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Titre :
pour le Temps Polynomial.

Mots clefs :
Logique pour P

Résumé : Du fait des nombreuses diffi-
cultés auxquelles la théorie de la complexité
fait face depuis des décennies, plusieurs
champs de recherche proposent d’étudier ce
domaine sous des angles variés, dans 'es-
poir d’en comprendre les mécanismes pro-
fonds. Parmi eux, la Complexité Descrip-
tive fait correspondre des classes de com-
plexité a des logiques. Cependant, cette ap-
proche se heurte, elle aussi, & des obstacles
importants, et voila plus de quarante ans
que la question, pourtant centrale, de I’exis-
tence d’une logique caractérisant le temps
polynomial déterministe reste sans réponse.
Alors que la logique de point-fixe capture le
temps polynomial sur les structures ordon-
nées, en ’absence d’un tel ordre, aucune lo-
gique ne semble satisfaire cette propriété.
Face a cette situation, I’étude d’opérateurs
algébriques avec lesquels augmenter le pou-
voir d’expression de la logique de point-fixe
constitue une piste de recherche féconde.
Un opérateur ayant été particuliérement
étudié est I'opérateur de rang, qui introduit
des notions d’algébre linéaire dans la lo-
gique de point-fixe, en permettant le calcul
du rang de toute matrice définissable. Mais
il a été démontré récemment que la logique
de point-fixe avec opérateur de rang ne cap-
ture pas le temps polynomial. Dans cette
thése, nous étudions la pertinence d’une
autre structure algébrique sur laquelle fon-
der de tels opérateurs : les groupes de per-
mutations. Pour ce faire, nous identifions
une opération fondamentale sur les groupes
de permutations, calculer ’ordre du groupe
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engendré par un ensemble donné de permu-
tations, et étudions ’expressivité de la lo-
gique de point-fixe augmentée par cet opé-
rateur d’ordre. Notre résultat principal est
que la logique de point-fixe avec opérateur
d’ordre est strictement plus expressive que
la logique de rang. Plus précisément, nous
démontrons que le probléme séparant la lo-
gique de rang du temps polynomial est défi-
nissable dans cette nouvelle logique. Notre
technique repose sur la traduction au sein
de la logique de point-fixe d’un algorithme
de canonisation des structures fondé sur
la théorie des groupes. En effet, la théo-
rie des groupes de permutations s’est avérée
étre un allié de taille dans la résolution des
problémes d’isomorphisme et de canonisa-
tion des graphes, ce qui constitue d’ailleurs
une de nos motivations premiéres d’étudier
l'opérateur d’ordre. Cependant, 'applica-
tion de ces techniques au sein de la logique
de point-fixe est une entreprise délicate.
Notre travail réveéle en effet que la représen-
tation méme des groupes de permutations
par des ensembles de générateurs ne saurait
étre aussi expressive dans le cadre logique
qu’elle ne l'est dans le contexte algorith-
mique. Il est donc nécessaire de concevoir
de nouvelles représentations des groupes.
C’est I’étude d’une telle représentation pour
les groupes abéliens qui permet la définition
d’une procédure de canonisation au sein de
la logique d’ordre. Notre travail constitue
ainsi une premiére étude des différentes re-
présentations possibles des groupes de per-
mutations dans un contexte d’invariance
par isomorphisme.
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Abstract: Given the numerous chal-
lenges that complexity theory has faced
for decades, several research fields study
this domain from various perspectives, in
the hope of understanding its underly-
ing mechanisms. Among these, Descript-
ive Complexity establishes correspondences
between complexity classes and logics.
However, this approach also encounters sig-
nificant obstacles, and the central question
of the existence of a logic characterizing de-
terministic polynomial time has remained
unanswered for over forty years. While
fixed-point logic captures polynomial time
on ordered structures, in the absence of
such an order, no logic seems to satisfy
this property. In light of this situation, the
study of algebraic operators to enhance the
expressive power of fixed-point logic repres-
ents a promising research direction. One
operator that has been extensively studied
is the rank operator, which introduces lin-
ear algebra concepts into fixed-point logic
by enabling the computation of the rank
of any definable matrix. However, it was
recently demonstrated that fixed-point lo-
gic with the rank operator does not capture
polynomial time. In this thesis, we explore
the relevance of another algebraic structure
as a foundation for such operators: per-
mutation groups. To this end, we identify
a fundamental operation on permutation
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groups — computing the order of the group
generated by a given set of permutations —
and investigate the expressiveness of fixed-
point logic augmented with this order oper-
ator. Our main result is that fixed-point lo-
gic with the order operator is strictly more
expressive than rank logic. Specifically, we
prove that the problem separating rank lo-
gic from polynomial time is definable in this
new logic. Our technique relies on trans-
lating, within fixed-point logic, a canon-
ization algorithm for structures based on
group theory. Indeed, permutation group
theory has shown great use in the design of
efficient algorithms for the graph isomorph-
ism and canonization problems, which was
one of our primary motivations for study-
ing the order operator. However, applying
these techniques within fixed-point logic is
a delicate endeavor. Our work reveals that
the representation of permutation groups
by sets of generators cannot be as express-
ive in the logical framework as it is in the al-
gorithmic context. Thus, it is necessary to
devise new representations of groups. The
study of such a representation for abelian
groups enables the definition of a canoniza-
tion procedure within order logic. Our work
thus constitutes a preliminary investigation
into the various possible representations of
permutation groups in the context of iso-
morphism invariance.
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Résumé

Voila presque cent ans que furent introduits les premiers modéles de calcul; ceux-
la méme qui donnérent naissance, a la moitié du siécle dernier, aux balbutiements de
I'informatique. Cette révolution des fondements des mathématiques engendra donc une
avancée technologique majeure : la construction de machines bien plus aptes a calculer
que nous. Il est alors naturel d’étudier les bornes de cette aptitude, de comprendre ce
qu’une machine peut, et ne peut pas, calculer.

Si 'on appréhende assez bien les limites théoriques et absolues du calcul — ce qui
reléve de la théorie de la Calculabilité — de multiples zones d’ombre subsistent dés que
des limites sont imposées sur les diverses ressources nécessaires au calcul, en particulier
le temps (le nombre d’étapes de calcul), 1'espace (la quantité de mémoire nécessaire)
ou le non-déterminisme (la possibilité de « deviner »). Ceci constitue le champ d’étude
de la Théorie de la Complexité.

Face aux nombreuses questions qui y demeurent ouvertes, plusieurs approches ont
été développées pour étudier, au travers de prismes spécifiques et divers, les classes de
complexité. La complexité de circuits, la complexité algébrique, ou encore la complexité
implicite sont tant de démarches. Notre travail s’inscrit dans une telle démarche :
la Complexité Descriptive. Ce domaine de recherche entreprend de caractériser des
classes de complexité par des logiques. Dans ce contexte, la notion de logique doit étre
entendue en un sens treés général : une logique £ est la donnée, pour toute signature
Y d'un ensemble d’énoncés SEN,(X), et d'une relation de satisfaction entre énoncés
et structures relationnelles SAT2(X). Si ¢ est un L[X]-énoncé (i.e. ¢ € SEN.(X)), et
20 une Y-structure, on écrit A = ¢ lorsque (¢, A) € SAT,(X). Les fonctions SEN,
et SAT, doivent toutes deux étre décidables. Enfin, on attend d’une logique qu’elle
soit tnvartante par isomorphisme : si A et B sont deux X-structures isomorphes, les
ensembles d’énoncés satisfaits respectivement par 2 et 8 doivent étre identiques.

Ainsi, tout L[X]-énoncé ¢ délimite une classe de X-structures qui satisfont ’énonce,
dénotée Mod (). Intuitivement, une classe de complexité C est caractérisée par L (on
dit aussi que £ capture C) si, pour toute signature X, et toute classe de X-structures
IC close par isomorphisme, K est décidable dans C si et seulement si K est définie par
un énoncé de £.!

Donner une définition générale de la notion de capture est difficile, tant cette notion
dépend de la définition de la classe de complexité C a I’étude. La définition précise de
ce que serait une logique capturant P — la classe des problémes décidables en temps
polynomial déterministe — est donnée dans [Gur88], et reproduite a la Définition 1.28.

IPar soucis de précision, notons qu’afin d’exclure des cas pathologiques, il est nécessaire que
Pimplication réciproque soit effective : il doit exister une procédure qui, étant donné un L£[¥]-énoncé,
produit un algorithme décidant Mod(y) dans le respect des conditions définissant la classe C.
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A titre d’illustration supplémentaire, mentionnons le théoréme de Fagin, théoréme
fondateur de la Complexité Descriptive : NP — la classe des problémes décidables
en temps polynomial non-déterministe — est caractérisée par la logique du second-
ordre existentielle (SO3), c’est & dire I'extension de la logique du premier-ordre par
quantification existentielle sur des relations.

La recherche d'une logique capturant P constitue un probléme ouvert majeur de
la Complexité Descriptive. Aprés cette rapide introduction des termes du probléme, il
semble important de revenir sur une condition mentionnée plus haut avec une rapidité
qui ne rend pas justice & son importance : 'invariance par isomorphisme. En effet,
cette condition constitue une composante essentielle de la Complexité Descriptive :
peut-on concevoir un modeéle du calcul (en temps polynomial) agissant directement
sur les structures, et non sur leurs encodages? Lorsque cette part du probléme est
évacuée — lorsqu’un encodage de la structure étudiée est définissable — le théoréme
d’Immerman-Vardi fourni une réponse positive a cette question : la logique de point-
fixe, capture P sur toute structure linéairement ordonnée (cet ordre linéaire permettant
la définition, au sein de la logique, d’un encodage de la structure, et vidant la condi-
tion d’invariance par isomorphisme de tout effet). Cette logique, notée FP, joue un
role central dans cette thése et est définie formellement p. 15. Pourtant, si FP cap-
ture P sur les structures ordonnées, elle ne peut exprimer le fait d’avoir un domaine
de cardinalité paire (propriété pourtant bien décidable en temps polynomial) sur des
structures arbitraires, et ne capture donc pas P dans le cas général. La quéte d’une
logique pour P dans le cas général a mené la communauté & considérer successivement
des extensions de FP de plus en plus puissantes pour répondre aux résultats de sépa-
rations entre P et les logiques candidates précédentes. D’abord, face a 'inexpressibilité
de Parité qui vient d’étre mentionnée, un mécanisme de comptage a été ajouté a FP,
donnant naissance a la logique FPC (cf. Définition 1.29). Dans [CFI192|, Cai, Fiirer et
Immerman séparent FPC de P. L’étude des structures utilisées (dorénavant appelées
structures de CFI) dans ce résultat mit en exergue l'incapacité de FPC a exprimer la
satisfaisabilité de systémes d’équations linéaires sur un corps — pourtant a la portée de
P via le pivot de Gauss — motivant I'introduction [Daw+09] d’une nouvelle extension
de FP munie d’'un opérateur permettant de calculer le rang d’une matrice définissable
(FP + rk, cf. Définition 1.33). Enfin, Lichter a récemment séparé FP + rk de P [Lic23].
Ce résultat s’appuie sur une généralisation de la construction de Cai-Fiirer-Immerman.
La encore, la difficulté du probléme utilisé par Lichter réside dans la résolution d’un
systéme d’équations linéaires ; cependant, la construction employée par Lichter permet
la définition de systémes d’équations linéaires sur des anneaux unitaires finis, en lieu
des corps finis employés dans la construction originelle. A nouveau, la satisfaisabilité
d’un systéme d’équations linéaires sur un anneau est décidable en temps polynomial
(a l'aide de la forme normale de Smith).

Cette progression semble indiquer 'importance des structures algébriques (et des
opérations qui peuvent étre effectuées sur celles-ci en temps polynomial) dans la re-
cherche d’une logique pour P. Dans cette thése, nous avons étudié la pertinence des
structures de groupes, et plus particuliérement des groupes de permutations, dans la
recherche d’extensions plus expressives de FP. Une telle étude des groupes de permu-
tations est aussi motivée par leur importance dans l'obtention d’algorithmes efficaces
pour 'Isomorphisme et la Canonisation de Graphes. Ces deux problémes jouent en effet
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un role central dans la recherche dune logique pour P. La canonisation de graphe? est
un probléme de fonction, qui consiste a calculer une fonction de canonisation f. Une
fonction de canonisation est une fonction qui a tout graphe & associe I’encodage d’un
graphe isomorphe & &, avec la propriété supplémentaire que si & ~ §), f(&) = f(9).
Par analogie, une logique canonise les structures d’une classe C si une formule définit,
pour toute structure dans C, une structure ordonnée qui lui est isomorphe. Le théoréme
d’Immerman-Vardi a pour corollaire que, si £ > FP canonise les structures dans C, £
exprime toutes les propriétés dans P sur C. Ainsi, plusieurs résultats de capture partielle
ont été obtenus en montrant qu’une extension de FP canonise certaines structures. Par
exemple, FPC capture P sur toute classe de structures excluant un mineur [Grol7].

Le pouvoir de canonisation de FPC coincide exactement avec celui de ’algorithme de
coloration de Weisfeiler-Lehman, comme le montrent Cai, Fiirer et Immerman [CFI92].
Cet algorithme constitue un test d’isomorphisme partiel purement combinatoire. Cette
limitation a motivé le développement de méthodes plus puissantes pour tester I’isomor-
phisme de structures, en particulier I’'approche basée sur les groupes de permutations
initiée par Babai et Luks [Bab79; Luk82|, en proposant des algorithmes en temps po-
lynomial pour les graphes a classes de couleur bornées (Bounded colour-class graphs).
Cette approche accorde un role central au groupe d’automorphismes du graphe consi-
déré. A titre d’exemple, pour tester I'isomorphisme entre deux graphes & et $, il suffit
d’examiner le graphe disjoint & U §) et de déterminer si son groupe d’automorphismes
Aut(B L $) contient une permutation qui échange & et §) (en supposant, par exemple,
que les graphes sont connexes, quitte a considérer leurs complémentaires).

Dans le cadre de la canonisation d'un graphe & = (V, E), cette idée se traduit par
I'introduction d’une structure auxiliaire au cours du calcul progressif d’'un encodage
canonique de la structure donnée en entrée. Cette structure auxiliaire est un labeling
coset cA C Sym(V'), on A < Sym(V'). Au fur et & mesure que I’on restreint les potentiels
encodages canoniques de &, on actualise la valeur de oA de sorte que toute permutation
f € oA constitue un isomorphisme entre & et un de ces encodages canoniques. Bien siir,
ces restrictions successives doivent toutes étre canoniques, c’est-a-dire indépendantes
de 'ordre dans lequel les sommets de V' sont fournis en entrée. L’entretien d’une telle
structure de labeling coset permet justement une étude structurelle du groupe A, d’ou
de telles restrictions canoniques peuvent étre dérivées. En particulier, si A n’agit pas
transitivement sur V2, on peut définir un ordre canonique sur la partition de V? en
orbites, et canoniser I’encodage de & séquentiellement, orbite par orbite. Un mécanisme
similaire permet de traiter le cas ou l'action de A sur V2 est transitive imprimitive.
Lorsque aucun de ces cas ne se produit, on applique une recherche brute du labeling
coset minimisant ’encodage. Cette méthode de canonisation, introduite dans [BL83],
permet la canonisation de nombreuses classes de graphes en temps polynomial, en
utilisant la structure des classes en question pour produire une restriction initiale & un
labeling coset canonique. En particulier, les graphes de degré borné et les graphes a
coloriage borné (bounded colour-class graphs) peuvent-étre ainsi canonisés efficacement.

Cette bréve introduction a 'utilisation des groupes dans la recherche d’algorithmes
efficaces pour I'isomorphisme et la canonisation de graphes motive et précise 1'objet
de notre recherche : comment cet ensemble de techniques peut-il étre traduit dans une

20u de structures sur n’importe quelle signature, ces problémes se réduisant 1'un & I’autre par des
réductions de trés faible complexité



extension de FP 7 Quels obstacles I'invariance par isomorphisme dresse-t-elle dans la
représentation de ces structures, et comment peut-on y remédier ?

C’est a ces questions que nous avons commencé de donner une réponse dans cette
thése. Dans un premier temps, nous avons introduit et étudié une représentation des
groupes de permutations naivement adaptée de leur représentation algorithmique (cf.
Définition 2.15). Les algorithmes rapidement présentés plus haut tirent en effet parti
de la possibilité de représenter des groupes de permutations par des ensemble de géné-
rateurs de taille polynomiale. En effet, tout groupe G < Sym(D) admet un ensemble
générateur de taille O(| D|?). De plus, 'algorithme de Schreier-Sims [Sim70 ; Sim71] per-
met d’effectuer, en temps polynomial, plusieurs opérations primitives sur des groupes
ainsi représentés, parmi lesquelles le test d’appartenance, le calcul de I'ordre du groupe,
et enfin 'obtention d’un ensemble générateur (de taille polynomiale) pour n’importe
quel sous-groupe d’indice polynomial (& condition qu’on puisse reconnaitre ’apparte-
nance d’une permutation au sous-groupe en temps polynomial). Ces primitives sont
fondamentales a I'implémentation des algorithmes décrits plus haut. Cependant, la
procédure de Schreier-Sims dépend crucialement de la présence d'un ordre linéaire sur
le domaine D sur lequel les permutations agissent, et il semble impossible de définir
cette opération dans FP.3

Ainsi, ces opérations constituent des candidats naturels d’opérateurs a ajouter a
FP pour étendre son pouvoir d’expression au-dela de celui de FP + rk. En particulier,
le calcul de l'ordre du groupe généré par un ensemble de permutations admet une
définition relativement naturelle au sein de FP (cf. Section 2.4), et permet, dans FP,
de vérifier I'appartenance d’une permutation au groupe engendré par un ensemble de
permutations (cf. Lemme 3.2). Nous dénotons cet opérateur ord.

Au cours du Chapitre 3, nous initions 1’étude de la logique FP + ord, et de cette
représentation des groupes a I’aide de petits ensembles de permutations les générant. En
particulier, nous montrons les limites de cette représentation : si, comme mentionné plus
haut, tout groupe G < Sym(A) admet un ensemble générateur S de taille polynomiale,
ceci n’est plus vrai dés qu’on attend de S qu’il soit symétrique, i.e. qu’il respecte les
automorphismes de la structure dans laquelle G est définissable, au sens ou S7 = S
pour tout o € Aut(2) (cf. Théoréme 3.6). Pire, on peut construire une structure 2 ou
un groupe G < Sym(A) admet un ensemble de générateurs définissable dans FPC, o
H < G est accessible — au sens ou 'algorithme de Schreier-Sims permet de dériver
un ensemble générateur pour H a partir d'un ensemble de générateurs pour G — mais
tel qu’aucun ensemble générateur de H de taille polynomiale ne respecte les symétries
de 2. Intuitivement, ce résultat signifie que I'adaptation naive de la représentation
computationnelle des groupes de permutations se heurte en elle-méme aux limitations
de l'invariance par isomorphisme, et d’autres représentations sont nécessaires. Ceci
motive 'introduction de la définissabilité par morphismes en Section 3.3. Lorsque H <
G, si G admet un ensemble de générateurs définissable, ce formalisme offre une autre
maniére de représenter H : en définissant un morphisme m : G — K tel que ker(m) =
H. Dans FP + ord, si H; et H, sont morphisme-définissables depuis (=, on peut définir
leurs ordres, vérifier 'appartenance, et surtout, définir par morphisme depuis G le
groupe Hy N H,y. Cette nouvelle représentation des groupes de permutations jouera un

3Comme nous le verrons plus loin, on peut déduire I'indéfinissabilité de ces opérations dans FP +rk
de nos résultats
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role crucial dans le Chapitre 4. Enfin, nous montrons en section 3.4 que FP +ord définit
I'opérateur de rang rk, et ainsi, que FP 4 rk < FP 4 ord.

Le Chapitre 4 est consacré a la séparation entre FP + rk de FP 4 ord. Cette dé-
monstration s’appuie sur la récente percée de Lichter [Lic23|, séparant FP + rk de P.
Comme mentionnées plus haut, les structures employées par Lichter sont des structures
de CFI généralisées. En particulier, elles ont une propriété qui avait déja été étudiée
par Pakusa dans sa theése de doctorat [Pakl5] : on peut y définir (canoniquement)
un coloriage abélien (cf. Définition 4.1). Ainsi, nous démontrons dans ce chapitre que
FP-+ord canonise les structures a coloriage abélien, ce qui implique que FP+ord capture
P sur toute classe de structure ol un coloriage abélien est définissable, ce qui, avec le
résultat de Lichter, conclut la preuve de séparation entre FP + rk et FP + ord. Pakusa
avait déja démontré la capacité d’une autre logique (CPT) & canoniser les structures a
coloriage abélien. Sa démonstration employait I’algorithme de canonisation de Babai &
Luks décrit plus haut, spécialisé au cadre ici présent. Plus précisément, les coloriages
abéliens sont suffisamment restreints pour rendre superflu I'utilisation de 'imprimiti-
vité du groupe A, et il suffit d’employer la récursion liée a I'intransitivité. La difficulté
majeure a définir cet algorithme dans une logique réside dans la représentation des
labeling cosets. En effet, la représentation usuelle d'une classe a gauche par un repré-
sentant et un ensemble générateur est, par essence, non-invariante par isomorphisme.
En effet, le choix du représentant ne respecte pas les symétries de la structure consi-
dérée. De plus, si dans le cadre algorithmique (ou la structure donnée en entrée est
ordonnée), un labeling coset oA est un sous-ensemble de Sym(V'), ce n’est plus le cas
dans le cadre logique : en I'absence d’un ordre sur V', on ne peut représenter les labe-
lings que comme des fonctions f: V — {0, 1,...,|[V| — 1} (des étiquetages), et de telles
fonctions ne peuvent étre composées, ne constituant donc pas un groupe.

Pakusa avait surmonté cette difficulté en démontrant qu’il était possible d’encoder
les labeling cosets par des systémes d’équations sur des anneaux. C’est ici que notre
approche se distingue de la démonstration de Pakusa : notre représentation des la-
beling cosets reste plus proche des groupes de permutations. Plus précisément, nous
définissons un groupe G, définissable dans FPC (cf. Section 4.6), dans lequel se plonge
I’ensemble des étiquetages initiaux propre au coloriage abélien considéré. De plus, nous
montrons qu’a chaque étape de restriction du labeling coset, le sous-groupe sous-jacent
au nouveau labeling coset est définissable par morphisme depuis G. Ici, nous employons
une propriété supplémentaire des groupes définissables par morphismes : sim : G — K
définit H, alors les éléments de im(m) < K constituent des représentants des classes
a gauche de H dans G'; de plus, si m est définissable, cette représentation des classes
de H dans G est invariante par isomorphisme. C’est ainsi que nous représentons les
labeling cosets au cours de la simulation de 'algorithme de Babai & Luks.

Enfin, le Chapitre 5 étudie le cas particulier o, bien que le domaine des permuta-
tions ne soit pas ordonné, I’ensemble de générateurs du groupe lui-méme 'est. Cette
situation intervient, par exemple, dans le cas des structures a coloriage abélien. Nous
démontrons que FP + ord peut, dans ce cas, définir la troisiéme opération de Schreier-
Sims mentionnée plus haut. Pour ce faire, nous montrons que FP + ord peut simuler
I’algorithme de Schreier-Sims partiellement, en déléguant une partie de I'entretien des
structures de données nécessaire a 1’opérateur ord. Nous montrons aussi qu'un tel en-
tretien n’est pas nécessaire lorsque le groupe maximal est abélien. Curieusement, ceci
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implique que, bien que FPC ne capture pas P sur les structures de CFl, FPC définit
leurs groupes d’automorphismes.

Pour conclure, nous avons initi¢ 1’étude des groupes de permutations dans un
contexte logique, et nous avons montré les divers obstacles que l'invariance par iso-
morphisme engendre dans une telle entreprise. Pour les surmonter, nous avons di
employer extensivement les propriétés structurelles des groupes étudiées. Ceci suggeére
qu’une approche logique de la Théorie Computationnelle des Groupes nécessite un fon-
dement structurel, y compris pour concevoir des représentations adéquates des groupes
en question. Les groupes nilpotents, résolubles, ainsi que les groupes ne possédant pas
de sous-groupes normaux abéliens constituent des pistes potentielles d’extension de ce
travail.



A mes grand-parents
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Introduction

In Paragone |Vind9, p. 78|, Leonardo da Vinci draws the following comparison of po-
etry and painting: “There is the same difference between the poet’s and the painter’s
representations of the human figure as there is between dismembered bodies and undi-
vided bodies. Because the poet in describing the beauty or ugliness of any figure can
only show it to you consecutively, bit by bit, while the painter will display it all at
once.”

Unlike poetry, painting allows the artist to transmit, together with the image, the
immediacy of its impression. This immediacy is experienced by the viewer as a choice:
“the privilege of the image — opposed in that to text, which is linear — is that it
enforces no reading order” |Bar72, p. 100]*.

