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1. Motivation  

The field of HCI is gradually achieving sound theoretical descriptions of the activities, context 
and cognition of computer system users. How do these research results get applied by the 
people who design new user interfaces? Although we have theoretical descriptions of the 
activities of system users, we have fewer descriptions of the design activities of user interface 
designers. There are certainly theory-based design methods prescribing the things that 
designers ought to do. Almost all of these have been developed from the perspective of 
descriptions of the user, rather than from consideration of the needs of designers – the current 
vogue for “user-centred design” clearly expresses this emphasis on the user. According to this 
perspective, if user interface designers are to apply research into user needs, those designers 
must be able (and interested) to interpret and apply theoretical results. 

Alternatively, there are also many popular approaches to user interface design that have 
minimal theoretical grounding. Such design methodologies generally attempt to present 
designers with a checklist (Nielsen & Molich 1990) or a procedural list of design activities 
(Wharton, Rieman et. al. 1994) that will generate a good design. The reduction of design to a 
checklist or a predefined procedure is widely proposed in other areas of software development, 
not just user interface design. Popular software engineering texts provide a series of checklists 
that aim to assure design quality at different stages of a project (Pressman 1997), while 
structured and object-oriented design methods prescribe a sequence of design tasks that will 
generate software from requirements (Booch, Rumbaugh & Jacobson 1999).  

Although common in software engineering, few other design disciplines proceed according to 
checklists or predefined sequences of tasks. Software design educators increasingly suggest 
that such design tools are not sufficient for the design of novel user interfaces either (Winograd 
1996). The highly structured (but largely a-theoretical) checklist methods have worked 
reasonably well in the development of user interfaces built from a small set of standard 
elements, such as Motif widgets, the Macintosh toolbox, or Windows foundation classes. This is 
because the design choices in arranging menus, buttons and dialog boxes are relatively few, 
and the results can sometimes be assessed using checklists such as those presented in “style 
guides” for the relevant system (Apple 1992, Microsoft 1995). Simple checklists are not so 
successful when the user interface is composed of completely novel graphical elements, 
composed according to completely novel visual grammars. These notational systems range 
from complex products such as visual programming languages, to embedded functionality such 
as central heating controls and the ubiquitous computing platforms of the future that move 
beyond the windows, icon and menu paradigm. 

We do not believe that it will be possible to deal with these new notational systems by creating 
new checklists. Instead, we emulate other design disciplines by aiming to support the activity of 
the designers, based on some understanding of the process of design. User interface design is 
currently far more of a craft than an engineering discipline. It is subject to elements of affect, of 
fashion and social acceptance, in addition to technical considerations. For these reasons, we 
can learn from studies of other design disciplines where the same craft elements apply. For 
example, a study comparing knitwear designers and helicopter designers (Eckert & Stacey 
2000) observes that a community of designers develops their own vocabulary for design criteria 
that is created through practice and tradition, rather than being easily accessible outside the 
community. In the Cognitive Dimensions of Notations framework, we aim to provide the same 
kind of vocabulary for use by user interface designers. 
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1.1. Example  

Back in the 80’s one of us (TG) was shown a system that he was sure wouldn’t work. Yet the 
received wisdom of 80’s HCI seemed to have no explanation of the problems he foresaw. It 
was a speech-to-text dictation system for use with the Pascal programming language. The 
speech-recognition technology appeared to be entirely adequate for this restricted language. 
What problem could there be? 

What was wrong with that system was an unfortunate combination. First, it was intended for 
users doing a kind of design activity; second, the language contained many internal 
dependencies, and third, it severely restricted the user’s order of actions. The system worked 
fine when a document was dictated to it. But real users do not design like that. Design research 
shows that they continually change things. And they do not start at the beginning, but rather in 
the middle. This system would not allow such behaviour.  

It is easy to experience the problem. Try dictating a program in Pascal or even Java. The 
program must be dictated in proper order from start to finish. It cannot be written down in 
advance, because this system was intended for users who were unable to use their hands – 
suffering from severe arthritis, for example. Correctly dictating even a short program straight 
from the head is nearly impossible, and the editing commands provided by this system made 
the problem even harder, because they required the program to remain syntactically valid at all 
times. 

This case made it apparent that existing HCI had no way to describe the structure of 
information, and therefore had no way to analyse the interactions between: a) the structure of 
the information, b) the environment that allowed that structure to be manipulated, and c) the 
type of activity the user wanted to perform. In short, the system forced programmers to make 
decisions before they had the information they needed to base the decisions on. We call this 
premature commitment (definition: constraints on the order of doing things). Moreover, changing those 
decisions was not easy. We call this second problem viscosity (definition: resistance to change). 
These are two examples of the cognitive dimensions of the notational system. In the rest of this 
chapter we introduce and analyse many others. Brief definitions are given as each term is 
introduced – more complete descriptions can be found later. 

Once dimensions like these have been identified, it is easy to find other cases where they 
apply. We have seen a prototype conferencing system where, in order to make a contribution to 
a discussion, a participant had to start by selecting the type of contribution - a query, a rebuttal, 
or whatever. This is premature commitment again, for how does one know what one is saying 
before one says it? Maybe the user can look at the draft contribution and decide that on 
balance it’s a query, not a rebuttal, and recategorise it; or maybe the system makes life still 
harder by making it impossible to recategorise without dumping the text written so far and 
starting over. (We’ve all used systems like that.) That’s viscosity again. We can easily find 
these similar examples because the description of the problem is short and high-level, not a 
heavily-detailed analysis, and because it ignores specifics of representation in favour of the 
underlying structure of information. 

HCI has a gap in that area. It has generated several sophisticated approaches that each 
address one type of user activity, such as routine cognitive skills or reasoning or menu-
following. Within their scope these approaches can offer suggestions for redesign, but they 
usually focus on representation and they require extensive, detailed modelling. Some other 
kinds of user activity, notably design activity, have been studied intensively, so that we know 
much about the pattern of activity, but that observational work has not generated much to help 
design systems for design. But there is no approach that addresses all types of activity, that 
can lead to constructive suggestions for improving the system or device, that avoids details, 
and that allows similar problems to be readily identified in very different situations. The CDs 
framework fills the gap. It describes necessary (though not sufficient) conditions for usability, 
deriving usability predictions from the structural properties of a notation, the properties and 
resources of an environment, and the type of activity.  

The motivation was thus: 
• to offer a comprehensible, broad-brush evaluation (no ‘death by detail’); 
• to use terms that were readily comprehended by non-specialists; 
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• to  be applicable not just to interactive devices, which are the usual meat of HCI, but also to 
paper-based notations and other non-interactive information systems; 

• to be theoretically coherent; 
• and, especially, to distinguish between the needs of different types of user needs (such as 

the difference between dictation tasks and design tasks). 

