaphor tdhe nonsensemetaphor;
F(1,47)=7.25,p<.01 and F(1,47)=12.66, p<.01 respectively. This is in accordance with
unsolicited comments made liwo of the twelve participants, that they stopped reading the
second paragraph dhe explanations (th@aragraph containinghe metaphors). Both of
these participants had received a nonsense metaphor in the first diagram lodottiet.
Presumably these were so unhelpful that theseparticipants (and possibly otherdgcided

to discard all the metaphors without further evaluation.

Metaphor Type mean reading time (s)  standard deviation
Nonsense 126.21 13.944
None 95.60 5.631
Systematic 104.92 12.160

Table 6.2. Mean reading times for diagram explanations
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Discussion

This experiment repeats the finding of experiment 2, that systematic metaphors latle of
assistance imemembering and interpretinthese diagrams. Performance with systematic
metaphors is once again similar to that with nonsensical metaphors. These two treatments have
more in common, in fact, than a case with no metaphor at all.

In analysing theseesults, | haveconsidered the possibility that participants may be
constructing their owmetaphor in thecase when none is given. This has previousien

found to assist novices learning to use compstatems. Carroll and Macikl985) describe

an unpublished study by Carroll andadher, in which learningvasimproved when users
created their own maphor. Jones(1984) has also noted that novices learning a
programming language invent their own metaphors to explain the behaviour of their program
by comparing it to other types dfoftware that they are familiawith, such as word
processors.

There is certainly clear evidence that some participants in ékpgeriment ignored the
metaphorical explanations, presumably substituting their own mnemonic strategies. The range
of potential strategies is very large, and is subject to individual variation (MacLeod, Hunt &
Mathews 1978, Kaufmann 1979, Matsuno 1987, Riding & Douglas 1993, Sein et. al. 1993) as
well ascultural variation (Kearinsl981) and differences in self-image ax 198). This
possibility is explored in the following two experiments by asking participants to regtet,
completing the experiment, what mnemonic strategy they had used for each diagram.

Experiment 8: Explicit metaphor as a mnemonic aid

In experiment 7, as in experiment 2, diagram metaphor was assessed in terms of the benefits it
would provide in learning to use the diagram for problem-solving td&Siseriment 7 raised

an interesting question regarding the effect of individual mnemonic strategiesme
differences in performance appeared to result from mnemonic benefits which mape®ave
mostly obscured by the substantial problem-solving demands in the experimental tasks. A
similar distinction betweemmemory and comprehension of diagrammatic material can be
found in an experiment byotter et. al.(1986). Participants were rpsented Wth rebus
sentences — sentences in which some of the words nepleced by pictures. They then
performed bothrecall tasks and plausibilitjudgement tasks. Potter et. alfound that
plausibility tasks took longer when picturegreincluded in a sentence, but that redalks

took the same amount of time. They use these results to argue that sendgeimgats
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involve lexical representations, and that additional timeefguired to translatepictorial
material into lexical form.

The tasks used in experiments 2 and 7 involved a substantial degree of problem solving. If, as
Potter et. al. claim, semantic processing of pictorial materialoswer than that ofverbal
material, interpreting the problenstatements in metaphorical terms may actually have
impaired performance.This could have some bearing on the slight improvement in
performance when no metaphor was given in experiment 7.

In this experiment, the tasks weteerefore modified to emphasise recall of the ringional
material rather than problem solving. All tdeagram explanationsvere given at the start of

the experiment, resulting in an interval afound 20 minutes b&een presentation artést.

An explicit recalltest, with no problem-solving component, replaced themprehension
guestions. The diagrams themselwesre alsomodified, includingtwo new diagram types

which emphasised recall of individual symbols rather than complex geometric syntax. In
these simpler diagrams artdsks,any potential handicaps arising from semantic access to
pictorial material should be reduced, and the residual mnemonic advantages of instructional
metaphor should be clearer. The expected mnemonic advantage can again be explained in
terms of the experiment bBower, Karlin and Dueck(1975) that was described in the
introduction to experiment 7 — they found that recall of a visual riddleimpoved when a
pictorial interpretation was given.

Notation

Participants in this experiment learned to use novel types of diagram, as in experiments 2 and
7. These includedwo of the diagrams that had been used in those experiments: one
presentingflow of control as a washing machine cycle, and one presentisigility as
telephone availability. Therevere alsotwo newdiagrams. These expressed spatiahcepts

rather than abstract computational concepts, and the spatial organisation of the diagram had a
direct correspondence itv the spatial layout of the situation that it referred to. Thh
explanations of these diagrams, as presented to participants, have beeduaegr in
appendix B.8.

The first of these new diagrams was essentially a maptwibelimensions of the paper were

used to show the plan view of a gold mine. The map was schematic rather than pictorial, and it
was annotated with symbols indicating what sort of excavation would be requidifieatnt
locations. An example of the diagram is shown in figure 6.3. The six symbols replaggnt
deposits of gold, individual whole gold nuggets, sprinkled gold powder, rock which must be

138



crushed to yield gold ore, as well as places where it was necessary to cut through rock walls, or
removing blockages from tunnels.

Figure 6.3. Diagram showing gold mine layout

Each of the six symbols could be explained by giving it a metaphorical interpretation. A
single metaphor domain was chosen, in which gold mining operatvens related to table
cutlery. The metaphorical explanation of the diagram compared three of the symbols to a
knife, fork and spoon: the knife expressed cuttingoulyh rock valls, the fork picking up
individual nuggets and the spoon scooping up bulk deposits of gold. The other three symbols
werecompared to &alt shaker(sprinkling of gold dust), a nut crackécrushing goldore)

and a corkscrew (removing blockages from tunnels).

The secondnew diagram used théwo dimensions of the paper to represent altitude and
time/distance as an aeroplaapproaches landing. An example of the diagram is shown in
figure 6.4. This schematic diagram also included six symbols to represent actions taken by
the pilot: checking for a clear path, lining uptlwthe runway, trning landing lights on,
selecting different ranges of engine speeds, slowing down and lowering landing gear.
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Figure 6.4. Diagram showing aircraft landing approach

The explanatory metaphor for this diagram was creatednajogy to the controls of ear.
Lining up with the runway was represented by a simple circle like a steering wheel. The
symbol for selecting ranges of engine speeds was comparedyd¢ariever, the symbol for
slowing down to a brake pedal, and the symbol for lowering landing gearhamadbrake.

The symbol showing when the pilot should check for other planes in the aremmwpared

to a rear vision mirror. Finally, the symbol for turning on landing ligh#sdescribed as an
indicator stalk on the side of a steering column.

The two conputational diagrams from experiments 2 anwvére alsomodified slightly, so

that they also included six different symbols which had to be memorised. | auddder
symbol to the flow of control diagram to indicate the measurement of some quantity (such as
temperature owater level) whichmight start or stop a process. This symbol wascdibed
metaphorically as a gauge. The modified diagram is shown in Figure 6.5.
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Operator Start

Too Cold

Water Empty

Figure 6.5. Flow of control diagram including six different symbols

The visibility diagram introduced in experiment 2 (and illustrated in appendix ®a&ysed
again here. No further symbols were added to it, but the instructions now explisttyiloed
straight lines as a sixtmeaningful element (they had previously been treated as default
“plain” lines distinguished only because of the fact that tkegre not dashed). The
metaphorical explanations of the two types of dashedviee the same as experiments 2

and 7. Plain linesvere now @scribed as a footpath, along which a postman cowdtk o
deliver messages in writing, agpposed to the higher speed road and caihnections
represented by dashed lines.

Tasks

Memory for the diagram definitions wdssted usingtwo different tasks. In thefirst,
participants completed a diagram from which all the symbols had been renureedng
appropriate symbols according tosat of problem constraints phrased in terms of the
problem domain. This task tests both comprehensiothefdiagram definition anthemory
for symbol form.

In the secondask,participantswere shown a set of sigymbols taken out of thdiagram
context, and were asked to write the meaning of each symbol alongside it as a straightforward
recall test. All tasks are illustrated in appendix B.8.
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Equipment

As in experiments 2 and 7, material was presented to participants in booklet form. Participants
wrote directly in the booklet, and used a stopwatch to record the amount of timsptay
working on each page.

Hypotheses

1. That problem solvingerformance usinghe two concrete diagram type@nine
layout/cutlery and landing path/car controls) would be superior to that using the
abstract diagrams.

2. That provision of a metaphor would improve memory for the symbols used in the
diagram, and that this effect would be larger in the case of the abdisggtm
types than for the concrete diagrams.

Participants and design

Eight participants were recruited from the APU volunteer panel. There were no feat@d
between subjects, and thréedependentvariables within subjects, The firshdependent
variable had two levels: the metaphor was eifiresentin the explanation of the diagram, or
absent The second independent variable was the nature of the diagramitwbh@ew
diagrams both map space in the diagram tooacretephysical dimension: to thground
plan of the gold mine, or to altitude along the flight path. Tle diagrams expressing
computational concepts only use space topologically to represdesttact relationships.
Thesetwo factors form a latin square, but the allocation of metaphor/space conditions to
diagrams was balanced across participaptsducing the same balancedonfound as in
experiments 2 and 7. The third independent variable was the type of task usedrterexsty
for the diagram definitions; theompletionandrecall tasks described above.

There were three dependent variables: the time takemaibthe diagram explanatiorspeed
in the completion and recathsks,and accuracy for the completion and recall tasks.
Accuracy scoresvere again normalised for eactask, so that treatent effects could be
compared usingcores on different tasks. Tieo hypothesesvere tested in terms ahese
normalised scores.
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Procedure

As in experiments 2 and 7, presentation order was established by order of pages in the
booklet. In this experiment all four diagrams were presented together at the beginning of the
booklet. Thesavere followed byfour diagram completiortasks (in the samerder as the
diagrams had been explained), and then by the four symbol definition tasks. At the end of
the booklet, a page of debriefing questions asked participants to rejpatteshnique they

had used to remember each set of symbols.

Completed booklets were scored by comparison to ideal worked solutions,aakiohgnwas
done while blind to the metaphor condition it which diagrams had beerexplained.
Diagram completiontasks werescored by awarding up to three marks for each of the six
symbols. One mark was awarded if the form of the symimsirecognised by a ratinganel

(the organisation of the rating panel is described separately below, undene#uing
Experiment 8A). A further mark was awarded if the form of the symbol was precisely as in
the original explanation (i.eall elements of the symbol are present and theyoaiented
correctly to each other). A third mark was awarded if the symbol was includedl ihe
locations where it appeared on the worked solution, and no more.

The symbol definition tasks were scored by awarding up to three marks for the definition of
each of the six symbols. One markas awarded if the definition distinguished the
interpretation of this symbol from that of the other five symbols. A second maskjiven if

the definition was completely accurate. A mark was subtracted if the sywdsdgiven an
interpretation that should have been allocated to a different symbol.

Results

One participant in the originajroup of eight completethe testbooklet out of orderafter
missing the page that provided the initial explanation of one of the diagrammantiA
participant was recruited to replace thassults,and theout-of-order results have nobeen
considered any further.

The first hypothesisvasthat tasks using théwvo simpler concrete diagram types would be
completed more quickly than those using the abstract diagrams. Task completion times in the
different conditions are shown in Figure 6.6. As predicted, participantsttao& aslong to
complete tasks using the abstract diagrani$,7)=12.20,p<.01. There was no main effect of
metaphor presence on mean task completion time, and there was no interactietajofion

with the time taken to complete either type of diagram or either task.
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Figure 6.6. Task completion times for each condition in experiment 8

The second hypothesis was that provision of a metaphor would impneweory for the
symbols used in the diagram, and that this effect would be larger in the case of the abstract
diagram types than for the concrete diagrams. A multivariate comparison of completion time
and accuracy (MANOVA) shows a two way interaction between diagram type and recall task
performance F(2,6)=9.96,p<.05 — in the abstract diagrams, accuracy in the symbol recall
task was superior to that in diagram completion tasks. For the concrete diagrams, the reverse
was true, as shown in figure 6.7. The inclusion of metaphor was apparently associated with a
slight improvement in accuracy for recdhlsks,and a slightly greater improvement for
diagram completiontasks,but neither the main effect of metaphor nor the interaction is
significant, F(1,7)=0.29,p=.605 andr(1,7)=0.001,p=.978. There was no improvement at all

for abstract diagramtypes, however. Inclusion of aexplanatory metaphorproduced
improved scores in the concrete diagrams, but actually impaiextbrmance in abstract
diagrams, as shown in figure 6.8. This interaction is marginally signifiégnt,7)=5.161,
p=.057.

144



O Recall ] Completion

80% 80%
Q 70% ( Q 70% — =
c c
[ ©
g 7] g
S 60% |- S 60%
© o
o o
S 50% |- S 50%| .
12 0
© ©
1S 1S
S 40% |- S 40% |
d 2
30% 30%

Abstract Concrete Absent Present
Diagram Type Metaphor

Figure 6.7. Recall and completion performance for each diagram type and metaphor
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Figure 6.8. Interaction of diagram type and metaphor

As in experiment 7, | alscompared theimes spent reading the diagram explanations, in
order to examine any strategic differences in mnemonic strategies. Réiau#sgwereagain
longer when metaphorsvere included in the explanation than when theyere not,
F(1,7)=10.54,p<.05. This is consistentithh the fact that the metaphorical explanation texts
werelonger. Readingimes were alsoonger for abstract diagram types than @mmcrete
diagrams,F(1,7)=19.37,p<.01, but this is not the result of any difference in the length of the
texts: it reflects the fact that the abstract diagrams are simply more complex, andnigde

to understand with owithout a meaphor. Participants tended to spend longeading
explanations of abstract diagrams whemeataphorwasprovided, as shown in Figure 6.9 —
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this implies that they did spend tinferming a metaphorical model of the mocemplex
diagrams, but the tendency is not statistically significk(t,7)=3.75,p=.094.
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Figure 6.9. Explanation reading time: interaction of metaphor with diagram type

At the end of the booklet, participants reported the method they had usezimtamber
symbols. Of the sixteen diagrams for which no metaplas provided (two for each
participant), participants reported for nine of them that they had constructed their own
metaphors. Some of these constructed metaphors appeared to be relatedntentienal
design of the symbols; for example in the case of the gold fayenbols mrtly look like

the job they are doing”) or for the flight path rffagined flying plane”).Other metaphors

were completely original; again in the case of the gold mine;fowk” symbol for picking

up individual nuggets was described by one participant as “like a coffee beamygget)”

and by another aSrounded like chicken nuggets”. Some mnemonic techniques were
apparently verbal(“l remenbered circle triangle square irorder”), and one participant
appeared to use synesthetic mnemonics — “a circle was a green go sign and a square a red
stop sign” (the symbols were not printed in colour), and “the rock was angular and harsh”.

Experiment 8A): Rating of symbol forms

In experiment 8, participanteiere asked to drawymbols from memory in theliagram
completion task. Some of the productions were not immediately identifiable as corresponding
to any of the defined symbols. The causes of this inaccuracy may be related to the fact that so
many adults are unable to dravhatthey see. Cohen and Benn¢ti997) attributethis to
misperception of the object beindrawn, resulting from biases in existikgpowledge. In
children’s drawing, the ability to reproduce figuralso relies on developing a repertoire of
standard components (Fenson 1985at may not be combinedtrictly according to the
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visual appearance of a shape being copi@thateverthe cause of inaccuracy, it tpuite
possible that some of the inaccurate reproductions inettpgrimentwereinfluenced by the
instructional metaphor. If | had ratetthese productions rgself, my familiarity with the
metaphor would certainly have biased my assessment in favour of thoseethabnsistent
with the metaphor, thereby favouring implicit recall of the metaphor rather dbaorate
recall of the diagram. Experiment 8 was therefore followedthig independent rating
exercise.

Procedure

Five raters wererecruited from staff and students at the APU. None of the raters had
previously seen the diagrams, their definitions or the metaphorical explanations.ratach
was given a set gbhotocopiedpages, each one of which contained one of sbis of six
symbols defined for the diagrams, but included neither any verbal explanaticiagoam
context. In addition to the six original symbols, the page contapieatocopies of all
ambiguous productions created during the diagram completisks. | asked the raters to
decide whether each production corresponded unambiguously to dhe symbols, and if

so, which symbol.