Trying to impose an ordering on our representation of some structure we know is
often detrimental to our intuition. For instance, I know by heart the telephone numbers
of a few elected loved ones. This set of records is a clear and definite structure in my
mind. However, trying to consider those records in any fixed order — e.g. first name
alphabetical — only obscures it, investing most of my mental effort not to miss someone.

Yet, the representations of data in computer architectures are ordered, having in-
herited the ordering that underlies all usual models of computation. To make up for
this limitation, we have devised encodings, functions that map structures of arbitrary
shape to integers on which the computers can carry out their operations.

This bears a societal cost: those encodings are complex, and their understanding
constitutes a barrier of entry to the design of algorithms. This may partially explain
why most users trust large companies with their data, and why software mostly pro-
vides “commercial ‘user journeys'—efficiently scripted interactions toward game-like
objectives that somebody else has defined for youl...|” [Bla24, p. 77].

Most user interfaces invisibilise encodings, and as a result of the gap between the
user’s and the machine’s representation of the data, any operation outside the scope of
the interface at hand requires technical knowledge. This state of affairs hinders most
users’ autonomy.

This prompts the question: can we produce a model of computation acting directly
on unordered data structures ? While coming up with a formalism which captures
all computable properties of structures is not difficult, refining this formalism as to

4Qur translation.



correspond to complexity classes — and in particular, to the class of tractable problems
— has shown quite hard to achieve, and is the subject of Descriptive Complexity.

In a seminal article [Fag74|, Fagin showed that the class of NP problems corresponds
precisely to those properties of structures that can be described in existential second-
order logic. This result prompted similar logical characterisations of various complexity
classes, a summary of which can be found in [Imm99]. Descriptive Complexity is the
study of complexity classes through this angle, looking for formalisms which capture
complexity classes, in the sense that the problems they are able to express are exactly
the problems that fall within that complexity class. This approach bears similarities
to the work that has been carried out on the Chomsky hierarchy [Cho59|: each type
of grammar has been successfully associated with a restricted model of computation
which enables the definition of exactly the same languages — for instance, any reg-
ular language is defined by a type-3 grammar, and can be computed by finite-state
machine [Kle56]. Another similar field is that of Implicit Computational Complez-
ity, which aims at defining restricted programming languages corresponding to various
complexity classes |Lag22].

The main difference between those two approaches and Descriptive Complexity is
that the latter aims to operate a shift of representation of computational problems,
from languages — sets of words, ordered sequences of characters, which ultimately
can be mapped to integers — to classes of relational structures. As such, it provides
a radically different context in which to think about computation, and the fact that
some complexity classes translate in this structural approach, while others seem not
to, seems to hint at a fundamental discrepancy between those complexity classes. On
a more practical level, capture results have implications on the design of Database
languages, as discussed in [AHV95, Part E|. This is also how Descriptive Complexity
applies to the societal problem presented earlier: if all-purpose computation is an in-
tricate concept, relying on encodings, recursion and control structures, “it is easy to
understand the conceptual underpinnings of the relational model, thus making rela-
tional databases accessible to a broad audience of end users” [AHV95, p. 29|.

The quest to identify a logic that captures P is a central challenge in Descriptive
Complexity. This question, which can be traced back to [CH82|, was stated in its
modern formulation by Gurevich [Gur88|. While fixed-point logic (FP) captures P
on ordered structures [Imm83; Var82| — which, through usual encoding techniques,
reduces to classical computation on words — no logic is currently known to capture
P in the unordered case. FP and its natural extensions, such as fixed-point logic with
counting (FPC), fail to capture P [CFI92]. This limitation of FPC was demonstrated
using the CFl-construction, a class of structures encoding the satisfiability of systems
of equations over the finite field Fy [CFI92].

To address these limitations, extensions of FP incorporating linear-algebraic oper-
ations, such as the rank operator (rk), have been proposed |[Daw+09; Holl0; Pak10;
GP19]. However, even FP + rk falls short of capturing P, as recently demonstrated by
Lichter [Lic23] through the use of a generalised class of CFl-structures.
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On the other hand, a lot of work has been devoted to partial capture results,
showing that on restricted classes of structures, extensions of FP are able to define all
P queries. For instance, Grohe showed that FPC captures P on any class of structures
which excludes a minor [Grol7|. Those results typically rely on the definition within
the logic at hand of a canonisation of the structures under consideration. Indeed, for
any logic extending FP, the Immerman-Vardi theorem implies that the definability of
a canonisation on a class of structures yields the capture of P on that class. This
motivates the study of canonisation algorithms, and their definability within candidate
logics for P.

Parallel to this investigation, significant progress has been made in the develop-
ment of efficient algorithms for graph isomorphism and canonisation through a group-
theoretic approach. This line of research has yielded polynomial-time isomorphism
and canonisation algorithms for various classes of structures [Bab79; Luk82; BLS&3|,
as well as Babai’s recent breakthrough that general graph isomorphism is solvable in
quasi-polynomial time [Bab16]. Notably, an early result in this area demonstrates the
polynomial-time canonisability of CFl-structures. This result generalises seamlessly to
the broader classes of CFl-constructions used in [GP19], or even in [Lic23] to separate
FP + rk from P. These findings underscore the potential of integrating group-theoretic
operators into FP to extend its expressive power.

This approach relies on the Schreier-Sims algorithm [Sim70; Sim71], which enables,
given a set of permutations, to compute the order, and to recognise elements of the
group generated by that set. It is arguably the most fundamental polynomial-time per-
mutation group algorithm, as it makes the very representation of groups by generating
sets of permutations relevant. However, this procedure relies on stabilising one by one
the elements of the domain on which the permutations act. This process thus depends
on an ordering of the domain of the permutation group at hand, and cannot be defined
in an isomorphism-invariant way, while its output is isomorphism-invariant.

This situation is quite similar to the one which motivated the introduction of the
rk operator: Gaussian elimination is inherently dependent on an ordering of the rows
and columns of the matrix at hand, yet the rank of the matrix is not. Note that, the
fact that FP 4+ rk is strictly more expressive than FPC implies that FPC indeed cannot
define Gaussian elimination, nor can it define the rank of a matrix by any other means.

In this thesis, we aim to introduce a novel group-theoretic operator, ord, computing
the order of a group generated by a definable set of permutations. Because the Schreier-
Sims algorithm enables the computation of this operation in polynomial-time, whether
a structure satisfies a formula in FP 4 ord can be decided in polynomial-time (in the
size of the structure). Thus, like rk, the ord operator defines the isomorphism-invariant
result of a polynomial-time algorithm whose computation inherently depends on an
ordering of the structure at hand.

The ord operator fills an interesting space within the algebraic extensions of fixed-
point logics that have been studied. In [Daw-+13|, the authors consider various solv-
ability quantifiers — expressing the satisfiability of definable systems of equations over
different algebraic structures, as abelian groups, fields, or commutative rings. In this
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work, the authors suggest a new permutation group membership quantifier, that sub-
sumes all the quantifiers considered in this article. The ord operator defines this quan-
tifier. Actually, the ord operator can be thought of as being to the permutation group
membership quantifier what the rk operator is to the field solvability quantifier. This
should be contrasted with the apparent absence of such a matrix rank operator in the
context of rings. Finally, note that further algebraic generalisations of those operators
— say, to monoids — would hit complexity barriers: the membership problem for a
monoid defined by a generating set is known to be PSPACE-complete [Koz77].

Even with this operator available, simulating group-theoretic algorithms within
FP + ord presents significant challenges due to the reliance of those algorithms on an
implicit ordering of the domain. One such challenge is the representation of cosets of
a subgroup within a larger group, both groups admitting definable generating sets. In
the computational context, such a coset could be represented by any of its element.
However, this constitutes a choice which is hardly isomorphism-invariant. As such, a
different representation of cosets is to be used in the logical context.

This is especially true with regards to graph canonisation. In this context, the
group-theoretic approach consists in the computation of a canonical labeling coset,
that is, a coset which contains all relabelings of the graph at hand into its canonical
copy. Building a canonical labeling coset rather than a mere encoding of the canonical
structure enables exploiting the structure of underlying permutation groups, but de-
pends on the existence of an ordering of the domain. Indeed, in the ordered setting, a
labeling is a reordering, and thus a permutation; while in the unordered setting, it is
a bijection from the domain to an initial segment of the integers, and those bijections
cannot be composed. Schweitzer and Wiebking [SW19] provide such a definition of
labeling cosets that accounts for the distinct nature of the structure’s domain and its
canonical numerical representation. However, their contributions remain algorithmic
and still rely on the traditional, order-dependent representation of labeling cosets.

Our contributions We provide a generic representation of sets of permutations in
extensions of first-order logic, and define the ord operator accordingly. Our main result
is that FP 4+ ord strictly extends the expressive power of FP + rk. Precisely, we show
that the rank of a definable matrix is definable in FP 4 ord, and that FP + ord captures
P on the class of structures used by Lichter to separate FP + rk from P. This result
has the direct implication that FP + rk cannot define the order of a group given by a
generating set, in the same way that FPC < FP + rk implies that FPC cannot define
the rank of a matrix.

We obtain this canonisation result by showing that, on CFl-structures, FP +ord can
simulate the graph canonisation algorithm defined in [BL83]|, using an isomorphism-
invariant representation of labeling cosets. This representation of labeling cosets relies
on a notion of morphism-definable subgroups.

A similar approach to the canonisation of CFl-structures was taken in [Pak15], where
the same algorithm is simulated in the context of CPT — another candidate logic for P.
However, the two results differ in the way labeling cosets are represented. In [Pak15|,
labeling cosets were represented as systems of equations over a finite ring. In the case
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of FP+ord, our representation of labeling cosets remains purely group-theoretic. While
this does not seem to directly allow generalisation of the classes of structures canonised,
it opens the door to new representation schemes for labeling cosets.

More generally, this thesis studies the adequacy of this representation of groups by
generating sets of permutations in extensions of first-order logic. We show some basic
operations on those representations to be definable in weaker extensions of first-order
logic, and we also show that another operation enabled by the Schreier-Sims algorithm
is to remain out of reach of FP+ord (and actually of any logic extending FO), as long as
we represent groups in this way. The operation in question consists in the computation
of a generating set for any subgroup of polynomially-bounded index of a larger group
for which a generating set is provided. The ability to derive generating sets for such
subgroups is a central part of the group-theoretic framework to graph-isomorphism.
This limitation actually underlines a nuance in our representation: a representation of
a group can be ordered, in the sense that the definable set of permutations generating
that group can be indexed on an ordered domain. We show that, in such a case, FP+ord
does define this operation of the Schreier-Sims framework.

While we do not expect FP + ord to capture P, our results suggest that FP + ord
represents a meaningful advancement in the landscape of logics for polynomial-time
computation. Moreover, many other operations on permutation groups are known to be
polynomial-time computable, many of them playing an important role in polynomial-
time Graph Isomorphism algorithms for broader classes of graphs. This first group-
theoretic logic for P sets the stage to study the relationship of those different problems
in an isomorphism-invariant context.

Outline of the thesis In Chapter 1, we review the usual notions of Descriptive
Complexity and Permutation Group theory which we will use throughout this thesis.
This includes the definitions of several extensions of first-order logic which will play a
part in our results, the introduction of notations, and the formal definition of a logic
capturing P, as set out in [Gur88|. Most of the group-theoretic notions introduced
in Section 1.2 follow usual nomenclature and notation. Our definition of accessible
subgroups (Definition 1.68), which is central in Chapters 3 to 5, is perhaps not as
common.

Because neither first-order logic nor FP provide a formalism for the definition of
functions, in order to define the ord operator as set out above, we must provide a natural
representation of permutations, and sets thereof within fixed-point logics. Chapter 2
is devoted to the definition of such a representation, and to the introduction of the ord
operator.

In Chapter 3, we initiate the study of FP+ord, and more generally, of the definability
of permutation group properties in extensions of first-order logic. In particular, we show
that FP 4 ord defines the permutation group membership quantifier mentioned earlier
(Lemma 3.2), and introduce our representation of morphism-defined subgroups, which
will enable — in the setting of Chapter 4 — an isomorphism-invariant representation
of labeling cosets. In Section 3.4, we show that FP +ord expresses the rk operator. This
draws on the notion of morphism-definability. Finally, in Section 3.2, we show that, in
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general, accessible subgroups cannot be represented by generating sets in FP 4 ord.

Chapter 4 is devoted to the proof of our central result: the separation between
FP +rk and FP +ord. As we rely on Lichter’s result [Lic23], we first introduce the class
of structures exhibited by Lichter to separate FP 4 rk from P. Then, Sections 4.3 to 4.7
are devoted to the canonisation of those structures within FP + ord.

Finally, in Chapter 5, we show that, if a group is provided by an ordered generating
set of permutations, its accessible subgroups admit a definable generating set, thus
showing that under this additional assumption that an ordering of the generating set is
provided, the result of Section 3.2 do not hold anymore. This proof relies on a partial
simulation of the Schreier-Sims algorithm within FP 4 ord. In particular, we exploit
the ordering on the generating set of the group to represent all cosets appearing within
the run of the Schreier-Sims algorithm.



Chapter 1

Preliminaries

In this chapter, we introduce the notations and material needed for the remainder of
this thesis. We first review notions from logic and descriptive complexity, and then
turn to Group Theory, and in particular algorithms on permutation groups.

In this thesis, we will assume the reader to be knowledgeable in complexity theory.
Our model of computation is the Turing Machine, with a constant number of work
tapes. Recall that L and P are the classes of problems decidable respectively in loga-
rithmic space and polynomial time on a deterministic Turing Machine. NL and NP are
the corresponding classes on non-deterministic Turing Machines.

1.1 Logic and Descriptive Complexity

As we have mentioned in the introduction, computability and logic share a common
history. While the two fields have, in a large proportion, grown apart since their fruitful
co-construction, numerous links have been drawn between the two in the last decades.
In this section, we provide a formal introduction to descriptive complexity, one such
connection between computation and logic.

For a function f : A — B and X C A, we write f;x for the restriction of f to X.

Structures, First-Order logic, Models

A signature (or vocabulary) 3 is a set of relation symbols and function symbols, each
associated with a non-negative integer, called the arity of this symbol. Relation symbols
are usually upper-case letters (R, S, E, ...), and lower-case letters (f, g, s, ...) are
function symbols. In particular, ¢ is only ever used as a function symbol of arity 0,
also called a constant symbol.

When presenting a signature, we often provide the arity of each relation in super-
script. For instance, ¥ := {R®) SW} contains a ternary relation symbol R, and a
quaternary relation symbol S. Given a symbol R, we also denote its arity ar(R).

Definition 1.1. A X-structure is a tuple 2 = (A, (R™) perers)s (f*) fefun(s)), where:

7



CHAPTER 1

e Ais a set, called the domain of 2, and denoted dom(A).

e For any relation symbol R in X, of arity k, R* is a subset of A*, that is, a k-ary
relation over A

e For any function symbol f in X, of arity k, f% is an element of 44", that is, a
k-ary function on A.

R* (vesp. f%) is the interpretation of R (resp. f) in 2.

The set of all ¥-structures is denoted STRUC[X]. As we will extensively refer to the
domain of structures, we adopt the following notation: all structures are represented
by upper-case, Fraktur characters (2, B, €,...), and their domain is represented by
the corresponding roman character (A, B, C,...). A structure is finite if its domain is
a finite set. The size of a finite structure 2 is the integer |A|, and we often denote it

R

Example 1.2. A (finite) graph is a (finite) { E'}-structure, where F is a relation symbol
of arity 2 (binary). Given a graph &, an element of G, the domain of &, is called a
vertez, and an element of E® is called an edge.

We aim to provide a general definition of a logic. However, it seems necessary to
first and foremost introduce first-order logic, as it is the skeleton of all the logics we
will consider in this thesis.! From now on, we fix a set of first-order variable symbols
X.

Definition 1.3 (Syntax of first-order logic). The set of first-order terms over a signa-
ture X is the smallest set Ty such that X C Tx, and for any t1,...,t{; € Ty and f a
k-ary function symbol in 3, f(t1,...,t) € Tx.

The set of first-order formulae over a signature ¥ is the smallest set FO[X] such
that:

e Forall ty,ty,...,tx € T, (t; = t3) € FO[X], and for any k-ary relation symbol in
Y, (R(ty,...,tx)) € FO[X]. Those formulae are the atomic formulae.

e For any ¢, 9 € FO[X], and z € X, FO[X] includes ¢ V ¥, p A, = and Iz, p

We also introduce Vz, ¢ as a shorthand notation for =3z, —¢. In a similar recursive
manner, one can formally define the set of variables occurring in any formula ¢, denoted
Var(yp). A variable x is bound in ¢ if x only appears quantified in ¢. A variable is free
if it is not bounded, and we denote free(¢) the set of free variables of p. A formula
without free variables is a sentence.

1One notable exception to this is Choiceless Polynomial time. However, this logic does not play
an important part in this thesis.
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Finally, we only consider formulae up to renaming of bound variables, i.e. 3z, E(z,y)
and 3z, E(z,y) are equal, while 3z, E(z,y) and 3z, E(x, z) are not.

We depart from tradition in our use of the notation ¢(Z). While this notation is
often used in the literature to provide information on the free variables of ¢, in the
context of this thesis, this notation will serve as a substitution mechanism. Given a
formula ¢ with = € free(y) and y a variable, we denote ¢[x/y] the formula ¢ where
each occurrence of x has been substituted by y. When defining a formula ¢, if the
tuple 7 is exhibited as follows

o(Z) == ...

then, for any tuple of variables i with |y| = |Z| = ¢, any occurrence of ¢(%) should be
read as
eley/yr, - xifyi]

This syntax is similar to the specification of arguments during the declaration of a
function in most programming languages (C, Java, ...). We will soon introduce a
similar formalism for second-order variables.

In order to improve the readability of large formulae, we often write the conjunction
C1 A --- A C} and the disjunction Cy V - - -V O}, as

C 1 Ol
: and @
Ch Ch

respectively. We will also use this notation in a nested fashion. For instance,

denotes (AN (B V By V Bs) NC A D).

For X C X and 2 a structure, a valuation of X over 2 is a function v : X — A.
Valuations extend naturally from variables to terms:

Definition 1.4. Let 2 be a Y-structure, ¢ € Ty and v be a valuation of free(t) over 2.
v*(t) the value defined inductively as:

e v*(x) :=v(x) for z € dom(v).
o v (f(ty,...,th) = fA(v*(t),...,v*(t1))
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Over a structure 2, a formula ¢ will take as value a set of valuations () C Afree(?)

Our definition of the semantics of FO requires a few basic operations on such sets
of valuations: given V C AY and X C Y, the restriction of V to X, denoted V x is
the set {v;x | v € V}. Conversely, the extension of V to Z DY is the set Viz :={v €
AZ | Uy S V}

Definition 1.5 (Semantics of first-order logic). The value of ¢ over 2 is a set of
valuations of free(yp) over 2 defined inductively as follows:

(tl = tg)(m) = {U free(tl) U free(tg) — A | v (tl) =" tQ

(R(t1,ta, ... t))(RA) := {v : Ufree(ti) — A | (0 (t1),...,v"(ty)) € Rm}

(e AY)(RL) = (@(Q{))Tz N (@D(Ql))TZ where Z := free(p) U free(v))

(e V) (A) = (p(A))rz U (¢(A))1z where Z := free(p ) U free(y)
(—p) () 1= AT\ ()

(Fz, 0)(RA) = (p(A)) 1 (trec(o)\{=})

Note that, when free(p) = (), ¢(21) is either the empty set, or the set containing the
empty valuation. We identify those values with the booleans false and true, respectively
; and write 2 = ¢ when ¢(2() contains the empty valuation. In the presence of a natural
linear-order on free(y), we identify (%) with a relation S C A*, where k = |free(y)|,
and (ay,...,a;) € Siff v, a,) € ©(RL), Where v(q,,.. q,) is the valuation of free(y) that
maps the i-th free variable of ¢ to a;.

.....

We will often need to consider formulae with second-order free variables. In the
context of FO, and for a given tuple of second-order variables X = (X1,...,X}) (each of
fixed arity ;) this entails, for a given signature X, to consider formulae in FO[XU{X}].
The semantics of such a formula ¢ is then the function

2A) : HP(A”) — Afree(®) 1)

(Rz)zgk —> QO(Q[, Rl, cee Rk)
Note that this function has a domain of exponential size. As we are concerned with
polynomial-time computations, we cannot expect to simply evaluate a FO[X]-formula

with free second-order variables. However, we can introduce a substitution mechanism
similar to the one we considered for first-order variables:

Definition 1.6. Given two formulae ¢, v, R a second-order variable, and ¥ a tuple of
first-order variables,

IR/ ¢)z]

is the formula v where every occurrence of R(%) is substituted by the subformula

v[7/4].
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A (finite) first-order theory T over a signature > is a (finite) set of first-order X-
sentences. Any theory defines a class of structures, called the models of T, and denoted
Mod(7), which are exactly the structures 2 such that, for any ¢ € T, 2 = ¢. Note
that if a theory 7T is finite, it is equivalent to the single formula A, ¢.

Example 1.7. Consider the { E£'}-theory composed of the following axioms:

Vo, ~FE(z, x)
Va,y, E(r,y) <= E(y,)

The models of this theory are exactly the undirected graphs with no loops: simple
graphs.

Definition 1.8. A class of Y-structures K is FO-definable if and only there is a first-
order theory 7 such that K = Mod(T).

We will now explain the ties between logic and computation studied in this thesis.
In this particular context, we are only interested in finite structures and finite theories.
Except when explicitly stated, Mod(7T) now denotes the set of finite structures mod-
elling 7. Finally, while we have defined structures and first-order logic on arbitrary
vocabularies, the presence of function symbols of positive arity induces technical issues
— mainly because the inductive definition of terms enables the definition of an infinity
of terms using a finite number of variables. We therefore follow the widely accepted us-
age to consider only signatures containing solely relations and constant symbols in the
remaining of this work. Note that, except in very restricted cases?, this does not alter
the expressivity of FO, as any k-ary function can be encoded as a k + l-ary relation,
interpreted as the graph of the function at hand.

First capture results

Descriptive complexity is the study the relation between the computational complexity
of a problem, that is the amount of resources (often time and space) needed by a Turing
Machine to solve it, and its logical complexity, that is, how complex a sentence defining
the problem must be. Indeed, both Turing Machines and sentences are finite objects,
that define an infinite object: in the case of a Turing Machine M over an alphabet
Y, the language accepted by M, L(M) C ¥* ; and in the case of a formula ¢ over
a vocabulary ¥, the set of finite structures 2 € STRUC[Y] such that 2 = ¢, that is,
Mod(¢p).

There are several motivations to descriptive complexity, and Immerman’s book [Imm99|
constitutes a thorough introduction to the field. In this section, we aim to present all
the results of descriptive complexity which are relevant to the work presented in this
thesis. Those results are mainly capture theorems, where an extension L of first-order
logic is shown to express a property if and only if the class of all structures satisfying
that property belongs to a specific complexity class C. We then say that £ captures

2For instance, when considering formulae with a constantly bounded number of nested quantifiers
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C. Note that, for such a statement to make sense, we need to introduce a translation
between words and structures, that works both ways.

Example 1.9. Fix a finite alphabet 3, and consider the following theory over {<
) (R'glfl))uex}:

Ve, <x

Ve,y,r <yhy<zxr = x=

Y gy v (< is a linear-order)

Ve,y,z,e <yANy<z = <z

Vo,y,v <yVy<x

Vo, N\ (Ru(z) A Ry(z))

uU,VED

vz, \/ Ru(z)

ueER

the relations R,, u € X, partition the domain

One can easily show that there is a bijection between ¥* and the isomorphism classes
of the finite models of this theory.

This allows us to compare the expressivity of FO on words and that of Turing
machines, and the contrast is stark: numerous basic problems, which are trivially
computable, cannot be defined in FO, for instance EVEN, the class of even-length
words, cannot be defined [Imm99, Proposition 6.45].

On the other hand, FO is well-behaved in aspects where sheer computability comes
short. First and foremost, its model-checking is decidable on finite structures. That is,
for any FO[X]-sentence ¢, there is a Turing Machine that always terminate, accepting
exactly those finite Y-structures 2 that model ¢. This problem (given a structure 2,
deciding whether 21 = ¢ for a fixed formula ¢) plays an important role in descriptive
complexity.

Actually, much better can be said about the computational status of this problem,
and we will now see that its complexity is very low. To state this, we need to define an
encoding (as words) of Y-structures. Let ¥ be any finite, relational signature, and fix
a linear-ordering of ¥ = {Ry,..., Ry, c1,...,¢}.

Definition 1.10. Let 2 be a finite YX-structure of size n. An encoding of 2 is a word
w € {0,1,0}* such that, for some bijection f: A — [n], w is of the form

w=1"0RMORYO...ORMDOSO. .. O

where, for all« < &, R?[’f is a word over {0, 1} encoding the relation R}; and for all i < [,
A/

7
of dimension d; := ar(R;), whose rows and columns are ordered according to f, that

contains value 1 at position (g, ..., Ag,—1) iff (f71(No), F1(A2),..., fF1(Ng,_1)) € R
This can be defined formally as follows:

RQ[,f (dlz_l nﬂ)\> = {1 ! (f_l(Ao)’ f_l()\Q)’ R f_l()‘di—l)) S R?[

0 otherwise

c;” is a word encoding ¢?'. R} is encoded as the concatenation of all the lines of an array

Jj=0
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A

¥ is encoded as a word of length n which contains a 1 at position j iff f(c}) = j.

