
1

1

A Visual Exploratory Notation for
Object-based Multimedia

Mark Wilson – Unisys NZ & VUW
Mary Tate – Victoria University of Wellington (VUW)

2

Contents
• Introduction
• Motivation
• Literature Review
• Method
• Results
• Future Research
• References
• Appendix – The Venom Notation

3

http:/ /w
w

w
.blueprintplan.co.nz/design2101.htm

Introduction

Imagine you are building a house…
• You’ll need some plans
• Your plans will need to

represent the relevant
information.

• This information needs to be
represented in a way that is
understandable to the relevant
project stakeholders in a way
that is relevant to what tasks
they will be performing.

4

http:/ /w
w

w
.blueprintplan.co.nz/design2101.htm

Introduction

Now imagine…
• You need to show a novice builder how to build

your house in a certain way, without needing to
demonstrate the whole thing.

• You will need represent series of spatio-
temporal events that need to take place during
the house construction.

• To avoid cognitive overload, your plans will need
to represent only the relevant information – they
will be an abstraction of the intended reality.

• The plans are an abstraction, but be careful –
they still need to have a ‘good fit’ in the minds of
your audience with that which you are trying to
represent.

• The plans must also be quicker to and more
effective than demonstrating step-by-step…
otherwise what would be the point?

2

5

Introduction

Teaching reusable multimedia.
• Those teaching Multimedia face similar issues to

what you would face in the house example.
• Effective Multimedia should be object based:

– So that it is easy to update as requirements change
– To reduce the development time by being able to

reuse parts of a multimedia artefact
• Teaching this is more complicated than simply

teaching students how to use multimedia
development software (such as Macromedia
Flash).

6

Introduction

Teaching reusable multimedia.
• Teaching reusable multimedia can be complicated

because:
– Multimedia development is a creative process
– There are potentially hundreds of user-interface steps involved

in even a short animation.
– Every project has slightly different requirements, for instance,

different animations, etc…
– Different situations require different object hierarchies, and

therefore, case-by-case analysis is required.
– Reusability is a moving target; depending on the situation some

development approaches yield more reusable results than
others.

• So a step-by-step approach is not the best.

7

Motivation

An action research situation…
• This project was born out of the experiences gained by one

researcher while employed part-time at Victoria University of
Wellington to tutor Macromedia Flash to undergraduate students.

• These were students studying introductory level Electronic
Commerce and Multimedia. Many of the students were having
significant difficulty performing workshop tasks where animation was
required within an object hierarchy (for example, an animated roll-
over button).

• Students would often seem to lose their way within the object
hierarchy of their Flash files, and end up editing the wrong
symbols/objects by mistake (another instance of the ‘lost in
hyperspace’ dilemma perhaps).

• Initial attempts to address these issues involved ad-hoc whiteboard
diagrams combined with oral explanations.

8

Motivation

A typical tutor-student discussion.
• Novice users getting lost in their own Flash animations may be due to their having an

incomplete mental model of how to use Flash in an object-orientated way.
• Below is a typical tutor-student discussion:

S - “Why doesn’t my button have those things?”
T - “Because that isn’t a button?”
S - “I made a button”
T - “Yes, but now you are inside the movie clip that is inside the over-state of the button you

made”
S - “How can you tell?
T - “You can tell by looking here. See? Scene1 > Button > Symbol 2. They are like

breadcrumbs”
S - “What are breadcrumbs?”
T - “Those things on some web pages that... um… they tell you how you got to the page you are

looking at.”
S - “Ok. How did I get inside the movie clip?
T - “You probably double clicked on it”

3

9

Motivation

Identify and improve successful aspects.
• It was in response to this type of student confusion that

the tutor would attempt to explain using the whiteboard.
• This approach was helpful for many of the students.

Students were observed looking back at the whiteboard
while they worked to help them when they got stuck with
a task.

• Clearly, some qualities of this approach were assisting
students’ learning. Since our aim was to scaffold student
learning, we decided to try to identify and improve on the
aspects of our teaching that seemed most effective.

10

Literature Review

Overview.
• The literature review can be divided into four main parts:

– Defining the main issues in the situation.
– Looking at how visual notations work to try and understand the

reasons why the diagramming approach was working.
– Looking at educational theory to try to understand the learning

process that taking place.
– Looking for a potential existing notation (or quick to customise)

solution.

• Key aspects of the above are discussed over the
following slides.

11

Literature Review

Defining the situation.
• There was no literature found specifically about

difficulties involved in teaching object-based multimedia.
• But other people teaching object orientation had

experienced similar issues, and attempted to solve them
in similar ways.

• A series of articles published in 1999 in the Journal of
Object Orientated Programming (JOOP), written by
Michael Kolling was particularly useful.

• Kolling based his writing on his experience as a lecturer
in Computer Science at Monash University, Melbourne.

12

Literature Review

Defining the situation.
• Over a series of four articles in 1999, Kolling develops

on the following observations:
– Teaching OO to people who are used to procedural methods of

development is difficult.
– There is a lack of suitable tools available to teach OO.
– The development environment – available text-based interfaces

do not accurately represent the structure of classes and objects.
This lack of congruence can cause problems for novice users.