Results

In general, the raters were conservativeidantifying productions, and judged a relatively
large number of symbols to be ambiguous. The majority decision fronfivilagaters was
used to score each symbol that had bpeduced bysubjects in experiment 8. The scores
based on these ratings are the ones that are reported in the results section for experiment 8.

Discussion

This experimentintroduced two new diagrams where the interpretation of thigagram
involved a simple spatiatorrespondence beeen the diagram layout and thwroblem
domain, rather than a more complex abstract syntax. Tasks using these diagrams were
completed far more quickly, reflecting threlative simplicity of representations based on
spatial correspondence. Ithe more complex abstract diagrams, participamése able to

recall symbols, but had greater difficulty in using them to complete partial diagrams. The
reverse was true for the simple concrete diagrammerformance on completiotasks was
improved relative to symbol recall tasksxperiment 9 furtherinvestigates the idtinction
between symbol recall and structural comprehension tasks.
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The effect of the instructional metaphor in this experiment can be considered in terms of this
difference between the two diagram types. The metaphor appehevdoprovided areater
advantage in the case of simpler, concrete diagrams. In these diagrapr®ltem-solving
component is reduced even further, as the metaphor is used mainly as a piotemnabnic,

rather than as an aid to interpreting the structure of the diagram. In the complex abstract
tasks, introduction of the metaphor may even impair performance as a resultaafditienal
demands associated with interpreting the metaphor — these increased demands are reflected in
longer reading times.

Experiment 7 discussed the possibility that some participants gained more advantage by
developing their owrexplanatory metaphors, rather than reading an instructiomahphor

that wasprovided for them. The benefits of self-generated metaphor have been reported by
Carroll and Mack(1985) and byJones(1984). Inthe debriefing questionnaire dhis
experiment, most participants did report using metaphorical mnemonic strategies even when
no metaphor had been provided. These mnemonic metaphors must haveohsgncted

while participantswerereading the diagram explanations, but reading timess shorter in

the cases where no metaphor was provided. These mnemonic metaphors must therefore have
been constructed more quickly than the time it takes to read and interpretiséingex
metaphor. Furthermorghese self-generated metaphors are equally effectivenresmonic
devices. This is considered further in experimenwBere more detailed pictoriadontent
facilitates self-generated metaphors.

Experiment 9: Comparison of explicit and implicit metaphor

This experiment compares thivo styles of diagrammatic metaphor that haveeen
considered separately in the rest of this thesis. Experiments 1, 3, 5 and 6 evaluated the results
of implicit diagrammatic metaphor: diagrams which incorporate pictorial symbols, but
without explicitly describing how those symbols should be interpreted. This igeheral
practice in the graphical user interfaces of many commercially available software packages,
anticipated by the cognitive theories of metaphorical abstract conegpEesentation
proposed by Smith(1977). Experiments 2, 7 and #®vestigated explicit diagrammatic
metaphors; the intended interpretatiosas explained using instructional metaphors. Most
psychological theories of metaphor use in HCI accordingly consider it to be an instructional
device (Mayer 1975, Carroll & Thomas 1982, van der Veer 1990).

This experiment compares diagrams constructed from pictorial and abstract sybdibls,
with and without explicit descriptions of the intended metaphorical interpretation. The
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observations of experiments 7 anchl®w two hypotheses that have not been anticipated by
previous theories of metaphor use. The first is that the benefits of metaphbe mainly
observed in improved recall for symbol definitions, but will not improve performance in tasks
where structural interpretation of the diagram is the main task component. The second is that
implicit pictorial metaphorwill provide a greater advantage than explicit instructional
metaphor becauseitill facilitate the construction of self-generated metaphors, whitth
provide greater benefit in recall tasks.

Notation

Participants in this experiment learned to use novel types of diagram, as in experiments 2, 7
and 8. The diagrams used in experiments 2 and 7 expressed computational cortkpts, w
experiment 8 introduced more straightforwasmhtial representationgoldmine layout, and
aeroplane landing path). Theo spatial representations from experimenw&re usedagain

here, along Wh two newdiagram types. Theswvo also relied on conventional usage of
space. One expressed spatial layout as a direqiping. The other presented timelines
running from left to right and symbols that associated height with increasing quditége
conventions have been verified experimentally stti& andHolyoak (1996),who reported
reduced accuracy when the conventions are not observed during graph construction, and by
Tversky, Kugelmass an@Vinter (1991), whofound that even pre-literate children tend to
organise quantitative information along these axes.

The first of the new diagrams introduced in thigperimentshows predictegperformance of
stocks over several years in the market. Tmegram is laid out in a conventionabiular
form, with the time axis running from left to right, as shown in FigeuE0. Each row of the
table is a time line showing predictgarformance of a particular stock in future years. The
symbols that can be placed along the timeBhew whether the stock expected to rise or
fall, to oscillate orbecome unstable, and whether it is cyclieabund astable price or
climbing overall.
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Company D

Figure 6.10. Stock market diagram.
E.g. the stock of company D is expected to climb in 2003

As in experiment 8, these symbols can be explained in terms of a systematic metaphor, where
some resemblance is described between the symbol that is used and an element of the
metaphor source domain. limis experimenthowever, tharesemblance is made fanore
apparent by replacing the stylised symbol with a srphlbtograph ofthe actualsource
metaphor element. The corresponding photographs usedade of each symbol for the

stock market diagram are shown in Fig@dl. The systematic metaphor thiis case is the

range of motions made by playground equipment.

A seesawrepresents a stock that is simply oscillating without rising. A slide represents a
falling stock, and a swing is used for a stock that is oscillating, but rising higher each time. An
unstable stock is represented by a rockimgse, a rising stock by a climbing frame, and a
cyclical one by a roundabout.

o— | A | U | = -

Figure 6.11. Stock market playground metaphor
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Figure 6.12showsthe same stock market diagram as in Figure 6.10, but with the stylised
symbols replaced by photographic icons.

1999 2000 2001 2002 2003 2004 2005

Company A

Company B

Company C

Company D

Figure 6.12. Stock market diagram with metaphorical photographs

The secondhew diagram expressed constraints in the layout of a newspaper front page; an
example is shown in Figure 6.13. As in the previous diagram, constraints are represented by
six different symbols that can be placed anywhere on the page layout. These symbols indicate
attributes of the stories that should be placed in different locations: the main story of the day,
an attractive photograph, an analysis story, a dull story, or stories that should be placed at the
top of the page or in small gaps.
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Daily Planet

a o0

A

Figure 6.13. Newspaper layout diagram

The metaphorical presentation of the newspaper layout symbols is shown in Figure 6.14. The
systematic basis of thenetaphor comes from the attributes assigned by convention to
different animals. A dull story is represented by a tortoise, a story at the top of the page by a
giraffe, a story for filling small gaps by a mouse, an analysis story bywaralarge main

story by awhale,and an attractivephotograph by a butterfly. Adrawings of animals are

more easily obtained than photographs, | usalistic line drawings in the pictorial version

of the diagram.

AR

-

_ O — X

Figure 6.14. Newspaper layout animal metaphor

| also prepared pictorial versions of ttveo diagrams thatvereintroduced in experiment 8.
For the aeroplane landing diagram | used photographs of appropriate car controls, treated in

152



the same way as has been described for playground equipment. For the gold mine diagram |
used photographs otutlery, taken against avhite background. These two sets of
photographsare shown alongside theorresponding stydied symbols in Figures 6.15 and
6.16.

74

L

Figure 6.15. Aeroplane landing symbols and car controls metaphor

& |/
>—-

Figure 6.16. Gold mine symbols and cutlery metaphor

Tasks

Participants completedwo tasksusing each diagram. The firgtas a comrehension task
similar to that used in experiments 2 and 7. In the stock méakkiparticipantsidentified

stocks to buy according to certain criteria. In the gold mine task, participants identified which
shaft in the mine would involve the greatest total effort or profit. The tasks used for the
aeroplane landing and newspaper layout diagrams involved finding inconsistencies in a
complete diagram, when assessedording to a suppliedet of constraints. These tasks are
reproduced in appendix B.9.

The second task was the recall task previously used in experiment 8, inalhsoh symbols
that had been used in each diagramre gesented out of context, and participanteoter
definitions of each symbol.
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Diagram completiortasks werenot included in thisexperiment because it was not practical
for participants to complete diagrams by drawing the photographic symbols.

Equipment

As in experiments 2, 7 and 8, material was presented to participants in bdokhet
Participants wrote directly in the booklet, and used a stopwatch to record the amaume of
they spent working on each page.

The photographic versions of the diagram symlvedse prepared by taking photographs of
playground equipmentar controls and cutlery ith a digital camera. | then used Adobe
Photoshopsoftware to mask the structural aspects of the scenew relevant to the
metaphor, and reduced the contrast of blaekground.The photographs then cropped to
emphasise the metaphorical features, and reduced to cover an amarafimately 3 or 4

cm2 at a resolution of 200 dpi. The animal drawingsre scanned from stimuli used in
another experiment at the APU, and reduced to the same size and resolution.

Hypotheses

1. That neither the implicit nor explicit metaphor will significantly imprgueblem
solving performance.

2. That an implicit pictorial metaphowill improve recall more than explicit
metaphor, because it will facilitate self-generated metaphor.

3. That reading time will be shorter when pictorial symbols are provided;atidg
that generation of a metaphor is more efficient than interpretation of
metaphorical instruction.

Participants and design

Twenty four participantsvererecruited from the APU panel of volunteers. Thevere no
factors varied between subjects, and thirgependentvariables within subjects. The first
independent variable haslvo levels:the metaphor was either explicitiyresentin the verbal
explanation of the diagram, absent The second independentrigble was the form of
symbols used as elements in the diagram: these eitherpictorial or stylised These two
independent variables were balanced in a latin square design, but as in pexyetiments
there was a partiadonfound vith the actual diagram. As beforghis partial confound was
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balanced across all participanierformancewasagain tested usingvo different tasks: the
comprehensiomndrecall tasks described above.

There were three dependent variables: the time takesambthe diagram explanatiorspeed

in the conprehension andecall tasks,and normalisedaccuracy scores forcomprehension

and recall tasks. The first hypothesis was tested in terms of speed and accuracy, the second in
terms of accuracy in the recall task, and the third in terms of reading time.

Procedure

Participants followed the same time-keeping procedure as in previous experimentsling

the time when they started working on each pagefoMi diagramswere pesented at the

start of the booklet, ith explicit metaphor either present or absent from the explanations as
appropriate. The presentation order of the different diagrams was the same for every
participant: this meant that the presentation order of the differaiaphor conditions was
appropriately balanced.

The presentation of the diagrams was followed either by four pages with a comprehension test
for each diagram, or by four pagedthwa recall test for eachliagram. Thecomprehension

test in this experiment involved finding inconsistencies in a complete diagram, askessed
according to a supplied set of constraints. This style of test was used rather thlagtihen
completiontasks ofexperiment 8 because it was impractical to ask participantonaplete
diagrams by drawing photographic symbols. The tests for each diagram were presented in the
same order as the diagrams had been explained, but the order wfothéocks of tests,
comprehension andecall, wasbalanced across participants. As in experiment 8elarief
guestionnaire at the end of the booklet asked participants to repatteghnique they had

used to remember each set of symbols.

Completed booklets were scored by comparison to ideal worked solutions,akihgnwas

done while blind to the metaphor conditionitlv which diagrams had been explained. The
straightforvard memorytask, in whichparticipants wrote the definition of a symbol, was
scored using the sammocedure as described in experiment 8. The comprehernagis
werescored by subtracting one mark for every problem constraint that was violated in the
solution. Where no responswas made to some parts of a question, further marks were
subtracted. These were allocated so that each solution started with a possible ten marks, which
were reduced to zero if no answer was given. A largebeunof constrainviolations could

result in a score below zero, however.
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Results

The first hypothesisvasthat neither the form of the symbols nor the provision of a verbal
metaphor would improve problem solvipgerformance.Both problem solving scores and
recall scores are shown in figure 6.17. Problem solpi@gormance irtasks with arexplicit
verbal metaphor supplied actually tended topm®rer than for thosevithout the verbal
metaphor, althoughhis difference was nostatistically significant,F(1,23)=0.84, p=.368.
There was, however, asignificant improvement in performance agesult of the implicit
pictorial metaphorF(1,23)=4.49,p<.05.
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Figure 6.17. Problem solving and recall scores with implicit and explicit metaphors

The mean times taken to complete the recall prmablem-solvingtasks wereapproximately
10% slower in cases where an explioietaphor had been provided, althoutytis was not
statistically significant for either recall oproblem solving, F(1,23)=3.49, p=.121 and
F(1,23)=2.59,p=.074 respectively.

The second hypothesis was that the pictorial symbols of the implicit metaphor would
selectively improve recall performance. This was the largest effect observed in the experiment,
F(1,23)=26.09,p<.001. Unlike the problem solving scores, inclusion of explicit metaphor did
produce a slight trend toward improving the recall score, but the effect of explicit metaphor is
not significant,F(1,23)=0.90,p=.353.

The third hypothesis was that reading time would be shorter when pictorial symbaiseare
rather than abstract ones. This was ¢hee, astown in figure 6.18,F(1,23)=5.51, p<.05.

The difference was larger than the difference in length of the text resulting from presence of
an explicit metaphor. The effect of pictorial symbols on reading time also tendedlaogbe
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when no explicit metaphor was included in the explanation, although the interaction was not
significant, F(1,23)=1.14,p=.297. This supports the conclusion made in experiment 7, that
users of diagrams can generate mnemonic metaphors relatively quickly compared to the time
that it takes to understand a metaphor provided with the diagram explanation.
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Figure 6.18. Variation in reading time with implicit and explicit metaphors

The presentation of results for experiment 8 included a simple count of thbenuoi
occasions on which participants described a mnemonic technique involving their own
metaphorical system. In this experiment, each of the 24 participants redastegctions
without a metaphor for one diagram itlv pictorial symbols, and for one diagram with
geometric symbols. Of the 24 pictorighses, 20participants reported the creation of a
metaphor based on the pictures. Of the 24 geomeaisespnly 9 participants reported the
creation of a metaphor. As in experiment 8, the metaphors developed for geomwyeiials

were often imaginative. The grid that represented a climbing frame for rising share prices was
remembered by one participant a$paison gate tolock in profits” and by another as “a
grate time to buy”. The non-metaphorical strategies that were reported inchatedpecific
verbal strategie¢‘associate a word witeachsymbol”) and sequential strategi€4ried to
remember them imrder”). Ofthe four pictorialcases where metaphor was not reported,
one participant reported a verbal stratg@ialked myself through ltem”), one a spatial
strategy (“tried to remember positions on tha&ge”), one indeterminatg“by association”)

and one simple failure (“I didn’'t construct a method”).

| also tested for any effect of varying the order pbblem solving and recaliasks, to
determine whether the presentation of problem solving tasks before recall tasizenment
8 may have improved recaflerformance as &esult of rehearsal effects unrelated to the
metaphor treatment. There was no significant difference between any of theadependent
variables in cases where recall was teftefbre and after problem solvingtests of order
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effects on scores for problem solving and recall respectivedye t1(22)=0.220, p=.82
t(22)=0.501, p=.62, whilet-tests on the times taken to complete these tagts alsonon-
significant: t(22)=0.762,p=.45 andt(22)=0.923,p=.36 respectively.

Discussion

The results of thiexperiment confirm the hypotheses regarding thktive benefits of
implicit pictorial metaphor and explicit explanatory metaphor. Metaphor in diagrams is
mainly a mnemonic aid rather than a structural aid to interpretation ofdithgram.
Furthermore, this mnemonic aid is more pronounced where the pictorial caliterd users

to generate their own metaphors, rather than when an explicit instructivgtalphor is
provided.

