

Children as Unwitting End-User Programmers

Marian Petre Alan F. Blackwell

Centre for Research in Computing

Open University, UK

m.petre@open.ac.uk

 Computer Laboratory

Cambridge University, UK

Alan.Blackwell@cl.cam.ac.uk

Abstract
Children who are active on the internet are performing

significant design and programming activity without

realising it, in the course of hacking little animations,

game scripts and so on. What does such effortless

learning suggest about how to support end-user

programming? This paper presents observations of

‘unwitting’ design and programming activity by a small

group of teenagers, aged 12–17. It analyses their

adoption and appropriation of technology, and discusses

how such practices are embedded in social networks.

1. Introduction: ‘It’s simple, it can’t be

programming’

Computing is a routine part of play for contemporary

children, to the extent that they’re hardly aware of their

programming activities: this is just the sort of milieu

Papert [7] proposed in 1980. Consider a conversation the

first author had with her then-14-year-old son:

“Tell me about the programming you and your friends

do.”

“We don’t do programming.”

“What about that game you showed me with the

running man?”

“Mum, that wasn’t programming, that was simple.”

In fact, the game he’d written required reasonably

sophisticated programming within an authoring system.

But because his activity was embedded in intrinsically

motivated activity, it went unnoticed – it’s interesting,

therefore it’s simple, therefore it can’t be programming.

The Internet has made a variety of tools and

components available to children, and they mine this vast

resource with astonishing facility. 10- and 12-year-old

girls who declare themselves averse to programming make

animated emoticons to import into MSN dialogues. How

does this ‘unwitting’ programming shape their models of

software development?

In one sense, this phenomenon is not unique to

software. Children have always appropriated,

reconfigured and customized their toys. Papert was

motivated by such behaviour in the philosophy of

‘constructionism’ that motivated the Logo programming

language. However, there is a distinction between

programming in the course of play, and programming as a

matter of interest in itself. Logo (as suggested by its name)

is, like Lego, Meccano, and similar toys a tool for doing

construction. The distinctive feature of such toys is that

the components themselves are made almost willfully

uninteresting, forcing construction as the primary mode of

play rather than simply one aspect. This implicit

pedagogic intent is made explicit in Figure 1 – a toy from

the second author’s own childhood.

Figure 1: pedagogic intent of a construction toy

Toys that educate children are a preoccupation of

aspirational parents, promising early preparation for

professional life. As expressed by an engineering director

at Rolls-Royce [12]: “the best engineers are those who are

‘Meccano-minded’”. Many products created for

programming by children are presented as technical and

educational, rather than toys. They seem designed either

to be incorporated into the (explicit) educational agenda

of a school curriculum, or the (implicit) educational

agenda of the type of households that might in another

generation have encouraged Lego and Meccano.

However, in the UK and elsewhere, today’s children

live in an environment where computing and the internet

are ubiquitous (we might call them ‘the web generation’).

For this generation, programming is encountered not only

through educational construction toys, but in the course of

activities outside the parental and educational spheres of

attention. Here children program, not in order to be

Preview Copy Only, of paper to appear in Proc. IEEE Visual Languages and Human-Centric Computing 2007 (VL/HCC'07)

Please contact afb21@cam.ac.uk for citation details Page 1 of 4

educated, but as end-users pursuing their own objectives,

just as with adult end-user programmers.

1.1. Research Method

This paper reports observations on how children of ‘the

web generation’ behave in their computing milieu. We

aim to identify characteristics of their behaviour that

might inform end-user programming research. The

discussion is based in ‘lightweight’ empirical evidence:

we draw lessons from longitudinal observations of our

own children. This has clear drawbacks in terms of

objectivity, but we believe is warranted by the benefit of a

naturalistic, longitudinal perspective. Such ‘parental

observation’ has previously been used to good effect in

studies of design-like skill development where a

longitudinal view is important (e.g., [3]).

The observations centered on two children, currently

aged 12 (female) and 14 (male), and extended to their

social groups (ranging in age from 11 to 17), over about

18 months. Direct observation of interactions was

supported by examination of artefacts such as discussion

logs, games, and program files (often demonstrated by the

children), and by informal interviews with the children

and with others in their social networks.