• These observations motivate Kolling’s development of
‘The Blue Environment’.

• The Blue Environment is an object-orientated
programming environment that uses visualization to
encourage students to think in terms of objects and
classes while programming.

4

13

Literature Review

Defining the situation.
• Kolling’s observations were relevant to our

action research situation in the following ways:
– Animation is procedural by nature.
– Macromedia Flash is both OO and Procedural, as it

has both a timeline and a reusable object hierarchy.
– Visualisation, in the form of an interactive visual

notation, was found to be helpful for to help Kolling’s
students understand OO.

14

Literature Review

Understanding visual notations.
• Diagrams are a form of external graphical representation.
• They are used extensively in education, across a wide range of different

subject areas.
• According to previous cognitive science research, there are a number of

ways in which diagrams may be cognitively beneficial:
– In general, diagrams support cognitive processes by serving as an “external aid

to thought” (Addis, 1997 in Price, 2002).
– More specifically, the actual form that the diagram takes (in order to represent

processes and structures) can help people to conceptualize these things.
– The capacity that diagrams have to represent information, even when very

complex.
• Price (2002), drawing on previous research, identified the following

advantages:
– Simultaneous presentation of information (Larkin & Simon, 1987)
– Perceptual availability of information (Larkin & Simon, 1987)
– Reduction in memory load (Bauer & Johnson Laird, 1993)
– Inference constraining (Zhang & Norman, 1994)

15

Literature Review

Educational theory.
• It was important to look at the pedagogy behind what the notation was being used to

achieve.
• Scaffolding is a key aspect of this.
• Venom works by scaffolding the development of a mental model that enables users

to use Macromedia Flash in a certain way.
• The basic idea behind scaffolding is that:

– People have their area of core knowledge and a surrounding zone of proximal development
(Lewis, 2002).

– When a person’s core knowledge overlaps with another persons zone of proximal
development, the first person can provide “scaffolding” for the second person; in effect,
facilitating that person’s learning (Lewis, 2002).

– In a classroom situation, teachers are expected to perform the role of scaffolding student’s
understanding.

• When individuals use computer software it is helpful if the interface scaffolds the
users understanding in a way that helps them to use the software to perform the
required task/s.

• This is not always the case, as people can have difficulty fully understanding
computer interfaces.

• The Venom methodology is intended to scaffold an understanding of using
Macromedia Flash in an Object-based way. 16

Literature Review

Assessing alternatives.
• Once a better understanding of how visual notations work was reached, it

became apparent that a purpose-built notation would need to be developed.
• Even so, a number of pre-existing visual notations were considered and

found unsuitable for this particular set of requirements, for example:
– The Blue Environment (Kolling, 1999a), a tool used to teach OO programming to

undergraduate programming students.
– UML
– STRPN, a Petri-net based notation.

• These notations (among others) were found unsuitable because:
– an effective visual notation needs to have a good fit with its application domain,

in this case: Teaching novices how to use Macromedia Flash in an object-based
way.

– this particular notation’s purpose was to aid learning and analysis:
• It needed to be faster to learn than Flash itself
• It needed to constrain inferences in such a way as to assist OO analysis
• It needed to facilitate creativity and allow the user to explore alternatives.

5

17

Method

Overview.
• The notation needed to be developed and then tested.
• The development of the method for doing this required

its own form of literature search;
– in order to provide the theoretical foundation required to answer

all of the ‘how to’ questions.

• The method was divided into the following main
sections:
– How to develop the visual notation to meet its requirements
– How to teach the notation to participants prior to testing
– How best for the participants to experience the notation
– How best to test the notation

18

Method

Developing Venom.
• Venom was initially created with the following

main inputs/influences:
– Visual Language Theory

• (Narayanan & Hubscher, 1997).

– Unified Modeling Language (UML)
– The existing symbolism within the Flash interface
– Popular metaphors in HCI Theory

• (Benyon & Imaz 1999).

19

Method

Developing Venom.
• The following two slides contain selected

component examples of Venom.
• The third slide shows an example of a simple

animation diagrammed using Venom.
• The full current version of Venom is outlined in

the Appendix of this presentation.
• The version in the Appendix includes the

changes made as a result of the evaluation
session.

20

Method

Venom Components: The Basic Container.
• The notation is based around a

container metaphor. Each type of
symbol that you can create in Flash
has its own container in the notation.
You can think of the container as a
filing card on which you store all
relevant information about the symbol
being represented. Displayed on the
right is the movie container.

• The "grandparent/parent/" part is
optional depending on how specific you
want to be. It is for showing were in the
hierarchy of symbols this symbol goes.
Think of it like the path to a folder in
Windows Explorer or DOS. You can
use lines to show relationships instead
of this path.

�� ���� ��� 	 �

�
� �
����� � �

�
	 � � �	

� � ��	

� � �

� �

6

21

Method

Venom Components: Timelines.
• In Venom, timelines go from left to

right, the same as they do in Flash.
• You can put markers with frame

numbers on your timeline, or use
seconds, as preferred. Movie and
Graphics symbols can both have
timelines.