The mnemonic advantage of pictorial material is predictedsderal theoreticamodels.
Paivio’s dual coding model predicts that associating any concrete image wipnettentation

of verbal informationwill improve recall (Paiviol971,1983). Marschark and Huf1985)

have demonstrated that a high rating of imageability of a verbal metaphor is a good predictor
for later free recall of that metaphor. Glenberg and Lang$1®92) explainthe value of
illustrationsaccompanyingtext as resulting from the formation of recher mental model,
where the additionalinformation in the illustration falitates the noticing of many
relationships that might only be implicit in the text (although Langston, Kramelefal@rg

(1998) have recently reconsidered the assumption that noticing results from nreage
representations — it seems that implicit spatial relationships in simple verbal descriptions are
seldom noticed). In angase,mental models constructed as self-generated metaphors are
likely to be richer than those formed while interpreting texts.

The effect on performance of changing the degree of pictdatlil, and hence varying the
amount of information provided in piots, has been investigated before. The work of
D. Schwartz(1995) was reported in chapter 4 — he fouhdt lower fidelity representations

were more likely to be analysed symbolically rather than by mental animation strategies.
Goolkasian (1996) reports that comparative judgements made from simple geometric stimuli
are faster than those made from verbal stimuli, whereas Potter €t986), as discussed in
experiment 8, find that pictorial stimuli take longer to process than wblelson, Metzler

and Reed(1974) compared recognition performance farords, line drawings and
photographs. They found an advantage of pictures over words, but no further advantage from
increasing pictorial detailalthough their black anevhite photographswere relativelypoor
compared to modern experimental stimuli). Ryan ané&S€hwartz (1956) found that
caricatures were intpreted faster than either line drawings gitotographs -this seems
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unsurprising, as the caricatures made salient features proreinent. These rather mixed
results do not provide a firioundation for generalisation to either diagrams or to HCI.
Strothotte and Strothotte (1997) ndfeat, although graphical symbols in a useterface

must ultimately be interpreted by convention, the benefits of representational detail are
disputed. They quote Dale (1969) as recommendaalism for educational purposeshile
Travers (1964, cited by Strothotte & Strothotte) criticises this practice dsvtrehip of a

false god”.

An interesting investigation of pictorial detail in user interface icons that does support the
findings of this experiment is reported by A.EGreen and Barnard (1990). They observed the
time that users took to select a specific icon from an array of distractors. The icons in the
array were either abstract symbols or representational pictures. They tlmatnsearch times

for the representational picturesere initially slowerthan for abstract symbols, but that
improvement with practice was significantly greater for representational pictures. Rohr (1987)
has also investigatetvo alternative models of pictoriaghformation in user interfaces. The

first is derived from Jackendoff's theory of conceptuamaetics (1983), in which the
structural categories of the physical world are applied systematically tointeeface
representation. The second is derived from Paivio’s dual coding theory (197®hich
images provide mnemonic codes. Rohr found that experimental participants could be divided
into two groups: visualisers were more likely to improve their recall using pictures as a result
of dual coding; formaliseravere more likely to apply structural categories to thser
interface, but they did this using verbal strategies rather than visual strategies.

Thesetwo studies support the resultlsund in this experiment — Green and Barnardport

that representational detail supports learning, and Rohr reports that pictorial icom®rare

likely to be used taassistrecall than they are to support systematic metaphors. They are
relatively unusual amongst previous studies of user interface metaphor, however. Most
previous research has emphasised the benefits of systematic metaphor in deggpimgal

or diagrammatic user interfaces. The results found here suggest that simple mnemonic effects
are far more significant.
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Chapter 7: Conclusions

Then thought | to understand this:
but it was too hard.

Psalm 73:15

This thesis set out to investigate a widely held bediebut the diagrams in graphicaker
interfaces: that they are interpreted in terms of metaphor. As with other types of diagram, user
interfaces cannot be treated simply as if they are a form of language, or as if they are objects
to be perceived without interpretation. The user of any diagram must interpret it according to
the intention with which it was constructed (Ittelson 1996), and there are caaeg in which
diagrams are intended as figurative rather than literal representations. The figunzihteon

in a diagram might be regarded either as analogical, transferring the structgrapbical
variables to the domain of a problem (Bertin 1981, Larkin & Simon 1987), or as allegorical,
embodying abstractions as some analogue of objects in physical space (Jack&f888if
Johnson 1987).

When user interface desigaextbooks recommendhe use of metaphor ashasis for new
designs they do not investigate these theoretical alternatives too carefully. Such investigation
might even seem foolhardy, because empirical research projects in HCI often fiad to
significant benefits when metaphors a@mmpared to non-metaphorical interfag&impson

& Pellegrino 1993, Potosnak 1988). Attime when many technical resources dreing
devoted to extending allegorical metaphor into three dimensional virtual worlds, it is worrying
that such projects similarly fail to find advantages of 3-D metaphors (e.g. Sutcliffatél

1996).

The demonstrable advantages of graphical user interfaces, as with many types of diagram, can
be explained in other terms. Direct manipulation — representing abstomeputational
entities as graphical objects that have a constant location on the screen until tbleooses

to move them — facilitates reasoning about the interface by reducing the number of possible
consequences of an action (Lindsay 1988). Similar constraints provide the cobeiivfits

of most types of diagrammatic representational system (Stenning & Oberlander 1995), and
valuable newdiagrams can be invented by selecting geometric constraints that apply to a
specific abstraction (e.g. Cherdi®98). Where these types of cognitive benefits arise from a
notational system, there is little need to invoke theories of metaphor to explain them. Many of
the Cognitive Dimensions of Notations (Green 1989, Green & RO&96) arelittle affected

by the degree to which the notation is intended to be figurative.
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These pragmatic principles for the analysis of notations are only gradbeltpming
accepted among designers of new diagrammatic user interfaces. Chapter 3 reported a survey
of research publications describingisual programming languages. h&se publications
reflected widespread superlativist theories of diagram use (Green, Petre & Balgfy.

They also appeared to reflect a consensus of opinion within this goityrabout thenature

of diagram use — much of which can be attributed to the pioneering work of GIiii7),

where he aued thatvisual imagessupport creative abstract thought byetaphorical
processes. Despite this consensus, two surveys of professional programmers showed that these
beliefs appear to be restricted to the research community. Programmers who have no specific
allegiance to visual programming are sceptical about any potential benefits — probably simple
professional conservatism. Those who do useisaal language professionally are not
sceptical, but they often descrilits pragmatic advantages and disadvantages in terms of
notational features that are better explained by the Cognitive Dimensions tdntiigage

than by theories of metaphor.

Review of experimental findings

Visual programming languagebave often been described as suitable ifegxperienced
programmers because the diagram expresses the behaviour pbginam interms ofsome
metaphorical virtual machine. In chapter 4, this was testethdking the metaphor more or

less available toinexperienced programmers, and evaluating the resulting changes in
performance by comparison to experienced programmers. In experiment 1, the metaphor was
conveyed by making the elements of the diagram more pictardle in experiment 2 the
metaphor was explicitly described in instructional material. In neither case djgrdhision

of the metaphor result in appreciablgerformance improvementgelative to more
experienced programmers, despite the fact that the computational concepts included in the
diagrams of experiment 2 were heavily disguised, and that the diagrams were equally novel to
all participants.

Early research publications in HCI regularly equated graphical user interfaces etédphnor
on a basic cognitive level: “the use of appropriate verbal metaphors was enhanced by the use
of diagrams (which are of course alseetaphors)” (Carroll & Thomas 1982, pll1l);
“images are metaphors faoncepts” (Smith 1977, p. 23); “visual imagery ispaoductive
metaphor for thoght” (ibid. p. 6); “concepts inthe short term memory ammetaphorical
images derived from sengeerceptions” (ibid. p. 11). The role oWisual imagery in the
production of diagramsvasinvestigated in the experiments of chapter 5. THes@d little
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evidence for the use of visual imagery when planning diagrams. Experiment 3 digofimal
evidence that a physical metaphor might inhibit abstract reasonindhibuappears to have

been an artefact of a specific combination of stimulus and task, as several attempts to replicate
the effect failed.

Whereas experiment 6 found that using metaphorical elements in a diagram had less effect on
solution elaboration than either task complexity or experimental demand, experiment 5 failed
even to find any effect resulting from the use of seveirgdpngruent metaphors. Thasks

used in these experimentgere adnittedly simple by comparison to the demandsdefsign

and problem-solving in many computer applications, but they suggest that peaple
construct diagrams without systematic use of either mental imagery or physical metaphor.

The experiments in chapter 6 returned to the question of metaphor as an instructional device.
A number of variations on experiment 2 found that metaphor did provide some advantages in
learning the conventions of a new diagram. Rather than supporting complex problem solving,
however, hose advantages seemed to be simple mnemonic ones. Performance in
comprehension tasks was scarcely improved by systematic metaphors that exgilgnachs

in terms of virtual machines and other metaphorical conventions. Furthermoran#draonic
advantage was equally great where participants created their own metaphors rathmirigan

given an explicit instructional metaphor. If the diagram included pict@iaments, this
facilitated self-generated metaphor — a factor that seems to have greater mnemonic value than
systematic explanations.

Related results

These findings are consistentttwa small nurber of previousstudies. Marschark andunt

(1985) found superior recall of verbal metaphors in cases when it was easy to dororate

visual image of thenetaphorsubject, but inferior recall of metaphorsthwstrong semantic
relations. If theories of verbal metaphor can be extended to diagrams, their work supports the
contention that diagrammatic metaphor brings more advantage for mnetaskscthan for
systematic problem solving. Payng1988) found that metaphorical instruction had a
mnemonic benefit when learning a command language, alththigteffectwassmaller than

the benefit of making the language itself systematic and consistent.

Martin and Jone$1998) observedhat memory foreven familiar symbolic conventions is
influenced by people constructing their own systematic interpretations. Triteggretations
will often reflect some schema that was not intended in the original symbol desigtingesu
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in surprisingly inaccurate memory among the general population for common sysuiobls
as road signs.

Self-generated metaphor has been employed to great advantage in an educational variation of
the visualprogramming language. Ford (1993@sked introductory computing students to
create their own animated visual languagmetaphorically expressingfundamental
computational concepts. He reported significant benefitsigstudents. On the basis of the
experimental evidence reported in tliesis, such aapproachwould be expected to be far

more valuable than many proposed visual programming languages.

Implications

The findings described in this thesis have ofemcounteredscepticism from other HCI
researchers. Metaphor is swidely recognised agorming the basis for graphicaluser
interfaces that it might seem unreasonable to quedtimassumptionMetaphor is almost
alwaysrecommended as basis for design in user interface textbooks, gmdblications
describing the benefits of metaphor have appeared in the research literature foyeaeny
Substantial commercial empires are attributed to the success ‘fablktop metaphor”, and
millions of personal computer usehave experienced dramatic improvements in usability
when moving to this interface from previous generations of command-line system.

My contention is that the benefits of thdesktop metaphor”are misattributed.These
systems were the firstommercial products tallow direct manipulation of elements on the
display, and | believe that their benefits derive almost completely from ditagipulation
rather than from metaphor. Indeedhave encountered anecdotal evidentteat personal
computer users outside the computer industry are often completely unawareimtetiaed
metaphor in thesystems they use. Theynderstand“Windows” to be anarbitrary trade
name rather than a metaphorical description of some aspect of the user in{pedtaps
someone might compare the usability advantages ofApele” metaphor for fruitieruser
interfaces).

To those who havexperienced the benefits of direct manipulation, and arareawf the
supposed benefits of user interface metaphor, dtillsdifficult to explain those benefits in
terms of cognitive theories. There are sevetampeting theories of metaphor, with
differences that may appear overly subtle by comparison to the obvious benefiiiseaif
manipulation. Some respected cognitB@entists explicitlydiscount the application of their
theories to computer interfaces (e.g. Gentner, Falkenhainer & Skorstad 1988), bed\iss
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the HCI researcher with numerous other theories to choose from, some of which claim a very
strong link to diagram interpretation (e.g. Lakoff 1993).

The most important factor in the general acceptance of diagrammatic metaphdesigra
principle in HCI, however, is the fact that it hasot been empirically tested. The current
project appears to have been the first attempt to isolate diagrammetéphor (rather than

more general instructional metaphor) as a factor in controlled experiments. Previous
experiments have compared metaphorical graphical interfaces to non-metaphorical interfaces,
with disappointing results (Potosnak 1988). It hhsaysbeen possiblehowever, toattribute

those negative results to other aspects of the systems that werecbeipgred (e.gSimpson

& Pellegrino 1993), or taconfounding individual differences in the experimental sample
(e.g. Rohr 1987).

The findings of this study do suggest some limited advantages from employing metaphor in
diagrams — pictorial metaphor brings some mnemauicantages, especially if thgctures
are realistic (more realistic than those usually included in graphical user interfaces). In the
absence of strong evidence for the broader benefits of metaphor, it mighsdséor user
interface designers to turn to empirical findings that have shown advantages resulting from
other aspects of notation design — particularly twrespondence heeen geometric
structure, tools for manipulating those structures, and cognitive information processing tasks.

Further Investigation

Most of the experiments described in this thesis have taken at face value some of the
“superlativist” claims of the HCI and visudhnguages community. In particular, they have
tested the assumption that diagrams are universally beneficial in problem solvinkpsigd.
This is obviously not the case — even within the scope of these studies, a sistipletiah
between “experts” and “novices” has revealed upiversal benefits, but a largifference
between individuals ith different amounts of experience. Somethis difference maywell

be attributable to imagergtrategies, atound in studies of experts by Hishitafd990) and
Saariluoma and Kalakoski (1997). Othstudies have alsfound differences beteen the
strategies of individuals given thapportunity to employ imagerwhen usingdiagrammatic
representations (Schwartz & Black 1996b, Stenning & A997). Itwould be valuable to
investigate the relationship between individual strategies and the typmetdphorical
diagrams studied here — the result of such a study wely explain the vehemence of
superlativist positions, as well as the historical context of diagram research withinagery
debate.
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This study also shares a practical deficiency with many other experimental studies in
psychology andHCI. Although it purports toinvestigate learning effects, the period of
learning in each experimental trial is extremely short — the longest experiment repereed
lastedtwo hours, and almost allereshorter than an hour. No real design notationuser
interface would be learned in such a short time, and as a consequence the expetasiental
have been almost trivially simple. Other experiments have shown significant effects of
practice when using similar notations (Scaife & Rogers 1996, Schwartz & Black 1996a, van
der Veer 1990). Despite this weakness, the current study is valuable because many researchers
have claimed large and immediate effects for the benefits of metaphor. The conclusion of this
study is that, although there may well be effects to be observed, they are not nedesgarily

or immediate.

The notations used in this study have been rather artificially simplarder to beacquired

and applied within arexperimental session. They have also been made unlike any widely
used diagrammatic notation, in order not to introduamround ofindividual experience
beyond the basic level ofprofessional background (Cox 1997for any real notation,
however,many of its elements are based on diagrammatic conventions thatlezady
familiar to users from other contexts (S. Smith 1981, Wang, Lee & Zd&@h). Consistent
application of these conventions is an essential aspect of the professional skifisriwfation
designers and other developersngfv notations. This is also an area that desefuether
investigation.

Finally, this study has only partially explained the almost universal acceptance of metaphor as
a basis for user interface design. It is possible that part of pibysilarity results from
confusion between the functions ometaphor and direct manipulation HCI. It is also
possible that the pioneering work of D.C. Smith (1977), popularised and achibuigg
commercial success thugh the Xerox %ar, Apple Macintosh, and Microsoft Wilows, has

had more influence than is justified by the psychological evidence he presentedtillt is
possible, however, that thadvantages attributed to metaphor are really duesdme
unexplored aspect of systematic conceptual metaphors. One candidate for thiprindipte

of abstraction congruenceproposed bySimos andBlackwell (1998), whichwill be the
subject of extended investigation in the near future (Blackwell 1998).

165



Chapter 8: References

Adelson, B. (1981). Problem solving and the development of abstract categories in programming languages.
Memory & Cognition9(4), 422-433.