Furthermore, a CDs analysis frequently reveals a variety of interesting design choices. 
Although its broad-brush nature precludes detailed predictions, the framework can prompt 
designers to notice effects of their choices that had previously gone unseen. Perhaps most 
interestingly, the framework describes trade-offs between choices, showing how solving one 
type of user difficulty may create a different type. 

2. Overview 

The cognitive dimensions framework is not an analytic method. Rather, it is a set of discussion 
tools for use by designers and people evaluating designs.  

The aim is to improve the quality of discussion. Experts make sophisticated judgements about 
systems, but they have difficulty talking about their judgements because they don't have a 
shared set of terms. Also, experts tend to make narrow judgements, based on their own needs 
of the moment and their guesses about what other people may need; and other experts don't 
always point out the omissions. Again, if they had a shared set of terms, and that set was fairly 
complete, it would prompt a more complete consideration. 

In short, experts would be in a good position to make useful early judgements, if (i) they had 
better terms with which to think about the issues and discuss them, and (ii) there was some 
kind of reminder of issues to be considered. The terms might or might not describe a new idea; 
most probably, the expert will recognise a concept as something that had been in his or her 
mind, but had never before been clearly articulated and named. 

Discussion tools are good concepts, not too detailed and not too woolly, that capture enough 
important aspects of something to make it much easier to talk about that thing. They promote 
discussion and informed evaluation. 

To be effective, they must be shared - you and I must have the same vocabulary if we are 
going to talk. And it is better still if we share some standard examples. And it is best of all if we 
know some of the pros and cons - the trade-offs between one solution approach and another. 

Discussion tools have many virtues: they elucidate notions that are vaguely known but 
unformulated; they prompt a higher level of discourse; they create goals and aspirations; they 
encourage re-use of ideas in new contexts; they give a basis for informed critique; they supply 
standard examples that become common currency; and they allow the inter-relationships of 
concepts to be appreciated.  

Figure 1 illustrates a real-life discussion without the benefit of discussion tools; Figure 2 shows 
how it might have been if the participants had possessed shared concepts - shorter, more 
accurate, and less frustrating. In this version of the discussion, a number of new terms have 
been introduced, taken from the CDs framework – these are italicised. 
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A: ALL files in the book should be identical in everything except body pages. Master pages, 
paragraph formats, reference pages, should be the same. 

B: Framemaker does provide this ... File -> Use Formats allows you to copy all or some 
formatting categories to all or some files in the book. 

A: Grrrrrrrrr ........ Oh People Of Little Imagination !!!!!! 

 Sure I can do this ... manually, every time I change a reference page, master page, 
or paragraph format ..... 

 What I was talking about was some mechanism that automatically detected when I 
had made such a change. ( ..... ) Or better yet, putting all of these pages in a central database 
for the entire book ...... 

C: There is an argument against basing one paragraph style on another, a method several 
systems use. A change in a parent style may cause unexpected problems among the children. 
I have had some unpleasant surprises of this sort in Microsoft Word.  

Figure 1 An impoverished discussion that would have been better if the discussants had shared 
appropriate concepts. This is a verbatim transcript from an actual newsgroup discussion, 
following an irritated message (by A) about how much work he had to do to keep identical 

formats for all components of a large project (a 'book' in the version of Framemaker that had 
the limitation being discussed). 

A: I’m doing modification activities. I find Framemaker is too viscous. 

B: With respect to what task? 

A: With respect to updating components of a book. It needs to have a higher abstraction 
level, such as a style tree. 

C: Watch out for the hidden dependencies of a style tree. Also, the abstraction level will be 
difficult to master; getting the styles right may impose lookahead. Is the trade-off worth it? 

Figure 2 An improved discussion (names of Cognitive Dimensions are emphasised) 

There is a relatively well-defined series of steps to be taken by designers when applying 
Cognitive Dimensions analysis to a system design. 
• step 1: get to know your system.  
• step 2: decide what the user will be doing with the notation. 
• step 3: choose some representative tasks.  
• step 4: for each step in each task, askwhether the user can choose where to start; how a 

mistake will be corrected; what if there are second thoughts; what abstractions are being 
used; and so on, for the other dimensions. This will generate an observed profile. 

• step 5: compare the observed profile with the ideal profile for that type of activity. 

The formal apparatus consists of 
• a list of generic types of notation use activities: in the Framemaker example, the activity is 

modifying the structure of the notated information. 
• a list of dimensions: in the Framemaker example, one such dimension is ‘viscosity’, which 

means resistance to change 
• a ‘profile’ for each activity: in the Framemaker example, the activity is modification of 

structure, which demands low viscosity (among other requirements) 
• examples of trade-offs and design maneuvers, to warn of potential problems: in the 

Framemaker example, the proposed redesign would lower the viscosity but could readily 
introduce problems of hidden dependencies, etc. 

What you get out of this approach is a rough and sketchy evaluation. As we saw back in Figure 
1, it will correspond to what users talk about. And if you were to consider changing the design, 
it will alert you to some of the possible trade-off consequences. 

An alternative approach to the application of Cognitive Dimensions is for system users to be 
given the dimensions as a framework in which to express their experience of using the system. 



BlackwellGreen-4-3.doc 5 01/24/03 

In this case, the nature of the expertise is different. The users of the system may not be expert 
in the possible design solutions, or in the space of trade-offs, but they do have expertise in the 
nature of interaction with the system. For this population, Cognitive Dimensions can provide a 
vocabulary in which to express the structure of their experience. They can also provide some 
insight into the possibility of design alternatives, even though the user may never have 
experienced any system other than the one they are familiar with. 

It is important to note that the CDs framework is more than a checklist. The list of dimensions 
(which is included later in this chapter) may loom large in the mind of the reader, because there 
are quite a lot of them, and because some of them have an immediate intuitive appeal. 
Nevertheless, the list of dimensions is not sufficient on its own to achieve meaningful analysis 
of a notational system. It is essential to distinguish between different activities and different 
notations within the system, and to recognize that dimensions are not good or bad in 
themselves – they simply describe properties of the system with respect to those activities. In 
our experience, readers coming to the CDs framework for the first time are tempted to regard 
the dimensions simply as a checklist, applicable in the same way as Nielsen’s list of evaluation 
heuristics. However it is important to understand the rest of the framework in order to start 
work. 