• With Venom, timelines can be
used to represent different types of
change:

1. Discrete change
2. Continuous change (tweening)
3. No change (or no change at a

particular level of the symbol
hierarchy)

Discrete Change

Continuous Change

No Change

�

22

Method

Venom Example: A Wasp.
• To the right, is one way

of structuring an
animation of a wasp
flapping its wings.

• A movie like this one
could be set to follow a
motion guide around a
circuit.

• It is displayed and
diagramed here in one
spot, so it doesn't fly off
the screen.

• This is a simple version;
an example of a more
complex version would
be if the wings were
only set to flap when the
insect was flying.

23

Method

Refining Venom – CDs Questionnaire.
• This study uses the Cognitive Dimensions (CDs) of

Notations framework to help evaluate Venom for the
purpose of refining it further.
– According to Green and Blackwell, “Cognitive dimensions are

tools to aid non-HCI specialists in evaluating the usability of
information-based artefacts” (Green & Blackwell, 1998)

– Version 5.1 of A Cognitive Dimensions of Notations
Questionnaire (A. Blackwell & T. Green, 2000) was used during
an evaluation session.

• The study also uses expert evaluation in a focus group
session.

24

Method

Refining Venom – Focus group.
• According to Nielson there are a range of benefits associated with

expert and heuristic evaluation:
– Quick, cheap feedback is provided to designers (Nielson & Mack, 1994)
– Works with as little as two or three evaluators (Nielson, c.1996)
– The results generate good ideas for how to improve the user interface

(Nielson & Mack, 1994)
– Useful for testing early prototypes before actual users are brought in.

Such prototypes do not need to be an interactive system, for instance,
they could be pencil paper and string prototypes. (Nielson, c.1995)

– The researcher can communicate with the evaluator to answer
questions about usage. This is especially useful when the system is
domain specific and the evaluator lacks and in-depth knowledge of the
domain. (Nielson, c.1995)

• The CDs questionnaire was given individually, before the focus
group first, and the questions used as the heuristics for the expert
evaluation focus group.

7

25

Method

The evaluation session.
• Both the CDs questionnaire and the focus group were conducted at during

a four hour long (excluding breaks) evaluation session:
• An the outline of the evaluation session was as follows:

– The purpose of the visual notation explained in detail
– A short revision lesson was held. This explained how and why to use symbols in

Flash, and included some activities
– A lesson was held explaining how to use the visual notation method
– Participants were asked to plan a selection of typical Flash animations using the

notation.
– Participants were asked to create one or more of the animations based on their

plans.
– Participants completed a slightly condensed version of version 5.1 of A

Cognitive Dimensions of Notations questionnaire evaluating the effectiveness of
the notation.

– Participants discussed the notation in a focus group setting
• It was intended that the Flash revision lesson would take about 30 minutes.

On the day it took about an hour an a half to get started and complete the
revision lesson.

26

Method

The evaluation session.
• The evaluation session was 4 hours long, excluding breaks.
• The group of six participants included experts in:

– Teaching Multimedia
– Multimedia development methodologies
– Multimedia development using Macromedia Flash
– Modeling languages
– Visual design

• All participants had an understanding of UML, some had an expert
understanding

• At the beginning of the evaluation session participants were informed of the
session’s purpose; to obtain a heuristic evaluation of the notation by a
group of experts. Their role as subject matter experts was explained.

• Participants were assured that as the purpose of the session was evaluate
the effectiveness of the notation, not technical ability in Flash, and help on
how to use Macromedia Flash would be provided as required.

27

Method

Teaching Venom.
• Upon further consideration, it became apparent that we

would have to test prerequisite knowledge prior to
teaching Venom at the evaluation session.

• A Flash basics lesson was developed in order to check
that evaluation session participants would all have basic
level of understanding of symbols in Flash (symbols are
Flash’s reusable objects).

• With this material in place the participants could proceed
to a lesson designed to teach Venom itself.

28

Method

More about the CDs questionnaire.
• The questionnaire contains questions that relate to various cognitive dimensions:

– Diffuseness & Viscosity (very similar to each other in a non-interactive, i.e. paper based, notation)
– Hard mental operations
– Error proneness
– Closeness of mapping
– Role expressiveness
– Provisionality
– Consistency
– Novelty
– Improvements

• From the answers to these questions the notation can be evaluated along the different
dimensions.

• This proves a type of cognitive profile of the notation.
• Different types of activities are best supported by different profiles – the dimension themselves

are not intrinsically good or bad (Green & Blackwell, 1998).
• These profiles are as follows:

– Incrimination
– Transcription
– Modification
– Exploration
– Search

8

29

Method

More about the CDs questionnaire.
• After reflecting on the profiles, it was decided that

Venom was an exploratory notation.
• The table below outlines the desirable profile for this

type of user activity:

importantvisibility/juxtaposability

very harmfulsecondary notation

harmfulabstraction hunger

harmfulpremature commitment

acceptable for small taskshidden dependencies

harmfulviscosity

Effects on Exploratory NotationCD

30

Results

Overview.
• Overall, the results of the first evaluation session

provided:
– Information about the CDs and effectiveness of

Venom
– A list of improvements that can be made to Venom
– Information about how better to teach Venom

• These findings are summarised over the
following slides.

