PUX: Patterns of User Experience

Alan F. Blackwell
University of Cambridge Computer Laboratory

Sally Fincher
University of Kent at Canterbury

Manuscript to appear in Interactions magazine, Mar/Apr 2010.

Alexander's pattern language provided a way of raising the level of discourse about
buildings from a concrete to a new abstract level of description [1]. Rises in abstraction
level happen regularly in all fields, but the key difference in Alexander's work was that
his abstract descriptions were founded in user experience, not in abstract descriptions
of building construction (engineering) or of ornament (style). This is in contrast to recent
developments in software patterns, as noted by Molly Steenson in her recent Interactions
article[2].

In talking about software, it is easy to get confused about the distinctions between
abstract and concrete, because so much about software seems abstract. As a result, the
adaptation of pattern languages to software has lost the key contribution of Alexander's
work, which was to throw attention onto the users. Software patterns, despite being
inspired by Alexander's work, emphasise abstract descriptions of construction and of
ornament, not abstract descriptions of user experience. It's time to change that. This
article tracks down the history of where we took a wrong turning, and proposes an
alternative way forward.

“Traditional” software patterns are concerned with user experience, but mostly with the
user experience of programmers. That perspective may sound strange in an HCI context,
but it helps explain the popularity of pattern languages in the programming community.
If we move from the object world of technical software features to the human
experience of structured information — we refocus attention on ways of working, not
widgets. Our aim is a pattern language in the sense intended by Christopher Alexander,
but a pattern language of user experience design rather than a pattern language of user
interface design. This lets us escape shallow understanding of user experience in terms
of affect and passive consumption (architects describe this as ornament [3]), to the
ways that users perceive and build information structures.

Before the publication of the ‘Gang of Four’ book that popularised software patterns [4],
Richard Gabriel described Christopher Alexander’s patterns in 1993 as a basis for
reusable object-oriented software in the following way:

Habitability is the characteristic of source code that enables
programmers, coders, bug-fixers, and people coming to the code later
in its life to understand its construction and intentions and to change it
comfortably and confidently.

It should be clear that, in our context, a “user” is a programmer who is
called upon to maintain or modify software; a user is not (necessarily)
the person who uses the software. In Alexander’s terminology, a user is
an inhabitant [5]

Gabriel offered an explicit analogy between architecture and software, the nature of his
analogy is shown in figure 1.

Drawing analogies from
the architecture domain ...

building

building user

architectural feature.

. tothe w Orto
software the user
development experience
domain ... domain,

‘program source code application

‘programmer software user

attribute of the

source code ‘attribute of the Ul

In 1993 the time was ripe, after a sustained period of great enthusiasm for HCI and
usability, for addressing the usability needs of programmers. It is little wonder that
pattern languages of programming became so popular, as evidenced by sales of the
Gang of Four book, and the many PLoPs (Pattern Languages of Programming) meetings.

However, in design terms these patterns exist in an ‘object world’[6], primarily shared
by engineers. The Gang of Four book included many nice engineering solutions,
including elegant tricks for building user interfaces. But Alexander’s ideas had not been
primarily about solving technical problems - his concern was with the experience of the
building users, not the engineers.

Alexander proposes homes and offices be designed and built by their
eventual occupants. These people, he reasons, know best their
requirements for a particular structure. We agree, and make the same
argument for computer programs. Computer users should write their
own programs. Kent Beck & Ward Cunningham, 1987 [7]

Beck and Cunningham originally proposed the creation of pattern languages for
software development, not to support software engineers but end-user programmers.
They were concerned with Smalltalk, a language originally conceived by Alan Kay as an
end-user programming environment that would support new kinds of artistic and
creative experience for users including children and other non-professional
programmers. The Smalltalk programming environment itself included many Ul
innovations, which later evolved into successful interfaces of the Xerox Star, the
Macintosh and Windows [8]. But why did end-user programming not become as
popular as the interactions that were designed to support it?

We took a wrong turn

It is our contention that there was a collective confusion between ground and field: that
the cool features of the Xerox Smalltalk environment - windows, icons, mice - appeared
to engineers as though these widgets were the invention, irrespective of their
application to create a transformed user experience. Subsquently, user interface
‘patterns’ have continued to capture ways that engineers compose these (and other)
widgets to build functional Uls. But this is missing the point. Using the Smalltalk widgets
in that way has not given users the power to conceive and restructure their own
experiences, and many GUI systems became even less flexible than the command line
interfaces that preceded them.