3. Scientific foundations 

There has been a long tradition in computer science of improving system usability by creating 
new design notations. Early programming languages such as FORTRAN and COBOL were 
intended to be reasonably familiar to the users (mathematicians and business people 
respectively), while describing system behaviour at a relatively high level of abstraction 
(compared to assembly language programming). Furthermore many innovations in software 
design have been accompanied by diagrammatic notations used to express the design. These 
extend from the earliest flowcharts to current development of the Unified Modeling Language 
(Booch, Rumbaugh & Jacobson 1999).  

Where graphical editors are used to create, manipulate, and catalogue these design diagrams, 
it is natural to wonder whether the rather mechanical process of generating source code to 
implement the diagram could not also be automated. The result would be a programming 
language in which the design diagram was the program – a visual programming language. This 
has been an attractive goal for over 25 years. There is a research journal and a conference 
series devoted to visual programming languages – one survey of the field is that by Myers 
(1986). Some visual programming languages have become commercially successful – a report 
of user experiences with the LabVIEW language has been published by Whitley and Blackwell 
(2001). 

Unfortunately, much research into visual programming languages was not informed by relevant 
models of human-computer interaction. A survey of the published literature (Blackwell 1996) 
revealed that much of it justified the cognitive advantages of visual languages in terms of 
concepts from popular psychology such as the left-brain right-brain dichotomy. This was in 
spite of published research into the usability implications of diagrammatic notations, dating 
back to the 1970s (Fitter & Green 1979). Empirical investigations of notation usability have 
tended to find that while diagrams are useful in some situations, they are not efficient in others 
(e.g. Green & Petre 1992). This is in striking contrast to the occasional claims that visual 
programming languages would be a panacea, providing a new generation of universally 
accessible programming tools. 

Green Petre and Bellamy (1991) use the word ‘superlativism’ for the belief that there exists 
some notation that is universally best in its domain, whatever the activity may be. The converse 
view, which is surely correct (and has been empirically demonstrated in several situations) is 
that every notation highlights some kinds of information, at the cost of obscuring other kinds. 
Cognitive science and artificial intelligence research has often emphasised the importance of 
choice of representation in problem solving (“well represented is half solved”). As a result, the 
effect of notations and external representations on reasoning continues to be a popular 
research topic. One major stream of this work is in the theory and application of diagrams. 
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All visual notations have diagrammatic properties – even text has much in common with 
diagrams. A page like this one contains a great deal of linguistic structure, but it is not purely 
linguistic. Paragraphs are separated into visual units to indicate thematic structure; page 
numbers and citations provide overlaid reference schemes; variations in font exploit visual pop-
out effects for local emphasis, chapter headings and marginalia offer context and commentary. 
The textual representation of spoken language has undergone radical improvements in 
notational usability over the last two millenia, for example the discovery in the 15th century that 
using of white space to separate words (BEFORETHATTHEYWROTEWITHOUTSPACES), enabled 
scholars to read without speaking aloud (Robinson 1995). It is not only text that has a 
surprising degree of diagrammatic content. Even "representational" paintings and photographs 
include a great deal of diagrammatic structure -- compositional elements, conventional 
symbolisation, or meaningful cropped borders (Kress & van Leeuwen 1996). 

Diagrams research generally falls into two classes -- detailed explanations of specific properties 
of notations, and analyses of cognitive tasks employing notations. A good example of the 
former is Shimojima’s formal description of Free Rides: in which new information is created 
simply by following syntactic conventions (Shimojima 1996). Cheng has described the 
educational use of Law Encoding Diagrams, in which free rides in the form of geometric 
relationships express valid conclusions regarding mathematical or physical laws (Cheng 1998). 
These analyses give detailed insight into one mechanism for the Cognitive Dimension of 
Closeness of Mapping (definition: closeness of the representation to the domain). One example of a 
cognitive task employing notations is that of creative ambiguity, described by researchers 
including Fish & Scrivener (1990), Goldschmidt (1991), and Suwa & Tversky (1997). They 
describe the process by which designers return to their sketches for new ideas. In order to 
allow this, the sketches have been left deliberately incomplete or ambiguous. This is an 
example of one application of the Cognitive Dimension of Provisionality (definition: degree of 
commitment to actions or marks). 

The CDs framework does not consider representational issues in themselves: the framework is 
solely based on structural properties. Questions both of effectiveness (e.g. optimum size of 
buttons) and of aesthetics are outside its purview. This restriction has two great advantages. 
The first is that identical (or rather, isomorphic) problems can be spotted even when they occur 
in very different guises. An early example (from Green 1989) observed that the file structure of 
a computer operating system has much in common with the structure of a pattern sequencer 
for a drum machine, and therefore that problems and solutions in the one case would probably 
apply to the other. 

The second great advantage of avoiding representational issues is that the CDs framework is 
thereby applicable to systems long before they reach the stage of being prototyped. Any 
technique that uses Fitts’ Law, such as the Keystroke Level Model, or that considers ‘whether 
the user’s language is used’, such as Heuristic Evaluation, is solely applicable to designs that 
have at least reached detailed specification. 

Despite being applicable to all types of information artifacts, this framework has come to 
prominence, naturally enough, in an area where conventional HCI techniques have little clear 
applicability and where a good deal of design activity has been going on – namely, in visual 
programming languages and environments. Here, the typical user activity is non-routine design; 
the notations (programming language) vary considerably; and the features of the environments 
also vary considerably: Green & Petre 1995, Green 1999, Burnett, Cao and Atwood 2000. 

As we stated in the introduction, we believe that user interface design, and notation design, are 
engineering design crafts, not sciences. Like any other design crafts, they combine elements of 
science with many other elements: peer-assessed best practice, market pull, fashion, trial-and-
error, aesthetics, individual flair, and whatever else contributes to design. The cognitive 
dimensions framework only addresses some aspects of this melange. The framework is not the 
result of importing and specialising any single viewpoint from another science. Rather, it is a 
synthesis from several sources, and because we have much to learn in this area, it constitutes 
a patchwork or a quilt with holes where suitable pieces could not yet be found. 
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4. Detailed description 

Every evaluation technique asks one fundamental question. In the CDs framework, that 
question is: are the users’ intended activities adequately supported by the structure of the 
information artifact? 

And as a supplementary: if not, what design manoeuvre would fix it, and what trade-offs would 
be entailed? 

So the evaluation, in a nutshell, consists in classifying the intended activities, analysing the 
cognitive dimensions, and deciding whether the requirements of the activities are met. Note 
that the term “activity” is used differently in this context than other chapters of this book. A 
notational activity in cognitive dimensions is a manner of interacting with a notation. This use of 
the word is unrelated to Activity Theory, or Active User Theory. 