31

Results

The CDs questionnaire.
• The table below summarizes the responses to the cognitive dimensions of notations

questionnaire filled out by the participants about their experiences with Venom:

medium – some improvements suggestedImprovements

low – not many novel uses describedNovelty

high – very constantConsistency

high – enables explorationProvisionality

medium/high – quite expressiveRole expressiveness

medium/high – quite closely mapped to the application domainCloseness of mapping

medium – some people found that they made errorsError proneness

medium – some comments to do with Venom but about half
were a reflection of hard mental operations in the application
domain

Hard mental operations

medium/low – not too long-windedDiffuseness

medium/high – good visibility; it is all on one pageVisibility

EvaluationCD

32

Results

The CDs questionnaire – Discussion.
• Venom performed well in the Cognitive Dimensions of: visibility,

diffuseness, closeness of mapping, role-expressiveness,
provisionality and consistency.

• These results are very encouraging.
• Of particular importance is the good result for provisionality. This

indicates that Venom would likely be an effective exploratory
notation.

• The closeness of mapping and the role-expressiveness indicate that
Venom would potentially make a good tool for scaffolding novice
developer understanding of object-based Flash, and quite likely the
Flash application itself.

• Poorer results for error-proneness and hard mental operations
reinforce some of the comments made by participants (during the
focus group) about how to improve Venom.

9

33

Results

The focus group.
• This findings of the expert evaluation focus

group can be divided into three main areas:
– The learnability of the notation
– The efficiency of the notation
– Fit of the notation to the application domain

• The most emphasized issue was the learnability.

34

Results

The focus group.
• Participants of the focus group made many suggestions

on how to improve the methods and materials used to
teach Venom:
– The use of examples to scaffold novice developers

understanding of object-based Flash and how to use Venom.
This would include examples of Flash source files accompanied
by Venom diagrams, and exercises like constructing a Venom
diagram from a completed Flash source file.

– Step-by-step instructions on how to use Venom
– A process for analysing a potential animation in order to

determine what symbols can be made reusable and
diagrammed as such in Venom. It is likely that scaffolded
examples would be useful for teaching this process.

– Visual aides and an instructor demonstration to compliment the
existing self-paced Venom learning resource.

35

Results

The focus group.
• It is likely that the incorporation of the suggestions on the

previous slide would significantly improve the ability of
Venom to be tested in an experimental design.

• In addition to these improvements, potential participants
in an experiential design would need to be pre-screened
for an understanding of Macromedia Flash basics.

• It would be asking too much of participants in an
experiment to learn Flash basics as well as Venom
within the duration of a single experimental session.

36

Results

Evaluation session overall.
• Based on the results of the evaluation session overall,

the following main improvements to Venom are required:
– A better method for representing layers. This would need to

include some way of making layers more distinguishable from
other areas inside the main container object for each symbol is
required.

– The inclusion of an ‘A’ container to enable Venom to be used to
help plan the reuse of code as well as animations and graphics.

– Improvements to the description area of the main symbol
containers, including separate areas for object instance
properties, methods, textual descriptions and visual descriptions.

– Better guidelines for visual descriptions (the thumbnail
sketches), such as an explanation of how to represent
animations such as rotation.

10

37

Future Research

Overview.
• A second focus group has been conducted, this

time with Flash development experts from a
successful Wellington web-design and
multimedia company.

• The Venom methodology will be revised based
on this feedback

• At this stage, the next phase looks to be an
experimental design with before and after
control group confirmation.

38

References (slide 1 of 3).
• Benyon, D. and Imaz, M. (1999). Metaphors and Models: Conceptual Foundations of Representations for

Interactive Systems Design. Human-Computer Interaction, Vol 14, pp 159-189.
• Biddle, R., Noble, J., & Tempero, E. (2001). Use Case Cards and Roleplay for Object Oriented Development

(Technical Report). Wellington: School of Mathematical and Computing Sciences, Victoria University of
Wellington.

• Blackwell, A., & Green, T. (2000). A Cognitive Dimensions Questionnaire, 2003, from
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf

• Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., et al. (2001). Cognitive Dimensions
of Notations: Design Tools for Cognitive Technology. In M. Beynon, C. L. Nehaniv & K. Dautenhahn (Eds.),
Cognitive Technology 2001 (pp. 325-342): Springer-Verlag.

• Blackwell, A. F., & Green, T. R. G. (2000). A Cognitive Dimensions Questionnaire Optimised for Users. Paper
presented at the 12th Workshop of the Psychology of Programming Interest Group, Cozenza, Italy.