This definition is cumbersome, and many schemes of encoding of structures could
be used instead of this particular one. The main takeaway of this definition is that we
can encode any structure as a word of length polynomial in the size of the structure,
the degree of this polynomial bound depending only on the signature of the structures
at hand.

Proposition 1.11 ([Imm99, Theorem 3.1]). For any FO[X]-sentence p, the language
L, of all encodings of all models of ¢ is in L.

While the termination of Turing Machines is undecidable, as is whether a Turing
machine uses logarithmic space, first-order logic can be used to define problems that
all belong to L. Even more so, the proof of Proposition 1.11 is constructive, and any
sentence ¢ yields a logarithmic space algorithm to check, given an encoding of 2,
whether 21 = o.

However, Proposition 1.11 leaves a lot of questions unanswered. As we have stated
above, FO cannot define the language of all even-length words, which is clearly in L.
From a complexity point of view, is there a characterisation, within L, of the languages
which are FO-definable? Conversely, is there a logical characterisation of L? What
about higher complexity classes?

Surprisingly, all those questions have been answered in the positive, and most nat-
ural complexity classes are captured by extensions of first-order logic. As we lack a
unified definition of all complexity classes, we cannot provide a systematic and formal
definition of this notion of capture. Intuitively, a logic L captures a complexity class
C if the model-checking problem for £ is in C ; and given any class K of ¥-structures
whose encodings form a language in C, there is a formula in £ defining K.

Fagin’s theorem

The first such result is Fagin’s theorem, yielding a capture of NP. To be perfectly
precise, we should define second-order logic formally, while this logic is outside the
scope of this thesis. Let us just provide an idea of this formalism: second-order logic,
denoted SO, is the extension of first-order logic where we allow the quantification of
relations within a formula.

SO3 is the fragment of SO where all occurences of second-order quantifiers are
existential, and within an even number of negations.

Theorem 1.12 (Fagin |Fag74]). A class of structures KC is SO3-definable iff the lan-
guage Ly of all encodings of structures in IC is in NP.

As a side note, all the classes X, IT in the polynomial hierarchy (introduced in [Sto76]
also discussed in [AB09, chapter 5|) are captured by the fragment of SO with the
adequate alternation of second-order quantifiers.
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Captures below NP

Many weaker extensions of FO have been considered and shown to capture complexity
classes below NP. Often, those extensions of FO are restrictions of SO, restrictions that
allow to construct new relations, but only through certain operations, which enable the
evaluation of those relations under stricter complexity assumptions.

A first example of such operators are transitive closures:

Definition 1.13. A binary relation X C A x A is transitive if for any a,b,c € A,
X(a,b) and X (b,c) implies X (a,c). It is symmetric if for any a,b € A, X(a,b) iff
X(b,a).

Definition 1.14. Let A be a finite set, and X C A x A (i.e. a binary relation on A).
The transitive closure of X is the smallest binary relation tc(X) C A x A, such that
X C te(X) and te(X) is transitive.

The symmetric transitive closure of X, denoted stc(X) is the smallest such relation
that is also symmetric.

This set-theoretic operation can be added to FO in the following way: let ¢ € FO[X]
with {7, 7} C free(y), {Z} N{y} = 0 and k := |Z| = |y]. For any structure 2, and
any valuation v of free(p) \ {7, 7}, the set (p() N {v}1tree(p))iz,5 Of valuations of
{Z, 4} on A compatible with v that satisfy ¢ is a subset of A%* = A* x A¥3 We aim
to define operators tc and stc, compatible with the syntax of FO, that take as input
such a formula ¢, together with the variables 7,7y, and evaluate, on any structure
2 together with a valuation v of free(¢) \ {7, 7}, to te((@(A) N {v}re@) iz n) and
ste((p(2A) N {v}ee®) ;) respectively. Formally:

Definition 1.15. The set (FO + tc)[X] of FO + tc formulae over a signature X is the
smallest set such that:
e FOX] C (FO + tc)[X].

o If o € (FO+tc)[X] with free(p) = {7, ¥, P}, then (tczzp) € (FO+tc)[X], and has

—

free variables &, v/, p.

In this last case, for any valuation v of p;

(tes o) (2, 0) = te((P(2) N0 {0 seee) ) 1z.4))

Example 1.16. Consider ¥ = {E} the signature of graphs, & a X-structure, and a, b
two vertices of &. The formula

ustcon(s,t) := (tc,yx =y V E(z,y) V E(y, x))(s,t)

holds on (&, a,b) iff @ and b belong to the same connected component of &.

3Note that, to identify the set of valuations of Z, over 2 with a 2k-ary relation, we have used
the natural linear-order that the tuples Z, i define on {Z, i}
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The definition of FO + stc is identical, replacing each occurrence of tc or tc by stc
or stc, respectively. Additionally, a structure 2 is ordered if its signature contains the
relation symbol <, and 2 satisfies the first three axioms given in Example 1.9.

The following holds:*
Theorem 1.17 (|[Imm99, Corollary 9.22]). FO+tc captures NL over ordered structures.

Theorem 1.18 ([Imm83, Theorem 3.3 (b)| and [Rei08|). FO + stc captures L over
ordered structures.

In both cases, we can be a bit more precise. The model-checking of a sentence in
FO + tc (resp. FO + stc) is always a NL (resp. L) problem. In the other direction, a
linear order on the domain is needed to encode and describe the computation within a
formula.

Last but not least, another similar capture result is known for P.

Definition 1.19. Let A be a finite set, and let f : P(A*) — P(AF) be a monotone
function (w.r.t. inclusion). Then, there exists a minimal integer 7" such that f7+1) =
f™ and T is polynomially bounded by |A|. The least-fized point of f is the set f1)(())
denote LFP(f).

Moreover, if f is computable in polynomial time (w.r.t. |A|), LFP(f) is too, as the
monotonicity of f yields T < |AlF. Once again, we aim to extend FO with such an
operator allowing the definition of fixed-points. While, in the case of tc, the operator
takes as input a formula ¢ to define a 2k-ary relation, in the context of LFP, we need a
formula to define a higher-order function, mapping a relation R of arity k to a relation
of arity k. This is achieved by considering a formula ¢ with a second-order free variable
R of arity k, and k free variables. Then, for any structure 2,

fg : P(AF) — P(AF)
X — o, X)

In this definition, we are using the semantics of formulae with second-order variables,
as defined in Eq. (1.1). This yields the following logic:

Definition 1.20. Fixed-point logic, denoted FO+I1fp or FP, is the logic whose formulae,
for a given signature X, are the smallest set FP[X] such that:

e FO[X] C FP[Y]

e Given a k-ary relation symbol R not in 3, a formula ¢ € FP[X U {R}] in which
R occurs only positively, and any tuple of variables Z such that || = k,

(lpr,j‘QO) (th s ’tk)

is a formula of FP[X], for any terms ti, ..., .

4Note that the second result depends on the fact that SL = L, as proven by Reingold.
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Given a Y-structure 2, ((fpg z0) (£))(2A) is the set of all valuations v of free() \ {Z} U
free(t) such that:
v*(t) € LFP(fG)

Example 1.21. Recall Example 1.16, where we provided a FO + tc formula for weak
connectivity in graphs. Given a graph & and vertices a, b, the same relation can be
defined in FO + LFP as follows:

ustcon(x,y) := (fpg s =tV Ju, E(s,u) A R(u,t))(v,y)

In Definition 1.19, we have assumed the function f to be monotone w.r.t. inclusion,
that is, for any X,Y, if X C Y then f(X) C f(Y). This is needed to ensure that a
fixed-point is reached in a number of iterations bounded (polynomially) by the size
of the domain of the structure at hand. Moreover, such a restriction can be enforced
syntactically (as in Definition 1.20), by only allowing the lfpj ; operator to apply on
formulae ¢ where R appears only positively (i.e. within an even number of negations).
Note that there is another way to ensure a polynomial bound on the number of itera-
tions needed for f to reach a fixed-point, namely, if f is inflationary, i.e. for any X,
X C f(X). This allows an alternative fixed-point operator to be considered where,
instead of a syntactic restriction to monotone functions, a semantic restriction to in-
flationary functions is enforced. Formally, we can consider the operator ifp, such that,
for any relation symbol R, for any tuple & such that |Z| = k and any formula ¢,

(ifPR,fSD)
is a k-ary relation. The semantic of this operator is as follows. Given a »-structure 2
and a formula ¢ € L[X U {R}], ((ifpgzp))(R) is the set of all tuples @ that belong to
the least fixed-point of 72, where

To P(AR) = P(A)
X = XUp®,X)

One can easily see that, as in Definition 1.19, an easy combinatorial argument ensures

that iterative applications of f, reach a fixed-point in a polynomially-bounded number
of iterations.

Those two different ways to define a fixed-point operator turn out to yield equiv-
alent extensions of first-order logic [GS86], and we will therefore use both operators
interchangeably, depending on which is more convenient in the situation at hand. The
next theorem plays an important role in the remainder of this thesis:

Theorem 1.22 (Immerman-Vardi [Imm86; Var82|). FP captures P over ordered struc-
tures.

Simultaneous (inflationary) fixed-point In Chapters 4 and 5, we will use a more
general form of the ifp operator, that we define now. Suppose that we now consider
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a family of relation functions fi,... fi, each taking as input an identical family of
relations Ry, ... Ry over a domain A, and such that the arity of f;(Ry,..., Rg) is equal
to the arity of R; (for all i < k). Then, mapping (Ry,..., Rg) to

(Rl U fl(Rl, Ce ,Rk),RQ U fg(Rl, C ,Rk), .. ,Rk U fk(Rb C ,Rk))

is an inflationary function (w.r.t. inclusion component-wise) from []r_, P(A*U9) to
itself, and as such the least fixed-point of (f1, fa,..., fx) is, in this case also, com-
putable in polynomial-time. More importantly, this kind of simultaneous fixed-point
are definable using the lfp operator.

We first define this simultaneous fized-point operator. Given ¢, ..., ¢ formulae,
cach with second-order variables amongst { Ry, ..., R}, and (7});<; a family of tuples
of first-order variables, such that Let A := ar(R;). For any tuple (¢1,...,t)) of terms,

/l/} (S_lfpaj17R17m27R2 ﬂ% Rk(bl’ ¢27 ) ¢k>(t17 A 7t>\>

-----

is a formula whose free variables are

k A
V = J(free(¢:) \ {a:}) U ] free(t;)
i=1 1=1
For any structure 2, and any valuation v of V, (¢1, ..., ¢x) defines a tuple of functions

as above, that is,

k
H Aar _>73(AarR))
", X) s Xi U o2, 0, X1, X).

A, v = if v*(ty,...,t)) € Z1, where (Z1, ..., Z) is the least fixed-point of the simul-
taneous iteration of the functions f7,... f7, starting with X; = ) for each i < k.

As demonstrated in [EF95, Theorem 8.2.2] (together with the result of |[GS86]
mentioned above), any formula in FO + s-ifp is equivalent to a formula in FP. As
such, we will freely use the s-ifp operator, as it allows for more readable formulae in
Chapters 4 and 5.

Partial fixed-points The above definitions of the lfp and ifp operators raises an
interesting question. Indeed, both those operators introduce a discrepancy between
the definition of FP and the whole of polynomial-time queries on structures: while any
fix-point computation that requires a polynomially bounded number of iterations can
be computed in polynomial time®, only those fix-point computations which are either
monotone or inflationary can be defined in FP. As such, one can wonder whether this
limit factually hinders the expressivity of FP. In order to present the answer to this
question, one additional logic has to be presented: partial fixed-point logic.

5Tf, of course, the function to be iteratively applied is itself polynomial-time computable
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Definition 1.23. The partial fized-point operator, denoted pfp, associates a k-ary
relation to any X U {R} formula ¢ with £ = ar(R) free variables xy,...z; and any
Y-structure 2. This relation is denoted

(PP R z0) ()

Its semantics is as follows: consider the function

f2P(AF) - P(AY)
X = o, X)

If successive iterations of f3 on () reach a fix-point Y, (pfpp ¢)(2A) =Y, otherwise,
(Pfppzp) = 0.

That is, the pfp operator enables any fix-point computation, even those that re-
quire a super-polynomial number of iterations. As such, it is quite intuitive that the
corresponding logic exceeds the complexity of P:

Definition 1.24. Partial fized-point logic, denoted PFP is the logic FO + pfp, defined
in the same manner as FP = FO + Ifp in Definition 1.20.

Theorem 1.25 (|Var82]). PFP captures PSPACE over ordered structures.

While neither of those capture results (Theorems 1.22 and 1.25) extend to the case
of unordered structures (as we will see for FP in the following subsection), interestingly,
separation results do transfer from the unordered setting to the ordered setting:

Theorem 1.26 (Abiteboul-Vianu theorem [AV91]). Over arbitrary structures, FP =
PFP iff P = PSPACE.

This result can be strengthened to answer the exact question we asked at the
beginning of this paragraph: denote PFP | poly the fragment of PFP where the pfp
operator can only be applied to formulae whose fixpoint is reached in a polynomially-
bounded number of steps. Note that PFP | poly corresponds precisely to the class of
queries we mentioned at the beginning of this paragraph. In [AV91], the following is
shown about this class:

Theorem 1.27 (Theorem 3.3 in [AV91]). Over arbitrary structures, FP = PFP [ poly
iff P = PSPACE.

As such, there are strong reasons to believe that arbitrary fixpoint computations of
polynomially bounded iteration length are not definable in FP.
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The importance of being ordered

There is an important discrepancy between Fagin’s theorem and the other capture
results we have presented : the latter require a linear order on the structures at hand.

More precisely, the logics FP,FO + tc and FO + stc fail to capture the corresponding
complexity classes in the unordered seting, as they are still unable to define the EVEN
property [CH82|. While such a small difference might seem innocuous at first, it
drastically reduces the impact of capture results, and we now provide a few reasons
why.

First, this weakens the abstraction provided by Descriptive Complexity. Beyond
computation models, time and space resources, unordered capture results enable a
shift in the way we think of a computational problem. While strings and languages
form a unifying setting to define all problems, they often shadow the fact that the
problems at hand concern structures (graphs, relational tables, ...), and the intuition
behind the best algorithms are often structural insights. Being able to reason directly
on the structure, without an encoding, is another layer of encoding enabled by Fagin’s
theorem in the context of NP.

Moreover, the need to provide a linear order on the structure at hand to ensure that
FP is expressive enough to capture polynomial time raises the question of how dependent
on this ordering is the value of a given formula. Consider a formula ¢ € L[¥ U {<}]
(for some logic £). We say that ¢ is order-invariant if, given a Y-structure 2, and any
two linear-orders <;, <5 over A,

& <iF @) = @, <= 9)

Unfortunately (although expectedly), such a question is undecidable, and the class of
FO formulae over ordered structures which are order-invariant is not recursive [Gur88].

Finally, another motivation to find logics corresponding to complexity classes in the
first place is that reasoning about logical sentences is often easier. For both FO and
FP, we have strong inexpressibility results, relying respectively on Ehrenfeucht-Fraissé
games, and pebble games. The presence of a linear order disables those tools. We do
not introduce those tools any further, as they are not relevant to our study. However,
we refer the reader to [EF95] for an introduction to both.

The quest of a logic for P

Having introduced our motivation to find a logic for P, we now give a quick overview
of the research on the topic. Let us first provide a formal definition of what a logic
capturing P should be. While we can trace this notion as far as [CH82|, it was stated
in its modern form by Gurevich. We reproduce this definition quite faithfully:

Definition 1.28 (|Gur88|). A logic L is a pair of functions SEN, SAT such that, for
any signature :

e SEN(X) is a recursive set. Its elements are the £-sentences on X.
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e SAT(X) C {(2A,¢),A € STRUC[X],p € SEN(X)} is also recursive. Moreover, it
is isomorphism-invariant, that is, if A ~ B, for any ¢ € SEN(X),

(2, ) € SAT(S) <= (B, p) € SAT(Y)

For ¢ € SEN(X), let Mod(y) := {21 € STRUC[X], (A, ¢) € SAT(X)}. L captures P if
the following conditions hold:

e There is a Turing machine that, on input ¢ € SEN(X), outputs a pair (M, p),
where M is itself a Turing machine, and p a polynomial, such that M accepts
exactly all the encodings of all structures in Mod(y). Moreover, M runs in time
bounded by p.

e For any class of ¥-structures IC such that, L € P, there is a sentence ¢ € SEN()
such that Mod(p) = K.

As we have stated above, FP does not express EVEN, which, for any ¥, is the class
of ¥-structures with even-sized domain (this is easily shown using pebble games, and
a proof can be found, for instance, in [Imm99]).

In this context, a quite natural idea to extend the expressivity of FP is to add
to its syntax a counting mechanism. There are many ways to define this mechanism,
with subtle differences. Before introducing FPC formally, let us give an intuition of its
definition.

Consider, for a structure 2 with domain A, the numerical domain of 2, is the
{<}-structure
AT = ({07 SR |A|}7 SN)

We can add to any Y-structure 20 its numerical domain, and consider formulae of
FP[X U{<}]. The Immerman-Vardi theorem ensures that all P computable arithmetic
functions can be defined on A<. Moreover, since, for any isomorphic structures 2, 8,
they have the same numerical domain, this does not break the isomorphism-invariance
condition in Definition 1.28. At this point, this extension only enables arithmetic on
the size of the structure, however, we can easily represent numbers up to |A|? using
k-tuples from the numerical domain: for each k, let

k 7
(ﬁ) <lex (77) = \/ (/\ Hy = Vj) A pi <V

i=1 \j=1

While <., is defined with a different formula for each different size of tuple, we refer to
<lee in the same way to improve readability. Any integer N < |A[* can be represented
by the unique k-tuple @ on A< such that

{b <4eq @} = N.

Note that this representation corresponds exactly to the decomposition of N in base
|A| + 1. Because <., is a linear-ordering on (A<)* (for any k), the Immerman-Vardi
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theorem once again ensures that all polynomial-time computable arithmetic properties
can be defined in FP on integers less than |A|* using this representation.

In order for this new numerical sort to enable the expression of new properties of
structures, we aim to introduce a generic counting mechanism, which can be done using
a counting quantifier. For any structure 2 and any formula ¢, (#Z,¢) is a tuple of
terms of size |Z|, representing the integer [{@ | (A, a) E ¢}

We now provide a formal definition of FPC:

Definition 1.29 (Syntax of FPC). Fized-point logic with counting, denoted FPC, is
defined on any signature ¥ such that (<) ¢ 3. In that context, FPC[X] is the smallest
set of formulae such that:

e FP[X U {<}] C FPC.

e For any FPC[X] formula ¢, and & a tuple of variables, (#Z, ) is a tuple of
FPC-term, with free variables free(y) \ {Z}.

Given a Y-structure 2, let
Q[+ = (A L [0, ey ’AH, (Rm)RGE, SN)

When ¢ € FPC[X], ¢(2() is the set of valuations of free(¢) over AT that satisfy ¢, in
the sense of Definition 1.5, with the following additional rule for the interpretation of
terms: if v is a valuation of free(y) \ {7}, let

N, = [(o(A) N {0 ree(o)uiz)) 1zl

(that is, N, is the number of extensions of v to & which satisfy ¢). Then, v*(#Z, @)
is a tuple of elements in A<, the i-th one taking the value of the i-th digit in the
decomposition of N, in base |A| + 1.

Example 1.30. Recall the formula ustcon on { E'}-structures defined in Example 1.21.
We now provide a FPC-term which evaluates to the number of connected components
in a graph &.

First, the Immerman-Vardi theorem ensures that, for any numerical FPC-term ¢
with free(t) = i, all numerical variables, FPC defines a term ¢* which evaluates to

Y icnr LA D).

For any i« < n,

cc#size(i) := (#x, (#y, ustcon(z,y)) =1i)/i

is a FPC-term which counts the number of connected components of size i. As such,
n
CCH# = Z cc#size(i)
i=1
evaluates on any graph & to the number of connected components of &.
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This presentation of FPC is a direct reformulation of [Ott17]. There is an alternative
definition of FPC, where the numerical sort is defined entirely through the semantics
of the logic, rather than by considering evaluations over 2. In this case a single
numerical variable can store arbitrarily large numerical values, and no encoding scheme
is needed to store such a large numerical value within a tuple of numerical variables.
On the other hand, this unboundedness of values taken by numerical variables implies
that, in order to maintain polynomial-time computability, a polynomial bound on
quantification of numerical variables must be syntactically enforced in the traditional
presentation of FPC. This alternative presentation is used, for instance, in [Dawl5|.
All in all, both presentations have merits. However, our need in further chapters to
consider permutations over A< makes our presentation more convenient in our setting.

We will respect usage, and follow further conventions when writing and handling
formulae. First and foremost, we separate domain wvariables, which range over A,
composed of domain elements, and numerical variables, which range over A<, the set
of numerical elements. This distinction constitutes the type of a variable.

When reasonable, we keep distinct names for domain variables (for instance z,y, z)
and numerical variables (for instance n, k, i, v, ). However, for reasons to become clear
in the following chapters, the strong separation of variable symbols can often bear a
cost on readability. In particular, we will often consider tuples of variables of the form
Z, and it is often convenient to consider such tuples containing different types.

We define the type of a tuple & of variables, denoted type(Z) to be the unique word
w € {element, number}* such that x; is a domain variable iff w; = element. If a type
belongs to {element}*, it is called plain We often need to consider the set underlying
all potential valuations of a tuple Z. We therefore denote A"P( the set H'i'l Atype()i
where Aclement .— A and Arumber .— A<

We now allow types instead of arity in the definition of signatures. For instance,
if a relation symbol R has type (number, number, element), any interpretation of R on
A should be a subset of A< x A< x A. Finally, we overload this notation to relations

themselves, so that if X is a relation over 2", type(X) is the unique type-word such
that X C Atype(X),

If a signature ¥ contains one or more non-plain relation symbols, it should also
contain a binary relation <, and we expect Y-structures to interpret < as the linear-
order over the numerical sort. In other words, to consider structures with numerical
relations, we expect the numerical sort to be provided within the structure.

Recall that Theorem 1.27 states that polynomially-bounded iteration of arbitrary
formulae (as in the definition of the pfp operator) is unlikely to be definable in FP,
as that would imply P = PSPACE. The picture is different in the context of counting
logics. Denote PFPC the logic PFP augmented with the counting operator, and PFPC |

poly the fragment of PFPC where the pfp operator can only be applied to formulae
whose fixpoint is reached in a polynomially-bounded number of steps.

Theorem 1.31 (Theorem 4.21 in [Ott17]). FPC = PFPC | poly
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That is, FPC can simulate arbitrary fixed-point computations, as long as this simu-
lation lasts for a polynomially-bounded number of iterations. Because this result plays
a part in the proof of our results in Chapters 4 and 5, we provide a construction of this
simulation:

Proof. Let p(R, ¥) be a ¥-formula such that, for any S-structure 2, the sequence (X}?)
defined by X' = 0, X, := (2, X}') reaches a fixed point in time bounded by |A|%.
Consider the following formula (T, ji, ), where [i is a d-tuple of numerical variables,
and type(T) = number? - type(R).

i >0
o vy, ﬁT(ﬁa ?7)
(T, 7) =@ S S
V7,0 <jep V <iex § = 39, T(V,7)
31,7 = 17 + 1A (R, )[R(@) /T (7, @)
We claim that (ifpg, ; ;4) defines the trace of the sequence (X7') up to |A|, that is, the
relation 7j44(X7}), where

Te(XP) = {(i,a),a e X} i <k}

(where i is encoded as usual). We show this by induction on the number of times v
is applied within the ifp definition. That is, let (Y;*) be the sequence of relations on
2 defined by Y := 0 and Y2, := Y2 U (2, Y;*). We claim that, for any & < |A|“,
Y2 = Tip(X?). This is obviously true for & = 0. Now, proving the induction step
amounts to show that

Te(X7) U (Te(XD)) = Ten (X7).

If we first exclude the case where X' = () for some ¢ > 0, remark that the only possible
value of 1 satisfying all the conjuncts in the definition of 1 evaluated on T(X}) is the
unique 1m which encodes k. As such, the only tuples (i, Z) in ¢ (2, Tr(X)) are those
where ji encodes k + 1, and & € (2, S), where S is the k-component of T;(X?). But,
by definition of 7, S = X, and thus (f,Z) € ¥(A, To(X})) iff i encodes k + 1 and
T e X,f‘ﬂ, which yields the desired result. Now, if for any 0 < k < |A|?, X} = (), then
Y2, Ti(X?)) = 0 and a fixed-point is reached immediately. This is coherent with the
fact that we have just witnessed a loop in the partial fixed-point computation of ¢,
and as such the pfp operator would evaluate to the empty relation.