Activities 

No usability analysis can proceed far unless we have some idea of what the artifact will be 
used for; yet at the same time, there are good reasons to avoid highly detailed task analyses; 
such analyses are lengthy to construct, require specialised experience, and in the end do not 
capture the labile nature of everyday activities. Instead of using a detailed task analysis, the 
CDs framework just contrasts 6 generic types of notation use activity. Note that this list was not 
derived from a single theoretical precursor, but has been extended and refined through 
contributions from a variety of researchers (e.g. Blackwell, Britton et. al. 2001) since the 
framework was first proposed. It is assumed that a given artifact will support some of these 
activities better than others, and the analyst should decide which ones are required. 

 
incrementation: adding cards to a cardfile, formulas to a spreadsheet or  

statements to a program 
transcription: copying book details to an index card; converting a formula into 

spreadsheet or code terms 
modification: changing the index terms in a library catalogue; changing layout of 

a spreadsheet; modifying spreadsheet or program for a different 
problem 

exploratory 
design: 

sketching; design of typography, software, etc; other cases where 
the final product cannot be envisaged and has to be ‘discovered’ 

searching: hunting for a known target, such as where a function is called 
exploratory 
understanding: 

discovering structure or algorithm, or discovering the basis of 
classification 

Each activity places different demands on the system. Nothing in what follows is good or bad 
except with reference to an activity that we wish to support.  

The Components of Notational Systems 

Notational systems, as described in this framework, have four components: 
an interaction language or notation; 
an environment for editing the notation; 
a medium of interaction; 
and possibly, two kinds of sub-devices. 

Interaction languages and notations 

The notation is what the user sees and edits: letters, musical notes, graphic elements in CAD. 
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Editing environments 

Different editors have different assumptions. Some word processors have commands operating 
on paragraphs, sentences, words and letters, while others only recognise individual characters. 
Some editors allow access to history, others deny it. 

Medium of interaction 

Typical media are paper, visual displays, and auditory displays. The important attributes are 
persistence/transience and constrained-order/free-order. Button presses are transient (unless a 
history view is available); writing on paper is persistent. Some information structures are only 
successful for their intended purpose when used with a persistent medium; for example, writing 
even a short program using speech alone, without access to any persistent medium, is 
extremely difficult. 

Sub-devices 

Many devices and structures contain sub-devices. Two kinds are distinguished.  

Helper devices offer a new notational view, e.g. cross-referencers in programs, outline views in 
word processors, a history view of button presses. Helper devices are not always so formal, 
however: If the user typically writes notes on the backs of envelopes or sticks Post-It notes on 
the side of the screen, they should be regarded as helper devices, part of the system. The CDs 
framework is meant to encompass as much of the system as seems reasonable, and if Post-It 
notes are typically part of the system, they should form part of the analysis. 

Redefinition devices allow the main notation to be changed. Macro recorders in contemporary 
word processors allow a sequence of commands to be replaced by a single command. Macros 
are a typical abstraction, and systems that allow abstractions to be created or modified always 
require a sub-device to work as an abstraction manager.  

Sub-devices, whether helper devices or redefinition devices, often have their own notations or 
interaction languages that are separate from the main notation of the system, and an 
independent set of cognitive dimensions. The dimensions of these devices must be analysed 
separately. Thus, the macro recorder has different properties from the word-processor in which 
it is embedded. 

Notational Dimensions 

The main point of the CDs framework is to consider the notations or interaction languages and 
how well they support the intended activities, given the environment, medium, and possible 
sub-devices. We do this by considering a set of ‘dimensions’. Each dimension describes an 
aspect of an information structure that is reasonably general. Furthermore, any pair of 
dimensions can be manipulated independently of each other, although typically a third 
dimension must be allowed to change (pairwise independence)1.  

Here we can only discuss a small number of dimensions, and do so very briefly. The full list is 
currently 13 (although several more are proposed, as discussed later), and each needs far 
more space than can be given here. A proper presentation for reference purposes should 
include, besides the brief definition, a thumbnail illustration; an explanation; an account of its 
cognitive relevance; an estimate of its cost implications; an account of subtypes and examples; 
and a list of work-arounds and remedies, with their associated trade-offs. 

IMPORTANT: None of these dimensions is evaluative when considered on its own. Evaluation 
must always take into account the activities to be supported. 

                                                      
1 The notion of pairwise independence has caused difficulties to some readers. To illustrate, consider a given mass of 

an ideal gas, with a temperature, a volume, and a pressure. The volume can be changed independently of the 
pressure but the temperature must change as well; or the volume can be changed independently of the temperature, 
but the pressure must change accordingly. Similarly for any other pair of dimensions. 
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Viscosity: resistance to change.  

A viscous system needs many user actions to accomplish one goal. Changing all headings to 
upper-case may need one action per heading. (Environments containing suitable abstractions 
can reduce viscosity.) We distinguish repetition viscosity, many actions of the same type, from 
knock-on viscosity, where further actions are required to restore consistency. 

Visibility: ability to view components easily.  

Systems that bury information in encapsulations reduce visibility. Since examples are important 
for problem-solving, such systems are to be deprecated for exploratory activities; likewise, if 
consistency of transcription is to be maintained, high visibility may be needed.  

Premature commitment: constraints on the order of doing things.  

Self-explanatory. Examples: being forced to declare identifiers too soon; choosing a search 
path down a decision tree; having to select your cutlery before you choose your food. 

Hidden dependencies: important links between entities are not visible.  

If one entity cites another entity, which in turn cites a third, changing the value of the third entity 
may have unexpected repercussions. Examples: cells of spreadsheets; style definitions in 
Word; complex class hierarchies; HTML links. There are sometimes actions that cause 
dependencies to get frozen – e.g. soft figure numbering can be frozen when changing 
platforms; these interactions with changes over time are still problematic in the framework. 

Role-expressiveness: the purpose of an entity is readily inferred.  

Role-expressive notations make it easy to discover why the author has built the structure in a 
particular way; in other notations each entity looks much the same and discovering their 
relationships is difficult. Assessing role-expressiveness requires a reasonable conjecture about 
cognitive representations. 

Error-proneness: the notation invites mistakes and the system gives little protection. 

Enough is known about the cognitive psychology of slips and errors to predict that certain 
notations will invite them. Prevention (e.g. check digits, declarations of identifiers, etc) can 
redeem the problem. 

Abstraction: types and availability of abstraction mechanisms.  