• Costello, W. (2001). Computer-Based Simulations as Learning Tools: Changing Student Mental Models of
Real-World Dynamical Systems, 2003, from www.clexchange.org/ftp/documents/system-ed/ SE2001-
04ChangingStuMentMod.pdf

• Creswell, J. (1994). Research Design: Qualitative and quantitative approaches. Thousand Oaks, CA: Sage.
• Goguen, J. A. (1996, 2002). Semiotic Morphisms. Retrieved October 11, 2003, from

http://www.cs.ucsd.edu/users/goguen/papers/sm/smm.html
• Green, T., & Blackwell, A. (1998). Cognitive Dimensions of Information Artefacts: a tutorial, 2003, from

www.cl.cam.ac.uk/~afb21/CognitiveDimensions/ CDtutorial.pdf

39

References (slide 2 of 3).
• Green, T. R. G. (1996, November). An Introduction to the Cognitive Dimensions Framework.

Paper presented at the MIRA Workshop, Monselice, Italy.
• Hsu, P.-Y., Chang, Y.-B., & Chen, Y.-L. (2003). STRPN: A Petri-Net Approach for Modelling

Spatial-Temporal Relations between Moving Multimedia Objects. IEEE Transactions on
Software Engineering, 29(1), 64-76.

• Johnson-Laird, P. N. (1980). Mental Models in Cognitive Science. Cognitive Science, 1(4), 71-
115.

• Kolling, M. (1999a). The Problem of Teaching Object-Oriented Programming, Part 1:
Languages. Journal of Object Orientated Programming, January, 8-16.

• Kolling, M. (1999b). The Problem of Teaching Object-Oriented Programming, Part 2:
Environments. Journal of Object Orientated Programming, February, 6-13.

• Kolling, M. (1999c). Teaching Object Orientation with the Blue Environment. Journal of Object
Orientated Programming, May, 14-23.

• Lewis, R. (2002). Learning Communities - old and new. International Conference on Computers
in Education, Auckland, New Zealand.

• Liu, Y., & Ginther, D. (2003). Cognitive Styles and Distance Education, 2003, from
www.westga.edu/~distance/liu23.html

• Najjar, L. J. (1995). Does Multimedia Information Help People Learn? (No. GIT-GVU-95-28).
Atlanta: Georgia Institute of Technology.

• Narayanan, N. H., & Hubscher, R. (1997). Visual Language Theory: Towards a Human-
Computer Interaction Perspective. In B. Meyer & K. Marriott (Eds.), Visual Language Theory
(Vol. 2002).

40

References (slide 3 of 3).
• Nielson, J. (c.1995). Heuristic evaluation. Retrieved October 11, 2003, from

http://www.usabilitynet.org/tools/expertheuristic.htm
• Nielson, J. (c.1996). How to Conduct a Heuristic Evaluation. Retrieved October 11, 2003, from

http://www.useit.com/papers/heuristic/heuristic_evaluation.html
• Nielson, J., & Mack, R. L. (1994). Usability Inspection Methods: John Wiley & Sons, Inc.
• Phillips, R. (1997). The Developer's Handbook to Interactive Multimedia: A Practical Guide for Educational

Applications: Kogan Page Limited.
• Post, E. (2000). Jade for Developers (3rd ed.). New Zealand: Publishing Press.
• Price, S. J. (2002, 2002). Diagram Representation: The Cognitive Basis for Understanding Animation in

Education. Retrieved May 5, 2003, from
http://www.educationau.edu.au/archives/cp/REFS/reeves_paradigms.htm

• Reeves, T. (1996). A Hopefully Humble Paradigm Review. In itforum@uga.cc.uga.edu (Ed.): Instructional
Technology Forum.

• Rieman, J. (1999, 15-20 May). Testing and Revising JSketch: A Drawing Tool for Informal Graphics. Paper
presented at the ACM Conference on Human Factors in Computing Systems, Pittsburgh USA.

• Rosson, M. B., & Carroll, J. M. (1996). Scaffolded examples for learning object-orientated design. Association
for Computing Machinery. Communications of the ACM, 39(4), 46-49.

• Thomas, J. C., Lee, A., & Danis, C. (2002). Enhancing Creative Design via Software Tools. Communications of
the ACM, 45(10), 112-120.

• Tidwell, J. (1999). Common Ground: A Pattern Language for Human-Computer Interface Design. Retrieved
May 5, 2003, from www.mit.edu/~jtidwell/interaction_patterns.html

• Weiten, W. (1995). Psychology: Themes and Variations (3rd ed.). California: Cole Publishing Company.

11

41

Appendix:
Using VENOM 2.0

42

Learning Objectives

• By the end of this lesson, participants should be able to:
– Demonstrate an ability to use Venom, by diagramming a simple

animation.
– Demonstrate an understanding of how Venom translates into

Macromedia Flash, by creating the previously diagramed
animation in Flash.

• This learning object is designed with two purposes in
mind:
1. As a lesson to help people to become familiar with using

Venom.
2. As a memory jogger for those using the notation.