Finally, we can retrieve the |A|? — 1 component of 7/4«(X7') to obtain the result of
|A|¢ — 1 iterations of ¢, starting from ():

result(7) := (ifpy.0(T, 1, )(|AI ~ 1.7)
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The trace argument presented in this proof will be used several times in the following
chapters.

Cai, Furer and Immerman [CFI92| showed that FPC fails to capture P, by introduc-
ing structures which can be distinguished in the latter but not in the former. Those
structures became known as Cai-Fiirer-Immerman structures (or CFI-structures for
short), and play an important part in the quest of a logic for P. They will be discussed
at length in Section 4.1.

The separation between FPC and P led to the introduction of new candidate logics
for P. In [BGS97], the authors define Choiceless polynomial time (CPT for short) which,
while it conforms to Gurevich’s definition, requires explicit bound on the computation
time. While CPT is an important object in this field of research, its definition is some-
what tedious, and is not relevant to our work. We therefore refer the interested reader
to [DRRO8; Ros10| for a formal definition of this logic. An interesting characterisation
in terms of sequences of interpretations was given recently in [Gra+15]. Let us mention
that CPT is known to extend FPC [BGS97], and to express the CFI-property [DRROS|.

Another extension of FPC was introduced by Dawar et al. [Daw+09], motivated by
the observation that the CFI problem reduces to deciding the satisfiability of a system
of linear equations over the two-elements field. In this article, they introduce the rk
operator, a generalisation of the counting quantifier, that enables the definition of the
rank of a definable matrix. We assume the reader to be familiar with linear algebra,
and only remind that if M € K>/ is a matrix over K, the rank of M, denoted rank(M)
is the dimension of the vector space {M - v,v € K'}. Gaussian elimination enables
the computation of the rank of a matrix in polynomial time. For p a prime number,
we denote I, the prime field with p elements. For M € Z/ we denote rank,(M)
the rank of the matrix M, in IE‘II,, where M, is the matrix whose coefficients are the
residuals of M modulo p.

Definition 1.32. A relation R C X x X x N is said to define a matriz over X if, for
all z,y € X, there is a unique m,, € N such that (z,y,m,,) € R. Mp = (May)syex
is the matriz defined by R.

When such a relation R is definable by a formula within FPC, the rk operator
enables to define its rank, over any prime field F,, (with p < ||):

Definition 1.33. (FP+rk)[X] is extension of FP the smallest set of formulae such that:

o FP[X] C (FP + rk)[3]

e Given a formula ¢ € (FP + rk)[X], two tuples of variables &, i of same type, and
one additional tuple of numeric variable 7,

is a tuple of numerical term in FP + rk of size |Z|, and free variables free(y) \
{Z,y,7}.
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For such a formula ¢, a structure 2 and a valuation v of all free variables in ¢ except
{z,7},
U*(I’kfg’ﬁ(p) = rankv(ﬁ)(MR)

where v(7) is the integer represented by the tuple of values

(v(my),v(ma), ..., v(my)),

and Mp is the matrix defined by (©(2) N Vtpee(y))12,5- If ©(2A) does not define a matrix
in this way, the value of the rk term is 0 by convention. We call rk the rank operator.

Note that, if Z, i/ are composed only of numerical variables, the whole matrix defined
by ¢ is ordered, and the Immerman-Vardi theorem ensures that FPC can define its rank.

Note also that this definition is not exactly the one presented in [Daw-+09]. A
first innocuous difference is the way in which we encode matrices. In the original
presentation, ¢ was supposed to be a numerical term. A second, more important
difference, is that in [Daw+09]|, the parameter p was not a variable, but rather part
of the operator, while here, the size of the field on which the rank computation is to
be done is dynamically selected within the logic. We call the former the non-uniform
rank operator, and the latter the uniform rank operator. It was shown in [GP19] that
the non-uniform version is strictly weaker than the uniform one.

In [Daw+09], the authors showed that FP + rk expresses the CFI-query. Moreover,
the counting quantifier can easily be simulated using the rk quantifier. Therefore,
FPC < FP + rk. Quite recently, Lichter |Lic23| showed that FP + rk does not capture
P. This separation result will be discussed further in Chapter 4.

Having given a satisfying overview of the research question studied in our work, we
complete our introduction of the descriptive complexity notions used in this thesis.

Reductions, interpretations, generalised quantifiers

In Chapter 2, we will introduce another extension of FPC, through another operator. To
avoid defining it in the same tedious way as we have defined the counting quantifier, and
the rank operator, we now introduce a uniform framework to define further extensions
of FO: generalised quantifiers. As we will see, this formalism of generalised quantifiers
happens naturally as we spin the metaphor between computational complexity and
logical definability.

First and foremost, a fundamental notion of complexity is that of reduction. Let
us show how this notion translates in the descriptive complexity setting.

A (many-one) reduction between two languages £ C ¥* and M C Q* is a function
f:X* — Q* such that, for any word w € ¥*, w € L < f(w) € M. fis a P (resp.
L)-reduction if it is computable in polynomial time (resp. logarithmic space). We are
usually interested in low-complexity reductions. Reductions are pervasive in complexity
theory, as they allow the definition of problems complete for a class. While first-order
logic seems well-equipped to define decision problems, it is not the case for function
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problems. Actually, with our definition of the semantics of FO (Definition 1.5), we can
define functions from A to A* for any fixed k, which is not so far from our objective.
However, we would expect our formalism to enable the definition of functions from
Y-structures to =Z-structures, for any couple of signatures (X,Z). The notion of FO-
interpretation covers exactly that, while also allowing the domain of the structure to
change in FO-definable ways.

Definition 1.34. Given a Z-structure 2, a congruence on 2l is an equivalence relation
~ over A such that, for any R € Z, and any @, b € A*(®) such that a; ~ b;,

icRY — beR¥
If ~ is a congruence on 2, A/ ~ is the =-structure € defined as follows:

e O =A/~

e forall R € =, Rt = Lar(R)(Rm)
where ¢}, is the component wise canonical injection from A* to C*.

It is useful to state the definition of interpretations in a general way, for any logic
L extending FO. Note that here, our definition of a logic is slightly less general than
in Definition 1.28: we expect £ to have a notion of free variables, which enables the
definition of relations, and not only boolean queries. All the logics considered in this
thesis have this property.

Definition 1.35 (L-interpretation). Let X, = be two signatures such that = contains
no constant symbol, and k := maxgez ar(R). A L[, Z]-interpretation T of type t with
parameters p is a family of £[X] formulae

<90d0m7 P, <QDR)REE>

such that

o free(paom) C {7, P}
o free(p~) C {7, 7, D}

e For all R € =, free(pr) C {#, ..., Zar), D}

for some pairwise-disjoint tuples of variables @, v/, z1 . . ., Zx, each of the same type t.

For 2 € STRUC[Y], and @ a valuation of p'on 2, consider the following =-structure
B:

o B= Sodom(m? 6) - At
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e For any R € 2, R® = ¢p(A,a) C A™™Y

If po(A,@) C A” is a congruence on B, Z maps (2, d@) to B/(p~(2A,@)), which we
denote Z(2, @). Otherwise, Z(2, @) is the empty =-structure.

The definition of interpretations varies widely between different sources. Defini-
tion 1.35 is very general, as it allows parameters, multi-dimensional interpretations,
filtering of the domain and quotienting by a congruence. This is the flavour of inter-
pretations adopted, amongst others, in [Gra+15; DFS22].

Example 1.36. Consider ¥ the signature of graphs.
T :=(x=uz,0=y,~FE(2,2))

is a [X, X]-interpretation of type (element) with no parameters. For any graph &, Z(®)
is the complement graph of &.

Given a graph & = (V| E), its line graph is the graph Lg = (E, X)), where
X = {((U,U)7(U,,1},)) | u:U,\/UZ'U/\/U:U,/\/’U:'UI}

that is, the vertices of L are the edges of G, and there is an edge in Lg between two
edges of GG if those edges share a common end-point in G.

J = (E(x1,z2),
(x1=y1 ANxa =1y2) V (x1 = y2 A2 = ¥1),
(11 =1 = $27éy2)v(951:y2 — 91727éy1)>

is a [¥, X]-interpretaion of type (element®) with no parameters. For any simple graph
&, J(®) is the line graph of &.

Note that, if = contains mixed-type relations, a [, Z]-interpretation Z should ex-
plicitly define the numerical sort, which can be done when the logic £ at hand extends
FPC:

Lemma 1.37. Let L be any logic extending FPC, and T = (Yaom, p~, (Pr)rez) be a
(X, Z]-interpretation in L. There is a L interpretation T' = (Yaom, V~, (Vr)rez), Such
that for any X-structure A, T'(A) ~ Z(A)™.

Proof. Suppose T has type t. We will consider an interpretation Z’" of type t/, where
" = (number - ¢ - number!). For ease of writing, we represent tuples of type t' as
T = by Zpfl:, where type(Z,) = t and type(ii,) = number. Intuitively, b, is used to
disambiguate between the numerical and domain sorts of Z'. If b, = 0, & represents

an element of the domain sort, provided by Z,, and if b, = 1, ¥ represents an element
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of the numerical sort, provided by fi,. This already enables the definition of ¢, and

(ISY

55 b:v :O/\deom<gx>ﬁ>
¢dom(bxzxﬂ$7m = 5
by = 1A [l <jer ccZ(p)

Yo (by Zifly by Zy fly, P) =
e bl ) =Gy

(%bz = b, =0A (2, Z,,7)

where ccZ(p) is a numerical term which evaluates on 2, @ to the number of elements
in the structure Z(2(,@). In FPC, ccZ can be defined by counting the number of
equivalence classes of ¢~ amongst the tuples of type ¢ that satisfy @gom. We have
already seen in Example 1.30 that FPC can count the number of connected components
of a graph, and ccZ(p) can be defined in £ as a direct adaptation of cc# (as defined in
Example 1.30), by replacing each occurrence of E(s,t) by p~(Z, 7, P), and renaming
variables accordingly. Care should be taken to ensure that only equivalence classes
of tuples satisfying ¢4, are counted, and that if ¢~ does not define a congruence on
(A, d), ccZ(A, a) evaluates to 0.

The linear order on the newly defined numerical sort is easily definable:

wg(bx'gxﬁxa bygy/jyaﬁ') = bm = by =1A /Ix Sle:p /Iy

and the interpretation of relations from Z is easily transferred to Z':

k
¢R(b121ﬁ17 bggzﬂg, Ces ,bkgkﬁk,@ = @3(217 52, Ce ,Zk,@ A\ /\ bz = O D
=1

Therefore, to define an interpretation of a mixed-type relation R, we first construct
such an interpretation Z’, and add an interpretation of R using such tuples of type
(number - ¢ - number'”) to encode both types in the target structure.

The notion of reduction allows us to compare the complexity of two problems with
respect to a given complexity class. If there is a P-reduction f from £ to M, any
polynomial-time algorithm for M yields an algorithm for £: on input w, compute
f(w) in polynomial time, then run the algorithm for M on f(w)® Interpretations

enable the same reasoning with structures and FO:

Proposition 1.38. Let ¢ be a FO[Z] sentence defining a class of structures IC, and T
a |3, Z]-interpretation. There is a YX-formula ¢* such that, for any A € STRUC[X],
and any valuation a of the parameters of I,

A,d = ol <= Z(A,ad) ek

SNote that |f(w)]| is necessarily polynomially bounded by |w| since f is computable in polynomial-
time
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Sketch of proof. The intuition is simple: it suffices to rewrite ¢, replacing each reference
to the =-structure to its interpretation through Z. Care should be taken as to treat
the case where Z(2l) is the empty structure. O

In complexity theory, a second, weaker reduction relation is used: Turing reductions.
A Turing reduction from L to M is a Turing machine that decides £, but is allowed to
query an arbitrary number of times an oracle (a black box within the Turing machine)
for the language M. Once again, Turing reductions may be considered for various
complexity classes, the resources bounds from that complexity class applying to the
reduction Turing machine. A formal definition of oracle Turing machines can be found
in [AB09, Definition 3.4] Once again, we introduce a formalism to represent such oracle
machines. Note that, now, we are not merely defining functions, but extending what a
computation can do, and this will naturally correspond to an extension of first-order
logic.

Definition 1.39 (Generalised quantifier). Let IC be a class of Z-structures. We denote
FO+K (resp FP+K) the logic whose sentences are defined inductively as first-order logic
(resp. fixed-point logic), with the additional rule that, if Z is a [X, Z]-interpretation,

(QkT)

is a formula of (FO + K)[X] (resp. (FP + K)[X]). (QxZ)(2) is the set of valuations @
of the parameters of Z such that

(A, d) e K

Like interpretations, the definition of generalised quantifiers admit many variations,
and the one given here is very general. It is the same as in [DFS22].

In Chapters 4 and 5, we will define many complex formulae. In that context, having
a denotational way to represent procedural rewritings in a formula is invaluable.” To
that effect, we will use the formalism of generalised quantifiers in the following way:

Definition 1.40. Given a class of structures I, and a logic £ extending FO, the gen-
eralised quantifier Qx is definable within L if, for any [3, Z]-interpretation Z definable
in £, there is a formula ¢y (7) such that, for any structure 2,

or@ () = (QxZ) ()

Clearly, if Qx is definable within £, we do not alter the expressivity of £ by using
Qx within £ (this is a direct corollary of Proposition 1.38). As such, we will sometimes
show that such a quantifier is definable in some logic £ in order to use it as a rewriting
mechanism in L-formulae.

"Seeing formulae as programs, it allows us to factor programs into smaller and simpler modular
programs.

— 929 —



CHAPTER 1

Capture through canonisation

After this digression, let us delve back into the quest of a logic for P. While whether
a logic captures P in general has remained open for more than thirty years, a great
amount of progress has been made on some restricted classes of structures. The best
instantiation of this effort is probably Grohe’s result, that FPC captures P on any class
of structures which exclude a minor. A book |Grol7| was devoted to the proof of this
result, and the following definitions and examples can be found formally stated in its
third chapter. In this section, we only aim to give a solid intuition of this initiative,
and will provide references to |Grol7|.

Intuitively, the definition of a logic £ capturing P on a class of structures C is a
relaxation of that of Definition 1.28, where the two translations (between P-properties
and L-sentences) are only required to be correct on structures (and encoding thereof)
in C |Grol7, Definition 3.1.9].

This allows us to formalize a natural intuition about the Immerman-Vardi theorem:
we can extend its reach from the class of linearly-ordered structures to the class of
structures which can be ordered within FP (or any logic £ extending FP). A structure
2 can be ordered within FP if there is a formula ¢ € FP such that ¢(2A) C A x A is a
linear-order relation. We can relax this definition so that ¢ has additional free variables,
such that for some valuation ¢ of those free variables, ¢(2, ¥) is a linear-order on A.
Finally, we can extend this definition to classes of structures [Grol7, Definition 3.2.2].

Let us fix a logic £ that extends FP. If C is a class of Y-structures on which
¢ € L[Y] defines linear-orders, then the Immerman-Vardi theorem naturally implies
that £ captures P on C: given a P-property P on C,® the formula ¥, obtained by
replacing each occurrence of < by ¢ in 1) is ezactly a L[X]-sentence defining P. While
this presentation does not take into account the parameters of ¢, those can be dealt
with, as formalised in [Grol7, Lemma 3.2.6]. An example of such a class C is given in
Grohe’s book:

Example 1.41 ([Grol7, Example 3.2.15|). The class CGraphs, of connected graphs
with maximum degree 2 admits FP definable orders, and as such, FP captures P on
CGraphs,.

While this indeed extends the reach of Immerman-Vardi theorem, there are strong
limitations to the definition of a linear-ordering on a structure, and this is due to the
fact that any such defined relation must be canonical. By canonical, we mean that it
is isomorphism-invariant, in the following sense:

Definition 1.42. Let 2,83 be two isomorphic structures, and let f : 2l — B be an
isomorphism between 2 and B. Fix a type w € {element, number}*.

8 According to [Grol7, Definition 3.1.9], P outside of C is undefined. It must only be so that there
is a Turing machine that always terminates in polynomial-time that agrees with P over C.
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e For any @ € AY, the image of @ through f is the tuple b, where b; = fla;) if
a; is a domain element (that is, w; = element), and b; := a; if a; is a numerical
element (that is, w; = number). We denote it a’.

e Given a relation R C A", the image of R through f is

R .={ad’,d e R}

A relation R C A" is canonical w.r.t. 2, if, for any structure 8 and any two iso-
morphisms f,g : A — B, R/ = RI. We sometimes call such a relation isomorphism-
mvariant.

It is easy to see that, for any formula ¢ and any structure 2, ¢(2) is canonical. The
notion of canonicity is a natural extension of the isomorphism-invariance requirement
of Definition 1.28 from sentences to formulae.

While the canonicity of relations defined by a formula is a valuable advantage of
logics, it dramatically hinders their ability to define linear-orderings. Indeed, fix a
structure %A, and suppose that it has N pairwise distinct isomorphisms onto itself. For
any fixed linear-order < on %, each of those isomorphisms yield a distinct image of
<. As such, we cannot expect a formula to define a single linear-ordering on 2. The
inclusion of parameters in the definition of definable linear-orders gives hope, as, if ¢
has k parameters, it can define a collection of as many as |A|* different linear-orders,
which might be canonical.

However, many classes of structures have a number of such isomorphisms that is not
bounded by any polynomial. Consider, for instance, the class of all complete undirected
graphs (K, )nen. For each n, each bijection 7 : [n] — [n] is an isomorphism of K, onto
itself, and they are n! such bijections. As such, we cannot expect a formula to define
a linear-ordering of all complete graphs, even with parameters.

To overcome this limitation we aim, instead of defining a linear-order on the rela-
tional part of the structure, to define an isomorphic copy of the relational part of the
structure on the numerical sort, that is, on the ordered domain.

Definition 1.43 (Canonisation). Given a logic £ and C a class of structures, £
canonises structures in C, if for any signature X, there is a L-definable [X, 3 U {<}]-
interpretation Z such that, for any Y-structure 2 € C

o <Z® ig a linear-order on the domain of Z(2)

o A =TZ(A)x, where Z(2)x is the structure Z(2() where we have forgotten <.

Graph Canonisation is also a computational problem, and we will talk in depth
about its connection with the definability of a canonical encoding in the next subsection.
For now, let us just remark that, in the computational context, we also expect two
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isomorphic graphs G, H to yield the same output. Here, this restriction is not needed
since Z(A) is necessarily canonical, as stated under Definition 1.42.

Like definable orderings, canonisation of C within £ > FP implies that £ captures®
P on C [Ott17]. This follows from the same line of reasoning as sketched in the case of
definable orderings.

It is in this context that Grohe proved in [Grol7| that FPC captures P on any class
of structures that excludes a minor. This is a very general result, encompassing, by
instance, the class of planar graphs, or the class of graphs embeddable on a torus. The
techniques used to show that FPC canonises those structures are deeply linked to the
computational problems of Graph Canonisation and Graph Isomorphism.

First, it is well-known [Hod93, Definition 5.5.1] that FO defines an isomorphism-
preserving, bijective interpretation from X-structures to simple graphs, for any signa-
ture ¥. As such (relying once again on Proposition 1.38), we can reduce the search of a
canonisation interpretation for any signature X to the search of a graph canonisation.
At that point, the canonisation of graphs in the sense of Definition 1.43 is precisely the
logical equivalent of the graph canonisation problem (hereafter GC):

Definition 1.44. A graph canonisation function is a function can : {0,1}* — {0,1}*
such that:

e For any w € {0,1}* encoding a graph &, can(w) is also an encoding of &

e For any w,w" € {0,1}* two encodings of one graph &, can(w) = can(w').

Whether any such function is computable in polynomial-time is unknown. This
problem is known to be itself tightly linked to the Graph Isomorphism problem:

GRAPH ISOMORPHISM PROBLEM

Input: w,w’, the encodings of two graphs G, G’
Question: Do G =G 7

It is not known either whether the Graph Isomorphism problem (thereafter Gl) is
in P. Obviously, computing a graph canonisation is at least as hard as Gl: if we
can compute such a canonisation function can, it is only left, on input w, w’, to check
whether can(w) = can(w’). While no reduction from graph canonisation to Gl is known,
(almost) all advances w.r.t. the complexity of Gl have translated to a similar complexity
result for GC.

As mentioned earlier, Grohe’s capture result is tightly connected to Graph Isomor-
phism in that it relies on the definition, within FPC, of a well-known algorithm for
Graph Isomorphism and Graph Canonisation: the Weisfeler-Leman algorithm.

90bviously, we still expect £ to have polynomial-time model checking.
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This algorithm, in its simplest form, amounts to iteratively refine a colouring of
the vertices of the graph(s) at hand. Initially, we colour each vertex according to
its number of neighbours. At the next step, we can now refine this colouring, by
considering not only the size of each neighbourhood, but their distribution amongst
the colours obtained in the previous step. This can be iterated until the colouring
reaches a fix-point (in O(n) iterations), and the resulting colouring is a canonical pre-
ordering of the vertices of the graph.

If two graphs do not yield the same pre-ordering, we know they are not isomorphic.
However, there are many non-isomorphic graphs which yield the same pre-ordering
(regular graphs for instance).

This algorithm can be extended to colour k-tuples of vertices, incurring a multi-
plicative cost (a fixed-point is now reached in O(n*) steps), in exchange for a finer

distinguishing power. This generalised algorithm is called k-dimensional Weisfeler-
Leman, and denoted k-WL.

There is a strong connection between FPC and k-WL in that FPC can canonise
a class of structures KC if and only if there is some k such that k-WL distinguishes
structures (or rather, encodings of those structures as graphs) in K [Ott17]

Whether for some k, k-WL defines a complete isomorphism test remained open
until the introduction of the CFI-construction in [CFI92|, which showed that there
are pairs of non-isomorphic graphs which cannot be distinguished by k-WL with a
constant dimension k. As such, it seems that, if we are to find logics capturing P
on larger classes of structures, we need to bring new isomorphism-testing techniques
within their reach. We aim to show now that, in that prospect, Computational Group
Theory is a promising candidate.

1.2 Graph Isomorphism and Computational Group
Theory

The connection between the Graph Isomorphism problem and group theory have been
studied for a long time. It can be traced at least to [Bab79|, and led to results out
of reach of k-WL as soon as 1983, with Luks’ isomorphism test for graphs of bounded
degree [Luk82|. Quite recently, they led to Babai’s groundbreaking quasipolynomial-
time (i.c. O(n'=”"”’ ")) algorithm for Graph Isomorphism on all graphs. However, those
two results involve highly-complex results in finite group theory, and remain outside of
the scope of this thesis. However, they are based on a set of group-theoretic techniques
that have seldom been brought within the scope of Descriptive Complexity and Finite
Model theory. As such, our aim in this section is to introduce those group theoretic
notions as well as their use in [Bab79] to solve Graph Isomorphism on Bounded colour-
class graphs.
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Computational Group Theory

Abstract groups, subgroups and morphisms

We begin this section with basic definitions concerning groups:

Definition 1.45.

A group is a couple (G,-) where G is a set and - an operation G X G — G that
is associative, admits a neutral element, and such that each element admits an
inverse:

Vo,y,z,(x-y)-z=x-(y-2)

Ve,x-e=e-x=x
Je,

Ve,dztx- 2 t=2"t-2=c¢

Such a group (G, -) is finite if its underlying set is.
The order of a group (G, -) is the cardinality of G, and is denoted |G].

A subgroup of G is a group H whose underlying set is a subset of GG, and whose
operation agrees with that of G. This relation between H and G is denoted
H<G.

Given = € GG a group, the order of x is the order of the smallest subgroup of G
which contains x.

Given two groups (G, -¢), (H, -m), a morphism from G to H is a function f : G —
H that respects the group operation, that is,

f@-cy)=f@)nufy)
A group is Abelian if - is commutative, that is

Ve,y,x-y=y-x

When unambiguous, we omit the group operation, and refer to (G, -) as G.

Example 1.46.

e (Z,+) < (Q,+) < (R,+) are groups.

(@\ {0}, x) < (R\ {0}, x) are groups

For any field K, (GL,,(K), x), the set of all n x n invertible matrices over K is a
group.
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e For any n, the set [n] together with addition modulo n is a group. We denote it
L.

e We denote 1 the trivial group with 1 element.
The axioms of groups have very strong implications on the structural relationship

between a group and its subgroups. An elementary illustration of this is Lagrange’s
theorem:

Theorem 1.47 (Lagrange). For any finite group G and H < G, |H| divides |G]|.

This fact relies on the fact that G can be partitioned into cosets:

Definition 1.48. Let GG be a group.

e For XY C G, we denote X - Y, or even XY theset {x-y |z e X,y eV} If X
is of the form {z}, XY is denoted zY.

e Given H < G, a left coset (resp. right coset) of H is G is any set of the form gH
(resp. Hg) for some g € G.

Proposition 1.49. If G is a group and H < G, the left cosets of H in G form a
partition of G, or equivalently, for any g,q € G, gH = ¢H or gH Ng'H = (. The
same holds for right cosets.