Abstractions (redefinitions) change the underlying notation. Macros, data structures, global find-
and-replace commands, quick-dial telephone codes, and word-processor styles are all 
abstractions. Some are persistent, some are transient. 

Abstractions, if the user is allowed to modify them, always require an abstraction manager -- a 
redefinition sub-device. It will sometimes have its own notation and environment (e.g. the Word 
style sheet manager) but not always (for example, a class hierarchy can be built in a 
conventional text editor). 

Systems that allow many abstractions are potentially difficult to learn. 

Secondary notation: extra information in means other than formal syntax. 

Users often need to record things that have not been anticipated by the notation designer. 
Rather than anticipating every possible user requirement, many systems support secondary 
notations that can be used however the user likes. One example is comments in a 
programming language, another is the use of colours or format choices to indicate information 
additional to the content of text. 

Closeness of mapping: closeness of representation to domain.  

How closely related is the notation to the result it is describing? 
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Consistency: similar semantics are expressed in similar syntactic forms.  

Users often infer the structure of information artefacts from patterns in notation. If similar 
information is obscured by presenting it in different ways, usability is compromised.  

Diffuseness: verbosity of language.  

Some notations can be annoyingly long-winded, or occupy too much valuable “real-estate” 
within a display area. Big icons and long words reduce the available working area. 

Hard mental operations: high demand on cognitive resources.  

A notation can make things complex or difficult to work out in your head, by making inordinate 
demands on working memory, or requiring deeply nested goal structures. 

Provisionality: degree of commitment to actions or marks.  

Even if there are hard constraints on the order of doing things (premature commitment), it can 
be useful to make provisional actions such as recording potential design options, sketching, or 
playing “what-if” games. Not all notational systems allow users to fool around or make sketchy 
markings. 

Progressive evaluation: work-to-date can be checked at any time.  

Evaluation is an important part of a design process, and notational systems can facilitate 
evaluation by allowing users to stop in the middle to check work so far, find out how much 
progress has been made, or check what stage in the work they are up to. A major advantage of 
interpreted programming environments such as BASIC is that users can try out partially-
completed versions of the product program, perhaps leaving type information or declarations 
incomplete. 

Profiles 

In the CDs framework, evaluation has two steps. The first is to decide what generic activities a 
system is desired to support. Each generic activity has its own requirements in terms of 
cognitive dimensions, so the second step is to scrutinise the system and determine how it lies 
on each dimension. If the two profiles match, all is well. A tentative tabulation of the support 
required for each generic activity can be found in Green and Blackwell (1998). 

For example, transcription is very undemanding. No new information is being created so 
premature commitment is not a problem. Nothing is being altered, so viscosity is not a problem. 
On the other hand, to preserve consistency of treatment from instance to instance, visibility 
may be required. 

Incrementation creates new information and sometimes there may be problems with premature 
commitment. The most demanding activity is exploratory design. A sizeable literature on the 
cognitive psychology of design has established that designers continually make changes at 
many levels, from detailed tweaks to fundamental rebuildings. Viscosity has to be as low as 
possible, premature commitment needs to be reduced, visibility must be high, and role-
expressiveness – understanding what the entities do – must be high.  

Trade-offs  

A virtue of this framework is that it illuminates design maneuvers in which one dimension is 
traded against another. Although no proper analysis of trade-offs exists, we can point to certain 
relationships. One way to reduce viscosity is to introduce abstractions, but that will always 
require an abstraction manager in which to define the abstractions and some early commitment 
to choose which abstractions to define. The abstractions themselves may then become 
viscous, introduce hidden dependencies, etc. This topic needs much more research, but some 
of the relationships we have observed are exhibited in Figure 3. 
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increases cost

can increase can increase

can increase
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viscosity secondary notation

need for lookahead

abstractions

hidden dependencies

visibility complex relationship

can reduce

 

Figure 3 - some typical trade-offs 

Use by an analyst 

As a usability evaluation technique becomes widespread, its popularity depends more on 
accessibility and ease of use for the evaluator, rather than the original scientific origins of the 
technique. The most widely used techniques offer an extensive support apparatus of training 
and educational resources, analysis tools, review and tutorial literature. The support 
infrastructure for CDs has developed from a variety of invited lectures and tutorial sessions at 
conferences and trade meetings, to a comprehensive written tutorial (Green and Blackwell 
1998), now distributed freely from a CDs resources site (URLs are given at the end of this 
chapter)This written tutorial complements extensive descriptions of each dimension with a 
strong example, descriptions of the consequences that may arise from problems in that 
dimension, potential workarounds, likely tradeoffs with other dimensions, some design 
maneuvers and so on. Many aspects of the dimensions are illustrated in simple interactive web-
based devices showing differing designs for the same problem, so that readers can experiment 
with and experience the usability consequences of the dimensions. These tools allow new 
users of the framework easily to develop the required approach to analysis. 

A questionnaire approach 

In the context of usability studies, CDs have also been used to structure user feedback 
questionnaires. The fact that the dimensions describe generic aspects of usability, rather than 
features of the system under study, leaves the user free to comment on aspects of the system 
that the designer may not have anticipated. Users are also encouraged to consider different 
aspects of their activity beyond their principal use of the system. Furthermore, their responses 
are grouped in a systematic way that can be related via CDs to the design discourse of the 
system developers who receive feedback from usability studies.  

Kadoda, Stone and Diaper (1999) first introduced the idea of a cognitive dimensions 
questionnaire. Their questionnaire only presented those CDs that they thought were relevant to 
the system under consideration, and to make it easier for the users to pick up the ideas, they 
paraphrased those CDs in terms of the system under consideration. Their results were 
promising, but there may be a problem here: filtering the CDs constrains the respondents to 
commenting on the CDs that the researcher or designer has already identified, and thereby 
mixes the HCI expert’s evaluation (in choosing the subset) with the users’ evaluations. This is 
particularly dangerous when the questionnaire designer is also the designer of the system, and 
will quite possibly completely overlook aspects that are very important to the users. 

So we set out to develop a questionnaire which presents all the CDs, and lets the users decide 
which ones are relevant (Blackwell & Green 2000). We attempted to present the CDs in general 
terms, rather than presenting descriptions specialised to the system under consideration. On 
the plus side, this means (i) the users do all the work, (ii) the data only reflects their opinions, 
and (iii) the same questionnaire can be used for all systems. On the down side, it means that 
the resulting questionnaire is longer (since it has to present all the CDs, not just a subset) and 
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possibly harder to understand, since the CDs are presented in general terms. Nevertheless, the 
result is now being used as an aide to the development of commercial programming tools 
(Clarke 2001). A canonical version of the questionnaire is available from the CDs resource site. 