43

Assumed Prerequisites

This lesson assumes that you have experience with the following:

• The Flash User Interface
• The basic metaphor
• The main panels

• Using Flash
• Creating lines, shapes and fills
• Editing lines, shapes and fills
• Creating and editing symbols

44

Concept Check

Discuss Your Symbol Usage

1. How do you use Symbols in Flash?

2. Do you use any planning techniques?

3. Ever used similar diagramming notations before, such as UML?

12

45

Lesson Overview

1. If viewed in order, these lesson slides begin by explain
a bit more about Venom

2. Then each part of the Venom diagramming system is
detailed in turn.

3. This is followed by an example of an animation
diagrammed using the notation.

4. The lesson slides conclude with some suggested
exercises for learning the notation.

46

About VENOM

Introduction
• VENOM is short for Visual Exploratory Notation for Object-based

Multimedia.
• Venom is a non-interactive exploratory visual notation for planning object-

based multimedia prior to commencing development.
• It is designed with two audience-purposes in mind:

– To help those new to object-based multimedia applications, such as Macromedia
Flash.

– To help more experienced multimedia developers by servings as a planning and
communication tool.

• The idea for Venom arose out of tutoring 200-level eCommerce and
Multimedia students on how to use Flash

• This version of the notation, Venom 2.0 is designed for use with
Macromedia Flash.

47

About VENOM

The Purpose
• Applications like Flash can be hard for people learn, as they require people to think in both a

procedural and object-oriented ways at the same time.
– For instance, the Flash user-interface has a timeline on which symbols (objects) can be positioned (the

timeline is procedural). These symbols are stored in a library, and can be re-used (this is object-orientated).

• As you know, updating a symbol in the Flash library will update all instances of that symbol,
regardless of when and where it appears in the Flash movie. This can be a very powerful tool.
Without it, the user would have to laboriously update their movie by copying and pasting every
time a change is required. Each of the symbols in the Flash library has its own timeline, which in
turn can hold more symbols, and so on. The structure of these symbols can quickly become
complicated.

• The purpose of Venom is to help with this situation in three ways:

– First, Venom aims to help people understand the hierarchical structure of symbols.
– Second, Venom aims to help people to understand how this hierarchy of objects relates to the timeline/s.
– Third, Venom aims to increase the awareness of the need for an object-based approach to multimedia, by

helping people to explore possibilities that they may not have been aware of before.

48

About VENOM

What's in a name?

As mentioned in the introduction, Venom is a non-interactive exploratory visual notation for planning object-based
multimedia prior to commencing development. This slide seeks to clarify some of these terms:

• Non-Interactive:
– Some notations are interactive, Venom is not. It is designed to be drawn on paper in pencil. Examples of interactive notations are

Rational Rose, used to create UML, or other any form of graphical user interface.

• Exploratory:
– Venom is intended to help novice developers explore how they will construct a piece of interactive multimedia (or an animation or

graphic). It is not intended as a tool for detailed system specifications. It is tool for helping people think about where, when, and
how they will position re-useable symbols in a timeline. In this way, it is designed to help the cognitive system (the human). It is not
a tool for communicating with a computational system; the Flash user interface already does this.

• Object-based:
– Flash is not completely object-orientated. You can create reusable symbols from one of Flash's three pre-defined classes (movie,

button, and graphic) but you can not readily create your own classes. Each symbol has its own properties, and can have actions
associated with it (like a method). Within a Flash movie, timelines can be thought of as a collection (or aggregation) of objects that
are played through in a default sequence. This default sequence can be controlled, to a certain degree, by the use of actions.

• Visual Notation:
– A well known example of a visual notion is sheet music. This uses different graphical symbols to represent different sounds. A

visual notation is distinct from a textual notation, which would use alpha-numeric characters. Venom uses graphical symbols to
comprise a diagram, but also uses some alpha-numeric characters.

13

49

VENOM Components

Introduction

• The following section outlines the different components
of Venom.

• It may also help you to think of it as a type of toolkit to
use when creating a diagram.

50

VENOM Components

The Basic Container

• The notation is based around a
container metaphor. Each type of
symbol that you can create in Flash
has its own container in the notation.
You can think of the container as a
filing card on which you store all
relevant information about the symbol
being represented. Displayed on the
right is the movie container.

• The "grandparent/parent/" part is
optional depending on how specific
you want to be. It is for showing were
in the hierarchy of symbols this
symbol goes. Think of it like the path
to a folder in Windows Explorer or
DOS. You can use lines to show
relationships instead of this path.

�� ���� ��� 	 �

�
� �
����� � �

�
	 � � �	

� � ��	

� � �

� �

51

VENOM Components

Container Types

• Movie symbols are distinguished
by an "M" in a box at the top right
of the container.

• Graphic symbols use a "G”.
• Button symbols use a "B".
• Movie symbols containing

important reusable ActionScript
can be represented using an “A”

• Movies and graphics can have
timelines (shown top right) or be
single frames (shown bottom
right).

�� ���� ��� 	 �

�
� �
����� � �

�
	 � � �	

� � ��	

� � �

� �

�� ���� ��� 	 �

�
� �
����� � �

�
 	 � � �	

� � ��	

� � �

52

VENOM Components

The Button Container

• Button symbols have four boxes
for the four difference button
states in Flash: Up. Over, Down,
and Hit (active area).