The number of such cosets of H in G is called the index of H in G, and denoted
|G : H|. From there, it is not difficult to obtain

G|
G H| =2 (1.2)
| H|

Definition 1.50. Let G be a group and H < G. A left (resp. right) transversal for
H in G is a set S C G such that, for any g € G, |SNgG| =1 (resp. |[SNGyg|=1)

Note that, if S is a left transversal of H in G, then G = |J .4 sH.

Definition 1.51. Let H < G. H is a normal subgroup of G, denoted H < G, if for all
9.9 €G,gHg =H.

When H < G, (gH,¢'H) — gg'H defines a group operation on the cosets of H in
G. The resulting group is the quotient group G/H, and its neutral element is H.

We now turn to morphisms:

Definition 1.52. Let GG, H be two groups, and m : G — H a group morphism.
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e ker(m) :={g € G,m(g) = ey} is the kernel of m. It is a normal subgroup of G.

e im(m):={h € H,dg € G,m(g) = h} is the image of m. It is a subgroup of H.

When H < @G, there is a canonical surjective morphism from G to G/H, whose
kernel is H:

g—gH

This enables the statement of the following theorem, which is pervasive in group theory:

Theorem 1.53 (First Isomorphism Theorem). Let G, H be two groups and m : G —
H. The group G/ker(m) is isomorphic to im(m).

Let us mention briefly a theorem that will be used in Chapter 2:

Theorem 1.54 (Cauchy). Let G be a finite group, and p a prime number. If p divides
|G|, then G contains an element of order p

Permutation groups and their encoding

Before we can delve into group problems, and the first results of Computational Group
theory, we must discuss how groups are given as input.

It might seem natural to represent a group as a model of the theory given in
Definition 1.45, and thus encoding it in a manner comparable to Definition 1.10. We
refer to this representation of groups as the Cayley table representation.

The Cayley table representation does not take advantage of the intricate structure
that the groups axiom induce. For any group G, this naive representation has size
O(|G?) (if one sees - as a ternary relation) or O(|G|?log |G|) (if one sees - as a binary
function, and encodes each value the function takes in binary), and it happens that
most groups admit a drastically more compact representation as permutation groups,
as we will now show.

Definition 1.55. Fix a set €.

e A permutation of ) is a bijection o : 2 — €.

e The set of all permutations of €2, equipped with functions composition, is a group,
the symmetric group on 2, denoted Sym(f2).

e A permutation group on € is any subgroup G < Sym(2).

e For GG any group, an action of G on 2 is a morphism m : G — Sym(2). This
action is faithful if ker(m) = 1.
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When G is a permutation group over €2, g an element of G and X C (), we denote
XY the set of all images of elements of X through g

X9 :={g(x),x € X}

Let us add that, when Q = [n], its symmetric group is denoted S,. In the case of
S, we often use a compact presentation of permutations, by decomposing them into
disjoint cycles:

Definition 1.56. Let o be a permutation in S,,. We write

c=(cicy...q)(cc...c)...(c} cg‘...cgk)

for any i < \, j < k;, c} € [n]

for any ¢ < A, j < kj, U(C;) = C§+1

for any i <X, o(cf,) = ¢}

for any ¢ & U;<x{cls - ¢k}, o(c) = ¢

Definition 1.57. Fix a set 0, a group G < Sym(2), and By, ..., By C Q.

e The point-wise stabiliser of (B, ..., By) is the subgroup

Stabg<Bl, .. ,Bk) = {g c G,V)\ < ]C,Bg = B)\}

The set-wise stabiliser of (B, ..., By) is the subgroup

Stabg{B1,..., By} == {9 € G,YA < k,3u,B] = B,}

When each B; contains exactly one element w;, we omit the braces, and denote the
point-wise (resp. set-wise) stabiliser Stabg(wy, ..., wx) := Stabg({w1}, ..., {wk})-

If G = Stabg(By,. .., By) (resp. G = Stabg{By, ..., Bx}), G is said to stabilise
(B1, ..., Bg) point-wise (resp. set-wise).

e (7 is transitive if the only partitions of €2 that G stabilises point-wise are the
trivial partitions () and ({w}),eq-

e (5 is primative if the only partitions of () that G stabilises set-wise are the trivial
partitions.

Obviously, a permutation group is a group, by the properties of bijections and func-
tions composition. More interestingly, all groups can be seen as permutation groups:

Theorem 1.58 (Cayley). Any group G is isomorphic to a permutation group on G.
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We now state a well-known fact about abelian transitive groups, that will play a
part in Chapter 4:

Proposition 1.59. Let G be an abelian group acting faithfully and transitively on a
set X. Then, the action of G on X is regular, i.e. for any x € X, Stabg({z}) = {1}.

Proof. Consider g € G such that g -z = . We will show that ¢ = 15. Because the
action of G on X is faithful, this amounts to show that, for any vy, g - y = y. Consider
such a y € X, and by transitivity, let h € G such that h -z = y. Then,

g y=(hh""g) y
Because G is abelian, = (hgh™') -y
= (hg) - =
=Y

]

Notice that any permutation in S,, can be represented using nlogn bits. Thus, we
could represent any group G' < S, by a list of the encodings of all elements of ¢, which
yields a representation of the group of length |G| - n - logn. Compared to the Cayley
table representation, we no longer need to encode the product of elements, as this is
given implicitely by the composition of functions. Moreover, the dependence of the
size of the encoding on |G| can still be reduced, because not all elements of G must be
provided to define G uniquely;

Definition 1.60. Let G be a group, and S C GG. The subgroup of G generated by S is
the smallest subgroup (S) < G such that S C (5). If (S) = G, S is a generating set of
G.

Theorem 1.61 (Laplace). Any group G admits a generating set of size O(log |G|).

Therefore, any group G < S, can be encoded by a set of log |G| permutations, each
of which can be encoded using nlogn bits, for a total of O(log |G|nlogn) bits.

Let us now compare this to the Cayley table encoding. Even in the worst case,
the permutation encoding is shorter than the Cayley table encoding, while staying
comparable:

Example 1.62. According to Cayley’s theorem, Z, is isomorphic to a permutation
group on its underlying set [n]:

oLy — Sy
k—(12...n)"
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However, 7Z,, cannot act faithfully on any set of size < n. Moreover, 7Z,, is generated by
{1}, and therefore ¢(Z,) is generated by {¢(1)} = {(1 2...n)}. As such, Z, can be
encoded as a permutation group using O(nlogn) bits, which is to be contrasted with
the O(n?logn) bits needed for the Cayley table representation.

In other cases, the permutation representation incurs a drastic reduction of the size
of the group:

Example 1.63. S,, is a group of order n!. As such, its Cayley table representation has
length O((n!)?log(n!)) = O((n!)*nlogn) bits.

On the other hand, it is well known that .S,, is generated by all transpositions over
[n], that is, all permutations of the form (i j) for 4,5 € [n]. This yields a permutation
representation of S, of length O(n?logn).

It seems that various variables impact the length of this new encoding :the size of
the group, the size of a small generating set for this group, or the domain of the permu-
tations. Let us remark that any group G < Sym({2) admits a representation of length
¢ < |Q|*. As such, the size of the domain of the permutations is, of itself, a suitable
metric for the size of the group, when focused on polynomial-time computations.

Elementary computations over permutation groups: the Schreier-Sims
algorithm

However, this more efficient encoding of groups has a cost, and new computational
problems emerge that did not necessarily have significance in the table representation.

As a matter of fact, one of the most natural such problems is the membership
problem: fix a domain Q ; given S C Sym(2) and o € Sym((2), does it hold that
o € (S)? Another such problem is the order problem: given S C Sym({2), compute
ord(S).

We now recall the Schreier-Sims algorithm introduced in [Sim70; Sim71| to answer
these problems (although the fact that this algorithm runs in polynomial time!? is
due to Furst, Hopcroft and Luks [FHL80]). It relies on the fundamental structure of
strong generating sets, and two subprocedures: a sifting procedure, which allows one to
compute membership tests given a strong generating set, and a construction procedure,
which allows the construction of a strong generating set. We will present those objects

in that order.

Strong generating sets The notion of strong generating set allows to structure the
set of generators of the group at hand. This structure relies on a chain of subgroups
for the group. We begin the introduction of strong generating sets with an auxiliary
definition.

0That is, in time p(|S| + |92
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Definition 1.64. Let H < G < Sym(€Q2). A conditional membership test for H w.r.t. G
is a Turing machine M that takes as input the encoding of a permutation o € Sym(£2),
such that, under the condition that ¢ € G, M accepts if and only if 0 € H.

Definition 1.65. Let GG be a permutation group over a domain ), and
G=Hy>--->H,=1

a decreasing chain of subgroups, together with conditional membership tests for H;,q
w.ar.t. H; for all i. A strong generating set (hereafter SGS) for G along (H;) is a
collection (o ;)i<k.j<c; of permutations in G such that, for each ¢, the permutations
0i0,0i1 - --0ic form a left transversal of H,;;; in H;, for each 1.

It is easily shown that, for any i < k, {0y | i' > i,j < ¢y} generates H;yy. As
such, each o0; j can be seen as encoding a coset of H;1; in H;. When clear from context,
we omit the chain of subgroups a strong generating set is constructed upon. The main
insight about strong generating sets is that they allow for a unique decomposition of
elements in G:

Lemma 1.66. Let G be a group and (o, ;) be a SGS for G. Then, for any g € G, there
is a unique sequence (j;) € [, [c;] such that g = 14,095, - - Ok,

A direct application of this lemma is that, given a SGS for GG, we can compute the
order of G in polynomial time: it is exactly []._; ¢;.

Also note that we can assume the trivial coset 1H;,; to be represented first, and
be represented by the identity. That is, we can assume that any strong generating set
(0i;) is such that for all i, 0,9 = 1.

Sifting and membership test Suppose that G < Sym({) is a group, (H;) is a
decreasing chain of subgroups with Hy = G and H,, = 1. A SGS (0;;) on G along
(H;) allows us to reduce the membership test on G to iterated membership tests on the
groups H;. Let 7 € Sym(Q) be the permutation we wish to test membership for. By
induction, we aim define a sequence of permutations p; such that p; € H; <— 7€ G.
The initialisation is easy: set pg := 7. Now, suppose the property holds for p;. For each
0;; in the SGS, we use the conditional membership test on o; jl pi. If there is a unique j
such that the membership test succeeds, then we set p;y1 := o jl pi, and the properties
of SGS and conditional membership tests ensure that p;; € H;yy <= 7€ G. If no
such j exists (or if several such j exist), then p; ¢ H;, and we therefore interrupt the
procedure, rejecting the input 7. For reasons to become clear in the following, in such
a case, we also output the last value of i, and of p; upon rejection. This algorithm is
called the sifting procedure, and is depicted in Algorithm 1.

The time-complexity of this algorithm depends on three factors: the length k& of
the chain (H;); the size, for any given 4, of the coset transversal (0;0,0;1...) (which
is exactly |H;41: H;| = ¢;), and the time-complexity of the conditional membership
tests. If we assume those values to be bounded by p(|Q2|) for a fixed polynomial p,
Algorithm 1 clearly runs in polynomial-time. This motivates the following definition:
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Algorithme 1 : Sifting Procedure

Input : (0;), a SGS for G along (H;)¥_,, a subgroup chain with conditional
membership tests (P)F_, ; and 7 € Sym(Q)
Result : Does 7€ G 7
1 Function sift(g, \) is

// Invariant : g€ Hy < 7€G

2 if A =k then

if ¢ =1d then

L return true

else
6 L return false outputting (g, \)
7 else
8 if 315 s.t. P,\H(a;j - g) then
9 L return sift (o, ;-g), A+ 1)
10 else
11 L return false outputting (g, \)

12 return sift(7, 0)

Definition 1.67. A subgroup chain Hy > H; > --- > Hj is called d-adequate for G if:

® H():Gandezl
o k< |Of
o foralli <k, |H;: H| <|Q

Given o € H;, we can check whether o € H;,; in time O(|Q|%).

Constructing a SGS in polynomial time We now show how to construct a strong
generating set for GG, given a regular generating set S, and an adequate subgroup
chain (H;). This second algorithm constitutes the second part of the Schreier-Sims
framework, introduced in [Sim70; Sim71].

In Algorithm 1, a couple (o, A) is outputted upon rejection on input 7. Intuitively,
this couple locates a missing element from the SGS for 7 to be accepted by the sift-
ing procedure. We call o the residual of 7 through the SGS. This is the gist of the
construction procedure: we iteratively add the elements from S to a strong generating
set structure for the adequate subgroup chain H;, starting with the family consisting
solely of ;0 := 1 for each i. " However, while one can easily check that the resulting
underlying set of permutations generates G, it is not necessarily the case that this
corresponds to the permutations accepted by the sifting procedure. This is because so

Note that, now that we consider an adequate subgroup chain for G, we can encode this family
as an array of permutation of dimension |Q|¢ x |Q|? for some d
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far, no care has been given to the saturation of the strong generating set. To overcome
this issue, each time an element o is inserted in the SGS, we must sift all elements
of the form oo;; or o, jo and insert their residuals, if any. This is the construction
procedure as presented in Algorithm 2.

Algorithme 2 : Constructing a SGS
Input : S, a generating set for G, (H;);<k, an adequate subgroup chain for G,
with conditional membership tests (P;)%_,.
Output : (0;;)i<k, a SGS for (H;)
1 Initialize an array (o; ;) with empty cells, except 0, :=1d for all ¢ < k
2 (=5
3 while ¢ # () do

4 Let 7 be the first element of ¢ and remove it from ¢

5 if sift(7,0) rejects on (0, ;), outputting (g,7) then

6 J:==min{\, 0;\ = 0}

7 Ui,j =dg

8 0= {9 Oaby A < iao—a,b 7& (D}EB {Ua,b " g,a > 7;>O_a,b 7& @} @f
9 return (o, ;)

In line 8, we add new elements to process in order to ensure that our SGS is
composition-closed (here, @ denotes the concatenation of lists).

Let us note that, (H;) being d-adequate for some d, at most |Q|*¢ permutations will
be added to the array. Each such insertion incurs at most |[©2|?¢ elements to sift, for a
total of [Q2|*¢ + | S| iterations of the while loop.

Therefore, under the condition that G admits an adequate subgroup chain, we can,
given a set S such that (S) = G, compute a SGS for G using Algorithm 2, and then
check membership to G using Algorithm 1, or compute the size of G using Lemma 1.66.

A uniform construction of an adequate subgroup chain It happens that, for
any group G < Sym(€2), there is an adequate subgroup chain that can be used in Algo-
rithms 1 and 2. Fix a linear-ordering < of €2, and let wy,...,w, be the corresponding
enumeration of €2, that is,
W <wy < e < Wy

Then, consider the chain (H;)?, where H; := Stabg(wi,...,w;) (and Hy := G). If
o € H;, checking whether o0 € H;;; amounts to check that o(w;11) = w;y1, which
requires linear time!'?. Moreover, the length of the chain is bounded by ||, so that it
is only left to bound its width to show the adequacy of this chain. That is, we must
show that |H;: H;y1| is polynomially bounded by |Q|. For 0,7 € H;,

oH 1 =7H;11 <~ ot e H;
= o(wit1) = T(wis1)

12This depends on our computation model and the encoding of permutations, but we will not delve
into such considerations here.
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As such, the index of H;; in H; is bounded by || for all ¢, and the chain (H;) is
1l-adequate.

Remark that the definition of this adequate subgroup chain relies critically on a
linear-ordering on (2, while the Schreier-Sims algorithm answers a question that does
not depend on such an ordering. This observation is the starting point for the definition
of the ord-operator in the next chapter. Notice also that we have a somehow weaker
ordering assumption in Algorithm 2: iterating over S requires that an ordering of S is
provided. This assumption is weaker in the sense that it may happen that a canonical
adequate subgroup tower is available, and that the set S is ordered, without yielding
an ordering of the domain ). Such a situation constitutes the setting of our results in
Chapter 5, and to a lesser extent, of Chapter 4.

Subgroup computations We conclude this subsection with a final observation on
the Schreier-Sims framework: in addition to membership tests and order computation,
it also allows to find generators for subgroups of G in some cases.

Suppose (S) = G < Sym(R2), and H < G is a subgroup such that:

e Given g € G, we can check whether ¢ € H in polynomial time (in |§2|)

e |G: H| is polynomially-bounded.

Under those assumptions, we can find a generating set for H in the following way: we
use Algorithm 2 on the chain of subgroups

G Z H Z StabH(wl) Z cee Z StabH(wl, Ce ,wn_l) =1

This results in a SGS (0;;)i, for G, and it is not difficult to see that the subfamily
(0i;)i; is a SGS for H.

We now formalise this result with a convenient iteration:

Definition 1.68. Let G < Sym(2) and H < G. H is k-accessible from G if there
exists a decreasing sequence of subgroups

G=Hy>H >--->H,=H
such that the chain of subgroups
Hy>Hy---> H,, = H > Stabg(wy) ... Stabg(wy,...,w,_1) =1
is k-adequate for G. If m = 1, we say that H is directly k-accessible from G.

Proposition 1.69. If G < Sym(Q)) and H < G is k-accessible from G, one can
compute in polynomial-time a SGS for H when given as input a generating set for G.
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The Graph Automorphism problem

Having introduced the Schreier-Sims framework, we are now ready to exhibit the strong
connection between Group computations and the Graph Isomorphism problem.

First and foremost, the automorphisms of any givens structure form a group:

Definition 1.70. Given any structure 2L, its automorphism group is the group of all
isomorphisms from 2( onto itself, with composition as operation. It is denoted Aut(2l).

Intuitively, Aut(2() is the set of all symmetries of 2.

Example 1.71. Consider

6= ({a’ bv ¢, d}v {{a’ b}7 {CL, d}v {b7 0}7 {Cv d}})

That is, & is an undirected cycle of length 4. It is easy to see that Aut(®) is generated
by (a b ¢ d) and (a b)(c d).

Consider a square S C R?. The set of all isometries of R? that stabilise S set-wise
form a group G. The corners of S form a set C' of four elements of R?, and G acts
naturally (and faithfully) on C'. The action of G on C'is isomorphic to Aut(®). Aut(®)
is the dihedral group of order 8.

Now, a fundamental observation is that checking GI between two graphs X,Y
reduces to finding generatings sets for Aut(X), Aut(Y), and Aut(X UY). We now
formalise this.

The Graph Automorphism problem (or GA) entails to find a generating set for the
automorphism group of a graph given as input:

GRAPH AUTOMORPHISM PROBLEM

Input: &, a graph with domain 2
Output: A set S C Sym(f2) such that (S) = Aut(®)

Definition 1.72. If 2, B are two o-structures, the union of 2 and B, denoted A LI B
is the structure with domain A U B, and for any R € o, R*'® .= R* U R®.

Let C be any class of structures. We denote by Gl the Graph Isomorphism problem
restricted to input graphs within C, and do similarly for GAc.

While the proof of the following property is quite straight-forward, [Bab79] is, to
our knowledge, the first reference to give it some computational significance.
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Proposition 1.73. Suppose that C is union-closed. There is a (Turing) polynomial-
time reduction from Glz to GAc.

Proof. On input X, Y two graphs in C, we use our oracle to GA¢ to compute R, S, T,
three sets of permutations that generate Aut(X), Aut(Y') and Aut(X UY") respectively.
Using the Schreier-Sims algorithm, we can compute the orders of those three groups.
It happens that

X2Y e [Aut(XUY)| =2 [Aut(X)|- |Aut(Y)]

which can be checked in polynomial-time. O]

Great effort has been put into solving GA, leading to Babai’s breakthrough [Bab16]

that GA and GI can be solved in quasi-polynomial time (O(n'¢”"’ ")) on the class of
all graphs.

As a side-note, let us remark that GA reduces to the general problem of finding a
generating set for the intersection of two groups.

GROUP INTERSECTION

Input: S, T two sets of permutations over a domain (2
Output: R C Sym(Q2) such that (R) = (S) N (T)

Indeed, if & is a directed graph with domain €2, consider the two following groups

G1, Gy < Sym(Q?):
e (G is the group defined by the natural action of Sym(Q) on Q2 i.e. for any
o € Sym(f2), G; contains the permutation of Q? mapping (i, j) to (o (i), (j)).
e (3, is the group of permutation of edges Sym(E®).

Consider S any generating set of Sym(€2) (a small such set exists, as already mentioned
in Example 1.63). Then, G is generated by the set f(S), where

f: Sym(Q) — Sym(©?)
o= ((i,7) = (o(i),0(j)))

At the same time, Gy is generated by {((a,b) (c,d)), (a,b),(c,d) € E®}. Moreover,
FHG1 N Gy) is exactly Aut(®).

While this last remark does not play a part in the results presented in this thesis,
it does show that, in the general case (opposed to the restricted case discussed in
Proposition 1.69), finding generators for subgroups of a given group is hard (precisely,
GI-hard), even when a membership test for the subgroup is present.
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A worked example: BCGI

We now present as an example the class of structures studied in [Bab79|, and show
how the Schreier-Sims framework enables the decision on the isomorphism problem on
that class.

Definition 1.74. A coloured graph is a graph X = (V| E) equipped with a colouring
¢:V — N. Each integer in ¢(V) is a colour, and a colour-class is a set of vertices of
the form ¢7(z) for some colour i.

An isomorphism between two coloured graphs X = (V, E,c) and X' = (V', E', )
is a bijection f : V — V' such that f(E) = E’, and for any two vertices x,y € V,
c(x) < cly) <= d(f(x)) < (f(y)). Automorphisms of coloured graphs are defined
accordingly.

X has k-bounded colour-classes if, for any colour 7, the set of vertices of colour ¢,
¢71(i) has at most k elements. Let k-BCG denote the class of all k-bounded colour-
classes graphs.

We denote k-BCGI (resp. k-BCGA) the problem Gl pce (resp. GAgpeg). We
will now present Babai’s result [Bab79| that the Schreier-Sims algorithm can be used
to solve k-BCGA. The careful reader will notice that, in this context, Proposition 1.73
cannot be used directly to conclude that k-BCGI is in P. However, the proof of Propo-
sition 1.73 can still be applied, and yields a reduction from k-BCGI to 2k-BCGA.
Therefore, proving that for any k, k-BCGA is polynomial-time computable yields
k-BCGI € P.

Fix a coloured graph X = (V| E, ¢), and let m be the maximum colour of X. In the
context of bounded colour-graphs, the colouring greatly restrict the space of potential
automorphisms. Indeed, any such automorphism must be within the group

G = Hsym(cfl(z')) (1.3)

The key observation is that there is a decreasing sequence (G});<n2 of subgroups of G,
that witnesses the fact that Aut(X) is 2-accessible from G. Namely, having fixed a
bijection s between [m?] and pairs of colours, we set Gy, to be the set of all permu-
tations in G that stabilise (set-wise) the edges between the two colours in s(A). That
is, if s(\) = {1, 7},

Ghi1 = Stabg, {EN(V; x V))} (1.4)

where V; := ¢71(i). The fact that conditional membership for Gy, in G, is decidable
in polynomial time is straight-forward, and it is only left to show that |Gy :Gy.q| is
polynomially bounded. Consider o,7 € G. Obviously, if ¢ and 7 agree on V; UV,
they belong to the same G, coset. Yet, there are only |V;|!|V}|! < k!? permutations of
V; UV; (that stabilise both V; and V;). Therefore, |Gy : Gy1| < k12 = O(1). Since the
chain of subgroup is of length m? and m is proportional to n, we obtain that Aut(X)
is 2-accessible from G. Finally, G is generated by all transpositions of two elements in
a single colour class. Therefore, we can apply Proposition 1.73.
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This example will play an important role in Chapter 4. In the logical context,
a coloring on a structure 2l is given by a total preorder =< over A. As providing a
definition of a pre-order as a binary relation over A can be quite notation-heavy, we
will often abuse notation, and define a pre-order by the partition and the linear-order
over that partition it induces, that is, if (%) C X? is a linear-ordering of X which is a
partition of A, we view =< as a pre-order over A.
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Chapter 2

Groups in Fixed-point logics

We have depicted the link between descriptive complexity and the Graph Isomorphism
problem, as well as the Permutation group framework to Graph Isomorphism. These
connections are a motivation to use groups, and in particular permutation groups more
extensively in the quest of a logic for P.

To our knowledge, the main use of groups in this context has been to obtain lower
bounds, or inexpressibility results. Intuitively, the symmetric nature of the primitive
operations within reach of the logic at hand greatly restricts the auxiliary structures
that can be defined from the input, as they have to respect its automorphism group.
This line of reasoning led to the proof that CPT does not express all P function prob-
lems [Ros10]. The case of decision problems remains open.

Our aim in this thesis is to exhibit and study a way to extend the expressive power
of a logic using a group-theoretic operator. This is in line with the study of FP + rk,
initiated in [Daw-+09]: having identified an order-invariant algebraic operation whose
computation seems to require a linear-order, we add this operation as a new primitive
of the logic at hand. Note that this reasoning also applies to the counting operator.
This motivates us to restrict our study to Fixed-point logics, in the continuity of rank
logic.