The application of interaction patterns has remained stuck in the 'object world' - they
are still concerned with the successful design and engineering of a user interface. User
interface patterns that emphasise technical solutions are extremely valuable, but they
are not the kind of design pattern that Alexander envisaged; they are not primarily
concerned with the user’s experience of the designed product, and neither do they
empower end-user programming in the way that Beck and Cunningham hoped to
achieve.

We propose that. rather than describing users’ encounter with specific technical
features, it is possible to use patterns to describe user experience with the whole class
of structured information systems. This ought to encompass users both as consumers of
standardised interface designs, and as empowered to customise and modify the
structure of information. Spreadsheets, content management systems, word processor
macros and home network configuration are tools that empower end-users with the
capability of programmers, giving them user experiences that have the fundamental
characteristics of programming[9]. The ‘patterns’ here are not a specific way of building
a U, but a language for describing user experiences with structured information.

What would a user experience pattern look like?

One classic example of such a pattern in user experience was noted 20 years ago by
Thomas Green. He had found ‘a sticky problem for HCI’[10], in that neither theoretical
accounts of user behaviour, nor designer’s expectation of how users ought to behave,
allowed for the fact that users might want to change their mind. Many systems were
designed with the assumption that the user would have a coherent and complete plan,
and would be able to follow that plan when creating an information structure (for
example a travel itinerary, a lesson plan, or a database schema).

As a result of following that mistaken assumption, designers built user data-
management tools in which it was relatively easy to transcribe a pre-formed plan into
the information system, but rather difficult to change the structure of that plan after it
had been entered. For example, it is often the case that dependencies within an
information structure mean that changing one thing requires change in another, which
in turn requires another, and user empowerment falls like a sequence of dominos in a
series of ‘knock-on’ changes. For Green, this was the sticky problem - such systems
were ‘viscous’, so that the user experience of making changes to your plan felt like
wading through treacle.

It was ironic that software designers were in the habit of making viscous systems,
despite the fact that programmers themselves appreciate tools that allow them to
readily explore alternatives, and to change aspects of the structure fluently and flexibly,
for example tools for type inference, incremental compilation or refactoring. Green
suggested that the same desirable flexibility in changing information structures should
be offered to all users, and that designers should be alert to the possibility that they
might be imposing high viscosity on users that they would not accept for themselves.

Viscosity does not describe a single technical feature of the user interface, but rather a
user experience that spans multiple design decisions. Green presented that experience
in negative terms as a problem for users, but it could be described in more Alexandrian
terms as a template for positive experience: ‘You can change your mind’. It has sub-
species, some more familiar than others: ‘You can change your mind immediately’ is a
user experience pattern that corresponds to the feature-oriented description ‘undo’;
while ‘You can change your mind about the structure you are making’ alerts designers
to the kind of viscosity that has proven such a compelling example of the Cognitive
Dimensions of Notations framework [11,12,13].

User experiences in representational systems

Alongside the experience of changing your mind, users of information structures soon
become familiar with patterns such as ‘See how elements depend on each other’, which
Green and Petre advocated when describing the dangers of Hidden Dependencies.
Support for desirable user experiences most often presents designers with trade-offs.
For example, recording and visualising dependencies tends to increase viscosity,
because the explicit links and relationships make changes more laborious (as in visual
programming languages, where the dependencies are laid out as lines between
components, but the proliferation of lines makes it hard to move components around).

A further example based on Petre’s work is the pattern of ‘Freedom to leave informal
notes’ (which Green and Petre called Secondary Notation). Users often want to express
or record things that the designer hasn’t anticipated. Freedom to make comments, add
reminders, make decorations, record vocabulary changes, or format choices that have
no semantic interpretation within the system can be adapted by users for many
purposes. A simple but useful case is the ‘Notes’ box when requesting a print copy of a
map from Google Maps. It's often useful to add personal notes, independent of formal
address and navigation instructions. If the system insisted on interpreting and
formatting these, then it wouldn’t be so useful.

Today we can see many collections of such “patterns”, most inspired by Green’s insights.
Thsee have included patterns of user experience for collaborative meetings over an
information structure[14], for information structures using tangible
representations[15], for programming APIs[16] and for the kind of visual language
created for end-user programming[12]. Many are derived from user accounts, and
immediately recognisable to users, such as the experience of getting a gestalt view of
the whole structure, or of making ambiguous marks that can help you see the problem
differently[17]. However, none of these extensions of the Cognitive Dimensions
framework has been presented to designers in the way we propose, as a pattern
language, although one of us noted the potential parallels several years ago[18].