Akoumianakis, D. & Stephanis, C. (1997). Supporting user-adapted interface design: The USE-IT system
Interacting with Computer®(1), 73-104.

Anderson, J.R. (1996). ACT: A simple theory of complex cognitlmerican Psychologiss1(4), 355-
365.

Apple Computer, Inc. (1992Macintosh Human Interface Guidelind®eading, MA: Addison-Wesley.
Aristotle (1927).Poetics (W.H. Fyfe, Trans.) London: William Heinemann.
Arnheim, R. (1970)Visual Thinking London: Faber and Faber.

Barker, P.G. & Manji, K.A. (1989). Pictorial dialogue methadas$ernational Journal of Man-Machine
Studies31(3), 323-347.

Barnard, P. & Marcel, T. (1978). Representation and understanding in the use of symbols and pictograms. In
R. Easterby & H. Zwaga (EdslIpformation DesignChichester: John Wiley and Sons, pp. 37-75.

Baroth, E. & Hartsough, C. (1995). Visual programming in the real world. In M. Burnett, A. Goldberg & T.
Lewis (Eds.),Visual Object-Oriented Programming Concepts and Environm@mntenwich, CT: Manning,
pp. 21-42.

Bartlett, F.C. (1932)Remembering: A study in experimental and social psychobgybridge, Cambridge
University Press.

Barwise, J. & Etchemendy, J. (1990). Information, infons and inference. In R. Cooper, K. Mukai & J. Perry
(Eds.),Situation Theory and its Applications: VolumgQSLI Lecture Notes Number 22). Stanford:
CSLI Publications, pp. 33-78.

Barwise, J. & Perry, J. (1983Fituations and attitude€ambridge, MA: MIT Press.

Bauer, M.l. & Johnson-Laird, P.N. (1993). How diagrams can improve reas@®synchological Sciengce
4(6), 372-378.

Beck, B.E.F. (1978). The metaphor as a mediator between semantic and analogic modes oCinwaght
Anthropology 19(1), 83-97.

Bennett, K.B. & Flach, J.M. (1992). Graphical displays: Implications for divided attention, focused attention
and problem solvingHuman Factors34(5), 513-533.

Bent, I.D. (1980). Notation — I: General, II: Notational systems. In S. Sadie {é.)ew Grove dictionary
of music and musiciankondon: Macmillan, pp. 333-344.

Berkeley, G. (1705/1910A new theory of visiarLondon: J.M. Dent & Sons.

Berry, D.C. (1990). Talking about cognitive processes. In K.J. Gilhooly, M.T.G. Keane, R.H. Logie & G.
Erdos (Eds.)Lines of Thinking: Reflections on the psychology of thought, Volu@hiéhester: John
Wiley and Sons, pp. 87-98.

Bertin, J. (1981)Graphics and Graphic Information Processirf@r. W.J. Berg & P. Scott) Berlin: Walter de
Gruyter.

Beveridge, M. & Parkins, E. (1987). Visual representation in analogical problem sdWengory &
Cognition 15(3), 230-237.

166



Black, M. (1993). More about metaphor. In A. Ortony (EMlg¢taphor and Though®nd ed.). Cambridge:
Cambridge University Press. pp. 19-41.

Blackwell, A.F. (1989). Spatial reasoning with a qualitative representédtimowledge-Based Systergl),
37-45.

Blackwell, A.F. (1993). Bottom-up design and this thing called an 'obfeXE Magazing8(7), 28-32.

Blackwell, A.F. (1996a). Metaphor or analogy: How should we see programming abstractions? In P.
Vanneste, K. Bertels, B. De Decker & J.-M. Jaques (EBsieedings of the 8th Annual Workshop of the
Psychology of Programming Interest Groyyp, 105-113.

Blackwell, A.F. (1996b). Metacognitive theories of visual programming: What do we think we are doing?
Proceedings IEEE Symposium on Visual Langualges Alamitos, CA: IEEE Computer Society Press,
pp. 240-246.

Blackwell, A.F. (1996c). Do programmers agree with computer scientists on the value of visual
programming? In A. Blandford & H. Thimbleby (EdsAdjunct Proceedings of the 11th British Computer
Society Annual Conference on Human Computer Interaction, H@®sh HCI Group, pp. 44-47.

Blackwell, A.F. (1996d). Chasing the intuition of an industry: Can pictures really help us think? In M.
Ireland (Ed.)Proceedings of the first Psychology of Programming Interest Group Postgraduate Student
Workshop pp. 13-24.

Blackwell, A.F. (1997a). Correction: A picture is worth 84.1 words. In C. Kann (Baheedings of the
First ESP Student Workshopp. 15-22.

Blackwell, A.F. (1997b). Diagrams about thoughts about thoughts about diagrams. In M. Anderson (Ed.),
Reasoning with Diagrammatic Representations Il: Papers from the AAAI 1997 Fall Sympbsatmical
Report FS-97-02. Menlo Park, CA: AAAI Press, pp. 77-84.

Blackwell, A.F. (1998)New paradigms for visual interactioBEPSRC Research Proposal Case for Support.

Blackwell, A.F. (Ed.). (1997)Thinking with diagrams discussion papefirst Conference on Thinking with
Diagrams. Portsmouth, England.

Blackwell, A.F. & Engelhardt, Y. (1998). A taxonomy of diagram taxonomieBrdiceedings of Thinking
with Diagrams 98: Is there a science of diagrarpp?60-70.

Blackwell, A.F., Whitley, K.N., Good, J. & Petre, M. (in press). Programming in pictures, pictures of
programs. In A. Blackwell (Ed.), Thinking with Diagrams [Special issA]ficial Intelligence Review.

Badker, S. (1991)Through the interface: A human activity approach to user interface dédidgdale, NJ:
Lawrence Erlbaum Associates.

Boehm-Davis, D.A., Fox, J.E. & Philips, B.H. (1996). Techniques for exploring program comprehension. In
W.D. Gray & D.A. Boehm-Davis (Eds.Empirical Studies of Programmers: Sixth Workshéprwood,
NJ: Ablex, pp. 3-38.

Bonar, J. & Soloway, E. (1985). Preprogramming knowledge: A major source of misconceptions in novice
programmersHuman-Computer Interactioi(2), 133-161.

Bonar, J.G. & Liffick, B.W. (1990). A visual programming language for novices. In S.-K. Chang (Ed.),
Principles of Visual Programming Systerfsentice Hall, pp. 326-366.

Booth, S. (1992). The experience of learning to program. Example: recitsiaeedings of the 5th
Workshop of the Psychology of Programming Interest GriNRIA , pp. 122-145.

Bottoni, P., Costabile, M.F., Levialdi, S. & Mussio, P. (1996). A visual approach to $HIGCHI
Bulletin, 28(3), 50-55.

Bower, G.H., Karlin, M.B. & Dueck, A. (1975). Comprehension and memory for pictui@sory &
Cognition 3(2), 216-220.

167



Brandimonte, M.A., Schooler, J.W. & Gabbino, P. (1997). Attenuating verbal overshadowing through color
retrieval cuesJournal of Experimental Psychology: Learning, Memory & Cognitd3#), 915-931.

Brandt, S. A. & Stark, L.W. (1997). Spontaneous eye movements during visual imagery reflect the content of
the visual sceneJournal of Cognitive Neuroscien¥1), 27-38.

Brown, M.H. & Sedgewick, R. (1984). A system for algorithm animati@M Computer Graphic4,8(3),
177-186

Buckingham-Shum, S.J., MacLean, A., Bellotti, V.M.E. & Hammond, N.V. (1997). Graphical
argumentation and design cognitidgtuman-Computer Interactiod2(3), 267-300.

Burnett, M., Goldberg, A. & Lewis, T. (Eds.). (199¥)sual object-oriented programming concepts and
environmentsGreenwich, CT: Manning.

Burnett, M.M. & Ambler, A.L. (1994). Interactive visual data abstraction in a declarative visual programming
languageJournal of Visual Languages and Computifff), 29-60.

Burnett, M.M., Baker, M., Bohus, C., Carlson, P., Yang S. & van Zee, P. (1995). Scaling up visual
programming languagelEEE Computer28(3), 45-54.

Cacciari, C. & Glucksberg, S. (1995). Understanding idioms: do visual images reflect figurative meanings?
European Journal of Cognitive Psycholo@(3), 283-305.

Cafias, J.J., Bajo, M.T. & Gonsalvo, P. (1994). Mental models and computer prograiniaimgtional
Journal of Human-Computer Studid$€)5), 795-811.

Carpenter, P.A. & Shah, P. (1998). A model of the perceptual and conceptual processes in graph
comprehensionlournal of Experimental Psychology: Appligd?), 75-100.

Carroll, J.M & Olson, J.R. (1988). Mental models in human-computer interaction. In M. Helander (Ed.),
Handbook of Human-Computer Interactidlsevier., pp. 45-66.

Carroll, .M, Mack, R. L. & Kellogg, W. A. (1988). Interface metaphors and user interface design. In M.
Helander (Ed.),Handbook of Human-Computer Interactidtisevier, pp. 67-86.

Carroll, J.M. & Mack, R.L. (1985). Metaphor, computing systems and active leamiagnational Journal
of Man-Machine Studie22(1), 39-57.

Carroll, J.M. & Thomas, J.C. (1982). Metaphor and the cognitive representation of computing.systems
IEEE Transactions on Systems, Man and Cybernetig), 107-116.

Carroll, J.M., Thomas, J.C. & Malhotra, A. (1980). Presentation and representation in design problem-
solving. British Journal of Psychology'1, 143-153.

Carswell, C.M. & Ramzy, C. (1997). Graphing small data sets: Should we bB#itea?iour and
Information Technologyl6(2), 61-71.

Casey, M.B. (1996). Understanding individual differences in spatial ability within females: A nature/nurture
interactionist frameworkDevelopmental Review6(3), 241-260.

Casey, M.B., Winner, E., Benbow, C., Hayes, R. & DaSilva, D. (1993). Skill at image generation:
Handedness interacts with strategy preference for individuals majoring in spatialQigdphstive
Neuropsychologyl0(1), 57-77.

Catarci, T., Costabile, M.F. & Matera, M. (1995). Which metaphor for which database? In M.A.R. Kirby,
A.J.Dix & J.E.Finlay (Eds.)People and Computers X (Proceedings HCI '@gmbridge University
Presspp. 151-165.

Chambers, D. & Reisberg, D. (1985). Can mental images be ambigimusial of Experimental
Psychology: Human Perception and Performaridg3), 317-328.

Chandler, P. & Sweller, J. (1996). Cognitive load while learning to use a computer prégualiad
Cognitive Psychologyl0(2), 151-170.

168



Chang, B.-W., Ungar D. & Smith, R.B. (1995). Getting close to objects. In M. Burnett, A. Goldberg & T.
Lewis, (Eds.)Visual Object-Oriented Programming Concepts and Environm&@mweenwich, CT:
Manning, pp. 185-198.

Chang, S.-K. (1987). Visual languages: a tutorial and suti#SE Softwarg4(1), 29-39.

Chang, S.-K. (1990). Principles of visual languages. In S-K. Chang,RExdcdjples of Visual Programming
SystemsEnglewood Cliffs, NJ: Prentice-Hall, pp. 1-59.

Chang, S.-K. (Ed.). (1990&Principles of visual programming systerimglewood Cliffs, NJ: Prentice-
Hall.

Chang, S.-K. (Ed.). (1990bVisual languages and visual programmimgw York: Plenum Press.

Chang, S.-K., Costagliola, G., Pacini, G., Tucci, M., Tortora, G., Yu B. & Yu, J.S. (1995). Visual-
language system for user interfacksEE Softwargl2(2), 33-44.

Chechile, R.A., Anderson, J.E., Krafczek, S.A. & Coley, S.L. (1996). A syntactic complexity effect with
visual patterns: Evidence for the syntactic nature of the memory represertatioral of Experimental
Psychology: Learning, Memory & Cognitio?2(3), 654-669.

Chee, Y. S. (1993). Applying Gentner’s theory of analogy to the teaching of computer programming
International Journal of Man Machine Studi&8(3), 347-368.

Cheng, P.C. (1998). AVOW diagrams: A novel representational system for understanding electricity. In
Proceedings Thinking with Diagrams 98: Is there a science of diagrpms36-93.

Choi, S. & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence
of language-specific lexicalisation patter@agnition 41(1-3), 83-121.

Clark, H.H. & Chase, W.G. (1972). On the process of comparing sentences against @oigmnés.e
Psychology3, 472-517.

Cohen, D.J. & Bennett, S. (1997). Why can’t most people draw what theyaa®eal of Experimental
Psychology: Human Perception and Performar&3¢3), 609-621.

Cohen, L.J. (1993). The semantics of metaphor. In A. Ortony (Bdtgphor and Thoughnd ed.).
Cambridge: Cambridge University Press. pp. 58-70.

Costagliola, G., De Lucia, A., Orefice S. & Tortora, G. (1995). Automatic generation of visual programming
environmentslEEE Computer28(3), 56-66.

Cox, B.J. (1986)Object oriented programming: An evolutionary approagtidison Wesley.

Cox, P.T. & Pietrzykowski, T. (1988). Using a pictorial representation to combine dataflow and object-
orientation in a language independent programming mechanistrodeedings International Computer
Science Conference, Hong Kopg, 695-704.

Cox, R. (1997). Representation interpretation versus representation construction: An ILE-based study using
switchERII. InProceedings of the 8th World Conference of the Atrtificial Intelligence in Education Society
(AlI-ED 97) Amsterdam: 10S Press, pp. 434-441.

Cox, R. & Brna, P. (1995). Supporting the use of external representations in problem solving: the need for
flexible learning environmentgournal of Artificial Intelligence in EducatioB(2), 239-302.

Culler, J. (1976)SaussureGlasgow: Collins.

Cunniff, N. & Taylor R.P. (1987). Graphical vs. textual representation: An empirical study of novices’
program comprehension. In G.M. Olson, S. Sheppard & E. Soloway (Edwjrical Studies of
Programmers: Second Workshdyorwood, NJ: Ablex, pp. 114-131.

D’Esposito, M., Detre, J.A., Aguirre, G.K., Stallcup, M., Alsop, D.C., Tippet, L.J. & Farah, M.J. (1997).
A functional MRI study of mental image generatidfeuropsychologia85(5), 725-730.

169



Dale, E. (1969)Audiovisual methods in teaching (3rd editioNpw York, Holt, Rhinehart & Winston.

Davies, S.P. (1993). Models and theories of programming strdteggnational Journal of Man Machine
Studies39(2), 237-268.

Davies, S.P. (1996). Display-based problem solving strategies in computer programming. In W.D. Gray &
D.A. Boehm-Davis (Eds.Empirical Studies of Programmers: Sixth Workshgprwood, NJ: Ablex, pp.
59-76.

Davies, S.P & Castell, A.M. (1992). Doing design and describing it: accounting for divergent perspectives in
software design. IRProceedings 5th Workshop of the Psychology of Programming Interest.GxiRIp\.,
pp. 72-88.

De Beni, R., Moé, A & Cornoldi, C. (1997). Learning from texts or lectures: Loci mnemonics can interfere
with reading but not with listenindeuropean Journal of Cognitive Psycholpg{4), 401-415.

De Vega, M., Rodrigo, M.J. & Zimmer, H. (1996). Pointing and labelling directions in egocentric
frameworks Journal of Memory and Languagd#(6), 821-839.

Deglin, V.L. & Kinsbourne, M. (1996). Divergent thinking styles of the hemispheres: How syllogisms are
solved during transitory hemisphere suppresdwain and Cognition31(3), 285-307.

Delgado, A.R. & Prieto, G. (1996). Sex differences in visuospatial ability: Do performance factors play such
an important roleMemory & Cognition24(4), 504-510.

DelLoache, J.S. & Marzolf, D.P. (1992). When a picture is not worth a thousand words: Young children’s
understanding of pictures and modésgnitive Development, 317-329.