• These states are represented by
the four boxes within the button
container illustrated here.

• Each button state can have other
symbols aggregated into it (see
the relationships slide, later in
these slides, for more info on
this).

�� ���� ��� 	 �

�
� �
��� �� � �

�
	 � � �	

� � ��	

� � �

����

14

53

VENOM Components

Timelines

• In Venom, timelines go from left
to right, the same as they do in
Flash. You can put markers with
frame numbers on your timeline,
or use seconds, as preferred.
Movie and Graphics symbols can
both have timelines. With Venom,
timelines can be used to
represent different types of
change:

1. Discrete change
2. Continuous change (tweening)
3. No change (or no change at a

particular level of the symbol
hierarchy)

Discrete Change

Continuous Change

No Change

�

54

VENOM Components

More on Timelines and Changes

• Discrete change, is when the image on screen is
swapped, but with no transitional effect.
Continuous change (called tweening in flash) is
when a change occurs gradually over time. If you
are representing a tween with Venom, it is a good
idea to write 's' or 'm' above the tween arrow to
indicate whether it is a shape or a motion tween.
For instance, the little 'm' underneath the
continuous change arrow (middle on the left) head
indicates that the change is a motion tween.

• No change, could mean that there is no change, or
that there is no change at a particular level of the
symbol hierarchy. This is because often symbols
are put on a timeline but no change is actually
taking place in that timeline, just inside the
symbols on the timeline. For instance, a button
may just sit there doing nothing until the user rolls
over it - the rollover effect would be inside a move
symbol, which in turn would be inside the Over
frame of the button.

Discrete Change

Continuous Change

No Change

�

55

VENOM Components

Thumbnail Sketches
• The boxes within the main

container are where you can
make a thumbnail sketch of what
goes in a key frame. You can use
as many of these as you require
(but you may need to draw your
container bigger if you do).

• These thumbnails should be as
quick and simple as possible; try
and focus on the most relevant
details. You would only need to
make these more detailed if you
were using Venom in a
collaborative environment.

������ ��� 	 �

�
� �
 ��� �� � �

�
	 � � �	

� � ��	

� � �

� �
�

56

VENOM Components

Description Area Types
• All of the symbol types can have one or many

description areas. This is where you can write
notes to yourself. You would use a description
area to indicate which properties are changing or if
an object has actions.

• Only include relevant properties in the description
area. A relevant property is one that is either
changing over time, or in a particular instance. For
example, if you were changing width and height
properties over time, you might write: W=100%
H=20% above the thumbnail box on the left and
W=100% H=100% above the thumbnail box on the
right.

• If the color of an instance was going to be different
from the library in a significant way, you could
write: Tint = 40% Green above the thumbnail box.
If you were tweening the tine effect, you would
include start and finish values for the tween.

• In some cases may be helpful to include extra
graphical notations in the description area, or
in/around the thumbnail box. Please see the extra
notations slide for more information on this.

• Use a different description area for symbol
instance properties, actionscript methods, textual
description of the symbol, etc.

�� ���� ��� 	 �

�
� �
 ��� �� � �

�� ��������� ���� ���!""�

15

57

VENOM Components

Relationships
• In Flash the main relationships you will need to

represent are Parent/Child relationships. For this
you use a line with a diamond on the end closest
to the parent. The parent is the symbol with the
timeline that contains the other symbol.

• The main Flash timeline is called the root level or
root timeline (like the root of a tree). You can
represent this with a symbol called "_root" if you
wish. However, you do not need to start all of your
Venom diagrams at the root timeline, or have
relationships pointing back to the root. It is often
helpful to just sketch a fragment that you are
having trouble with.

• If you have multiple instances of one symbol you
can write the number of instances on the line.
Write this number at the end of the relationship line
that is closest to the child symbol.

• Tip: If you want to keep your diagram clear, it is
better to used curved lines than overlapping ones.

�

58

VENOM Components

Description Area Types
• All of the symbol types can have one or many

description areas. This is where you can write
notes to yourself. You would use a description
area to indicate which properties are changing or if
an object has actions.

• Only include relevant properties in the description
area. A relevant property is one that is either
changing over time, or in a particular instance. For
example, if you were changing width and height
properties over time, you might write: W=100%
H=20% above the thumbnail box on the left and
W=100% H=100% above the thumbnail box on the
right.

• If the color of an instance was going to be different
from the library in a significant way, you could
write: Tint = 40% Green above the thumbnail box.
If you were tweening the tine effect, you would
include start and finish values for the tween.

• In some cases may be helpful to include extra
graphical notations in the description area, or
in/around the thumbnail box. Please see the extra
notations slide for more information on this.

• Use a different description area for symbol
instance properties, actionscript methods, textual
description of the symbol, etc.

�� ���� ��� 	 �

�
� �
 ��� �� � �

�� ��������� ���� ���!""�

59

VENOM Components

Layers
• In Venom it is a good idea to represent each

symbol on a different layer, even if you don't intend
to put them on different layers. You can divide
layers from one another by using a horizontal line.