Patterns for architects; patterns for builders

Architects and builders have separate concerns from each other - the architect is
ultimately solving a human problem, and the builder a technical problem (although both
draw expertise across the boundary). The primary concern of a builder is in the 'object
world' of building construction, whereas a successful architect is focused on empathy
with the users of the building. In the same way our proposed patterns of software user
experience are intended as resources for experience designers, but this means that they
may not be seen as directly useful to interface developers, in the way that more
concrete interaction patterns would be.

As a rule of thumb, anyone who regularly refers to pattern languages of programming is
not likely to be the intended audience for patterns of user experience. Patterns of user
experience are, however, more closely related to the architectural interpretation of
Alexander’s work. The ‘internal’ design patterns so popular in the software patterns
community might be compared to a particular pattern of screws and brackets with
which two beams can be securely connected, or a particular arrangement of fuse,
switches and sockets by which occupants of a house can safely interact with a bathroom
lighting circuit. The latter can be compared more directly to previously published HCI
interaction patterns such Action Button and Wizard in the "basic interactions" section of
van Welie's Interaction Design Pattern Library[19], which guide designers creating
those atomic interactions: these are concerned with implementation detail rather than
the descriptions of building experience so characteristic of Alexander’s Timeless
Way[20].

User experience as a Pattern Language

Philosophy of a pattern language

Christopher Alexander conceived his pattern language through a fundamental concern
with user experience. In particular, he drew attention to aspects of user experience that
extended beyond purely technical considerations, expressing regularities in user
experience that were not obvious to other practitioners. Consider pattern 159 - Light on
Two Sides of Every Room - which observes that people prefer rooms having natural light
from two sources. As noted in [21] Light on Two Sides of Every Room is not "obvious,"
whereas Build a Room with Windows would have been obvious. And the technical 'object
world' details of how Light on Two Sides of Every Room should be achieved by the
builder - through use of materials, construction, integration into the wall - are not even
described.

[Builders] can use this solution a million times over, without ever doing
it the same way twice. (1, page x)

Software patterns have evolved independently of their architectural
origins, and even architects find this worthy of comment. A recent
architectural publication notes ‘[Software] patterns are also
independent of the software users’ requirements and refer to
categories that are more important to the software’s programmer.’

[22]

Components of a pattern language

The Cognitive Dimensions of Notations framework has become a valuable tool for
specialist applications, and especially for addressing the usability of programming tools,
but this concern for the needs of programmers seems to have discouraged broader
recognition of how universal these patterns in user experience really are. In particular,
the ongoing search for a more formal basis (“What is the space in which these are
dimensions?” “What is their cognitive base?”, “How can the interaction patterns be
formalised?”) has distracted attention from the simple need to record and disseminate
experience patterns.

Because these aspects of experience depend on information structures rather than
simple visual features, and because they are experienced over the course of time rather
than in direct reading or manipulation of a static display, it is not always easy to point to
a specific piece of a user interface and say ‘there it is’. Viscosity gained currency as a
descriptive term because it resonated with people who shared (the frustration of) that
specific experience. But many of the dimensions are not so readily recognised. This
article marks a starting point for describing them in terms of structures in the user’s
experience, rather than as formal principles. For example, the relevant evidence could
be presented as narratives, together with guidance helping the practitioner understand
the ways that those narratives arise from, are supported by, or compensate for, features
of the environment. This is work in progress and we welcome feedback toward our
goals.

Patterns of User Experience can empower users

The key insight for thinking about abstract experience of representational systems is to
recognise that the users of systems are ultimately concerned with navigating and
configuring an information structure, just as users of a building are ultimately
concerned with navigating and configuring the structure of space.

The essential benefit from pattern languages of user experience, for the HCI profession,
should be to understand what kind of experiences people have with information
structures. The patterns that we have described above - changing your mind, seeing
dependencies, leaving informal notes - should be key concerns for designers of systems
that offer users the power to configure and customise software for themselves.

The technical focus in the past on programming pattern languages has led to a focus on
specific Ul widgets and engineering concerns, such that the pattern language
community has lost the perspective of empowering users to work with their own
information structures. It is time to recover that focus, by collecting and disseminating
patterns of user experience with structured information. We could apply such a pattern
language to help us design humane systems, rather than being distracted by the
changing technical structures and ornament that arrive with each generation of Ul
renderings.

(Footnote) references

[1] Alexander, C., Ishikawa, S. and Silverstein, M. A pattern language: towns,
buildings, construction. Oxford University Press, New York (1977).