Cognitive Dimensions of interactive devices 

We wish to avoid the impression that cognitive dimensions apply solely to purely symbolic 
structures such as classic notations. Although the focus of this chapter has been on notations, 
many interactive devices can be viewed as information artifacts where the 'notation' is the 
user's actions; such devices are therefore fit for analysis using CDs, offering a useful 
complement to other evaluative approaches.  

For instance, consider a 7-day central-heating controller in which each day can be programmed 
independently, with say 3 heating periods per day, each defined by a switch-on time and a 
switch-off time2. The user's actions of setting the times form a notation. (An interactive mock-up 
of such a design is accessible via links from the CDs resource site). This design suffers from 
viscosity if most days – all the weekdays, say – are to be set to the same timings, the set-up 
process takes more effort than it ‘ought’ to. An alternative design achieves a partial reduction in 
viscosity by introducing an abstraction, namely a Copy function, which copies the previous day 
to the next day – Monday’s settings to Tuesday, Tuesday’s to Wednesday, and so on. (This 
version is based on a real, commercially available, device, the Horstmann ChannelPlus H17 
Central Heating Controller.)  

The Copy function is a transient abstraction. Although seemingly simple, experience has shown 
that just that one abstraction adds greatly to the difficulty of explaining how this device works -- 
the activity of exploratory understanding. The device also has poor visibility: the user cannot 
readily check the effect of the Copy function. 

The above analysis is, clearly, not deep. Yet its quick, broad-brush nature is just what we would 
like to see available when needed. Anyone who is thinking in the terms we have described can 
immediately, almost trivially, recognise the features of these controllers and thereby come to a 
better-informed evaluation decision.  

5. Case study: Evaluating a visual programming language3 

Many diagrammatic notations represent information structures as topological graphs – system 
components are represented by enclosed areas (usually boxes) representing the nodes, while 
relationships between the components are represented by continuously connected lines 
extending from one box to another (wires). How usable are such box-and-wire systems? There 
are many variations. Apparently-small notational differences in box-and-wire languages can 
lead to extreme differences in the programs. Green and Petre (1996) reported a usability 
analysis of two commercial box-and-wire systems, Prograph and LabView4, and how they 
compared to the old-fashioned Basic language.  

In this section we show how one of those languages, LabVIEW, can be evaluated using the 
CDs framework.   

Illustrating the notation 

For comparative purposes, here are two versions of the same program. This program, which 
computes the flight path of a rocket, was derived from algorithms used by Curtis et al. for 
research into the comprehensibility of flowcharts; Green and Petre re-used them for their 

                                                      
2 A virtual version can be seen at 

http://www.ndirect.co.uk/~thomas.green/workStuff/devices/controllers/HeatingA2.html 
3 This section draws extensively on Green and Petre (1995) 
4 Produced and trademarked by Pictorius Inc. and National Instruments Inc., respectively. 
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research into modern visual programming languages. First, we show the Basic version, then 
the LabView equivalent. 

 
 
Mass = 10000 
Fuel = 50 
Force = 400000 
Gravity = 32 
 
WHILE Vdist >= 0 
      IF Tim = 11 THEN Angle = .3941 
      IF Tim > 100 THEN Force = 0 ELSE Mass = Mass – Fuel 
 
      Vaccel = Force*COS(Angle)/Mass – Gravity 
      Vveloc = Vveloc + Vaccel 
      Vdist = Vdist + Vveloc 
 
      Haccel = Force*SIN(Angle)/Mass 
      Hveloc = Hveloc + Haccel 
      Hdist = Hdist + Hveloc 
 
      PRINT Tim, Vdist, Hdist 
      Tim = Tim + 1 
 
WEND 
STOP 
 

Figure 4 Rocket program in Basic 

The LabView notation uses boxes for operations and wires for the data.  Conditionals are 
represented as boxes lying on top of each other, only one of which can be seen at any one 
time. Loops are represented by a surrounding box with a thick wall. 

 

Figure 5 The rocket program in LabVIEW. 

Viscosity (definition: resistance to change) 

Green and Petre made a straw-test comparison of viscosity by modifying each of the programs 
in the same way, putting in a simple correction for air resistance. Because they wanted to 
measure the time to edit the program but not the time taken to solve the problem, the 
modification was worked out in advance, and they timed an experienced user modifying the 
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original program (running in the standard environment), working from a print-out of the 
modification required. 

Inserting the material into LabView took a surprisingly long time because all the boxes had to 
be jiggled about and many of the wires had to be rebuilt. Prograph was able to absorb the extra 
code to deal with air resistance with little difficulty — certainly less than evidenced by LabView.  
This was because the new code was placed in new windows, and relatively little change had to 
be made to existing layouts. However, this causes poor visibility and juxtaposability (definition: 
ability to view components easily). For Basic, the problem is just one of typing a few more lines. 
Overall time taken was as follows: LabView, 508.3 seconds; Prograph, 193.6 seconds; Basic, 
63.3 seconds - an astonishing ratio of 8:1 between extremes. These are differences of a whole 
order of magnitude, and if the programs were larger we would expect them to increase 
proportionately (i.e. to increase faster for LabView, slower for Basic). Viscosity is obviously a 
major issue. 

Hidden dependencies (defintion: important links between entities are not visible) 

An important strength of the visual approach is that many of the hidden dependencies of textual 
languages are made explicit. Data in a textual language like Basic is transmitted via 
assignments and use-statements, thus: 

 
 
x = 1 
... (possibly many pages of code here...) 
y = x + 3 
 

Figure 6 – Hidden dependencies in BASIC 

The same information in a LabView program is shown thus: 

 

Figure 7 – Visible dependencies in LabVIEW 

At least one type of hidden dependency is thereby brought into the open. The trade-off in this 
case, obviously enough, is the use of screen space (diffuseness definition: verbosity of language). 

Premature commitment (definition: constraints on the order of doing things) 

Green and Petre noted several types of premature commitment in the construction of these 
programs: commitment to layout, commitment to connections, and commitment to choice of 
construct. 

Commitment to layout: Obviously, the visual programmer has to make the first mark 
somewhere on the virtual page. As the program takes shape it may become clear that the first 
mark was unfortunately placed, or that subsequent marks were ill-placed with respect to it and 
each other. Although there is always some way to adjust the layout, the viscosity may be too 
high for comfort. That is certainly the case with complex LabView programs. 

Commitment to connections: The 2-dimensional layout of VPLs requires subroutines to be 
associated with their callers by ports with a definite placing. In both our target languages, one 
easily finds that the data terminals are not arranged in the order one wants them for a particular 
purpose. 