• If you need to name your layers, a box running up
either side of the layer can be used

• It is sometimes useful to have an overall set of
thumbnails for the parent as well as some having
layers for the individual symbols as well. This is
like a visual description of the symbol. When you
do this, you should separate the parent (or
aggregate) thumbnail with a double horizontal line.

• You can put thumbnails on the individual layers if
you need to, or rely on the thumbnails in the child
symbols instead, or both. In cases where there is a
change in the actual parent symbol (not just a
change carried through from a child symbol) you
should probably use both.

• Layers should be separated from the description
areas with a double ruled line.

�� ���� ��� 	 �

�
� �
��� �� � �

�
	 � � �	

� � ��	

� � �

� �

� �

�� ���� ��� 	 �

�
� �
��� �� � �

�
	 � � �	

� � ��	

� � �

� �

� �

60

VENOM Components

Additional Notations
• In some cases it may help to include extra

notations in a description area, or in and
around a thumbnail box. Some useful
examples of extra notations are:

– Lightly sketched boxes around a part of a
thumbnail to help indicate an orientation
change (like a rotation).

– Short arrows indicating the direction of a
rotation.

– A small dot for the reference point of a
symbol, or for the centre point of a rotation.

– Short radiating lines around a shape in a
thumbnail, might show that instance of the
symbol is lit up.

• When in doubt, use something from the
Flash interface.

16

61

VENOM Components

Symbol Shortcuts
• Symbol Shortcuts

• Shortcuts can be used in cases
where it does not suit you to draw or
redraw the full container symbol.

• You can use short cuts to avoid
having too many intersecting lines in
a diagram.

• An example of a useful place to use a
shortcut is a rollover button that has
the same basic symbol in each of its
states (U, O, D, H). Drawing the
relationship line in from a short cut
would be helpful in this situation.

� #�"

� #�"

�

�

62

VENOM Example

A Wasp
• To the right, is one way

of structuring an
animation of a wasp
flapping its wings.

• A movie like this one
could be set to follow a
motion guide around a
circuit.

• It is displayed and
diagramed here in one
spot, so it doesn't fly off
the screen.

• This is a simple version;
an example of a more
complex version would
be if the wings were
only set to flap when the
insect was flying.

63

Tip

The Venom Process

• Diagramming using Venom can be an iterative
process, for instance:

1. You may do an initial Venom diagram as a type of
brainstorming activity.

2. You could then do a prototype from this diagram in Flash
3. More changes, or better ways of doing things, could occur to

you and so you could go back to your diagram to work them
out.

– Discuss top down vs bottom up

64

Activities

Creating a VENOM Diagram

1. Working as part of a team with the researcher, create a Venom
diagram of roll-over button such as
‘example_rollover_button_v2.0”

2. In Flash, open the file ‘flower_example_v02.fla’ and have a go at
doing a Venom diagram of it.

3. Open the file ‘wasp_animation_v02.fla’ and see if you can spot the
differences between the what is in the file, and the diagram used
in a previous slide. Discuss.

4. Choose a simple animation or interactivity task that you might
typically use Flash for and do a Venom diagram of it. Then have a
go at creating it in Flash.

5. Repeat (4) with another typical task if time is available.

17

65

Regroup

• How did it go?
• What questions do you have?
• Conclude with the following:

1. Completing the questionnaire
2. Discussing your experiences Using Venom, and any ideas that

occurred to you while completing the questionnaire.

66

Revisions Since v1.1
1. Due to a change in the target audience the focus group session now no longer includes the lesson, ‘Using

Symbols in Flash’. Instead, just a concept check is included.
2. The Venom lesson is now instructor-led as opposed to self-paced.
3. Example fla files are included and used in an activity to help scaffold an understanding of Venom.
4. Use the fla file in combination with a completed diagram.
5. Include an explanation of Venom as an iterative process.
6. Discuss top down vs bottom up.
7. Include ActionScript symbol; ‘A’
8. Clarify different options for description area
9. Amend wasp diagram to include single wing.
10. Clarify transition types by relating to Flash tweening, etc.
11. Clearly explain that individual layers of a symbol can be represented but must be separated from main symbol

components by a double [ruled] line and named as layers.
12. More techniques for representing animation are required. Suggest using Flash interface icons and notation for

these.
13. Explain usage as a potential planning and commutation tool for experts.
14. Explain that timeline can use seconds or frames as preferred.
15. Explain that different parts of the timeline (such as frames for up, over, down, and hit in the button type symbol)

can have symbols aggregated into them.
16. Provide a handout of the lesson material.

67

Author Information.
• Mark Wilson

– Mark currently works at Unisys in a technical sale support and
business development role. Based in New Zealand, Mark’s job is
to support Unisys Data Centre Services in the Asia-Pacific
region. Mark also studies part-time at VUW.

– Email: mark.wilson@nz.unisys.com

• Mary Tate
– Mary is a lecturer in the School of Information Management at

Victoria University of Wellington (VUW). Mary has been Mark’s
supervisor for over three years.

– Email: mary.tate@vuw.ac.nz