[2] Steenson, M.W. Problems before patterns: a different look at Christopher Alexander
and pattern languages. Interactions 16(2) (2009) 20-23.

[3] Vrachliotis, G. (2009). And it was out of that that [began dreaming about
patterns ...” On thinking in structures, designing with patterns, and the desire for beauty
and meaning in architecture. In A. Gleiniger & G. Vrachliotis (eds). Pattern: Ornament,
structure and behavior, pp. 25-39. Basel: Birkhauser.

[4] Gamma, E. Helm, R. Johnson, R. and Vlissides, J. Design Patterns: Elements of
reusable object-oriented software. Addison-Wesley. (1994).

[5] Gabriel, R.P. Habitability and piecemeal growth. Journal of Object-Oriented
Programming (February 1993), pp. 9-14. Also published as Chapter 2 of Patterns of
Software: Tales from the Software Community. Oxford University Press 1996. Available
online http://www.dreamsongs.com/Files/PatternsOfSoftware.pdf

[6] Bucciarelli, L.L. (1996). Designing Engineers. MIT Press.

[7] Beck, K. and Cunningham, W. Using pattern languages for object-oriented programs.
Tektronix, Inc. Technical Report No. CR-87-43 (September 17, 1987), presented at
OOPSLA-87 workshop on Specification and Design for Object-Oriented Programming.
Available online at http://c2.com/doc/oopsla87.html (accessed 17 September 2009)

[8] Blackwell, A.F. The reification of metaphor as a design tool. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(4) (2006), 490-530.

[9] Blackwell, A.F. First steps in programming: A rationale for Attention Investment
models. In Proceedings of the IEEE Symposia on Human-Centric Computing Languages
and Environments(2002), pp. 2-10.

[10] Green, T.R.G. The cognitive dimension of viscosity: a sticky problem for HCI. In D.
Diaper, D. Gilmore, G. Cockton and B. Shackel (Eds.) Human-Computer Interaction-
INTERACT’ 90. Elsevier. (1990).

[11] Green, T. R. G. Cognitive Dimensions of Notations. In L. M. E. A. Sutcliffe (Ed.),
People and Computers V. Cambridge: Cambridge University Press. (1989).

[12] Green, T. R. G., & Petre, M. Usability Analysis of Visual Programming
Environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages and
Computing, 7 (1996), 131-174.

[13] Blackwell, A.F. and Green, T.R.G. Notational systems - the Cognitive Dimensions of
Notations framework. In J.M. Carroll (Ed.) HCI Models, Theories and Frameworks: Toward
a multidisciplinary science. San Francisco: Morgan Kaufmann (2003), 103-134.

[14] Bresciani, S., Blackwell, A.F. and Eppler, M. A Collaborative Dimensions
Framework: Understanding the mediating role of conceptual visualizations in

collaborative knowledge work. Proc. 41st Hawaii International Conference on System
Sciences (HICCS 08) (2008), pp- 180-189.

[15] Edge, D. and Blackwell, A.F. Correlates of the cognitive dimensions for tangible user
interface. Journal of Visual Languages and Computing, 17(4) (2006), 366-394.

[16] Clarke, S. Measuring API usability. Dr. Dobb's Journal, Special Windows/.NET
Supplement (May 2004).

[17] Blackwell, A.F., Britton, C., Cox, A. Green, T.R.G., Gurr, C.A., Kadoda, G.F., Kutar, M.,
Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong, A. and Young, R.M.
Cognitive Dimensions of Notations: Design tools for cognitive technology. In M. Beynon,
C.L. Nehaniv, and K. Dautenhahn (Eds.) Cognitive Technology 2001 (LNAI 2117).
Springer-Verlag (2001), pp. 325-341

[18] Fincher, S. Patterns for HCI and Cognitive Dimensions: two halves of the same
story? In Proc. 14th Workshop of the Psychology of Programming Interest Group (PPIG
14) (2002), pp.156-172.

[19] van Welie, M. Interaction Design Pattern Library:
http://www.welie.com/patterns/index.php

[20] Alexander, C. (1978). The timeless way of building. Oxford University Press.

[21] Fincher, S. and Utting, 1. Pedagogical patterns: their place in the genre. In Proc. 7th
Ann. Conf. on Innovation and Technology in Computer Science Education (ITiCSE) (2002),
pp. 199-202.

[22] Scheurer, F. Architectural algorithms and the renaissance of the design pattern.
In A. Gleiniger & G. Vrachliotis (eds). Pattern: Ornament, structure and behavior. Basel:
Birkhauser (2009), pp. 41-55.