We first review the rk operator, and how it defines an unordered setting to the
study of linear maps. Then, we introduce two different such settings for the study of
groups: Cayley tables, and sets of permutations. Finally, we introduce the ord operator
to allow FP to handle the latter representation of groups.

2.1 The unordered setting of rank logic

Let us first review the definition of the rk operator. We do so for two reasons: it
illustrates the kind of unordered setting we want to introduce for group computations
; and it provides an example of the use of generalised quantifiers as a mean to define
algebraic extensions of FO (and FP). Note that we will use the extended definition of
generalized quantifiers introduced in Definition 1.39.

Fix a field K and consider two K-vector spaces U, V. The rank of a linear map
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f U — V is invariant under automorphisms of both U and V. In particular, given
bases (u;)icr, (vj)jes of U and V respectively, the rank of f is invariant under the au-
tomorphisms of U generated by any permutation of {u;,i € I} and the automorphisms
of V' generated by any permutation of {v;,j € J}.!' In the computational case, U
can be identified with K4™V V' with K%V and f can then be encoded by a matrix
M; € KimUxdimV" gyer the canonical bases of K9™U and K4™V (the linear-order on
N then allowing us to apply Gaussian elimination to obtain the rank of the underlying
linear map).

The rk operator definition in [Daw-+09] is based on an unordered setting to the study
of linear maps: while K remains linearly-ordered and therefore lies in the numerical
domain, the vector spaces U,V do not. More precisely, we consider U = K’ and
V = K7, with I and J unordered. In this context, for any @ in U (resp. V') and i in
I (resp. J), we denote (i) the value of @ at the coordinate indexed by i. A linear
map f : U — V can then be encoded as a structure with domain D := I LU J and a
numerical function M such that

FE@)y) i (ry) el xd
0 otherwise

M(z,y) = {

where ¢, € K’ is the 2-th vector in the canonical basis of U, that is,

1 iftex=1
s {1 T

0 otherwise

Let LMap denote the class of such structures encoding linear maps, that is, the class
of (I, J, M)-structures, where I, J are monadic relations, and M a binary numerical
function that fulfil the following axiom :

Va,y, (I(2) V J(y)) — M(y,z) =0

For 24 € LMap, and p a prime, the residuals modulo p of M® define a linear map
fp(2) - FL™ — FJ® in the way described above. Now, we have a function rank, :
LMap — N which associates to 2l the rank of the linear-map f;?‘ Clearly, if 2 ~ B,
rank, () = rank,(*B), and rank,(2() is polynomially-bounded by |2|, and is computable
in polynomial-time

Therefore, if such a structure 20 was definable within a Y-structure B, it would
be reasonable to define a logic £ in which one could define, in 8, the numeric value
rank,(2A). This is the gist of the rk operator, where the inner definability of 2 is
witnessed by a [, {I, J, M }]-interpretation. Note that Z could have parameters.

LMap
STRUC[Z] ot , N

INote that this is not the case of the determinant, whose value depends on the choice of a basis
for both U and V.
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However, the syntax of interpretations being quite cumbersome, the rk operator only
takes as input the formula @)/, as we can circumvent the use of @qom (since, instead
of removing the z-th row and column from a matrix, setting all the values on those
row and column leaves the rank unchanged) and ¢~ (since, instead of identifying the
x-th and y-th rows and columns, we can assign the same values to them, leaving once
again the rank unchanged). Only two pieces of information must be conveyed: the
domains 7, J, and the matrix encoded by ¢,;. By specifying which free variables of o,
pertain to the interpretation, and using different variables for I and J separated by a
comma, we obtain the syntax of the rk operator from Definition 1.33. In that sense,
the rk operator is a (family of) generalised quantifier(s), as defined in Definition 1.39.
Whether allowing such a hybrid index set of I, J — with an ordered and an unordered
part — increases the expressibility of the operator is still, to our knowledge, an open
question.

Note that this point of view adapts well to to the uniform setting of the rank
operator: let LMap™ be the class of all structures in LMap equipped with an additional
numerical constant p, which evaluates to a prime number. For 2 € LMap”®, we define
rank®(2A) as rank,x (247 7). From this definition, we can define rk* in the same way as
we defined rk, from rank,.

Our aim in this chapter is to introduce such an unordered setting to encode groups
in first-order syntax, and we will start by finding a satisfying group-theoretic equivalent
to LMap. Each of the representations of groups introduced in Section 1.2 yields such
a class of structures. As expected, only the class of structures corresponding to the
permutation group representation is a satisfying setting in which to study the logical
use of the tools of Computational Group theory introduced in Section 1.2. For the
sake of completeness, we nevertheless begin our study with Groups encoded as Cayley
tables.

2.2 Encoding Groups as Cayley tables

As we have seen in Section 1.2, groups in their formal presentation form a first-order
theory. As such, it is quite natural that this representation of groups translates seam-
lessly to the context of Finite Model Theory: a finite group is a {-, e}-structure A —
where () is a binary function symbol (that we will use in infix notation) and e a con-
stant symbol — such that (-)* fulfills the group axioms and e* is the neutral element
of that group.

As we have mentioned before, it is often convenient in Finite Model Theory to
consider only relational structures?. This can be easily achieved by replacing the binary
operation (-) by a ternary relation 7', such that T'(x,y, z) holds iff z -y = z. We denote
this class of finite relational structures CGrp, as this corresponds to encoding groups
by their Cayley tables with unordered rows and columns.

Lemma 2.1. CGrp is a FO-definable class of {T), e}-structures

?Let us remind the reader that relational signatures may contain constant symbols
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Proof. Consider the following first-order formulae:

Yop = Vr,y, 32, T(x,y, 2)
Passoc = VT, Y, 2,381, 89, 83, (T(z,y,51) NT(s1,2,83)) A (T(y, z,82) NT(x, s9,3))
Pneutral = Vl’, T<I, €, I) A T(e, x, ]})
Pinverse -— vx: Elya T(i[), Y, €> A T(y7 €, 6)
Given a {T,e}-structure 2 = (A, T™), one can easily see that 2 = ¢, if and only if

T? is the graph of a function A x A — A. Let us now suppose indeed that 2 = pop,
and denote this function by (-), using the infix notation. Then:

o A = assoc iff (+) is an associative operation.

o A = Oneutral iff €% is a neutral element w.r.t. (-).

e Therefore, A = @inverse iff each element = admits an inverse w.r.t. (-).

Thus, A = @op A Passoc A\ Pneutral /A Pinverse 1f and only if it belongs to CGrp. O

As we have seen in Section 1.2, the Cayley table representation of groups is not
the most concise one we could use, and this undermines the relevance of expressivity
results on CGrp — in the same way that we are not usually interested in measuring
the complexity of arithmetic problems w.r.t. the unary encoding of integers. Still,
there are some facts worth mentioning concerning the expressive power of FO and its
extensions on CGrp.

Lemma 2.2. Qver CGrp, EVEN is FO-definable

Proof. By Cauchy’s theorem, a group G has even order if and only if it has an element
of order two, which is an FO-definable property:

Peven = Elya € 7& y A T(y7 Y, 6)

]

This contrasts with the fact that even FP does not express EVEN over the class of
all structures (see Section 1.1).

In [Bar+01; BM91|, Barrington et al. study the computational complexity of one
particular problem over groups encoded as Cayley tables:

CAYLEY GROUP MEMBERSHIP (CGM)

Input: A group G given by its Cayley table, a set of elements X C G and g € G
Question: Does g € (X) 7
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They remark that CGM is reducible to USTCON, which implies that CGM € L, using
Reingold’s result that USTCON € L [Rei08|. We show that this reduction still works
in the unordered case:

Lemma 2.3. There is an FO ({T,e, X, g},{E, s, t})-interpretation I such that, given
a group (G, T,e) € CGrp, X C G and g € G, Z(G,T,e, X, q) is a graph (V, E,s,t)
such that s is connected to t if and only if g € (X)

Proof. We build Z(G, T, e, X, g) to be the graph whose vertices are elements of G, with
edges corresponding to the action of elements in X. Setting s as e and ¢ as ¢ yields
the desired result : a path in this graph from e to g is exactly a sequence xy,...,x,
of elements of X such that x, ...z9x7 = g. We define Z as the unary interpretation

(Pdom (), o~ (2,Y), vE(T, V), Ps(x), e(x)), where:

Pdom(T) =T

px(r,y) =2 =y

ep(r,y) =32, X(2) NT(z, 2,y)
ps(z) == (z =¢)
pi(x) == (z = g)

Corollary 2.4. CGM is definable in FO + stc and FO + tc

However, Reingold’s algorithm is not definable in the unordered setting, as wit-
nessed by [GM95|. Thus, whether FO + dtc expresses CGM remains unknown.

Example 2.5. Consider 2 = (V) E, <) a k-bounded colour-class graph (where the
colouring is encoded by the pre-order relation <). For any ¢, the i-th colour has an
induced automorphism group

T, .= {o € Sym(V;),Vs,t € V;, B(s,t) <= E(o(s),0(t))}

(where V; is the set of vertices of colour 7).

FPC defines a 2k-dimensional [{E, <}, {T,e}]-interpretation Z with parameter i
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such that Z(2, i) € CGrp is isomorphic to I';: consider Z = (@dom, ¢~, ¢, e) Where:

N5y Vi) A Vi(ya)
Cdom (TY, 1) := OVz,Vi(2) = <\//I;:l Ty = z> A (\/’f\:l Yy = z)
Noci Ay E(ar, ) <= E(ya, y,)

kook
o (T, 2y 1) = /\ /\m:xiL = U=,

A=1p=1
k k k
(f—* B x_/'/ i Z) R T _l‘” S $/ o A "o
YT ) ) Yy, T A= 4y v = Yx yp,_yl/
A=1p=1 v=1

k
e(T7,1) = [\ 2 =y
A=1

where V;(z) is a predicate stating that = belongs to the i-th colour-class. This can be

defined in FPC as:

(Vz,y <zApu=0
R(z,v)
Vi(r) :==ifpp, . | ¢ pw=rv-+1 (2,14) (2.1)

dz, v,
z<y

\ Vw,=(z <wAw < y)
©Cdom (TY, 1) states that x) — y, constitutes an automorphism of V;, o~ (2, 5’;&”, i) that
xy — y) and x — y} define the same permutations. ¢ then defines the composition
of such permutations, and ¢, holds on 7y iff x) — y, is the identity permutation.

However, the automorphism group construction algorithm presented in Section 1.2
requires as input a generating set for [[" I';. Such a group has, in the worst case,
order (k!)™*, which is super-polynomial. As such, we cannot hope to construct an
interpretation which builds this entire group in CGrp. As expected, CGrp does not
seem sufficient to capture the class of group computations described in Section 1.2.

2.3 Encoding permutation groups

We now depart from the study of CGrp, and aim to define a class of structures
encoding permutation groups, in the manner exhibited at the beginning of the chapter
for linear maps.

We wish to avoid representing permutations as functions, as we lack a proper way to
define functions within the formalism of first-order logic (and its extensions). Instead,
we will represent a function as its graph:
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Definition 2.6. Let X, Y be finite sets, and f : X — Y. The graph of f is the relation

graph(f) := {(a,b) € X x Y | f(a) = b}

If RC X xY is the graph of a function, this function is uniquely determined by R,
and we define func(R) as the unique (surjective) f such that graph(f) = R.

Because permutations play an important role in this thesis, in the case where R is
the graph of a permutation, we denote func(R) as perm(R).

Definition 2.7. Let £ be a logic extending FO, 2 be a Y-structure, tq,ts two types,
and f: X — A2 with X C A"". We say that f is definable in L if there is a L-formula
o(p, a, B) with type(d) = t1, type(3) = ta, such that, for some @ € AWPeP),

graph(f) = ¢(, a)

For X C Sym(D), we can encode (D, X) as a structure 20 whose domain is D LI X,
that is, both the points on which any o € X acts, and the permutations that are part
of X. The action of X over D is given by a ternary relation R* C X x D x D, defined

as follows:
R* = U {o} x graph(o)

geX

that is, (0,2,y) € R* iff ox = y. We also add X as a unary relation to distinguish
points from permutations. Let us denote PGrp the class of such {X, R} structures.

Lemma 2.8. PGrp is a FO-definable class of { X, R}-structures

Proof. First, we ensure that R is well-typed:
Grype = VT, Yy, 2, R(x,y,2) = X(x) AN=X(y) A =X (2)

Now, we make sure that, the action of X on D described by A is indeed a set of
permutations:

Vy, =X (y) = 3z, R(z,y,2)

Paction +— \V/l',X([L') —
Vz,-X(2) = 3y, R(z,y, 2)

{@type, Paction } constitutes an axiomatisation of PGrp. O

We introduce a lighter notation to define structures in PGrp: given a set D and
X C Sym(D), we denote G(D, X) the structure

(D |—|X7X7{(:B7d17d2) | l'dl - d?})

Example 2.9. Consider A, = G([n], X) where X = {(i j),i,j < n}. (X) = 5, has
order n!, and |2A,| = O(n?).
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Lemma 2.10. There is an FO-interpretation from CGrp to PGrp that maps any
group G to a permutation group isomorphic to G.

Proof.
Cdom(T,0) :=b=0Vb=1
pu(z,0,y,0) =z =yAb=V
ox(x,b):=b=1
P b=1AV=0A0"=0
or(x,b,y,b', 2,b") :
T(x,y,2

Z = (Ydom, P~, ¢x,¢r) defines the action of G over itself by left multiplication. By
Cayley’s theorem, the underlying permutation group is isomorphic to G. [

Together with Example 2.9, Lemma 2.10 implies that, if we consider any finite
structure A, strictly more groups can be defined by interpretation into PGrp than
CGrp, be it only for the fact that groups of super-polynomial order can only be built
within PGrp. As a partial converse result, we have the following:

Lemma 2.11. There are FO-formula v« (z,y, z) and p_1(z,y) such that, for any A =
G(D,X) € PGrp and o,7,p € X,

i <2[70-7T7p) }:SOX iﬁU'T:p
° <2[70-77-) )ZQO_I iﬁg_l =p

Proof.

Vs, t,3u, R(z,s,t) = (R(y,s,u) A R(x,u,t))
N X(x) A X(y)
90—1<x’y) T

Vs, t, R(z,s,t) = R(y,t,s)

<%X(g;) A X(y) AX(2)

]

However, while the first-order theory of groups is quite natural, it is not quite clear
which properties of those groups can be defined in FO or FP. As a corollary of our
main result in Chapter 4 we will see that the expressive power of FPC over PGrp is
quite limited. However, there are two fundamental properties of permutation groups
that are definable even in FO + tc: transitivity and, to a lesser extent, primitivity.

Lemma 2.12. There is a FO + tc formula ¢(x,y) such that, for any A = G(D, X) €
PGrp, a,b € D, (A, a,b) = ¢ if and only if a and b belong to the same (X)-orbit.
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Proof.
o(x,y) = (tcyuIg, Rg, u,v))(x,y) O

The proof of the following statement is a direct translation to the logical framework
of [Luk82, Lemma 1.3]

Lemma 2.13. There is a FO+tc sentence ¥ such that, for any A = G(D, X) € PGrp
with (X)) transitive, A |= 1 if and only if (X) is a primitive group.

Proof. Consider the following formula:

0(u,v,z,y) = 3g, (R(g,u, z) A R(g,v,y)) V (R(g,u,y) A R(g,v,z))

For any a,b € A, (tc,,0)(2A, a,b) defines the graph with vertex-set D, and edges
{{a,b}} = {{a%,b°} | 0 € (X)}. As remarked in [Luk82| (where the author
cites [Sim67]) the connected component of @ in this graph is the smallest set X C Q
such that {a,b} € X and X is stabilised set-wise by (X). Therefore, the group is
imprimitive if and only if, for some couple (a,b) € D?, this set is not equal to D. As
such, the following sentence has the intended behaviour:

= Vu,v,w, (tc, ,0(u, v, z,y))(u, w)) O

In [Luk82|, this technique is used to compute a mazimal block of imprimitivity of
the group at hand. This seems to remain out of reach of any logic considered in this
thesis (including FP + ord which will be introduced in the next subsection, and also
CPT). Indeed, as there might be different maximal blocks of imprimitivity for a given
2 € PGrp, it is quite unclear how we could enforce the definition of one such block
without choice. Yet, the computation of such a block is a very important step in Luks’s
algorithm for graphs of bounded degree, and this limitation is the first obstacle towards
the translation of this method to a choiceless framework.

We conclude this section with a small remark on this translation of the permu-
tation groups framework to logic. Our definition of PGrp introduces two different
levels of “unorderedness”. For a given structure G(D, X), a linear-order of D yields
a canonical (and FP-definable) total linear-order over X. However, the converse does
not necessarily hold for X, and we can construct cases where X is ordered without
yielding a canonical ordering of D: to get an intuition of this, consider the case where
D ={xy,...,z,} and X = {(x;...2,)}. x; — 2441 is a non-trivial automorphism of
G(D, X), which renders the definability of an ordering of D, the domain of G(D, X),
impossible (without parameters).

We denote PGrp= the class of { X, R, <}-structures whose restriction to { X, R} is
in PGrp, and such that < is a strict linear order on X.
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2.4 The ord operator

Consider the function order : PGrp — N, which maps 2l = (DUX, X, R) to [(X)|. This
function is obviously isomorphism-invariant, and we have introduced in Section 1.2 a
polynomial-time algorithm that computes order. We aim to introduce an operator able
to define order in the syntax of FO, in the same way that rk enables the definition of
rank, that is, given a [, {X, A}]-interpretation Z, ord(Z) should make the following
diagram commute:

PGrp

] ord(Z) . N

STRUC[E

The first obstacle is that order(2() is not polynomially-bounded by |2, as seen in Ex-
ample 2.9.

However, this example is mazimal in the sense that, for any structure 2 = G(D, X),
order(21) < |D|! ; and log(|D|!) < |D|log|D| < |D|*>. As such, order(2l) can be repre-
sented as a binary numeric predicate over D (that is, a subset of (D<)?). Therefore,
while we can’t expect the ord operator to output a numeric value, it could output a nu-
merical term: if 7 is a k-dimensional [, { X, R}]-interpretation, and B is a X-structure
such that Z(8) = G(D, X) € PGrp, |D| < |B/*, and

log,(order(Z(B))) < log,(|B[™) < B logy(|B]*) < |B[**

Therefore order(Z(B)) can be encoded in binary as a 2k-ary numerical predicate.
We could thus introduce, as in our discussion on the rk-operator at the beginning
of this chapter, a family of operators {order,n € N}, such that order takes as in-
put a k-dimensional interpretation, and outputs a 2k-ary numeric predicate such that

order(Z(21))(m) holds if the m-th bit of order(Z(2l)) is a 1, that is:

(2, m) = order(T) <= bit (order(Z(Ql)),ZmﬂQ[P) =1 (2.2)

While this definition of ord would be satisfying from an expressivity perspective,
it is quite impractical. It is very heavy in notation as it requires us to define a full-
blown interpretation; and it also doesn’t provide a distinction between points and
permutations, which will often be useful as the number of points usually provide a
better measure of the size of the group at hand. Since we will use the ord operator
extensively in the following chapters, a simplification of the operator is therefore in
order. Unlike the rk operator, it seems that disallowing quotienting (that is, cases where
the formula ¢~ (Z, %) is not equivalent to & = ¢) could decrease the expressiveness of
the operator. However, our expressiveness results on the ord operator do not make use
of quotienting, and as such, we will restrict ourselves to cases where o~ (Z,y) = 7 = 7.
In this subset of interpretations, we can introduce a much simpler syntax, quite close
to the syntax of the rk operator:

Definition 2.14. For 7, 5,t four tuples of variables such that type(3) = type(t), ji
a tuple of 2|5] numerical variables, and a formula (), 5,t) over some signature 3,
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Y = (ord; 5 ) (ji) is a formula with free(y)) = {ji} U (free(v) \ {7, 5,t}). Given a %-
structure A and @ € AYP(), (ord;; 540) (A, @) = order(Z) in the sense of Eq. (2.2), where
Tisa[X,{X, R}]—interpretatlon of type T' = (number - type(p) - type(s)) provided by

the formulae:

90~(:L" y) =I=
) :=b,

by =1Ab,=0Ab, =0
7_’: p:mey?ez

where, to ease readability, we have split any tuple Z of type T into (b, Py, €,), where
type(ps) = type(p) and type(€;) = type(s).

_,
7

@1

In the definition of g, we require pj, = p, so that for any value @ of Z, pr(2, @)
defines the graph of a permutation (as such, for any ¥, there must be a unique Z' such
that pg holds). That is, we expect ¢ to define a family of permutations over A’ (where
t is the type of 5), this family being indexed over A" (where ¢’ is the type of §); in

which case ord; 7 is a numerical relation encoding the integer

’<{O’ | 3@ € AY, graph(o) = ¢ (4, 6)}>‘

Note that this definition uses the numerical domain (in the variables b,, b, b,) to
distinguish between points and permutations. This could have been circumvented
using extra variables and equality types, although this would have reduced readability.
We now introduce some additional notations that will ease reading in the following
chapters.

Definition 2.15. Given a formula o(, 5,1) where type(5) = type(?), a structure 2
and @ € AYP°() | we say that ¢ defines a permutation o € Sym(A®P()) on (2, @) if
(2, @) = graph(o).

We denote by (p >55t-(91) the group generated by the set of permutatlons defined by
¢ in 2 for some assignment of p. When clear from context, we omit the §¢ part of the
subscript when using this notation.

With these notations, (ord; z)(%() is a numerical predicate encoding |(y)#(21)].

In the following chapters, we will often introduce formulae such as ¢(p) s, f), which
define a permutation over (2A,a) for all values of @ € AP In such a case, we
call p the enumeration parameters of ¢, and §,t the permutation variables of ¢. We
usually provide a hint for the separation between the enumeration parameters and the
two component of the permutation variables by omitting the commas within the three
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tuples p, § and t. Thus, if p = (p1,...,m), § = (51,...,5,) and £ = (t,...,t), we
would denote the definition of ¢ as

o(p1pa - .- D, S182 - - . Spytaty .. tg) == ...

Example 2.16. Consider, as in Example 2.5, a k-bounded colour-class graph 2 =
(V,E,<). We write x ~y for z < y Ay < x, and consider

(/\];:1 Ty~ Y\~ T1

Vz, 2z~ = (Vi oa=2) A (Vi o = 2)
o(T7, 5,1) = & Nymy Aoy B, 20) <= E(ya, )
Visis =2 At =y,

(/\izls;«é:z;A)AS:t

This formula shares many similarities with the interpretation defined in Example 2.5:
using a vector of length 2k, we parameterise automorphisms of a single colour class.
Here however, we do not describe the group of automorphisms by providing its mul-
tiplication table, but by specifying its action on the set of vertices. Moreover, this
new formula is not restricted to an individual colour-class: in Example 2.5, Z(2l, 1) was
isomorphic to I';, while here, (¢)z7(2() = [[,Ti. As such, ordz; ¢ is a binary numeric
predicate encoding (in the sense of Eq. (2.2)) |I[, T =TI, |Tl-

We are now ready to study the logic FP + ord in depth in the following chapter.
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First study of FP + ord

Having introduced the ord operator, we now initiate the study of its expressivity. In the
first section, we start using the ord operator to define basic group-related operations
and problems within FP 4 ord. This section also serves as an example for the reader to
get acquainted with the logic at hand in the remainder of this thesis.

In the second section, we will discuss the limits of the representation of groups
by generating sets of permutations. In particular, we will show that isomorphism-
invariance prevents the definition of a fundamental operation enabled in the compu-
tational context by Schreier-Sims framework: the computation of generating sets for
accessible subgroups.

This limitation motivates the definition of another representation of groups, which
we introduce in Section 3.3. This representation is a central tool in our results of
Chapter 4.

Finally, we show that FP +ord is a satisfying new candidate logic for P in the strand
of rank logic: first, we show that FP + ord has polynomial-time model-checking, and
that FP + rk < FP + ord.

3.1 A group-theoretic framework within FP + ord

In this section, we introduce some fundamental operations on group that can be defined
within FP + ord. This introduction serves two purposes: first, it showcases the use of
the ord operator, and gives first instances of FP 4 ord formulae ; but it also provides
definition, within FP + ord, of operations pervasive to Computational Group Theory.
As we expect to use Computational Group Theory in Chapter 4, in a manner quite
similar to Section 1.2, it seems natural to first introduce basic operations that we will
then be able to use seamlessly in the following chapters.

A first result is that, given a structure encoding a group G < Sym(A) and a
permutation o € Sym(A), there is a FP 4 ord sentence that holds iff o € G. We start
by defining this encoding, in a manner quite similar to our definition of PGrp:
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Definition 3.1. A membership problem instance structure is a {X1 RO target(?)}-
structure 2 such that:

° Dm::A\XQ‘
e RYC X% x D¥ x D%

e For any # € X¥, {(s,t) € D¥* x D* (x,s,t) € R*} defines the graph of a
permutation 7.

o target® C D% x D* defines the graph of a permutation o
We denote the class of all such structures MembProb. Such an instance 2 is positive
if 0 € (1, | # € X™). We denote the class of positive instances MembProb™*

Lemma 3.2. There is an FP + ord sentence on signature { X, R, target} that holds on
a membership problem instance structure iff it is a positive instance.