Whitley and Blackwell (2001) report the astonishing fact that one of their respondents in a 
survey on LabView claimed to employ a junior just to tidy up the layout of the code: 
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`One respondent solved the problem by hiring extra help: "Recently, I 
hired a real nitpicker to clean up my diagrams while they are in 
progress. That saves me a lot of time and my customers get even 
neater diagrams than I would have done."' 

That quotation tells us all we need to know about premature commitment and layout viscosity in 
box-and-wire diagrams. 

Commitment to choice of construct: When a programmer chooses a syntactic construct and 
then adds code to the construct, it may turn out subsequently that the construct is the wrong 
one (e.g. while should be changed to for). Therefore, programmers may prefer to postpone 
commitment to a particular construct until the code has been further developed. 

Early versions of LabView suffered the problem that once a control construct had been 
selected, it was a tiresome chore to change it. More recent versions of LabView solve the 
premature commitment problem partly by postponing commitment, as well as by making it 
easier to change the decision (specifically, it is now possible to draw a loop around existing 
code, just as a for-statement can be inserted into a textual program.) 

Abstraction (definition: types and availability of abstraction mechanisms) 

The abstraction barrier (the number of new abstractions to be understood by the novice), 
although probably more than a simple spreadsheet system, is obviously less than say C++. 
Differences in this respect depend more on the choice of primitives than on the requirements of 
the box-and-wire notational structure itself. 

LabView allows the user to choose to create new subroutines (called ‘virtual instruments’) but 
does not insist upon it: this language is therefore abstraction-tolerant. The abstraction-
managing subdevice maintains a hierarchy of ‘virtual instruments’; its properties will not be 
analysed here, but for a full treatment that step would be essential. 

Layout abstractions are not in evidence; there are no easy features for group operations when 
re-arranging the components of a program, and much time can therefore be wasted. 

Secondary Notation (definition: extra information in means other than formal syntax) 

Designers have apparently not thought hard enough about the need to escape from the 
formalism. LabVIEW does not have good facilities for commenting, for example. A comment 
can be attached to a single item, which may seem adequate at first sight, but remember that a 
text language gives power to comment on a section of code, not just a single operation: 

 
 
// -- compute the vertical components -- // 
      Vaccel = Force*COS(Angle)/Mass – Gravity 
      Vveloc = Vveloc + Vaccel 
      Vdist = Vdist + Vveloc 
 
// -- compute the horizontal components -- // 
      Haccel = Force*SIN(Angle)/Mass 
      Hveloc = Hveloc + Haccel 
      Hdist = Hdist + Hveloc 
 

Figure 8 – Secondary notation in the form of comments 

Looking back to the LabView program, how would those comments be adapted? 

Nor can LabView achieve the same degree of control over spatial layout that Basic achieves 
over textual layout. The Basic program has been organised to bring related operations into 
close proximity (which is what makes those comments so effective), but in the visual languages 
the severity of the constraints on laying out the boxes to avoid clutter and crossings makes it 
impossible to achieve the same results. 
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Visibility and Juxtaposability (definition: ability to view components easily) 

The visibility of data flow in the LabView language is excellent.  

Where LabView meets trouble, however, is in the juxtaposition of related control branches. The 
two branches of a conditional cannot both be viewed at once, and although a single mouse 
click will take you to the next branch, the effect on comprehensibility is very worrying. 

 

Figure 9 A LabView conditional from the rocket program, showing both arms. In the LabView 
environment, only one arm is visible on screen at any one time. 

Conclusions 

The most striking features of these comparisons are on the one hand, the extraordinarily high 
viscosity of box-and-wire notations and the very poor facilities for secondary notation, and on 
the other hand, the remarkable freedom from hidden dependencies. These give box-and-wire 
programs a very different feel from textual languages, and indicate some targets for would-be 
improvers to aim for. 

6. Current status 

The CDs framework has been adopted by a broad community of researchers, and also by a 
few practitioners. The bibliography of the CDs resource site currently lists about 60 publications 
on cognitive dimensions. Future progress on the framework is likely to focus on four issues: 
making the benefits available to a broader range of software development professionals, 
increasing the theoretical rigour in the foundations of the framework, filling in gaps in coverage, 
and providing new analysis tools based on CDs. We describe some of these continuing 
research efforts in the following sections. 

Dissemination 

Most dissemination of the CDs framework continues to be centred on academic venues, via 
invited talks and tutorials at related conferences. A few specialised symposia have been held, 
devoted to discussion of ongoing research on the CDs framework. There is no centralised 
organisation for these meetings, which have been hosted at institutions with a concentration of 
CD researchers such as the University of Hertfordshire. Several universities are teaching final 
year undergraduate courses or masters-level courses including CDs as an analysis and design 
technique. Most of this work is coordinated via the CDs resource site. 

Clarification and formalisation 

The dimensions are at present defined in informal terms, and in consequence there are areas 
of overlap and uncertainty. It is imperative to clarify their descriptions and if possible to reduce 
their number. 

Roast and Siddiqi (2000) have developed a system-modelling approach, using system 
abstractions to lead to closer definitions of the precise meaning of various cognitive 
dimensions. Detailed consideration of their careful work would take up too much space here, 
unfortunately, but some flavour of it can be given by looking at the route taken by Roast in 
examining premature commitment.  

Roast’s approach provides interpretations based on 
• the goals and sub-goals which users may achieve, 
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• the user inputs which enable users to satisfy different goals, 
• the objects central to characterising the goals to be achieved. 

Roast describes premature commitment as “the user having to satisfy the secondary goal prior 
to achieving the primary goal.” To develop a formal estimation of premature commitment he 
focuses on three facets of the concept: the characterisation of how the secondary goal is 
unavoidable; the relationship between the secondary and primary goals which indicates the 
inappropriateness of having to commit to the secondary goal first, and the initial conditions. 
This leads to a new distinction between weak and strong premature commitment, and thence to 
a detailed formal analysis of the relationship between premature commitment and viscosity. 
Finally, in a small case study, the formal analysis is applied to an editor used for the 
specification language Z, and is shown to conform to the difficulties experienced by certain 
users. 

Blackwell is continuing work on a formalised description of user activities, based on an 
economic model of attention investment (Blackwell & Green 1999). This model describes the 
cognitive process of attention to a task in terms of the potential return on investment when that 
work results in later time savings. All programming work can be described as a short term 
investment of attention to writing the program, in return for a longer-term saving of time through 
automated tasks. The CDs of the notation and environment being used directly affect the 
factors controlling return on investment in this analysis. 