The children are typical of many children in the UK,

where ICT is part of the national curriculum, and where

even primary schools have significant computing

resources. Schools typically keep computer labs open out

of hours, in order to support children who do not have

access at home. This study focuses on a single household,

but it extends to the children’s inter-linked social

networks. These networks span several schools and are

demographically diverse (economically, culturally,

ethnically).

2. Programming and pre-programming

activities

The variety of pre-programming and programming

activities supported on the Internet is rich, from simple

parameter tweaking, through variation and composition of

components, to creation of simulations, animations, and

games. Simple parameter tweaking – manipulating values

and selections of pre-defined parameters in order to

change the appearance, behaviour, or effect of an element

in an environment – is commonplace, and a basic element

of computer games such as The Sims. Internet-based

examples include cyberpet tailoring in Bunnyhero Labs

[5], and costume assembly in any of the multitude of

dress-up games.

Many applications allow children to vary and compose

components in order to make new configurations and

designs. In effect, they are re-using and adapting library

objects. Examples include the creation of ‘skins’ and

composition of widgets in social networking environments

such as Bebo.

Various authoring tools allow children to construct

interactive simulations, animations, and games, in a

manner that places far more emphasis on construction.

One example is Game Maker [6], for authoring simple 2D

games, which offers drag-and-drop composition of

condition/action rules, a component library, and a textual

programming language. Another is Kid’s Programming

Language (KPL) [9], a text-based general-purpose

environment providing graphics, sound, and a powerful

component library, within a ‘learn by modification’

philosophy. We also observed use of professional tools by

children, such as the use of Flash to program emoticons

for import into MSN.

3. Learning by tinkering

In using these products, the children did not set out to

make something from scratch, and they certainly did not

set out to ‘learn programming’. They were offered toys,

played with them, broke them, fixed them, and modified

them. The means of play was programming, but the

unwitting programming was undertaken as tinkering [1]

with an existing artifact.

Many freeware environments are scaffolded for

tinkering. They come with libraries of accessible example

programs that do interesting things, and encourage

experimental modification and re-use of their components.

Tutorial examples offer appealing graphics and sound

functions while introducing programming basics. They

have usable help or suggestion systems. Importantly, they

broker opportunities to share programs that users create.

Eventually, the children’s expectations exceed what’s

available, and they begin to question constraints, to pose

‘why’ and ‘why not’ questions about the available

examples. They deconstruct what’s offered and seek more

powerful and flexible tools. Some of environments offer a

reasonably graceful transition between competencies, with

effective scaffolding through visible links between actions

and effects; libraries that include high-powered examples

and techniques; both simple and advanced tools for

changing library components, and possibly multiple

notations (e.g. starting with drag-and-drop interaction,

then bridging to textual notation, perhaps a general-

purpose programming language).

Ultimately, the children start tinkering even where not

invited, for example modifying commercial games to

tweak their performance or bypass controls. The games

culture promotes such activities through the circulation of

‘cheats’, release codes, and alterations to program files.

Our observation is that children generalize from these

examples. Published alterations, combined with the other

experiences of modification and experimentation in other

Preview Copy Only, of paper to appear in Proc. IEEE Visual Languages and Human-Centric Computing 2007 (VL/HCC'07)

Please contact afb21@cam.ac.uk for citation details Page 2 of 4

environments, embolden them to examine program files

and to think of them as things that can be altered.

A ‘can-do’ context is required for children to be bold

to tinker: exploring, altering, and combining available

material, posing ‘what if’ questions and experimenting.

This requires confidence and comfort, as when one of our

children, aged 5 and testing the limits of a calculator,

made a display that contained only the letter ‘E’. When

asked what the E was for, she suggested “Excuse me”, a

contrast to the adult concern with “Error”. Children

clearly benefit from households where technology is

assumed to provide an opportunity rather than a threat.

What conceptual and operational models are they

developing as they learn by tinkering? Novices, if not

offered adequate operational models of programming,

may draw on other experience to create idiosyncratic or

erroneous ones [10]. Nevertheless, children engaged in

unwitting programming are able to discuss their goals,

actions, and artifacts. They can identify and adapt

components for re-use; recognize and generalize from

patterns in different examples, and explain what things do,

what they are for, and why they are designed that way

(although the explanations may not be in conventional

language). However their model of programming does

seem dominated by assembly of components, rather than,

for example, algorithm generation.