The proof of this lemma relies on the fact that
g €(5) <= [(S)| = [(SU0)
Therefore, the proof of Lemma 3.2 follows directly from the following;:

Lemma 3.3. Let o(p,5,1),1(q,5,t) be two L[X]-formulas, where £L > FP. There is a
L formula n(7, 5,t) such that, for any Z-structure 2,

m#(2) = ({)a(2) U (¥)(RA))

Proof. Let 7= (P, ¢,b), where b is a fresh numerical variable. We use 7 to range over
both generating sets, and define 1 accordingly:

b= D, 5,1
o750 0 A (p, 5, 1)
b=1AY(F,5,1)

The result follows immediately. Note that if £ does not implement the numerical sort,
we could use two domain variables and equality types in place of variable b. O]

Proof of Lemma 3.2. Considering target as a formula definining a permutation over D
with 0 parameters, applying Lemma 3.3 to R and target, we obtain

=0A R(z,s,t
(b, x,s,t) = )
b= 1A target(s,t)

Now, it is only left to compare the size of (R).(2() and (1), .(2):

memb := Vi, (ord, s R(z, s,t)) (i) <= (ordpsn)(i)
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It follows from the observation below the statement of Lemma 3.2 that, when 2 &€
MembProb, 2l = memb if and only if perm(target®) € (R),(2A), concluding the
proof. n

This shows that the “abstract” membership problem for PGrp is within reach of
FP+ord. However, we aim to use membership tests seamlessly within FP+ord formulae
definitions. In general, we expect to have already defined Y-formulae (7, 5,t) and
(s, f) such that, for any structure 2, they define respectively a generating set S™ for
a group G*, and a permutation perm(¢/*). Can we use ¢ and 1 as building blocks to
define a sentence that holds on 21 iff perm(¢)*) € (S*) ? Having shown Lemma 3.2, this
problem does not bear any fundamental complexity. However, any solution should be a
function that maps the formulae ¢ and i to a sentence, and this would be notationally
heavy to define.

This is where our definition of definable quantifiers in Definition 1.40 shows useful:
here, IC is the class of positives instance in MembProb, and as we have already shown
K to be defined, it is only left to show how such a couple of formulae (p,1) can be
seen as an interpretation from Y-structures to MembProb:

Definition 3.4. Given Y-formulae (7, 5,t) and (5, 1), we write (¢ € ()5 for the
FP-+ord definable generalised quantifier MembProb™ (Z), where Z is the interpretation
of type T' = number - type(p) - type(s) from E-structures to {X, R, target}-structures

defined as follows:

(b, =1Ab,=0AD, =0
Pr(L, Y, Z) = @ (P, €y, €;)

5, = 7.

(b, =0Ab, =0
Prarget (T, ¥) 1= € (e, €y)

7. =75,

where any tuple Z of type T is split into & = (b, Py, €,) with type(p,) = type(p) and
type(e,) = type(s).

Together with Proposition 1.38, Lemma 3.2 implies that this generalised quantifier
is definable in FP + ord, and as such, we will use it pervasively in FP + ord formulae.
As a corollary, we can also define a subgroup predicate within FP 4 ord:

Corollary 3.5. Given ¢(p,5,t) and ¢(q,35,t), there is a FP 4 ord sentence ({¢) <
<¢>)ﬁqjgf that holds on 20 iff <90>ﬁ§{(9[) < <¢>§§E(Q[)
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Proof.

3.2 Limits to the expressive power of the ord
operator

We have shown that the ord operator enables the expression of quite a few natural
permutation group properties. However, we have presented one polynomial-time com-
putable operation on permutation groups which is missing from this list: obtaining
generating sets for accessible subgroups of an input group, itself represented by a gen-
erating set. We showed in Proposition 1.69 how this operation can be computed in
polynomial time.

It happens, as we will show in this section, that the representation of groups as
generating sets of permutations is not well-suited for this task, in the isomorphism-
invariant computation context.

Below Definition 1.42, we have mentioned the fact that any relation defined by
a formula in a logic must be canonical. In Theorem 3.9, we will exhibit a class of
structures on which FPC witnesses the accessibility of some group H (in a sense to be
made precise in the statement of the theorem), while any canonical set of permutations
that generates H has exponential size.

This result does not exhibit a weakness of FP + ord, but rather a shortcoming of
the representation of groups by generating sets of permutations. Indeed, the proofs of
Theorems 3.6 and 3.9 do not rely on the actual expressive power of FP+ord, but merely
on the fact that it is isomorphism-invariant. Nevertheless, to improve readability, we
will still state and prove those results in the context of FP + ord.

As a first step, we show that there are some groups for which a generating set can
be constructed in polynomial time, and which cannot be defined within FP + ord:

Theorem 3.6. There is a class of graphs K such that:
e There is a polynomial-time Turing Machine M which computes, on input enc(2l)
for A € K, a generating set for Aut(2).

o For any FP+ord formula @ on graphs, there is some graph 2 € K such that o(2L)
does not define a generating set of Aut(2l).

Our proof relies on the two following lemmas:

Lemma 3.7. Let ¢ € (FP + ord)[o] be a formula with k + 2 variables, and for 2 €
STRUC|o], let S* := {perm(p(A,a)) | @ € AF} be the set of permutations defined by
w on A binding the first k variables. Then:

o |S| <A
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o For any T € Aut(),
S={rprtpesSt=9"

Proof. First, we argue that FP 4 ord is isomorphism-invariant. The isomorphism-
invariance of FP + ord is a direct consequence of the isomorphism-invariance of FP
together with the fact that order is an isomorphism-invariant query.

In particular, when 7 € Aut(2), the isomorphism-invariance of FP + ord yields:

Consider now a formula ¢ as in the hypothesis of the lemma. We argue that ()"
defines S7 in the same way ¢(2() defined S, i.e.

ST = {rpr™" p € S} = {perm(p(A,@)) | d € p(A)"}

Indeed, fix some parameters @, and let p := perm(p(2,@)). Then p(2A,@)" is also the
graph of a permutation p’, which maps 7(s) to 7(¢), for any s,¢ such that p(s) = ¢, and
thus

p(s) =7(p(r7(s)))
which concludes the proof that S = S7. The fact that |S| is bounded by |A[* is
straight-forward. O

A set of permutations S over 2 (and more generally, any relation over 1) is canonical
when, for any 7 € Aut(2(), ST = S. Notice that Lemma 3.7 does not depend on the
expressive power of FP 4 ord but merely on the fact that, for any couple (2, ), ©(2)
is canonical w.r.t. 2. Now, this fact alone suffices to show Theorem 3.6:

Lemma 3.8. There is a class of graphs IC such that:
e There is a polynomial-time Turing Machine that defines Aut(2() on input enc(2)
forAd e K.
o For any A € K, any generating set S of Aut(d) that is canonical has size >
(1A[/2)t.

Recall that, according to Definition 1.42,

Proof. Consider K := {K,, ,,n € N}, where K, , is the complete bipartite graph with n
vertices. Formally, K, ,, is a graph with 2n vertices [n]U[n]’, where [n]" := {1",2/,...,n'}
and such that there is an edge between u and v iff u € [n]Av € [n] or u € [n) Av € [n].

For any n, Aut(K,,) is the set of all permutations of [n] U [n] that stabilise the
partition ([n], [n]’) setwise. It is generated by the set of n(n — 1)/2 + 1 permutations

S:={(j)i,jem}pu{d1)22)...(nn)}
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From there, the fact that S can be defined in polynomial-time when given enc(2) as
input is straight-forward.

Now, suppose that S is a canonical (w.r.t. 2() set of permutations that generates
Aut(K, ). We show that, for any permutation 7 of Sym([n]), S must contain the
permutation Swap(7) defined as

Swap(7) := (7(1) 1')(7(2) 2') ... (7(n) n')

which then concludes the proof, as this implies that |S| > n!. First, it must happen
that S contains at least one Swap(7y) for some permutation 7, € Sym([n]), for if it
does not, S cannot generate K,,, (either it stabilises ([n], [n]’) point-wise, or it does
not stabilise it at all).

Now, consider any permutation 7 € Sym|n|, and let 7" be the permutation of [n|’
which maps ¢’ to (7(2)). 77’ stabilises ([n], [n]’), and is therefore an automorphism of
K. For i € [n],

(Swap(0)) ™™ (7(i)) = (ror’) "' Swap(ro) (ro7')((7))
= (ro7") " "Swap(7o) (10(7(i)))
= (r7) 7 ((r(2))")
= (r7) 7 (')

Conversely,

Therefore, (Swap(r))™™) ™" = Swap(7). We have thus shown that, for any 7, Swap(7)
is a conjugate of Swap(7y) under the action of Aut(2(). Together with our assumption
that S is closed under conjugation by elements of Aut(2(), this concludes our proof. [

It happens that the same argument can be adapted to an accessible subgroup,
therefore demonstrating that FP + ord is not able to express the third primitive on
permutation groups provided by the Schreier-Sims algorithm. Formally,

Theorem 3.9. There is a class of structures IC and a constant | such that:

o There is a polynomial-time Turing machine that, on input enc(A) for A € K,
computes a generating set for Aut(2L).
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o There is a FP+ord formula o (p, s,t) such that, on any structure A € K G() :=
(pa)p(A) > Aut(A) and Aut(2l) is l-accessible from G(2L)

o The l-accessibility of Aut(2() from G(2) is witnessed in FP + ord, that is:

— There is a formula @c with free(pc) = {ii, X} (where X is a second-order
variable of type 21 and ji a l-tuple of numerical variables) such that, iterating
through all X encoding an integer m < |A|', and starting with Go(2A) =
G (), the set of permutations T in G, () such that A, X, graph(7) |= ¢e is
a subgroup G, 11(A) < G, (A), and G, (A) = Aut(A)

— For any m < |A|Z; ’Gm(m) : Gm-i—l(m)’ < ‘A’l

e All canonical generating sets for Aut(A) have size > 2141/4,

Proof. We construct, for each n € N, a structure 2, such that the class K := {2, | n €
N} satisfies the conditions of the theorem. Fix n an integer. For any integer i, let
C; = {(4,0),(¢,1)} and D; := {(4,2),(¢,3)}. Let C' := J._, C; and D := (J;_, D.
Consider the {<, F'}-structure 2,, such that:

e A=CUD
o a <% b iff there are some i < j such that a € C; U D; and b€ C; UD,;.

o E% — (C'x D)U(D x CO)

In words, 2, is a coloured simple graph with 4n vertices such that each colour class
induces a subgraph with 4 vertices, isomorphic to two disconnected edges. Finally,
the whole graph is isomorphic to Ky, 2,, and each colour-class intersects both of those
cliques at two distinct vertices. That is, we consider precisely the same structure as in
the previous theorem, except a colouring of colour-class size 4 has been added.

We will now show that K := {2,,n € N} has the desired properties. First, for
any n, 2, is a 4-bounded colour-class graph, and as such the automorphism groups of
structures in K is computable in polynomial-time, as we have seen in Section 1.2.

We now show that the [-accessibility of Aut(2(,,) is definable in FP + ord (uniformly
on n): Consider G(2,,) := [, Sym(C; U D;). Obviously, Aut(2,) < G(2,). More-
over, G(2,,) is generated by

{(GA) ()i <ny A e {0,1,2,3}}
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We now define ¢, such that, for any n, ¢og(2,) defines a generating set of G(2,,):

pP=q
q=p
vc(p. ¢, s,t) =@ [s=prt=g¢q
Ss=qANt=p
((s#PAsFqNs=

Let us now show that Aut(2l,,) is accessible from G(2l,), and that this accessibility is
definable in FP + ord. Consider Go(2,,) := G(2,,), and for any k < n,

k+1 k+1
Grs1 () == Stabe, ) {U Ny DZ}
i=1 =1

By induction, any o € Gg(2l,) fixes {U - CZ,Ul 1D} setwise. As such, any two
0,7 € Gi(2,,) belong to the same Gy1(2,)-coset if they act in the same way on the
partition {Ule Ci, Ule DZ-}, and they act in the same way on Cy U Dj. As there are
two possible ways to act on the former, and |S;| = 24 ways to act on the latter, there
are at most 48 cosets of G411 (2,,) in G (21,), for any n. It only remains to show that a
formula ¢ that defines conditional membership to G, from Gy can be constructed
in FP + ord, which can be done as follows:

k X(JI,ZL’/)
ek, X) :=Va,y €| JC;U D, 'y, X (y,y)
=1 E(z,y) < E(2,y)

The fact that membership to the first & colour-classes (used here in the quantification
of z and y) can be defined in FPC is straight-forward. The correctness of the formula
e relies on the fact that the edge relation, by assumption, defines the equivalence
relation of the partition we are aiming to stabilise.

Finally, it is left to show that any canonical generating set for Aut(2(,) has size at
least 2. The idea is similar to that of Lemma 3.8: such a canonical generating set S
must contain all possible swaps between C' and D.

Here, the set of swaps is in bijection with the set of functions f : n — {0,1}. For
such a function f, we denote Swap(f) the following automorphism of 2,,:

i,2+b) ifb<2Af(i
i,2+(1—=0)) fb<2Af(i
i,b—2) ifb>2A f(i

(

(
Swap(f)(i,b) = E
(,,(1—=(b—2))) ifb>2Af(i

)=0
)=1
)=0
) =1
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Clearly, (f — Swap(f)) is injective, and as such, the set of all swaps has size 2".
Moreover, any o € Aut(2,,) that permutes C' and D is of the form Swap(f) for some
f. As such, any generating set of Aut(2(,,) must contain such a swap.

Now, consider S such a generating set, and suppose that .S is isomorphism-invariant.
Let fo be so that Swap, € S. Consider any f : n — {0,1}. Let o; € [TSym(C;) be
the permutation that swaps (i,0) and (i,1) for all i such that f(i) # fo(i). It is easy
to see that oy € Aut(), and, if b < 2 (note that 0;1 = o). Now, suppose that i is
such that f(i) = fo(i). Then, oy fixes (7,b), and Swap(f) and Swap(fy) agree on (i, b)
for all b. As such,

Swap(fo)°’/ (i,b) = o - Swap(fo) - 0¢(i,b) = Swap(f)(,b)

for all b. Otherwise, if f(i) # fo(i), for b < 2:

Swap(fo)‘ff (i> b) =05 Swap(fO) ) O-f(i’ b)

= oy - Swap(fo)(i,1 —b)

_ {af(z',z +(1-1)) if fo(i)

op(,2+ (1= (1=0))) if fo(4)
of(i,2+(1—0)) if f(i)=1
o¢(i,240) if f(i)=0
— oy - Swap(/)(i, )

Since Swap(f)(i,b) € D, = Swap(f)(i,b)

0
1

Since f(i) # foli), = {

Finally, the same argument as in Lemma 3.8 can be used: Swap(fy)°/ is the conjugate
of a product of disjoint transpositions, and as such is also a product of disjoint trans-
positions. This implies that Swap(fy)?f(i,b) = Swap([f)(i,b) for b > 2, and concludes
our proof that Swap(fy)?f = Swap(f).

Thus, all swaps are conjugate w.r.t. Aut(2(,), and must therefore be contained in
S, which must have size > 2", concluding our proof. O

The fact that our proof remains true for any logic extending FO that preserves
isomorphism-invariance hints at the fact that yet another abstraction on group com-
putations is needed to capture the power of polynomial-time permutation group com-
putations. Said differently, our way to encode permutation groups in extensions of FO
forbids the definition of groups which should be definable.

3.3 The morphism representation of subgroups

We have just shown that isomorphism invariance has a cost when trying to represent
groups by generating sets of permutations. This shortcoming motivates the search
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of new representations for permutation groups; representations that would allow the
definition of groups which admit no canonical generating sets of polynomial size.

In this section, we provide a partial solution to this question. Precisely, we show
that if G is a group which admits a definable generating set, and H < G, the graph
of a morphism m : G — Sym(f2) such that ker(m) = H constitutes a satisfying
representation of H, that we call a morphism-definition of H from G In particular, we
will show that the basic operations enabled by the ord operator on groups provided by
generating sets can also be defined on groups provided by such a morphism.

Additionally, we will show that, in this restricted setting of morphism-definable
subgroups, we can actually define arbitrary intersections of groups. The ability to
construct representations of subgroups is central to the group-theoretic framework to
graph isomorphism and canonisation. Indeed, these algorithms rely on gradually re-
fining a large group until a generating set for the automorphism group of the graph in
question has been computed.

Another important feature of morphism-definability is that it enables the represen-
tation of cosets of a subgroup in an isomorphism-invariant way. The representation of
cosets constitutes another limitation of the presentation of groups by generating sets
of permutations in an isomorphism-invariant context: in the computational context,
one can represent a coset o H of a subgroup H < GG by a generating set for H and any
choice of T € G such that TH = o H. In general, there is no canonical such choice of
representative 7 of the coset, which prohibits such a representation scheme for cosets
in FP + ord (or any logic for P). On the other hand, when H is provided through a
morphism m : G — Sym(Q2) such that ker(m) = H, there is a bijection between im(m)
and the cosets of H in G. Assuming that m is definable (in the sense of Definition 3.10
below), this bijection yields a canonical representation of cosets of H in G. As we have
briefly mentioned in the introduction of this thesis, and as we will see in Section 4.3, the
ability to represent cosets is particularly important in the group-theoretic framework
to Graph Canonisation. The techniques developped in this section will thus play an
important part in our canonisation procedure in Chapter 4.

Our notion of definability of a morphism m : G — H is quite natural: a formula
©m should define, given g € G, the graph of m(g) (as a permutation). However, as G is
assumed to be a permutation group, ¢, defines a function from second-order objects
to second-order objects. Thus, to represent a morphism in this way, a second-order
variable is necessary:!

Definition 3.10. For T, 7" two types, and ¢,,(R, Z,¥) a formula with R a relational
variable of type T'- T, and type(Z) = type(y) = 1", ¢, is said to define a morphism
m : G — Sym(A™") on 2, where G' < Sym(AT) if, for all o € G,

©m(2, graph(c)) = graph(m(o))

! Actually, if G admits a definable generating set, m can be represented by the images of each
element in this generating set. To improve clarity, we present morphism-definability with second-
order variables
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H < G is L-morphism-definable from G in 2 if £ defines a generating set for GG in 2,
and there is a £-formula ¢, which defines a morphism m : G — Sym(A”") on 2 such
that ker(m) = H.

In the remainder of this section, we will show that if we restrict our attention
to morphism-definable subgroups (rather than accessible subgroups), many natural
group operations are definable in FP + ord. Before doing so, let us study the relation-
ship between morphism-definable subgroups and accessible subgroups. First, it is a
consequence of the Correspondence Theorem (see e.g. [Isa08, Theorem X.21]) that any
subgroup morphism-definable from G in 2l is accessible from G in 2:

Theorem 3.11 (Correspondence Theorem). Given a group G and N Q G, ¢ : H —
H/N is a bijection between the subgroups of G containing N and the subgroups of G/N.
Moreover, ¢ is monotone w.r.t. inclusion. In particular, (N) =1 and ¢(G) = G/N.
Finally, if G > A> B> N, |A:B|=|A/N:B/N|.

Lemma 3.12. Consider a structure 2 and two formulae pg(p,5,t), pm(R, Z,7) such
that o, defines a morphism m from G := {(pg)5(RA) to Sym(AWP@)). Then, H :=
ker(m) is |Z|-accessible from G.

Proof. Let T = type(3),T" = type(Z), A\ = |A|'"'l, and fix an enumeration (w;);<y of
AT'. This enumeration allows us to build an adequate chain of subgroups for m(G) <
Sym(A™") as described on Page 42, i.e. we consider the chain of subgroups

where
Kiy1:={o € K;,0(w;) = w;}

and note that the length of this chain, as well as the index of K, in K; (for each ¢) are
bounded by A. Since each K is a subgroup of m(G) ~ G/H (by the First Isomorphism
Theorem), the Correspondence Theorem implies that there is a unique subgroup H;
such that K; ~ H;/H. Because this correspondence is monotone, the groups H; form
a subgroup chain

G=Hy>H, > --->Hy,=H.

It is left to show that this chain witnesses the accessibility of H from G < Sym(A”).
The fact that H;,; admits a conditional membership test in H; relies on a fact which
we haven’t proven at this point, namely, that FP 4 ord has polynomial-time model-
checking. This will be shown in Theorem 3.21, and the proof of this fact does not
depend on the present lemma. Given o € H;, o belongs to Hyyy iff m(o) € Sym(A™)
stabilises w;,1, which can be defined by the following FP + ord formula:

—

QOStab(Rcra f) = Som(Rm z, f)
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For o € H;, we therefore have

o€ Hiyy < (A graph(o),wit1) E @stab

which is polynomial-time computable according to Theorem 3.21. Finally, by the
Correspondence Theorem, |H;: Hiyq| = |K;: Kipq| < N = \A[‘T/|. O

We have just shown that if H < G is morphism-definable from G, it is then acces-
sible from G. Interestingly, the reverse implication does not hold:

Lemma 3.13. There is a family of couples of groups (K,,Gp)nen such that K, <
G < Sy, with K, 1-accessible from G,,, while for each FP + ord-formula v, (R, Z, 7)),
there is an n such that ¢,, does not morphism-define K, over G, on the structure
G([4n], X,.), where X,, is any small generator of the faithful action of G, on [4n].

Proof. This stems from the fact that some quotient groups only admit faithful per-
mutation representations over exponentially larger sets. Such a sequence of couples
(Kpn, Gp)nen is exhibited in [Neu87, Example 1.1]: consider o; := (4i + 1 4i + 2 4i +
34i+4), 7, == (4i+2 4i+4), and let G,, := (0;, 7 | 1 < n), and K,, := (630? | 0 < i < n).

It is shown in [Neu87| that any set I" such that G,,/ K, is isomorphic to a subgroup of
Sym(T) is such that |T'| > 271 As such, for any formula ¢,,(R, Z, ), it suffices to pick
n such that (4n)¥Pe@ < 27+l Because |AWPe@)| < 27+ cannot morphism-define
K,: otherwise, we would have G,,/K,, ~ m(G,) < Sym(A®Pe@),

To show that K, is 1-accessible from G,,, a quick analysis of the structure of GG,, is
necessary: G, is the direct product of n instances of Dg, the dihedral group of order
8. K, is a subgroup of Z,, := (¢ | i < n) (which is the center of G,, i.e. the group).
K, has order 2 in Z,, so it only remains to show that Z, is 1-accessible from G,,. To
do so, it suffices to consider the chain of subgroups

Gn:HO,nZHl,nZ"'ZHn,n:Zn

where
Hip = {0} |j<i}U{o; | j>iyU{r |j>i})

that is, H;, is the direct product of i copies of Zy, and n — i copies of Dg. It is easy
to see that |H;,, : H; n4+1| = 4, and as such this chain of subgroups indeed witnesses the
accessibility of Z,, (and hence K,,) from G,,. O

Thus, morphism-definable subgroups of GG constitute, in general, a strict subset
of accessible normal subgroups of G. Having delimited the range of our definitions,
we now proceed with our main results concerning morphism-definable groups. First,
we show that if H is morphism-definable from G in 2, a generating set for a faithful
representation of G/H is definable in 2A:
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Lemma 3.14. Let £ > FPC and 2 be a structure. Let o(p), 5,5) be a L-formula that
defines a permutation on (A,a@) for all @ € A¥*°P) and let p,,(R,T,1) be a formula
defining a morphism m : G — Sym(A**®)) where G := (p);(2A). Then, im(m)
admits a L-definable generating set.

Proof.
Wim(m)(p;fa 37) = 90m<R,f, g)[R(§7E>/(p(ﬁv §7f>] u

This first result will be quite important in Section 3.4. Moreover, given such a
v € im(m),

m~(v) = {o € G,m(0) = v}

is a coset of ker(m), equal to oker(m) for any ¢ € m~(v). Recall that we have
argued at the beginning of this section that, unlike in the computational framework,
the isomorphism-invariance requirement of a logic prohibits the representation of cosets
through the choice of witnesses. In the case of a subgroup H defined by a morphism
m, the unique v such that m(cH) = {v} constitutes a canonical representative of o H.
This fact will play a major role in Chapter 4.

Now, we show that the first two operations of the Schreier-Sims framework are
definable in the context of morphism-defined subgroups:

Lemma 3.15. Consider two formulae ¢q(p,5,1), om(R,Z,%). There are FP 4 ord
formulae pc(R), ord(fl) such that, on any structure A on which ¢, defines a morphism
m from G = {a)p(3) to Sym(AV®),

e for any T € Sym(A®P() (2, graph(7)) |= ¢ iff T € ker(m)

* pord(RA) is a 2|§]-ary numerical predicate encoding | ker(m)|.