Dennett, D.C. (1981). Two approaches to mental images. In N. Block fgdgery Cambridge, MA: MIT
Press, pp. 87-107.

di Sessa, A.A. (1986). Notes on the future of programming: breaking the utility barrier. In D.A. Norman &
S.W. Draper (Eds.)Jser Centered System Design: New Perspectives on Human-Computer Interaction
Hillsdale, NJ: Lawrence Erlbaum, pp. 125-152.

Diaz-Herrera, J.L. & Flude, R.C. (1980). PASCAL/HSD: a graphical programming syst@mdeedings
COMPSAC’80, Chicago, IEEE Computer Society Prpps 723-728.

Dillon, L.K.. Kutty, G. Melliar-Smith, P.M., Moser L.E. & Ramakrishna, Y.S. (1994). Visual
specifications for temporal reasonirdgpurnal of Visual Languages and Computig ), 61-81.

Dix, A., Finlay, J., Abowd, G.L. & Beale, R. (1998Juman computer interactiof2nd ed.). Hemel
Hempstead, UK: Prentice Hall.

Dondis, D.A. (1973)A primer of visual literacyCambridge, MA: MIT Press.

Dopkins, S. (1996). The role of imagery in the mental representation of negative semtererdsan Journal
of Psychology1094), 551-565.

Dreistadt, R. (1968). An analysis of the use of analogies and metaphors in stiendeurnal of
Psychology68, 97-116.

Dreyfuss, H. (1972)Symbol sourceboolew York: McGraw-Hill.

du Boulay, B., O'Shea, T. & Monk, J. (1981). The black box inside the glass box: Presenting computing
concepts to novicesnternational Journal of Man-Machine Studidg(3), 237-249.

Duisberg, R.A. (1988). Animation using temporal constraints: an overview of the animus. dystaan
Computer Interaction3(3), 275-307.

Eberts, R.E. & Bittianda, K.P. (1993). Preferred mental models for direct manipulation and command-based
interfaces International Journal of Man Machine Studig&8(5), 769-786.

170



Edel, M. (1986). The Tinkertoy graphical programming environmerRréiceedings COMPSAC’86,
Chicago, IEEE Computer Society Prepp. 466-471.

Edwards, B. (1979Drawing on the right side of the braihos Angeles: Tarcher.

Egan, D.E. & Schwartz, B.J. (1979). Chunking in recall of symbolic drawMgsory & Cognition7(2),
149-158.

Eisenberg, M., Resnick, M. & Turbak, F. (1987). Understanding procedures as objects. In G.M. Olson, S.
Sheppard & E. Soloway (EdsBmpirical Studies of Programmers: Second Workshapwood, NJ:
Ablex, pp. 14-32.

Eisenstadt, M., Breuker, J. & Evertsz, R. (1984). A cognitive account of ‘natural’ looping constructs. In B.
Shackel (Ed.)Human-Computer Interaction — Interact ‘84msterdam: Elsevier, pp. 455-460.

Ellington, H., Addinall, E. & Percival, F. (1982A handbook of game desigmondon: Kogan Page.
Empson, W. (1984)Seven types of ambiguity (3rd editiobpndon: Hogarth Press.

Ericsson, K.A. & Simon, H.A. (1993Protocol analysis: Verbal reports as dataevised ed.). Cambridge,
MA: MIT Press.

Esteban, O., Chatty, S. & Palanque, P. (1995). Whizz'ed: A visual environment for building highly
interactive software. In K. Nordby, P. Helmersen, D.J. Gilmore & S.A. Arnesen (Hdsapn Computer
Interaction: Interact ‘95 London: Chapman & Hall, pp. 121-126.

Fallside, D.C. & Just, M.A. (1994). Understanding the kinematics of a simple mavfsoal Cognition
1(4), 401-432.

Faltings, B. (1987). A theory of qualitative kinematics in mechanisnfrdoeedings of the International
Joint Conference on Artificial Intelligencpp. 436-442.

Farah,M.J., Hammond,K.M., Levine,D.N. & Calvanio,R. (1988). Visual and spatial mental imagery:
Dissociable systems of representati@ognitive Psychology20, 439-462.

Faulkner, C. (1998)The Essence of Human-Computer Interactidamel Hempstead, UK: Prentice Hall.

Fenson, L. (1985). The transition from construction to sketching in children’s drawings. In N.H. Freeman &
M.V. Cox (Eds.)Visual order: The nature and development of pictorial representafiambridge:
Cambridge University Press, pp. 374-384.

Ferguson, E.S. (1992kngineering and the Mind's Ey€ambridge, MA: MIT Press.

Finke, R.A. (1996). Imagery, creativity, and emergent strucCoasciousness and Cognitj&(3), 381-
393.

Finke, R.A., Pinker, S. & Farah, M.J. (1989). Reinterpreting visual patterns in mental im@ggnjtive
Sciencel3(1), 51-78.

Finke, R.A. & Slayton, K. (1988). Explorations of creative visual synthesis in mental imagemory &
Cognition 16(3), 252-257.

Finkel, R.A. (1996)Advanced programming language desilytenlo Park, CA: Addison-Wesley.

Fish, J. & Scrivener, S. (1990). Amplifying the mind’s eye: Sketching and visual coghi&onardo
23(1), 117-126.

Fisher, C. (1987). Advancing the study of programming with computer-aided protocol analysis. In G.M.
Olson, S. Sheppard & E. Soloway (EdEmpirical Studies of Programmers: Second Worksigpwood,
NJ: Ablex, pp. 198-216.

Fitter, M. & Green, T.R.G. (1979). When do diagrams make good computer langldgasitional Journal
of Man-Machine Studie41(2), 235-261.

171



Flavell, J.H. (1979). Metacognition and cognitive monitoridamerican Psychologis84(10), 906-911.

Forbus, K.D. (1983). Qualitative reasoning about space and motion. In D. Gentner & A. Stevens (Eds.)
Mental ModelsLawrence Erlbaum Associates, pp. 53-73.

Ford, L. (1993)How programmers visualise progran{Report No. R.271). University of Exeter,
Department of Computer Science. Available FTP: ftp://ftp.dcs.ex.ac.uk/pub/media/sv/esp.ps.Z

Ford, L. & Tallis, D. (1993). Interacting visual abstractions of programBrdoeedings IEEE Workshop on
Visual Languages

Frandsen, A.N. & Holder, J.R. (1969). Spatial visualization in solving complex verbal profleens.
Journal of Psychology’3, 229-233.

Fuchs, A., Goschke, T & Gude, D. (1988). On the role of imagery in linear syllogistic reasoning.
Psychological Resear¢ch0, 43-49.

Gagné, R.M. & Smith, E.C. Jr. (1962). A study of the effects of verbalisation on problem-sdtvimgal
of Experimental Psycholog§3(1), 12-18.

Galitz, W.0. (1997)The essential guide to user interface desiew York: Wiley.

Gallagher, J.M. (1978). The future of formal thought research: The study of analogy and metaphor. In B.Z.
Presseisen, D. Goldstein & M.H. Appel (Ed3.gpics in Cognitive Development, Volume 2: Language
and Operational ThoughNew York: Plenum Press, pp. 77-98.

Gardin, F. & Meltzer, B. (1995). Analogical representations of naive physics. In J. Glasgow, N.H. Narayanan
& B. Chandrasekaran (EdsDiagrammatic Reasoning: Cognitive and Computational Perspectitesio
Park, CA: AAAI Press, pp. 669-689.

Gattis, M. & Holyoak, K.J. (1996). Mapping conceptual to spatial relations in visual proceksimgal of
Experimental Psychology: Learning, Memory & Cognitid®(1), 231-239.

Gentner, D. (1983). Structure-mapping: a theoretical framework for an&ogyitive Scienc&(2), 155-
170.

Gentner, D. & Clement, C. (1988). Evidence for relational selectivity in the interpretation of analogy and
metaphor. In G.H. Bower (Ed.Jhe Psychology of Learning and Motivation: Volume @2n Diego:
Academic Press, pp. 307-358.

Gentner, D., Falkenhainer, B. & Skorstad, J. (1988). Viewing metaphor as analogy. In D.H. Helman (Ed.),
Analogical Reasoning: Perspectives of Atrtificial Intelligence, Cognitive Science and Philokaphgr,
pp. 171-177.

Gentner, D. & Wolff, P. (1997). Alignment in the processing of metaptwarnal of Memory and
Language 37(3), 331-355.

Gibbs, R.W. Jr. (1996). Why many concepts are metapho@Gognition 61(3), 195-324.

Gibbs, R.W. Jr. & O'Brien, J.E. (1990). Idioms and mental imagery: The metaphorical motivation for
idiomatic meaningCognition 36(1), 35-68.

Gibson, J.J. (1979).he ecological approach to visual percepti@oston, MA: Houghton Mifflin.

Gick, M.L. & Holyoak, K.J. (1983). Schema induction and analogical tranGfegnitive Psychology
15(1), 1-38.

Gillan, D.J. (1995). Visual arithmetic, computational graphics and the spatial metiphwan Factors
37(4), 766-780.

Gilmore, D.J. & Green, T.R.G. (1984a). Comprehension and recall of miniature progremsational
Journal of Man-Machine Studig®1(1), 31-48.

172



Gilmore, D.J. & Green, T.R.G. (1984b). The comprehensibility of programming notations. In B. Shackel
(Ed.),Human-Computer Interaction — Interact ‘84msterdam: Elsevier, pp. 461-464.

Glasgow, J., Narayanan, N.H. & Chandrasekaran, B. (Eds.). (I3@fyammatic Reasoning: Cognitive and
Computational Perspectivellenlo Park, CA: AAAI Press.

Glasgow, J.l. & Papadias, D. (1995). Computational imagery. In J. Glasgow, N.H. Narayanan & B.
Chandrasekaran (EdsDiagrammatic Reasoning: Cognitive and Computational Perspectitesio Park,
CA: AAAI Press, pp. 435-480.

Glenberg, A.M. (1997). What memory is f@ehavioral and Brain ScienceX)1), 1-55.

Glenberg, A.M., Langston, W.E. (1992). Comprehension of illustrated text: Pictures help to build mental
models.Journal of Memory and Languaggl, 129-151.

Glenberg, A.M., Wilkinson, A.C. & Epstein, W. (1982). The illusion of knowing: Failure in the self-
assessment of comprehensidtfemory & Cognition10(6), 597-602.

Glinert, E.P. (1990). Nontextual programming environments. In S-K. Chang, FEdgiples of Visual
Programming System®rentice-Hall, pp. 144-232.

Glinert, E.P. (Ed.). (1990aYisual programming environments: Applications and isslEElSE Computer
Society Press.

Glinert, E.P. (Ed.). (1990bYisual programming environments: Paradigms and Systd#idE Computer
Society Press.

Glinert, E.P. & Gonczarowski, J. (1987). A (formal) model for (iconic) programming environments. In
Proceedings Interact '§Elsevier. pp. 283-290.

Glinert, E.P. & Tanimoto, S.L. (1984). Pict: an interactive graphical programming environEieht.
Computer 17(11), 7-25.

Glucksberg, S. & Keysar, B. (1993). How metaphors work. In A. Ortony (Beétgphor and Though2nd
ed.). Cambridge: Cambridge University Press. pp. 401-424.

Goel, V. (1992). ‘lll-structured representations’ for ill-structured problétmsceedings 14th Annual
Conference Cognitive Science Socigty 130-135.

Goel, V. (1995)Sketches of thoughCambridge MA: MIT Press.

Goldberg, A., Burnett M. & Lewis, T. (1995). What is visual object-oriented programming? In M. Burnett,
A. Goldberg & T. Lewis, (Eds.)isual Object-Oriented Programming Concepts and Environments
Greenwich, CT: Manning, pp. 3-20.

Goldberg, E. & Costa, L.D. (1981). Hemisphere differences in the acquisition and use of descriptive systems
Brain and Languagel4(1), 144-173.

Goldschmidt, G. (1991). The dialectics of sketchi@geativity Research Journal(2), 123-143.

Goldschmidt, G. (1994). On visual design thinking: The vis kids of architeddsgn Studied5(2), 158-
174.

Goldsmith, E. (1984)Research into lllustration: An approach and a revi€ambridge: Cambridge
University Press.

Gombrich, E. (1990). Pictorial illustrations. In H. Barlow, C. Blakemore & M. Weston-Smith (Edages
and UnderstandingCambridge: Cambridge University Press, pp. 26-45.

Good, Judith R. (1996). The ‘right’ tool for the task: an investigation of external representations, program
abstractions and task requirements. In W.D. Gray & D.A. Boehm-Davis (Edwjrical Studies of
Programmers: Sixth Workshoporwood, NJ: Ablex, pp. 77-98.

173



Gooding, D. (1996). Diagrams in the generation and dissemination of new science: Some examples and
applicationsThinking with DiagramsDigest No. 96/010. London: IEE Computing and Control Division,
pp. 3/1-3/6.

Goodman, N. (1969).anguages of art: An approach to a theory of symhaisdon: Oxford University
Press.

Goodman, N. (1990). Pictures in the mind? In H. Barlow, C. Blakemore & M. Weston-Smith (Bdg¢s
and UnderstandingCambridge: Cambridge University Press, pp. 358-364.

Goolkasian, P. (1996). Picture-word differences in a sentence verificatiotMasiory & Cognition24(5),
584-594.

Gordon, R.M. (1986). Folk psychology as simulatibtind and Languagé(2), 158-171.

Grant, C. (in press). Visual language editing using a grammar-based structure editor. To aopeaaliof
Visual Languages and Computing.

Green, A.J.K. & Barnard, P.J. (1990). Iconic interfacing: the role of icon distinctiveness and fixed or variable
screen locations. In D. Diaper, D. Gilmore, G. Cockton & B. Shackel (Etlanan-Computer Interaction
— Interact ‘90 Amsterdam: Elsevier, pp. 457-462.

Green, T.R.G. (1980). Programming as a cognitive activity. In H.T.Smith and T.R.G. GreenHEdw}
Interaction with ComputersAcademic Press, pp. 271-320.

Green, T.R.G. (1982). Pictures of programs and other processes, or how to do things wBleliae®ur
and Information Technology(1), 3-36.

Green, T.R.G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Bdeple and
Computers YCambridge University Press.

Green, T.R.G., Bellamy, R.K.E. & Parker, J.M. (1987). Parsing and gnisrap: A model of device use. In
G.M. Olson, S. Sheppard & E. Soloway (EdEmpirical Studies of Programmers: Second Workshop
Norwood, NJ: Ablex, pp. 132-146.

Green, T.R.G. & Blackwell, A.F. (1996a). Thinking about visual programmmking with DiagramsDigest
No. 96/010. London: IEE Computing and Control Division, pp. 5/1-5/4.

Green, T.R.G. & Blackwell, A.F. (1996H)yonies of AbstractionPaper presented at the Third International
Conference on Thinking. British Psychological Society, London.

Green, T.R.G. & Navarro, R. (1995). Programming plans, imagery and visual programningcéadings
Interact '95 pp. 139-144.

Green, T.R.G. & Petre, M. (1992). When visual programs are harder to read than textual programs. In G.C.
van der Veer & S. Bagnarola (Ed®)pceedings of ECCE-6 (European Conference on Cognitive
Ergonomics).

Green, T.R.G. & Petre, M. (1996). Usability analysis of visual programming environments: a 'cognitive
dimensions' approachBournal of Visual Languages and Computing.31-174.

Green, T.R.G., Petre, M. & Bellamy, R.K.E. (1991). Comprehensibility of visual and textual programs: A
test of superlativism against the ‘match-mismatch’ conjecture. In J. Koenemann-Belliveau, T.G. Moher &
S.P. Robertson (EdsEmpirical Studies of Programmers: Fourth Workstidgrwood, NJ: Ablex, pp.
121-146.

Greeno, J.G. (1989). Situations, mental models, and generative knowledge. In D. Klahr & K. Kotovsky
(Eds.),Complex information processing: The impact of Herbert A. Sitddisdale, NJ: Lawrence
Erlbaum Associates, pp. 285-318.

Gregory, R.L. (1970)The Intelligent EyeLondon: Weidenfeld & Nicolson.