Coverage 

Green and Petre (1996) under the heading of “Future progress in cognitive dimensions”, 
observed that the framework was incomplete – but not in the sense that more dimensions were 
urgently needed. Rather it emphasised the need for formalisation and applicability. 
Nevertheless, new dimensions do get proposed from time to time. Some of these proposals 
have been published, but more have been discussed informally. A recent paper outlined future 
approaches to the process of identifying and defining new Cognitive Dimensions, illustrating 
this discussion with descriptions of several candidates (Blackwell, Britton et. al. 2001). Other 
aspects of the framework, especially the enumeration of design maneuvers and tradeoffs, but 
also fundamentals such as the description of user activities, continue to be refined and 
expanded. 

Analysis tools 

Green (1991), much developed by Green and Benyon (1996), offered an extended entity-
relationship model of information artefacts in which certain of the cognitive dimensions could 
fairly easily be identified and in some cases metricated. Viscosity lends itself quite well to this 
approach. An ERMIA (entity-relationship modelling for information artefacts) model of 
conventional music notation looks like this: 

Piece

Key signature

Note Symbol Height Note Name

Key

Pitch

1

M

1 1

1

1

1 1 1

1 1

1

1 1

1
1

 

Figure 10 ERMIA Model of music notation 

indicating that the piece of music contains many note symbols, each of which has a height on 
the staff (the black border indicates a perceptual cue) and a note name. To transpose the key 
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of a piece, every note must be rewritten. The approach even offers a symbolic computation of 
the cost of change: 

Transpose Staff Notation 
 write Key'     change key signature 
 foreach Note:     change all notes 
  read Note 
  compute Note'      
  write Note'  
 
Total actions:   #(write actions) = #(Notes) 
Working memory storage:  
              1 place-holder , to keep track of notes in the original document 

For this structure,  V = O(n), where n is the number of note symbols.  (The value of n can run 
into the thousands.) Note that an alternative representation for music, known as ‘tonic sol-fa’, 
reduces the viscosity down to a single action!  

A very different approach was taken by Yang et al. (1997) who defined simple, a priori 
yardsticks by which to quantify some of the dimensions in the special case of visual 
programming languages. They realised that for practical use benchmarks with real numbers 
attached would be more useful for some purposes than mere discussion tools, so they set out 
to define metrics for some of the dimensions. They sensibly restricted their aims to those 
dimensions that they thought would be of most interest for their purposes of designing and 
improving visual programming languages, and their first decision was to concentrate on the 
static part of a program representation rather than its dynamics, arguing that obtaining a usable 
static representation was an essential first step. 

Eighteen benchmarks are defined in their paper. Examples are: 

Visibility or hiddenness of dependencies: 
D1:  (sources of dependencies explicitly depicted) / (sources of dependencies in system) 
D2:  The worst-case number of steps required to navigate to the display of dependency 

information 

Visibility of program structure: 
PS1: Does the representation explicitly show how the parts of the program logically fit 

together? (Yes/No) 
These benchmarks, though admittedly somewhat on the crude side, were applied by the 
authors to different languages and helped them find overlooked usability problems and 
encouraged them to redesign the languages. They encourage others to find similar domain-
specific benchmarks for their own purposes. 

Beyond CDs: Misfit analysis 

Many of the cognitive dimensions may be seen as examples of misfits between the user’s view 
of the domain (related to a mental model) and the ‘device’s’ view. Take viscosity as an 
instance: the user thinks of a single direct operation but the device requires an indirect 
operation, or a large number of operations. Other misfits are not so readily expressible as 
cognitive dimensions, for instance inexpressiveness: the user wishes to do something that is 
part of the conceptual domain but cannot be expressed using the device. Example:  electronic 
organisers cannot indicate relative importance of engagements, nor links between them, which 
are important components of diary use (Blandford & Green 2001). Thus, the concept of a misfit 
may be more general than the concept of a cognitive dimension. 

Ontological Sketch Modelling (Blandford & Green 1997) is an attempt to develop the idea of 
‘misfit’ analysis. It provides a simple and deliberately sketchy formalism in which to express the 
user’s conceptual models of the device, the domain and working practices (that is: how the 
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device fits in with the way the user works). Analysing the degree of fit between these can reveal 
potential problems of a semantic type that are not revealed by existing HCI approaches. 

Misfits cannot be revealed by any approach to HCI that focuses solely on either the user or the 
device. Traditional task-centred user-modelling for HCI has some very effective results, but it 
cannot reveal misfits because it does not explicitly consider how the user’s conceptual model of 
the domain and device relates to the model imposed by the device.  

In OSM the modeller describes the visible entities, their attributes, and how they are linked 
within the device; and also describes the entities contained in the user’s conceptual model and 
those embodied within the device that the user needs to be aware of if they are to use the 
device effectively. The resulting entities may be private to the device (the user cannot alter 
them), or they may be private to the user (the device does not represent them), or they may be 
shared (accessible to both the device and the user). All communication between the two worlds 
of user and device takes place through the shared entities.  If the user-private entities do not fit 
well onto the shared entities, the device will have usability problems. Similarly, if the device-
private entities are difficult to discover or understand, the user is likely to have difficulty learning 
to work with them. However, the cognitive dimensions were presented entirely informally, and 
the method of analysis was no more than asking a designer to think carefully about each 
dimension in turn. With OSM, some of the dimensions can be evaluated algorithmically, once a 
description of the artefact has been constructed. 

7. Further reading 

Most research and tutorial material related to CDs is available from the CD resource site: 

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/ 

The site includes an online bibliography of relevant research publications, a variety of 
introductory papers at different levels, and links to ongoing research. Some key starting points 
include the CDs tutorial by Green and Blackwell (1998), an extended research presentation by 
Green and Petre that was published in the Journal of Visual Languages and Computing (Green 
& Petre 1996), and a description of the use of user questionnaires for CD evaluation (Blackwell 
& Green 2000). The bibliography is annotated to direct the reader to other specialist topics. 

Related research on usability and cognitive aspects of notational systems continues to be 
published in venues such as the IEEE conference on Human-Centred Computing, the Journal 
of Visual Languages and Computing, the ACM conference on computer-human interaction 
(CHI) and conferences devoted to cognitive science, psychology of programming, information 
design and diagrammatic reasoning. Most of these topics also have mailing lists, online 
bibliographies, and resource sites devoted to them: 

http://www.hcrc.ed.ac.uk/gal/Diagrams/ - Diagrams resource site 

http://www.ppig.org/ - Psychology of Programming resource site 

http://hcibib.org/ - HCI bibliography 
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