What impact does programming-as-play have on their

models of software development processes? These

environments tend to protect users (appropriately) from

issues and tasks associated with large-scale software

engineering. However, they are able to reason about

modifications and consequences, and about interactions

between components. They are able to diagnose

unexpected behaviours by systematic reasoning and

experimentation. Occasionally, they encounter the need to

restructure programs. They spontaneously introduce

disciplines such as version control, naming conventions,

design for re-use and systematic debugging.

But they still don’t think they’re programming.

4. Playing, not learning programming

This rich milieu allows children to learn programming

by composition while they tinker or play. But they have

not set out to learn programming. Their motivations lie

elsewhere, in social interaction, games, making cool stuff

to share, and so on. Children are accomplishing this on

their own, without adults, simply by reference to online

material and to other children.

They learn by trying things out. When they engage

with a new environment, children go straight to the

examples – like adults, they don’t read the tutorial unless

they’re already convinced that there’s something worth

doing [2]. They don’t read the tutorial until they get stuck.

And they don’t read the tutorial if there’s a friend (or a

discussion forum) they can ask instead. As a last resort,

they get an adult to read the tutorial instead [8].

The environments that appear to be successful with

children are those offering useful instructive examples as

a springboard to things they actually want to do; that

provide immediacy of results and effects, that provide a

forum for sharing and publishing successes; and that offer

‘room for growth’ by considerable progression beyond the

basics to more advanced concepts and tools.

The environments that appear least successful are those

that are hard to download and install (“I got bored. I gave

up.”); that have a cumbersome interface; that don’t offer

an easy way to start tinkering via modification of

interesting existing programs; that require too much effort

to produce early results; or that are too constrained to

support increasingly sophisticated use.

There are many available products, designed to make

programming accessible to children, that satisfy these

requirements [4]. Yet much online content is still

structured like traditional programming education,

assuming that the user is motivated to learn programming,

just as physical construction toys presumed an educational

agenda. Even on the web, material intended to introduce

children to programming is surprisingly traditional, for

example starting with definitions of programming

constructs. Take this example, from Java for Kids [11]:

“You are about to start a new journey. Writing

programs that ask a computer to do certain tasks is fun

and rewarding. … You will learn what Java is and why

you might want to learn Java. You will download and

install the Java development software and download

and install the software that will help you create Java

programs. Once the preparation is done, you will run

your first Java application to check that you have

prepared properly. Let's get started.”

From there, the book is a standard Java tutorial, with

added cartoons.

These approaches miss the fact that many

contemporary children’s introduction to programming is

unwitting. It is a by-product of children pursuing their

own goals. They are not motivated to program, and they

are not attending a class or a workshop to be taught

something. They’re just ‘messing around’ with friends.

5. Support via social networks

A crucial feature of the programming activities we

observed is that they are embedded in social interaction

and supported by children’s social networks. How is it

that 10- and 12-year-old girls who ‘hate programming’ are

making animated emoticons to import into online

dialogues? Because they don’t consider it programming;

they see it as social activity. They impress or challenge

each other; learn together and teach each other; share

Preview Copy Only, of paper to appear in Proc. IEEE Visual Languages and Human-Centric Computing 2007 (VL/HCC'07)

Please contact afb21@cam.ac.uk for citation details Page 3 of 4

ideas and insights; and program cooperatively, passing

examples back and forth on-line.

Little of this activity begins in school: association with

school is a social ‘kiss of death’ for this age group.

Occasionally, the children followed leads from discussion

fora or exploratory internet searches. More often, they

followed leads from friends or family, usually because

someone said ‘See what cool thing I can do with this’.

Children aren’t introducing each other to programming –

they’re introducing each other to toys and to play.

Socialising drives tinkering:

“Look what I made.”

“Cool, the asteroids explode! Can you make the comets

explode too?”

“Yeah, OK”

“But there should be a cloud of debris…”

“I don’t know how to do that.”

“Can’t you do it like the path on that bouncing ball

thing you showed me?”

Much of the programming activity we observed was

individual, but some was collaborative, often conducted

remotely by passing artefacts back and forth online.