Grossberg, S. (1997). Cortical dynamics of three-dimensional figure-ground perception of two-dimensional
pictures Psychological Revievit04(3), 618-658.

174



Gutfreund, S.H. (1987). Maniplicons in ThinkerToy.Rroceedings OOPSLA 87, ACM Pregp, 307-317.
Hackos, J.T. & Redish, J.C. (1998)ser and Task Analysis for Interface Desitlew York: Wiley.

Halasz, F. & Moran, T.P. (1982). Analogy considered harrRitdceedings Conference Human Factors in
Computer Systemgp. 383-386.

Halewood, K. & Woodward, M.R. (1993). A uniform graphical view of the program construction process:
GRIPSE.International Journal of Man Machine Studi&g(5), 805-838.

Halpern, D.F. (1996). Sex, brains, hands, and spatial cognidevelopmental Review6(3), 261-270.

Hayes, P.J. (1985) The second naive physics manifesto. In J.R Hobbs & R.C. Moord-(Fam),
Theories of the Commonsense WoNdrwood, NJ: Ablex, pp. 1-36.

Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical sy3tenrsl
of Experimental Psychology: Learning, Memory & Cognitib®5), 1084-1102.

Hekkert, P. & van Wieringen, P.C.W. (1996). The impact of level of expertise on the evaluation of original
and altered versions of post-impressionistic paintiAg$éa Psychologiced4(2), 117-132.

Hesse, F.W., Kauer, G. & Spies, K. (1997). Effects of emotion-related surface similarity in analogical
problem solving American Journal of Psychology10(3), 357-383.

Heydenbluth, C. & Hesse, F.W. (1996). Impact of superficial similarity in the application phase of analogical
problem solving American Journal of Psychologi09(1), 37-57.

Hill, S. (1995).A practical introduction to the human computer interface in a semésiadon: DP
Publications.

Hishitani, S. (1990). Imagery experts: How do expert abacus operators process ilApgéed?Cognitive
Psychology4(1), 33-46.

Hoffman, D.D. & Richards, W.A. (1984). Parts of recognitiGognition 18, 65-96.

Holland, J.H., Holyoak, K.J., Nisbett, R.E. &Thagard, P.R. (198@uction: Processes of inference,
learning, and discovenMIT Press.

Hollands, J.G. & Spence, lan. (1992). Judgements of change and proportion in graphical pett@pizon
Factors 34(3), 313-334.

Huang, K.-T. (1990). Visual interface design systems. In S.-K. Chang, EEthgjples of Visual
Programming System®rentice-Hall, pp. 60-143.

Hutchins E. (1989). Metaphors for interface design. In M.Taylor, F.Neel & D.Bouwhuis (Eas.jtructure
of Multimodal Dialogue Amsterdam, North-Holland: Elsevier, pp. 11-28.

Huttenlocher, J. (1968). Constructing spatial images: a strategy in reasesyietiological Reviewy(6),
550-560.

Hyrskykari, A. (1993, March)Development of program visualization systeReper presented at the 2nd
Czech British Symposium of Visual Aspects of Man-Machine Systems, Prague.

Ichikawa, T.& Hirakawa, M. (1987). Visual programming — toward realization of user-friendly programming
environments. IfProceedings 2nd Fall Joint Computer Conference, IEEE Computer Society iyess,
129-137.

Ittelson, W.H. (1996). Visual perception of markin@sychonomic Bulletin & Revie®&(2), 171-187.
Ivins, W.M. Jr. (1953)Prints and visual communicatiohondon, Routledge & Kegan Paul.
Jackendoff, R. (1983pemantics and cognitio@ambridge, MA: MIT Press.

Johnson, J., Roberts, T.L., Verplank, W., Smith, D.C., Irby, C.H., Beard, M. & Mackey, K. (1989). The
Xerox Star: A retrospectivédEEE Computer22(9), 11-26.

175



Johnson, M. (1987)he body in the mind: The bodily basis of meaning, imagination and re@baago:
University of Chicago Press.

Johnson, S.H. (1991). Adult age differences in visual mental imagery: Evidence for differentially age-sensitive
componentsProceedings 13th Annual Conference Cognitive Science Sppiefb5—759.

Johnson-Laird, P.N. (1988). Freedom & constraint in creativity. In R.J. SternbergTiinature of
creativity: Contemporary psychological perspectiveambridge: Cambridge, pp. 202-219.

Jones, A. (1984). How novices learn to program. In B. Shackel (fidnan Computer Interaction —
INTERACT'84 North Holland: Elsevier, pp. 777-783.

Jones, M.R. (1990). Mac-thusiasm: social aspects of microcomputer use. In D. Diaper, D. Gilmore, G.
Cockton & B. Shackel (Eds.Human-Computer Interaction — Interact ‘9Qmsterdam: Elsevier, pp. 21-
26.

Kahn, K. (1996). Seeing systolic computations in a video game vwRnddeedings IEEE Symposium on
Visual Languaged_ os Alamitos, CA: IEEE Computer Society Press, pp. 95-101.

Kaput, J.J. (1995). Overcoming physicality and the eternal present: cybernetic manipulatives. In R.
Sutherland & J. Mason (EdsBxploiting Mental Imagery with Computers in Mathematics Education
Nato ASI Series F, Volume 138, pp. 161-177.

Karmiloff-Smith, A. (1990). Constraints on representational change: Evidence from children’s drawing
Cognition 34(1), 57-83.

Karsai, G. (1995). A configurable visual programming environment: a tool for domain-specific programming
IEEE Computer28(3), 36-44.

Katona, G. (1940)0rganizing and MemorizingNew York: Columbia University Press.

Katz, A.N. (1983). What does it mean to be a high imager? In J.C. Yuille (dgery, Memory and
Cognition: Essays in honor of Allan Paivibillsdale, NJ: Erlbaum, pp. 39-63.

Kaufmann, G. (1979)Visual imagery and its relation to problem solvi@slo, Norway:
Universitetsforlaget.

Keane, M.T. (1988)Analogical problem solvingellis Horwood Ltd.

Keane, M.T. (1997). What makes an analogy difficult? The effects of order and causal structure on analogical
mapping Journal of Experimental Psychology: Learning, Memory and Cognizigid), 946-967.

Kearins, J.M. (1981). Visual spatial memory in Australian Aboriginal children of desert reGiogsitive
Psychology13, 434-460.

Kennedy, J.M. (1975). Drawing was discovered, not invemMed Scientist67(965), 523-525.

Kennedy, J.M., Green, C.D. & Vervaeke, J. (1993). Metaphoric thought and devices in pMategshor
and symbolic activity8(3), 243-255.

Kieras, D. (1978). Beyond pictures and words: alternative information-processing models for imagery effects
in verbal memoryPsychological Bulletin85(3), 532-554.

Kieras, D.E. & Bovair, S. (1984). The role of a mental model in learning to operate a d@ngeetive
Science8(3), 255-273.

Kimura, T.D., Apte, A., Sengupta S. & Chan, J.W. (1995). Form/Formula: A visual programming paradigm
for user-definable user interfacéEEE Computer28(3), 27-35.

Koedinger, K.R & Anderson, J.R. (1990). Abstract planning and perceptual chunks: elements of expertise in
geometry Cognitive Sciengel4(4), 511-550.

Koenemann, J. & Robertson, S.P. (1991). Expert problem solving strategies for program comprehension. In
Robertson, S.P., Olson, G.M. & Olson, J.S. (Ed9ceedings CHI'91ACM, pp. 125-130.

176



Koestler, A. (1964)The act of creationLondon: Hutchinson.

Kopache, M.E. & Glinert, E.P. (1988). C2: A mixed textual/graphical environment forRZobteedings
IEEE Workshop on Visual Languages, 231-238.

Kosslyn, S.M. (1981). The medium and the message in mental imagery: a P&glological Review
88(1), 46-66.

Kosslyn, S.M. (1989). Understanding charts and grappplied Cognitive Psycholog$(3), 185-226.

Kosslyn, S.M., Ball, T.M. & Reiser, B.J. (1978). Visual images preserve metric spatial information:
Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and
Performance4, 47-60.

Kosslyn, S.M., Koenig, O., Barrett, A., Cave, C.B., Tang, J., & Gabrieli, J.D.E. (1989). Evidence for two
types of spatial representations: hemispheric specialization for categorical and coordinate. ridatioals
of Experimental Psychology: Human Perception and Performdrié), 723-735.

Labbo, L.D. (1996). A semiotic analysis of young children’s symbol making in a classroom computer centre
Reading Research Quarter1(4), 356-385.

Ladret, D. & Rueher, M. (1991). VLP: A visual logic programming languagernal of Visual Languages
and Computing2(2) , 163-188.

Lakoff, G. (1987)Women, fire and dangerous thingshicago: University of Chicago Press.

Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Eeéfaphor and Thoughi2nd
ed.). Cambridge: Cambridge University Press. pp. 202-251.

Lakoff, G. & Johnson, M. (1980Metaphors We Live ByChicago, The University of Chicago Press.

Langston, W., Kramer, D.C. & Glenberg, A.M. (1998). The representation of space in mental models derived
from text Memory & Cognition26(2), 247-262.

Larkin, J.H. (1989). Display-based problem solving. In D. Klahr & K. Kotovsky (E@smplex
Information Processing: The impact of Herbert A. Sintdifisdale, NJ: Lawrence Erlbaum Associates, pp.
319-342.

Larkin, J.H. & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand Woglstive
Sciencell, 65-99.

Laurel, B. (1986). Interface as mimesis. In D.A. Norman & S.W. Draper (Efe), Centered System
Design: New Perspectives on Human-Computer Interackidisdale, NJ: Lawrence Erlbaum, pp. 67-86.

Lave, J. (1988)Cognition in Practice: Mind, mathematics and culture in everydayQifanbridge, UK:
Cambridge University Press.

Levelt, W.J.M. (1981). The speaker’s linearisation probleéhilosophical Transactions of the Royal Society
B, 295, 305-315.

Lewis, C.M. (1991). Visualization and situations. In J. Barwise, J.M. Gawron, G. Plotkin & S. Tutiya
(Eds.),Situation Theory and Its Applications: VolumeStanford University: CSLI, pp. 553-580.

Linde, C. & Labov, W. (1975). Spatial structures as a site for the study of language and themmgylrige
51, 924-939.

Lindsay, R.K. (1988). Images and inferen€egnition 29(3), 229-250.

Lindsay, R.K. (1989). Qualitative geometric reasonfigceedings 11th Annual Conference Cognitive
Science Societyp. 418-425.

Liu, C.H. & Kennedy, J.M. (1994). Symbolic forms can be mnemonics for ré&sithonomic Bulletin &
Review 1(4), 494-498.

177



Lodding, K.N. (1983). Iconic interfacindEEE Computer Graphics and ApplicatioB¢2), 11-20.

Logie, R.H. & Pearson, D.G. (1997). The inner eye and the inner scribe of visuo-spatial working memory:
Evidence from developmental fractionatid@uropean Journal of Cognitive Psycholog§B), 241-257.

Lohse, G.L. (1997). The role of working memory on graphical information proce§ghgviour and
Information Technologyl6(6), 297-308.

Lohse, G.L., Biolski, K., Walker, N. & Rueter, H.H. (1994). A classification of visual representations.
Communications of the ACN7(12), 36-49.

Lord, H.D. (1994). Visual programming for visual applications: a new look for comp@inigct Magazine
4(4), 37-40.

Lowe, R.K. (1993a)Successful instructional diagramsondon: Kogan Page.

Lowe, R.K. (1993b). Diagrammatic information: techniques for exploring its mental representation and
processingInformation Design Journa¥(1), 3-18.

McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A.L. Stevens (Btisntal Models
Lawrence Erlbaum Associates, pp. 299-324.

McDougal, T.F. & Hammond, K.J. (1995). Using diagrammatic features to index plans for geometry
theorem-proving. In J. Glasgow, N.H. Narayanan & B. Chandrasekaran (Bdgrammatic Reasoning:
Cognitive and Computational Perspectivibtenlo Park, CA: AAAI Press, pp. 691-709.

McGlone, M.S. (1996). Conceptual metaphors and figurative language interpretation: Food for thought?
Journal of Memory and Languages(4), 544-565.

MacGregor, J.N. & Ormerod, T. (1996). Human performance on the travelling salesman pRsbiegption
and Psychophysic8§8(4), 527-539.

McKeithen, K.B., Reitman, J.S., Rueter, H.H. & Hirtle, S.C. (1981). Knowledge organization and skill
differences in computer programme@agnitive Psychologyl 3, 307-325.

MacLeod, C.M., Hunt, E.B. & Mathews, N.N. (1978). Individual differences in the verification of sentence-
picture relationshipslournal of Verbal Learning and Verbal Behayidv, 493-507.

McNamara, T.P. (1986). Mental representations of spatial relattmgmitive Psychologyi8, 87-121.

McNamara, T.P., Halpin, J.A. & Hardy, J.K. (1992). The representation and integration in memory of spatial
and nonspatial informatioMMemory & Cognition20(5), 519-532.

Madsen, K.H. (1994). A guide to metaphorical desi@ammunications of the AGNd7(12), 57-62.
Mandel, T. (1997)The elements of user interface desigaw York: Wiley.

Manger, T. & Eikeland, O.-J. (1998). The effects of spatial visualization and students’ sex on mathematical
achievementBritish Journal of Psycholog®g9(1), 17-25.

Mani, K. & Johnson-Laird, P.N. (1982). The mental representations of spatial descripte@mery &
Cognition 10(2), 181-187.

Marschark, M. & Hunt, R.R. (1985). On memory for metapMemory & Cognition13(5), 413-424.

Martin, J. & McClure, C. (1985Diagramming techniques for analysts and programménglewood Cliffs,
NJ: Prentice-Hall.

Martin, M. & Jones, G.V. (1998). Generalizing everyday memory: Signs and handedeessy &
Cognition 26(2), 193-200.

Matsuno, T. (1987). Cognitive style and representational strategies in categorical syllogistic reasoning.
Tohoku Psychologica Folj&6(1-4), 97-102.

178



Mayer, R.E. & Sims, V.K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-
coding theory of multimedia learnindournal of Educational Psycholog86(3), 389-401.

Mayer, R.E. (1975). Different problem-solving competencies established in learning computer programming
with and without meaningful model3ournal of Educational Psychology7(6), 725-734.

Mayer, R.E. (1988). From novice to expert. In M. Helander (Ethjydbook of Human-Computer
Interaction Elsevier, pp. 569-580.

Mayer, R.E. (1993). The instructive metaphor: Metaphoric aids to student’s understanding of science. In A.
Ortony (Ed.) Metaphor and Though®nd ed.). Cambridge: Cambridge University Press. pp. 562-578.

Mecklinger, A. & Muller, N. (1996). Dissociations in the processing of “what” and “where” information in
working memory: An event-related potential analydmurnal of Cognitive Neuroscien@5), 453-473.

Melcher, J.M. & Schooler, J.W. (1996). The misremembrance of wines past: Verbal and perceptual expertise
differentially mediate verbal overshadowing of taste memiwyrnal of Memory and Languagd®s(2),
231-245.

Mendelsohn, P., Green, T.R.G. & Brna, P. (1990). Programming languages in education: The search for an
easy start. In Hoc, J.-M., Green, T.R.G., Samurcay, R. & Gilmore, D.J. (Bdgchology of
programming London: Academic Press, pp. 175-200.

Metcalfe, J. & Wiebe, D. (1987). Intuition in insight and noninsight problem soliegnory &
Cognition 15(3), 238-246.

Meyer, J. (1997). A new look at an old study on information display: Washburne (1927) reconsidenad
Factors 39(3), 333-340.

Microsoft Corporation (1995)he Windows interface guidelines for software dedggdmond, WA: Author.

Mieder, W. (1990). “A picture is worth a thousand words”: From advertising slogan to American proverb.
Southern Folklored7, 207-225.

Miller, George A. (1993). Images and models, similes and metaphors. In A. OrtonyM&=&phor and
Thought(2nd ed.). Cambridge: Cambridge University Press. pp. 357-400.

Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983). Object vision and spatial vision: Two cortical
pathwaysTrends in Neuroscience®(10), 414-417.

Missikoff, M. & Pizzicanella, R. (1996). A visual approach to object-oriented analysis based on abstract
diagrams SIGCHI Bulletin 28(3), 56-64.

Mitchell, M. (1993).Analogy-making as perception: A computer mo@ambridge, MA: MIT Press.

Mohnkern, K. (1997a)Affordances, metaphor and interface designpublished Master’s thesis, Department
of Design, College of Fine Arts, Carnegie Mellon University.

Mohnkern, K. (1997b). Beyond the interface metapBdGCHI Bulletin 29(2), 11-15.

Moray, N. (1990). A lattice theory approach to the study of mental mddlglesophical Transactions of the
Royal Society B327, 577-583.

Murphy, G.L. (1996). On metaphoric representatidngnition 60(2), 173-204.

Murphy, G.L. (1997). Reasons to doubt the present evidence for metaphoric represeboapition 62(1),
99-108.

Myers, B.A. (1986). Visual programming, programming by example, and program visualization: A
taxonomy.Proceedings CHI 86pp. 59-66.

Narayanan, N.H., Suwa, M. & Motoda, H. (1995). Hypothesising behaviors from device diagrams. In J.
Glasgow, N.H. Narayanan & B. Chandrasekaran (EBg@jjrammatic Reasoning: Cognitive and
Computational Perspectiveslenlo Park, CA: AAAI Press, pp. 501-534.

179



Nardi, B.A. (1993) A small matter of programming: Perspectives on end user comp@émgbridge, MA:
MIT Press.

Nardi, B.A. & Zarmer, C.L. (1993). Beyond models and metaphors: visual formalisms in user interface
design Journal of Visual Languages and Computid), 5-33.

Nelson, T.O., Metzler, J. & Reed, D.A. (1974). Role of details in the long-term recognition of pictures and
verbal descriptionsJournal of Experimental Psycholady02(1), 184-186.

Nersessian, N.J. (1995). Capturing the dynamics of conceptual change in science. In J. Glasgow, N.H.
Narayanan & B. Chandrasekaran (Ed3iggrammatic Reasoning: Cognitive and Computational
PerspectivesMenlo Park, CA: AAAI Press, pp. 137-181.

Netz, R. (in press)lhe shaping of deduction in Greek mathematzsmbridge: Cambridge University Press.

Newsham, R. (19955ymbolic representation in object-oriented methodologies: Modelling the essence of the
computer systendnpublished Master’s thesis, Department of Computer Science, Nottingham Trent
University.

Noble, R. (1992). Preferential use of examples by novices learning ProPgndeedings 5th Workshop of
the Psychology of Programming Interest GrolRIA, pp. 146-158.

Nolder, R. (1991). Mixing metaphor and mathematics in the secondary classroom. In K. Durkin & B. Shire
(Eds.),Language in Mathematical Education: Research and PradBinekingham, UK: Open University
Press. pp. 105-114.

Norman, D.A. (1988)The psychology of everyday thingew York, Basic Books.

Norman, D.A. (1991). Cognitive artifacts. In J.M. Carroll (EB¢signing Interaction: Psychology at the
Human-Computer Interfac€ambridge: Cambridge University Press, pp. 17-38.

Novak, G.S. Jr. (1995). Diagrams for solving physical problems. In J. Glasgow, N.H. Narayanan & B.
Chandrasekaran (EdsDiagrammatic Reasoning: Cognitive and Computational Perspectiteslo Park,
CA: AAAI Press, pp. 753-774.

Oberlander, J. (1996). Grice for graphics: pragmatic implicature in network diagnfonsation Design
Journal, 8(6), 163-179.

Paivio, A. (1971)Imagery and Verbal Processdgew York, Holt, Rinehart and Winston.

Paivio, A. (1983). The empirical case for dual coding. In J.C. Yuille (Edggery, Memory & Cognition:
Essays in honor of Allan Paividdillsdale, NJ: Erlbaum, pp. 307-332.

Paivio, A. & Clark, J.M. (1991). Static versus dynamic imagery. In C. Cornoldi & M.A. McDaniel (Eds.),
Imagery and CognitiorNew York, Springer-Verlag, pp. 221-245.

Palmer, S. & Rock, I. (1994). Rethinking perceptual organization: the role of unifom connectedness
Psychonomic Bulletin & Revigw(1), 29-55.

Pane, J. (1997). A programming system for children that is designed for usability. In C. Kann (Ed.),
Proceedings of the First ESP Student Worksppp15-22.

Pane, J.F. & Myers, B.A. (1998)sability issues in the design of novice programming syst8ofeol of
Computer Science, Carnegie Mellon University. Technical Report CMU-CS-96-132.

Payne, S.J. (1988). Metaphorical instruction and the early learning of an abbreviated-command computer
system.Acta Psychologicgb9, 207-230.

Payne, S.J. (1990). Looking HCI in the I. In D. Diaper, D. Gilmore, G. Cockton & B. Shackel (Eds.),
Human-Computer Interaction — Interact ‘9@msterdam: Elsevier, pp. 185-191.

Payne, S.J. (1991). A descriptive study of mental mo&elbaviour and Information Technolody)(1), 3-
21.

180



Payne, S.J. (1992). On mental models and cognitive artefacts. In Y. Rogers, A. Rutherford & P.A. Bibby
(Eds.),Models in the Mind: Theory, Perspective and Applicatidcademic Press, pp. 103-118.

Payne, S.J., Squibb, H.R. & Howes, A. (1990). The nature of device models: the yoked state space
hypothesis and some experiments with text editdtsnan-Computer Interactios(4), 415-444.

Peirce, C.S. (1932). Elements of Logic. In Hartshorne, C. & Weiss, P. (Ediécted papers of Charles
Sanders Peirce, Volume [Cambridge, MA: Harvard University Press.

Petre, M. & Blackwell, A.F. (1997). A glimpse of expert programmer's mental imagery. In S. Wiedenbeck &
J. Scholtz (Eds.Rroceedings of the 7th Workshop on Empirical Studies of Programppers09-123.

Petre, M. Blackwell, A.F. and Green, T.R.G. (1998). Cognitive questions in software visualisation. In J.
Stasko, J. Domingue, M. Brown, and B. Price (EBsfiware Visualization: Programming as a Multi-
Media ExperienceCambridge, MA: MIT Press, pp. 453-480.

Petre, M. & Green, T.R.G. (1990). Where to draw the line with text: some claims by logic designers about
graphics in notation. In D. Diaper, D. Gilmore, G. Cockton & B. Shackel (Edigthan-Computer
Interaction — Interact ‘90Amsterdam: Elsevier, pp. 463-468.

Petre, M. & Green, T.R.G. (1993). Learning to read graphics: some evidence that ‘seeing’ an information
display is an acquired skillournal of Visual Languages and Compufid), 5-33.

Petrie, H.G. & Oshlag, R.S. (1993). Metaphor and learning. In A. Ortony {@&etaphor and Though2nd
ed.). Cambridge: Cambridge University Press. pp. 579-609.

Pickford, R.W. (1979). Semantic differential judgements of geometric figures of aesthetic interest. In
Nodine,C.F. & Fisher, D.F. (EdsRerception and Pictorial Representatiddew York: Praeger, pp. 316-
327.

Pilton, B. (1971). The intelligent ball bearinganifold-9. Mathematics Institute, University of Warwick,
pp. 17-20.

Pimm, D. (1995)Symbols and meanings in school mathematioadon, Routledge.

Pinkpank, T. & Wandke, H. (1995). Mental effort with the use of different dialogue techniques in human-
computer interactiorZeitschrift fir Psychologie203 119-137.

Pisan, Y. (1995). A visual routines based model of graph understaRdingedings 17th Annual Conference
Cognitive Science Socigpp. 692-697.

Pong, M.C. & Ng, N. (1983). PIGS — A system for programming with interactive graphical support.
Software — Practice and Experiends, 847-855.

Porter, T. (1979)How architects visualizd_ondon: Studio Vista.
Potosnak, K. (1988). Do icons make user interfaces easier ttEEE SoftwareMay, pp. 97-99.
Potter, M.C. & Faulconer, B.A. (1975). Time to understand pictures and viatlgg 253 437-438.

Potter, M.C., Kroll, J.F, Yachzel, B., Carpenter, E. & Sherman, J. (1986). Pictures in sentences:
understanding without worddournal of Experimental Psychology: Genefd5(3), 281-294.

Price, B.A., Baecker, R.M. & Small, I.S. (1993). A principled taxonomy of software visualizatamal
of Visual Languages and Computjdg3), 211-266.

Pylyshyn, Z.W. (1981). The imagery debate: analogue media versus tacit knowsygjeological Review
88(1), 16-45.

Pynte, J., Besson, M., Robichon, F.-H. & Poli, J. (1996). The time-course of metaphor comprehension: An
event-related potential studgrain and Languages5(3), 293-316.

181



Qin, Y. & Simon, H. (1995). Imagery and mental models. In J. Glasgow, N.H. Narayanan & B.
Chandrasekaran (EdsDiagrammatic Reasoning: Cognitive and Computational Perspectitesio Park,
CA: AAAI Press, pp. 403-434.

Quinn, J.G. & McConnell, J. (1996). Irrelevant pictures in visual working meriibey Quarterly Journal of
Experimental Psycholog¢9A, 200-215.

Reddy, M.J. (1993). The conduit metaphor: A case of frame conflict in our language about language. In A.
Ortony (Ed.) Metaphor and Thoughnd ed.). Cambridge: Cambridge University Press. pp. 164-201.

Reiss, S.P. (1987). Visual languages and the GARDEN system. In P. Gorny & M.J. Tauber (Eds.),
Visualization in Programmingd-ecture Notes in Computer Science Vol. 282. Berlin: Springer-Verlag. pp.
178-191.

Repenning, A. & Sumner, T. (1995). Agentsheets: A medium for creating domain-oriented visual languages
IEEE Computer28(3), 17-25.

Richards, C. (1997¥etting the picture: Diagram design and the information revolutiRmofessorial
Lectures:16; Coventry University.

Richardson, A. (1977). Verbalizer-visualizer: A cognitive style dimensiounal of Mental Imagery,
109-126.

Riding, R. & Douglas, G. (1993). The effect of cognitive style and mode of presentation on learning
performanceBritish Journal of Educational PsychologB, 297-307.

Rieman, J., Lewis, C. Young, R.M. & Polson, P. (1994). Why is a raven like a writing desk? Lessons in
interface consistency and analogical reasoning from two cognitive architeBiwesedings Human Factors
in Computing Systems CHI 9dp. 438-444.

Rohr, G. (1987). How people comprehend unknown system structures: Conceptual primitives in systems’
surface representations. In P. Gorny & M.J. Tauber (Bdisyalization in Programmingd_ecture Notes in
Computer Science Vol. 282. Berlin: Springer-Verlag, pp. 89-105.

Roszak, T. (1986)r'he cult of information: The folklore of computers and the true art of thinkimgdon:
Paladin Press.

Rumelhart, D.E. (1993). Some problems with the notion of literal meanings. In A. OrtonyMEthphor
and Though{2nd ed.). Cambridge: Cambridge University Press. pp. 71-82.

Ryan, T.A. & Schwartz, C.B. (1956). Speed of perception as a function of mode of represehta¢iocan
Journal of Psychology69, 60-69.

Saariluoma, P. & Kalakoski, V. (1997). Skilled imagery and long-term working merorgrican Journal
of Psychology110(2), 177-202.

Saariluoma, P. & Sajaniemi, J. (1994). Transforming verbal descriptions into mathematical formulas in
spreadsheet calculatiomternational Journal of Human Computer Studig€K6), 915-948.

Scaife, M. & Rogers, Y. (1996). External cognition: how do graphical representationsinterkational
Journal of Human Computer Studjd®, 185-214.

Scapin, D.L. (1981). Computer commands in restricted natural language: some aspects of memory and
experienceHuman Factors23(3), 365-375.

Schiffer, S. & Frohlich, J.H. (1995). Visual programming and software engineering with Vista. In M.
Burnett, A. Goldberg & T. Lewis, (EdsYisual Object-Oriented Programming Concepts and
EnvironmentsGreenwich, CT: Manning, pp. 199-228.

Schoenfeld, A.H. (1983). Beyond the purely cognitive: Belief systems, social cognitions and metacognitions
as driving forces in intellectual performan€&ognitive Scienc&(4), 329-363.

Scholtz, J. & Wiedenbeck, S. (1992). The role of planning in learning a new programming language
International Journal of Man Machine Studj&§(2), 191-214.

182



Schooler, J.W., Ohlsson, S. & Brooks, K. (1993). Thoughts beyond words: When language overshadows
insight Journal of Experimental Psychology: Gened#122), 166-183.

Schunn, C.D. & Dunbar, K. (1996). Priming, analogy and awareness in complex reabtenimyy &
Cognition 24(3), 271-284.

Schwartz, D.L. (1995). Reasoning about the referent of a picture versus reasoning about the picture as the
referent: An effect of visual realisrtMemory & Cognition23(6), 709-722.

Schwartz, D.L. & Black, J.B. (1996a). Analog imagery in mental model reasoning: Depictive models
Cognitive Psychologyd0(2), 154-219.

Schwartz, D.L. & Black, J.B. (1996b). Shuttling between depictive models and abstract rules: Induction and
fallback Cognitive Scienc0(4), 457-497.

Schwartz, R. (1981). Imagery — There’s more to it than meets the eye. In N. Blockniadgry
Cambridge, MA: MIT Press, pp. 109-130.

Schwartz, S.J. (1971). Modes of representation and problem solving: Well evolved is half kmlved! of
Experimental Psycholog91(2), 347-350.

Schweiker, H. & Muthig, K.-P. (1987). Solving interpolation problems with LOGO and BOXER. In P.
Gorny & M.J. Tauber (Eds.Yisualization in Programming_ecture Notes in Computer Science Vol. 282.
Berlin: Springer-Verlag. pp. 164-177.

Scott, F.J. & Baron-Cohen, S. (1996). Imagining real and unreal things: Evidence of a dissociation in autism
Journal of Cognitive Neurosciend&4), 371-382.

Segal, J. & Schuman, S. (1992). Empirical studies of learners of functional programnitnacerdings
Fifth Workshop of the Psychology of Programming Interest GriNiRIA., pp. 197-206.

Sein, M.K., Olfman, L., Bostrom, R.P. & Davis, S.A. (1993). Visualization ability as a predictor of user
learning succesnternational Journal of Man-Machine Studj&9, 599-620.

Selfe, L. (1985). Anomalous drawing development: Some clinical studies. In N.H. Freeman & M.V. Cox
(Eds.),Visual order: The nature and development of pictorial representafiambridge: Cambridge
University Press, pp. 135-154.

Shah, P. & Carpenter, P.A. (1995). Conceptual limitations in comprehending line.graytmsal of
Experimental Psychology: Generab4(1), 43-61.

Shalit, A. & Boonzaier, D.A. (1990). HyperBliss: A Blissymbolics communication enhancement interface
and teaching aid based on a cognitive semantographic technique with adaptive-predictive capability. In D.
Diaper, D. Gilmore, G. Cockton & B. Shackel (Edsliyman-Computer Interaction — Interact ‘90
Amsterdam: Elsevier, pp. 499-503.

Shaver, P., Pierson, L. & Lang, S. (1974/75). Converging evidence for the functional significance of imagery
in problem solving Cognition 3(4), 359-375.

Shepard, R.N. (1978). Externalization of mental images and the act of creation. In B.S. Randhawa & W.E.
Coffman (Eds.)Visual Learning, Thinking and Communicatidtew York, Academic Press, pp. 133-189.

Shepard, R.N. & Metzler, J. (1971). Mental rotation of three-dimensional otfeithncel71, 701-703.

Shimaya, A. (1997). Perception of complex line drawidgsirnal of Experimental Psychology: Human
Perception and Performanc23(1), 25-50.

Shin, S.-J. (1991). A situation-theoretic account of valid reasoning with Venn diagrams. In J. Barwise, J.M.
Gawron, G. Plotkin & S. Tutiya (Eds3jtuation Theory and Its Applications: VolumeS?anford
University: CSLI, pp. 581-605.

Shneiderman, B. (1983). Direct manipulation: A step beyond programming langiigfe<omputer
August, pp. 57-69.

183



Shu, N.C. (1986). Visual programming languages: A perspective and a dimensional analysis. In S.K. Chang,
T. Ichikawa & P.A. Ligomenides, (EdsYijsual LanguagesPlenum, pp. 11-34.

Shu, N.C. (1988a). A visual programming environment for automatic programmiRgodeedings 21st
Hawaii International Conference on System ScienédsE Computer Society Press, pp. 662-671.

Shu, N.C. (1988b)Visual programmingNew York: Van Nostrand Reinhold.

Silverman, 1., Phillips, K. & Silverman, L.K. (1996). Homogeneity of effect sizes for sex across spatial tests
and cultures: Implications for hormonal theoriBsain and Cognition31(1), 90-94.

Simos, M. & Blackwell, A.F. (1998). Pruning the tree of trees: The evaluation of notations for domain
modeling. In J. Domingue & P. Mulholland (Ed®)pceedings of the Tenth Annual Meeting of the
Psychology of Programming Interest Groypp, 92-99.

Simpson, H.K. & Pellegrino, J.W. (1993). Descriptive models in learning command langiagesl of
Educational Psycholog5(3), 539-550.

Sims, V.K. & Hegarty, M. (1997). Mental animation in the visuospatial sketchpad: Evidence from dual-task
studies Memory & Cognition25(3), 321-332.

Slezak, P. (1992). When can visual images be re-interpreted? Non-chronometric tests of pictorialism. In
Proceedings 14th Annual Conference of the Cognitive Science Sppietyp4-129.

Sloman, A. (1995). Musings on the roles of logical and nonlogical representations in intelligence. In J.
Glasgow, N.H. Narayanan & B. Chandrasekaran (ED&@pgrammatic Reasoning: Cognitive and
Computational Perspectiveslenlo Park, CA: AAAI Press, pp. 7-32.

Smith, D.C. (1977)PYGMALION: A computer program to model and stimulate creative thinking
Birkhauser.

Smith, D.C. (1996). Making computers accessible to people. Contribution to panel on “Perspectives from
the Pioneers”, IfProceedings 1996 IEEE Symposium on Visual Langudg&g& Computer Society
Press, pp. 332-333.

Smith, D.C., Irby, C., Kimball, R. & Harslem, E. (1982). The Star user interface: An overview. In
Proceedings of the National Computer Conference, AFIPS5¥opp. 515-528.

Smith, D.C., Irby, C., Kimball, R., Verplank, B. & Harslem, E. (1982). Designing the Star user interface
Byte 7(4), 242-282.

Smith, E.E. & Jonides, J. (1997). Working memory: A view from neuroimagiognitive Psychology
33(1), 5-42.

Smith, S.L. (1981). Exploring compatibility with words and pictut#gman Factors23(3), 305-351.

Smyth, M., Anderson, B. & Alty, J.L. (1995). Metaphor reflections and a tool for thought. In M.A.R.
Kirby, A.J. Dix & J.E. Finlay (Eds.)People and Computers Xambridge University Press, pp. 137-150.

Snyder, AW. & Thomas, M. (1997). Autistic artists give clues to cogniff@nception26(1), 93-96.

Sohn, Y.W. & Doane, S.M. (1997). Cognitive constraints on computer problem-solving dhillmal of
Experimental Psychology: Applig8(4), 288-312.

Soloway, E., Bonar, J & Ehrlich, K. (1983). Cognitive strategies and looping constructs: An empirical study.
Communications of the ACM6(11), 853-860.

Sowa, J.F. (1993). Relating diagrams to logic. In G. Mineau, B. Moulin & J.F. Sowa (Ealscegptual
Graphs for Knowledge Representati@erlin: Springer-Verlag, pp. 1-35.

Spence, |. (1990). Visual Psychophysics of simple graphical elendentmal of Experimental Psychology:
Human Perception and Performand#(4), 683-692.

184



Spiro, R.J., Feltovich, P.J., Coulson, R.L & Anderson, D.K. (1989). Multiple analogies for complex
concepts: antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou
& A. Ortony (Eds.) Similarity and Analogical ReasoninGambridge University Press, pp. 498-531.

Stenning, K. & Gurr, C. (1997). Human-formalism interaction: Studies in communication through
formalism Interacting with Computer9(2), 111-128.

Stenning, K., Inder, R. & Neilson, 1. (1995). Applying semantic concepts to analysing media and modalities.
In B. Chandrasekaran, J. Glasgow & H. Narayanan (Eiagrammatic Reasoning: Computational and
Cognitive Perspectives on Problem Solving with Diagravenlo Park, CA: AAAI Press / MIT Press,
pp. 303-338.

Stenning, K. & Oberlander, J. (1991). Reasoning with words, pictures and calculi: computation versus
justification. In J. Barwise, J.M. Gawron, G. Plotkin & S. Tutiya (Edityation Theory and Its
Applications: Volume 2Stanford University: CSLI, pp. 607-621.

Stenning, K. & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and
implementation Cognitive Sciengd 9(1), 97-140.

Stone, E.R. & Yates, J.F. (1997). Effects of numerical and graphical displays on professed risk-taking
behaviour Journal of Experimental Psychology: Appli&é#), 243-256.

Stroebel, L., Todd, H. & Zakia, R. (1980jisual concepts for photographetsondon: Focal Press.

Strothotte, C. & Strothotte, T. (1998eeing between the pixels: Pictures in interactive systs8prmger
Verlag.

Sutcliffe, A. & Patel, U. (1996). 3D or not 3D: Is it nobler in the mind? In M.A. Sasse, R.J. Cunningham
& R.L. Winder (Eds.)People and computers Xl: Proceedings of HCI'Béndon: Springer-Verlag, pp. 79-
94.

Sutherland, I.E. (1963). Sketchpad: A man-machine graphical communication $Bt&x8.Conference
Proceedings, Spring Joint Conferenpp, 2-19.

Suwa, M. & Tversky, B. (1997). What do architects and students perceive in their design sketches? A protocol
analysis.Design Studiesl8, 385-403.

Szlichcinski, K.P. (1979). Diagrams and illustrations as aids to problem sdistgictional Scienges,
253-274.

Tabachnek-Schijf, H.J.M., Leonardo, A.M. & Simon,H.A. (1997). CaMeRa: A computational model of
multiple representation€ognitive Scienc&1(3), 305-350.

Takahashi, S. (1995). Aesthetic properties of pictorial percef®sychological Revieyl024), 671-683.

Talmy, L. (1983). How language structures space. In H.L. Pick & L.P. Acredolo (Edat)al orientation:
Theory, research and applicatioNew York: Plenum Press, pp. 225-282.

Tanimoto, S.L. & Glinert, E.P. (1986). Designing iconic programming systems: representation and
learnability.Proceedings IEEE Workshop on Visual Langua¢feEE Computer Society Press, pp. 54-60.

Tauber, M.J. (1987). On visual interfaces and their conceptual analysis. In P. Gorny & M.J. Tauber (Eds.),
Visualization in Programmingd_ecture Notes in Computer Science Vol. 282. Berlin: Springer-Verlag. pp.
106-123.

Taylor, H.A. & Tversky, B. (1996). Perspective in spatial descriptidogrnal of Memory and Language
35(3), 371-391.

Taylor, J. (1990). Analysing novices analysing Prolog: What stories do novices tell themselves about
Prolog?Instructional Sciengel9, 283-309.

Tenenberg, J.D. (1996). Virtual machines and program comprehension. In P. Vanneste, K. Bertels, B. De
Decker & J.-M. Jaques (EdsBroceedings of the 8th Annual Workshop of the Psychology of
Programming Interest Groupp. 60-82.

185



Theios, J. & Amrhein, P.C. (1989). Theoretical analysis of the cognitive processing of lexical and pictorial
stimuli: reading, naming and visual and conceptual derivatRegchological Reviev@6(1), 5-24.

Thomas, G.V. & Silk, A.M.J. (1990An introduction to the psychology of children’s drawiniggemel
Hempstead: Harvester Wheatsheaf.

Tourangeau, R. & Sternberg, R.J. (1982). Understanding and appreciating met@pgaiton 11(3), 203-
244,

Treglown, M. (1994). Qualitative models of user interfaces. In G. Cockton, S.W. Draper & G.R.S. Weir
(Eds.),People and computers IX: Proceedings of HCl'Bdndon: Springer-Verlag, pp. 261-272.

Tresch, M.C., Sinnamon, H.M. & Seamon, J.G. (1993). Double dissociation of spatial and object visual
memory: Evidence from selective interference in intact human subjmisopsychologigB1(3), 211-219.

Tripp, L.L. (1988). A survey of graphical notations for program design — an u@i#tesare Engineering
Notes 13(4), 39-44.

Tufte, E.R. (1983)The visual display of quantitative informatic@heshit, CT: Graphics Press.
Tufte, E.R. (1990)Envisioning informationCheshit, CT: Graphics Press.

Tversky, B., Kugelmass, S. & Winter, A. (1991). Cross-cultural and developmental trends in graphic
productions.Cognitive Psychology3, 515-557.

Twyman, M. (1979). A schema for the study of graphical language. In P.A. Kolers, M.E. Wrolstad, & H.
Bouma (Eds.)Processing of Visible Language, Vol.Nlew York: Plenum Press, pp. 117-150.

Uliman, S. (1984). Visual routine§ognition 18, 97-159.

van der Veer, G.C. (199Gluman-Computer Interaction: Learning, Individual Differences and Design
Recommendation®hD Thesis, Free University of Amsterdam.

van der Veer, G.C., van Beek, J. & Cruts, G.A.N. (1987). Learning structured diagrams — effect of
mathematical background, instruction and problem solving. In P. Gorny & M.J. Tauber (Eds.),
Visualization in Programmingd_ecture Notes in Computer Science Vol. 282. Berlin: Springer-Verlag. pp.
70-88.

van Sommers, P. (1984)rawing and cognitionCambridge: Cambridge University Press.

Verbrugge, Robert R. & McCarrell, Nancy S. (1977). Metaphoric comprehension: studies in reminding and
resembling.Cognitive Psychology®, 494-533.

Visser, W. (1992). Use of analogical relationships between design problem-solution representations:
Exploitation at the action-execution and action-management levels of the a&iuitia Psychologiceé4,
351-357.

Waisel, L., Wallace, W.A. & Willemain, T.R. (1997). Using diagrammatic representations in mathematical
modeling: The sketches of expert modelers. In M. Anderson (&elsoning with Diagrammatic
Representations II: Papers from the AAAI 1997 Fall Symposiechnical Report FS-97-02. Menlo
Park, CA: AAAI Press, pp. 125-135.

Walker, P., Hitch, G.J., Dewhurst, S.A., Whiteley, H.E. & Brandimonte, M.A. (1997). The representation of
nonstructural information in visual memory: Evidence from image combindflemory & Cognition
25(4), 484-491.

Walsh, Paul. (1990). Imagery as a heuristic in the comprehension of metaphorical analogies. In K.J.
Gilhooly, M.T.G. Keane, R.H.Logie & G.Erdos (Edd.)nes of Thinking: Reflections on the Psychology
of Thought Chichester: John Wiley and Sons, pp. 237-250.

Wang, D., Lee, J. & Zeevat, H. (1995). Reasoning with diagrammatic representations. In J. Glasgow, N.H.
Narayanan & B. Chandrasekaran (Ed3iggrammatic Reasoning: Cognitive and Computational
PerspectivesMenlo Park, CA: AAAI Press, pp. 339-393.

186



Washburne, J.N. (1927). An experimental study of various graphical, tabular and textual methods of
presenting quantitative materidburnal of Educational Psychology8, 361-376 & 465-476.

Watt, S. (1997). Naive psychology and alien intelligence. In M. Garns et. al. fdd.versus computer
IOS Press, pp. 46-51.

Watt, S. (1998). Syntonicity and the psychology of programming. In J. Domingue & P. Mulholland (Eds.),
Proceedings of the Tenth Annual Meeting of the Psychology of Programming Interestgprolfp.86.

Weinschenk, S., Jamar, P. & Yeo, S.C. (19&4)! design essentialfNew York: Wiley.

Werner, H. & Kaplan, B. (1963%ymbol formation: An organismic-developmental approach to language and
the expression of thoughitew York, John Wiley.

Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and. agains| of
Visual Languages and Computjr&fl), 9-142.

Whitley, K.N. & Blackwell, A.F. (1997). Visual programming: The outlook from academia and industry. In
S. Wiedenbeck & J. Scholtz (EdsPxoceedings of the 7th Workshop on Empirical Studies of
Programmerspp. 180-208.

Whitley, K.N. & Blackwell, A.F. (1998)Visual programming in the wild: A survey of LabVIEW
programmersTechnical Report CS-98-03, Computer Science Department, Vanderbilt University.
Nashville, TN.

Wickens, C.D. & Carswell, C.M. (1995). The proximity compatibility principle: Its psychological
foundation and relevance to display designman Factors37(3), 473-494.

Willats, J. (1990). The draughtsman’s contract: How an artist creates an image. In H. Barlow, C. Blakemore
& M. Weston-Smith (Eds.Jmages and UnderstandingCambridge: Cambridge University Press, pp. 235-
254,

Willows, D.M. (1978). A picture is not always worth a thousand words: pictures as distractors in reading.
Journal of Educational Psychology0, 255-262.

Winner, E. & Casey, M.B.. (1992). Cognitive profiles of artists. In G.C. Cupchik & J. Laszl6 (Eds.),
Emerging visions of the aesthetic process: Psychology, semiology and phildSapiyridge: Cambridge
University Press, pp. 154-170.

Winner, E. & Gardner, H. (1993). Metaphor and irony: Two levels of understanding. In A. Ortony (Ed.),
Metaphor and Thougt{gnd ed.). Cambridge: Cambridge University Press. pp. 425-443.

Winograd, E. & Soloway, R.M. (1986). On forgetting the location of things stored in special glawesl
of Experimental Psychology: Generall54), 366-372.

Wood, W.T. & Wood, S.K. (1987). Icons in everyday life Aroceedings INTERACT ’'8Elsevier, pp. 97-
104.

Wozny, Lucy A. (1989). The application of metaphor, analogy and conceptual models in computer. systems
Interacting with Computerd(3), 273-283.

Wright, P., Milroy, R. & Lickorish, A. (in press). Static and animated graphics in learning from interactive
texts. In W. Schnotz (Ed.), Visual Learning with New Technologies [Special i€auepean Journal of
Psychology of Education

Wurman, R.S. (1997)nformation architectsNew York: Graphis Publications.

Yeung, R. (1988). MPL — A graphical programming environment for matrix processing based on constraints.
In Proceedings IEEE Workshop on Visual LanguadfeEE Computer Society Press, pp. 137-143.

Young, R.M. (1981). The machine inside the machine: Users’ models of pocket calciigonstional
Journal of Man-Machine Studigg5(1), 51-85.

187



Young, R.M. (1983). Surrogates and mappings: Two kinds of conceptual models for interactive devices. In
Gentner, D. & Stevens, A. (EdsMiental ModelsHillsdale, NJ: Erlbaum, pp. 33-52.

Zacks, J., Levy, E., Tversky, B. & Schiano, D.J. (1998). Reading bar graphs: Effects of extraneous depth
cues and graphical contedburnal of Experimental Psychology: Appliéd?), 119-138.

Zacks, J. & Tversky, B. (1997). Bars and lines: A study of graphic communication. In M. Anderson (Ed.),
Reasoning with Diagrammatic Representations Il: Papers from the AAAI 1997 Fall Sympiasibmical
Report FS-97-02. Menlo Park, CA: AAAI Press, pp. 144-150.

Zhang, J. (1997). The nature of external representations in problem s@wigigitive Scienc1(2), 179-
217.

188