Individual activity was socially rewarded when resultant

artefacts were shared, and re-use by a friend constitutes

explicit praise. Children spur each other on.

Sharing led to discussions about how an artefact might

be improved, or what else might be possible. This

provided a mechanism for adjusting understanding and

correcting conceptual and operational models. Children

critiqued and assisted with each other’s artefacts, giving

them additional opportunities to reflect on design and

construction. Setbacks and frustrations were addressed by

reference to the network: Does anyone know how to do

this? Has anyone solved this? Questions were met with

support and encouragement. Sharing and support also

extended beyond the children’s immediate social network,

to fora and publication on relevant websites, with

additional expertise and alternative explanations.

6. Conclusions

Many contemporary children engage in a computing

milieu where they unwittingly learn end-user

programming skills. The observations reported here

identify several important characteristics of this activity:

1. Programming is not the goal. As far as children are

concerned, they’re not learning programming, but

playing and socializing.

2. They are learning by tinkering: examining and

modifying existing artefacts to make new variants.

3. Children do this in the society of other children; adults

have little involvement. They are learning within a

social network, not an educational context.

The way this activity is embedded in and supported by

social interaction, the apparent ease with which children

engage in tinkering, and the kind of environments they

find congenial to do so, offer lessons for teaching and

supporting end-user activity. Educators have long

discussed a ‘studio’ approach to teaching programming. It

seems that, in this social and online context, children have

implemented it themselves.

7. Acknowledgements

Our gratitude to the children. Thanks to Mary Beth

Rosson, and participants in the 2007 Dagstuhl Seminar on

End-User Software Engineering, for comments on earlier

material. Marian Petre is a Royal Society Wolfson

Research Merit Award Holder.

8. References

[1] Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S.,

Lawrance, J., Blackwell, A. and Cook, C. (2006). Tinkering

and gender in end-user programmers' debugging. Proc.

CHI’06, pp. 231-240.

[2] Carroll, J.M. & Rosson, M.B. (1987). Paradox of the active

user. In J. M. Carroll (Ed.) Interfacing Thought: Cognitive

Aspects of Human-Computer Interaction, Bradford Books,

pp. 80-111

[3] Fenson, L. (1985) The transition from construction to

sketching in children's drawings. In N.H. Freeman & M.V.

Cox Visual order: The nature and development of pictorial

representation. Cambridge University Press, 374-384.

[4] Kelleher, C., and Pausch, R. (2005) Lowering the barriers to

programming: A taxonomy of programming environments

and languages for novice programmers. ACM Computing

Surveys, 37 (2), 83-137.

[5] Lee, W.A. (2004) Bunnyhero Labs. Accessed 15 March

2007 at http://bunnyherolabs.com/about.php

[6] Overmars, M. (2007) Game Maker, v. 7. YoYo Games.

Accessed 15 March 2007 from http://www.gamemaker.nl/

[7] Papert, S. (1980) Mind-storms: Children, Computers, and

Powerful Ideas. New York: Harvester Wheatsheaf.

[8] Rode, J.A., Toye, E.F. and Blackwell, A.F. (2005). The

domestic economy: A broader unit of analysis for end user

programming. Proc. CHI’05, pp. 1757-1760

[9] Stagner, J. (2005) Kid’s Programming Language. Morrison

Schwartz, Inc. Accessed 15 March 2007 from

http://www.kidsprogramminglanguage.com/

[10] Taylor, J. (1999) Analysing novices analysing Prolog: what

stories do novices tell themselves about Prolog?. In: P. Brna,

B du Boulay and H. Pain (eds) Learning to Build and

Comprehend Complex Information Structures: Prolog as a

Case Study. Ablex.

[11] Tylee, L, (2003) Java for Kids. KIDware Accessed 15

March 2007. Download via http://www.download.com/Java-

for-Kids/3000-2415_4-10197217.html

[12] Workthing Ltd. (2005) Skillset. Accessed 15 March 2007

from http://www.workthing.com/career-advice/breaking

into/graduate/breakeng_skillset.html

Preview Copy Only, of paper to appear in Proc. IEEE Visual Languages and Human-Centric Computing 2007 (VL/HCC'07)

Please contact afb21@cam.ac.uk for citation details Page 4 of 4