Proof. Given 7 € Sym(A%P*()) it is in ker(m) iff it is in G and m(7) = Id. Using
Lemma 3.2, this is easily definable in FP + ord:

QOG(R) = (R(gafj S <@G>)ﬁ.§1?/\v'f7 Cpm(Ra Z, f)

|G |

To compute the order of ker(m), we use the fact that | ker(m)| = g -

N o) [

Ordﬁgt im(mn)

where (g) denotes the result of the euclidean division of P by @), where P and (), and
<§) are 2|5]-ary numerical relations encoding integers bounded by 2(n?). Note that,
since euclidean division of integers (encoded in binary) is a polynomial-time computable
arithmetic function, the Immerman-Vardi theorem ensures that the above expression

is definable in FP 4 ord. O]
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Finally, we show how we can construct a representation for the intersection of two
groups morphism-defined from G.

Definition 3.16. For m; : G — X and ms : G — Y two morphisms, let

m&mo:G— X xY
g = (ma(g), ma(g))

It is quite clear that ker(m; ® mg) = ker(m;) N ker(ms), and as such, m; ® my
defines (over (G) the intersection of the subgroups defined by m; and my over G. It
remains to show that, under a suitable permutation representation of direct products
of groups, the ® operation on morphisms is definable in FPC. Definition 3.16 relies
on direct product of groups, and let us thus first provide a representation of direct
products of groups in fixed-point logics. In the following, the family of groups defined
by ©g(7, 7, 5,t) over 2 binding § is the family of groups (Gs) where, for @ € AWPe®),
Ga = (pg)gs1(2, @).

Lemma 3.17. Let £ > FPC, and ¢g(7, 7, 5,t) be a L[X]-formula defining a family of
groups binding p, and let  := AWP°P) x AWPS)  Then, . e Gz s isomorphic to
a subgroup of Sym(2). Moreover, there is a L[X] formula ¢ng that defines a generating
set for this permutation group isomorphic to ] Gs.

Proof. Consider the following action of [[. Gz on

It is quite straight-forward that this indeed defines an action, and that it is faithful.
As such, we have described a permutation group representing [ [ Gz

Let us now show that it is definable in FPC. As [] Gz is generated by |J Sz, where
Sz is a generating set for Gz, it is sufficient to show that, for any permutation defined
by ¢g, we can define its action on 2 in FPC:

fs = .ft
@Hg(ﬁ;q_:fsug7ft7£> = ﬁ:fs/\SOQ(_;_;_:tj
PATNG=1
For any (@, ) € AWPeP) x AWP@)  ono(A, @, €) defines the action of the permutation in
Ga whose graph is @g (%, @, ¢) on €. As such, (¢ng)pg(%) ~ [Lzc arwwen Ga- O

Lemma 3.18. Consider two formulae 0q(q,5,t) and om(p, R, Z,%) such that, for
all structure A and @ € AP, (A, a@) defines a morphism mg : (pc)g(A) —
Sym (AP There is a formula pem(R, p.T, Py, §) that defines the morphism

Qm = ® mg: G — H im(mg)

ac Atype(p) ac Atype(p)
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Proof.

@@m(Raﬁé‘v g:]?taﬂ = Q%ps —h OJ
Pm(Ps, R, 5,1)

We have already seen that one feature of morphism-defined groups is that they
allow for canonical representation of their cosets: if m : G — Sym(f2) is such that
ker(m) = H, any v € im(m) defines the coset m~'(v) = oker(m) for any 0 € G
such that m(o) = v. Now, if m is of the form @) m; for some family of morphisms
mg : G — Xz, any coset of m is an intersection of cosets of the groups defined by the
morphisms mgz. In order to represent cosets of the intersection of such a morphism-
defined subgroup, we show how to encode values in the image of the morphism &) mg,
when given a representation of a family of values, one for each mgz as we use an
encoding for the product of the im(mgz), we need to make sure that, given values in
each of the groups mz(G), we can construct the corresponding value in the encoding of
[[;im(mz), in order to represent cosets of the intersection of those morphism-defined
subgroups.

Lemma 3.19. Let pg be as in Lemma 3.17. Suppose that p,(p, s f} is a formula such
that for all @, p,(A, @) is the graph of some element of (pg)z (4, @). Then, there is a
formula e, (Ps, S, P, f} that defines the image of (vz) through the isomorphism between
[1Gaz and Sym(Q2) defined in Lemma 3.17.

Proof.

oo oo Ds =Dt
2 v(psa&ptaﬂ = RN L
? C%sov(ps,s,ﬂ

To conclude this section, we illustrate the use of morphism-definability by showing
that the groups shown in Theorem 3.9 not to admit polynomial-size canonical gener-
ating sets are morphism-definable.

Example 3.20. Let IC be the class of structures considered in the proof of Theorem 3.9.
That is, any structure 2l € K is a complete bipartite graph Ky, o, for some n, with a
colouring of colour-class size 4, such that each colour-class contains exactly two vertices
of each part of the graph. We use the same notations as in Theorem 3.9: the two parts
of the bipartite graph are denoted C' and D, and the colour-classes are denoted A;,
i <m, with C; := A;NC and D; :== A; N D. Obviously, x € A, is a relation definable
in FPC.

It is easy to see that FPC defines a generating set for the automorphism group
of each colour-class, as each of those groups has constant size: first, we can define a
formula @, (1, 7, ¢) which holds iff p; — ¢; is an automorphism of the p-th colour-class:

A (pi€ Ay Agi € A)
Qpaut(:uvp; (T) =QVs € Aiv \/?:1 pi =S A \/?:1 qgi =S
Nt Ni—i(E(pipj) <= E(q:,q5))
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and one can easily define the action of such an automorphism on the whole graph
(making it act trivially on all other colour-classes):

sgA, Ns=t1

Peen (s D> @5 S, 1) := Paut (11, Dy @) A
8¢ u SGA“/\\/?:l(s:pi/\t:qi)

Thus, (@gen)upzst(A) = H(A) = [, Aut(2l;) where 2, is the subgroup induced by
the i-th colour-class. The difference between H(2) and the group G(2l) defined in
Theorem 3.9 is that on any colour-class A;, 0 € H(2) stabilises {C};, D;} (setwise). We
claim that Aut(2l) is morphism-definable in H(2).

To show this, first remark that ¢ € H(2() belongs to Aut(2) if and only if o
stabilises {C, D}. We can rephrase this last condition by restricting our attention to
two colour-classes at a time. Indeed, it is easy to see that o stabilises the partition
{C, D} iff for any 7,5 < n,

C7 =0 = (O] =C;
Consider m; : H(2() — Zy defined by
1 itCy =0C;
m2(0'> =
0 otherwise
and M, ; : H(2() — Z, defined by
Miy(0) = 3 (0)mi(o)
It is easy to see that m; is a morphism?, and that M; ;(0) = 0 if and only if (C7 =

C; <= Cf = Cj). The fact that M;; is a morphism is a direct consequence of the
fact that Z, is abelian:

M ;(o7) = my(or)m; ! (o)

)
=m;(o)m
= M,
Now, let us show that m; is definable in FPC:
b, =0V b, =1

@m(:ua R, b57bt) = bt =0V bt =1
bs £ by <= (Fzr,y € A,, R(z,y) N E(z,y))

From there, one can easily define M, ;:
@m(u? 'R’ bs’ b,)

gpm(lj, R7 bta b/)

2When some group G stabilises a partition ¥, G always acts on ¥ (see [DM96, below Exercise
1.5.2]). The morphism m; under consideration here is exactly the morphism defining this action.

on(p, vy Rybg, by) =3 < 1,(%
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Using Lemma 3.18, we can define Q)
Aut(21).

i i<n Mij, and, as argued above, its kernel is exactly

This shows that the notion of morphism-definability effectively pushes the limits
of the definability of groups exhibited in Theorem 3.9. However, the scope of this
technique is quite restrained, and we can easily build a subgroup which seems to resist
such an approach. Indeed, the morphism-definability of Aut(2() depicted above depends
crucially on the fact that M, ; is a morphism; and M; ; is a morphism because the action
of H(2) on {C, D} is isomorphic to an abelian group. Therefore, if we generalise the
approach from Theorem 3.9 to use Ky, 25,25, the complete tripartite graph (with colour-
classes of size 6), we can once again define Aut(2l;) for each ¢, but the partition stabilised
by Aut(%;) is now made of three sets, and the action of Aut(%;) is now isomorphic to
Ss, which is not abelian. As such, the argument above is not applicable, and we do
not know of a morphism-definition of Aut() for Ky, 2525

3.4 FP +ord as a candidate logic for P

We conclude this chapter by proving that FP 4+ ord is at least as strong a candidate
logic for P as FP +rk. First, as was the case for FP +rk, FP +ord can be model-checked
in polynomial-time:

Theorem 3.21. Fiz a signature 3, and a (FP + ord)[X] formula ¢. The function
that maps any encoding of a structure 2 to its set of satisfying valuations p(2A) is a
polynomial-time computable function.

Proof. We prove this by induction on ¢. Fix a ¥-structure . Note that, if ¢ is of any
of the forms vV §, =9, Jx,9, or (ifpg ) — that is, any other case than the use of
the ord operator — this is a direct application of the fact that FP has polynomial-time
model checking: let X, Y be two fresh relation symbols, and let A" be the X L {X, Y }-
structure (2, ¥ (2A),&(A)). Then, p(A) = p[ + X, & < Y](AT), which is a FP-formula
(if £ does not appear in ¢, & can just be set to T in this reduction).

Let us remark that, while the fact that FP sentences have polynomial-time model-
checking is often proved in textbooks (see [Imm99, Theorem 4.10] or [Lib04, Theorem
10.14 and Proposition 6.6]), the fact that the set of satisfying valuations of formulae
is polynomial-time computable given 2 for any fixed ¢ requires a few observations.
Consider a formula ¢ with free variables x1, ..., zy. The set of all potential assignments
of those variables on 2 is A%P°(¥) which has size |A|*, and constructing an encoding of
() reduces to check, for each valuation v, whether v € p(2(), which can be reduced to
the model-checking over sentences easily: introduce fresh constant symbols ¢y, ..., c.
The following holds:

vE PR <= AEplr/c,i < k(A v(z),...,v(xg)) (3.1)
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Thus it is only left to treat the case where ¢ = (ord;z(p), 5, ¢))(fi). By induction
hypothesis, 1(21) can be computed, and let

75 := perm({(, 0) | (d,4,7) € p(2A)})

for each @ € A%P®  The list of all 77 can be computed in polynomial-time, and
they form a polynomially-large set of permutations on a polynomially-bounded domain
(AwPe@)) " (Here, the polynomials are with respect to |A|.) Under those conditions,
we have seen in Section 1.2 that the order of (1z,@ € A¥P®) can be computed in
polynomial-time. Therefore, the valuations of fi which correspond to the 1-valued bits
of the binary representation of |(7; | @ € A"P*®)| can be found in polynomial time,
and the set of those valuations form ¢(2). The case where free variables beyond 7, 5,
occur within ¢ can be dealt with using the remark above (Eq. (3.1)). O

Finally, we show that FP 4 ord can express the rk operator in its uniform definition:

Theorem 3.22. The generalised quantifier Qancs s FP + ord definable.

Proof. Using Proposition 1.38, it is only left to show that FP + ord expresses the rank™
query on LMap®. Consider a structure 2l € LMap®. Recall that such a structure
consists of two relations I*, J* C A and a binary numeric function M* : A x A — A<,
together with a numerical value p*. For any (a,b) € I* x J* M?*(a,b) mod p* is a
coefficient of the matrix M € IFII) 2”9[, and our aim is to define the rank of M.

From now, we fix the structure 2l and omit superscripts when mentioning [, J, M
and p. Recall that rank,(M) is the dimension of the image of M, that is, Img, (M) =
{M-X| X eF} and

rank,(M) = log,, |Img,(M))|
Since the base p logarithm is a P-computable arithmetic function, it can be defined in
FPC, and it is only left to show that [Img,(M)| can be defined in FP+ord. As Img, (M)

is a group (for the addition of vectors), we can use the ord operator to compute its
order given a generating set, and we now show how to define such a generating set.

Consider the family (E7),erver, of vectors of IFP{ defined by:

E(2') =
+(@) ) otherwise

{OFP if v # 2

Then, Img, (M) is generated by {M - EY,x € I,v € F,}. Indeed, consider ¥ €
Img, (M). Then, there is an X € F/ such that M - X =Y. Since X =) EX®.

xzel i

Y =) M-EX™

xzel
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We must now show that this group can be represented as a permutation group in FPC.
First, we represent v € F, as the numerical permutation

w if w
£ () ::{ >p

w+v mod p otherwise

v — f, defines a morphism from F, to Sym(A<), and can obviously be defined in FPC.
In the same way, we define a morphism from F to Sym(J x A<):

f1(B)(y,w) == (y, fa)(w))

While elements IF; cannot be represented as first-order entities, we can still define,
for x € I and v € F,, the f; image of M - EY:

Wy Z pAwWs =wy \Ys =Yg
Wy < PAwWg < p

¢x7v7y57w7y7w :
( o 1) wy+ (M(z,y,) -v) = w, mod p

Ys = Yt

{perm(¢)(~A,a,N\)),a € A\ € A<} is a generating set for a group isomorphic to
Imy (M), which concludes our proof. O

Remark 3.23. Let us mention that this proof actually generalises to broader algebraic
structures than fields: for any ring R, a set of equations over this ring can be seen as
a matrix M C R/ for some index-sets I, J. As long as |R| < |A*| for some k, and
the addition and multiplication in R are provided®, we can construct a generating set
for the additive group Imgp (M) :={M - X, X € R!}.

This bears some importance as a further candidate logic for P has been introduced,
which considers an operator allowing to check, given such a matrix M and a tuple
Y € R’, whether there is a tuple X € R! such that M - X =Y. This is the Ring
Equation Satisfiability operator (or RES for short).

Since a generating set for Imgz (M) can, under the assumptions given above, be
defined in FP+ord, we can check whether Y € Img (M) using the membership operator
defined in Lemma 3.2, which shows that FP + ord is also at least as expressive as
FP + RES.

Having shown that FP + ord > FP + rk, the next chapter is devoted to the proof
that this inequality is strict.

3That is, the graph of those operations are definable
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FP + rk < FP + ord

This chapter is devoted to the proof that the ord operator is strictly more expressive
than the rk operator. We have shown in Chapter 3 that FP + rk < FP 4+ ord, so that it
is only left to exhibit a property inexpressible in FP + rk that is definable in FP + ord.

Recently, Lichter |Lic23| provided such a property separating FP + rk from CPT
(although whether FP 4 rk < CPT remains unknown). More precisely, Lichter exhibits
a class of structures C and a property P C K such that no FP + rk formula expresses
P, while P is CPT-definable.

The CPT-definability of P stems from the fact that P is P-computable, and that
CPT canonises structures in C, as discussed under Definition 1.43. The ability of CPT
to canonise structures in K is a direct consequence of the fact that those structures
have definable abelian colours, a notion that we will make precise in the second section
of this chapter. The fact that structures with abelian colours can be canonised in CPT
was proved by Pakusa in his PhD dissertation [Pak15].

The study of structures with abelian colours was motivated by the Cai-Fiirer-
Immerman construction (CFI for short), first used in [CFI92] to separate FPC from
P. Since their introduction, CFI-structures have been generalised on several occa-
sions [Holl10; Tor04], and those generalised versions were used in [GP19] to separate
the first version of the rank operator from P, motivating the introduction of the uni-
form rk operator under study here. It turns out that all extensions of CFI-structures
have definable abelian colours, and Lichter’s separation structures also constitute such
an extension.

In this chapter, we will show that FP + ord also canonises structures in K, which
implies that FP 4 ord captures P over K, and thus expresses the property P exhibited
by Lichter which is not expressible in FP + rk. In the first section of this chapter, we
formalise the CFI-construction. In the second section, we show that, like CPT, FP +ord
also defines abelian colours over CFI-structures. The remainder of this chapter is then
devoted to the proof that FP + ord canonises structures with abelian colours, which
yields the desired result that FP+rk < FP+ord. Section 4.3 introduces the canonisation
algorithm, due to Babai and Luks [BL83]|, that we simulate withinin FP+ord. The main
obstacle to this simulation is the representation of labelling cosets. Sections 4.4 to 4.6
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gradually introduce our representation scheme for labelling cosets, and Section 4.7
concludes the proof of the canonisation of structures with abelian colours in FP + ord.

4.1 CFI structures and Abelian colour-class graphs

The simplest context in which to apply the group-theoretic framework to Graph Iso-
morphism is probably the case of Bounded colour-class graphs (hereafter denoted
BCGQG), that we introduced in Section 1.2. Let us recall the definition of a k-bounded
colour-class graph (k-BCG): a structure 2l is coloured if it is equipped with a function
¢: A — N. Such a function c is called a colouring, and any 7 € N such that ¢~ (i) # ()
is a colour. 2 has k-bounded colour-classes if, for any colour i, the set of vertices of
colour i, ¢7(), contains at most k elements. A class of structures K has bounded
colour-classes if there exists a k, such that any 2 € IC has k-bounded colour-classes.

The isomorphism problem for k-BCG (denoted k-BCGI) plays an important role
in Descriptive Complexity, as it separates FPC from P: on the one hand, we have seen
in Section 1.2 that for each k, k-BCGI can be decided in polynomial time ; while there
is a family of CFI-graphs — which cannot be distinguished in FPC [CFI92] — that are
bounded colour-class graphs (as we will see, the original CFI-graphs have colour-class
size 4).

The introduction of CFI-structures initiated a “game of cat and mouse” between
stronger and stronger candidate logics for P [BGS97; Daw+09; GP19; GH98|, and gen-
eralisations of the CFI-constructions witnessing the inability of those logics to capture
P [Tor04; Holl0; GP19; Lic23|. To the best of our knowledge, none of those logics
canonise, or even define the isomorphism of k-bounded colour-class graphs, for £ > 5.
This hints at the fact that the aforementioned generalisations of the CFI-construction
increase the difficulty of the isomorphism problem in a somehow independent fashion.

Indeed, we will see in the following subsection that those new CFI-constructions
do not have bounded colour-classes, and that the P-computability of the associated
query relies on a reduction to the solvability of systems of equations. In the second
subsection, we introduce the notion of abelian colours, which was used to show that
CPT £ FP + rk, or, more precisely, that the property separating FP + rk from P is
expressible in CPT.

The evolution of the Cai-Fiirer-Immerman construction

We now provide a formal definition of CFI-graphs. We start by presenting the original
CFI construction from [CFI92|. However, we will describe it in a fashion that will ease
the introduction of the generalisations. Our presentation is thus inspired from [GP19].

Given a simple graph G = (V, E), and v € V, we denote E(v) the set of neighbours
of v. Fix an ordered simple connected graph G = (V, <, E). For each function d : V" —
{0,1}, we define a graph CFI(G, d) by replacing each vertex v € V' by a vertex gadget
Gadget(v), each composed of:
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Figure 4.1: The CFl-construction depicted on a vertex v with three neighbours a, b, c.
The neighbourhood of v in the base graph is on the left, the right-hand side depicts
the corresponding part of CFI(G,d), for any d with d(v) = 0.

e an inner sub-gadget v§™ = {(v,f),f : E(v) — {0,142 werw) f(w) = d(v)
mod 2}. That is, v57' contains a vertex for each subset of the neighbourhood of
v whose cardinality parity is equal to d(v)

CFI

e for each neighbour w of v, an outer sub-gadget (v,w)“"", made of two adjacent

vertices (v, w)y and (v, w)q,

e for each (v, f) € 05", and w € E(v), (v, f) is adjacent to (v, w) ().

Finally, for any edge (v,w) € E (recall that G is a simple graph), there are edges in
CFI(G,d) between (v,w)y € (v, w)F! C Gadget(v) and (w,v)y € (w,v)F" C Gadget(w)
and between (v, w); and (w,v);.

Moreover, CFI(G, d) is equipped with a total pre-order derived from the linear order
on G: given z,y two vertices of CFI(G,d), if x € Gadget(u),y € Gadget(v) and u <
v, x =< y. Note that this pre-order’s equivalence classes are exactly the gadgets of
CFI(G,d), and that it can be refined into a pre-order =<; whose equivalence classes
are the subgadgets of CFI(G,d): given z,y € Gadget(u), set x < y if z € u*F, or if
z € (u,a)F and y € (u,b)F! with a < b. On any CFI-structure, the finer ordering
is clearly FO-definable from the coarser one, so we will assume both to be provided
interchangeably.

An illustration of this construction is given in Fig. 4.1. For any two functions
d,d :V —{0,1}, CFI(G,d) ~ CFI(G,d') ifand only if > _, d(v) = >, ., d'(v) mod 2.
In other words, for any graph G, up to isomorphism, there are only two structures of

the form CFI(G, d), which we denote CFI(G,0) and CFI(G,1).

For G a class of ordered, simple graphs, let g be the class of CFI-graphs over G,
ie.

K¢ :={CFI(G,d) | G € G,d: Vg — {0,1}}
and Pg C Kg be the class of even CFI-graphs over G, i.e.

Pg =1 CFI(G,d) | GE€G,d: Vg —{0,1}, ) d(v) =0

veVg
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Note that, given 2 € K¢, the unique ordered graph G € G such that 2 ~ CFI(G, d) for
some d : Vg — {0, 1} is easily FO-definable from 2(. Moreover, given an ordered graph
G, there is a Turing machine that outputs an encoding of CFI(G, 0) in time polynomially
bounded by |CFI(G,0)|. Therefore, deciding Pg reduces to isomorphism testing over

K.

Cai, Fiirer and Immerman showed that, for some suitable class of graphs G, no
FPC-formula defines the property Pg, and that such a class G can be chosen to contain
only graphs of degree three. In such a case, K¢ is a class of graphs of 4-bounded
colour-class graphs (for the colouring induced by <y). As we have seen in Section 1.2,
isomorphism of bounded colour-class graphs can be decided in polynomial time, which,
together with the aforementioned reduction from Pg to isomorphism testing over g,
yields a polynomial-time algorithm to decide Pg, thus separating FPC from P.

While the above is an accurate depiction of Cai, Fiirer and Immerman’s proof,
further study of those structures have shown that the polynomial-time computability
of Pg holds for any class of graphs G, as it reduces to the solvability of a system of
equations over Z,. This fact, already hinted at in [ABDO07], is proved in [Daw+09,
Theorem III1.8], where it motivated the introduction of FP + rk as a new candidate
logic for P. Intuitively, CFI(G,d) replaces each edge in G by a connection of outer
gadgets that can either be “straight” or “twisted”, in such a way that the number of
twisted connections of v has parity d(v). It is well-known that Gaussian elimination —
the method enabling the decision of the solvability of systems of equations over fields
— can be generalised to decide the solvability of systems of equation over any abelian
finite group in polynomial time. While this result is folklore, a proof is given in [GR02],
where it is also shown that over any non-abelian finite groups, this solvability problem
is NP-complete. Interestingly, the CFl construction can also be generalised as to encode
system of equations over any finite abelian group. Here, we only depict the encoding
of equations over cyclic groups (of the form Z,, for some m > 1), as they are sufficient
to the separation result we aim to present:

o Letd:V — Z,

The inner gadget of x is now

o= (@, f) | [ E@) = L, Y fy) = d(x)
)

yeE(x

e The outer gadget of (z,y) is now

(2,9) T = {2, y)r | A € Zin}

with directed edges from (z,y)y to (x,y)xs1, for X € Z,,.

There is an edge between (x, f) and (z,y) ) (in both directions)

There is an edge between (x,y), and (y,z)_, (in both directions).
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E Gadget(af Gadget(v) (v, b)<F!

; o

! 1 Gg) Lo I

E »CF! : 0 :

| OO00000 X F!

OF DO0000 80 |

O—@ e ORea. o
! | (v,c)

: ROOOOOOE = ;

e : :O Vg OOOO: e < c :

: elelole,="el0 N AN

Figure 4.2: The CFly, construction depicted on a vertex v with three neighbours a, b, c
(assuming d(v) = 0). For clarity, not all edges are represented: we have omitted
all edges between inner-nodes and outer-nodes, except for two inner-nodes vy and vy,

where f(a) =3, f(b) =4, f(c) =0, g(a) = g(b) =1 and g(c) = 5.

The resulting structure is denoted CFly, (G, d). Note that, when m > 2, CFl; (G, d) is
a directed graph. This construction is depicted in Fig. 4.2. Note that in this example,
vF! contains 49 = 72 vertices.

This generalisation of CFl-structures can be traced back to Toran [Tor04] and
Holm [Hol10], and was used in [GP19] to show that the non-uniform version of rank
logic does not capture P. Note that once again, if G is a class of graphs of degree
bounded by k, each structure in

ICZm,G = {CF'Zm(g,d) | Q € G,d : VQ — Zm}

has colour-class size bounded by m*~! (for the colouring induced by =<;). In Fig. 4.2,
this bound is reached for v, which has 49 = 72 vertices.

Those two separation results (for FPC [CFI92] and the non-uniform version of rank
logic [GP19]) follow the same line of reasoning: exhibit a class of structures K such
that, on the one hand, Glx € P (because K has bounded colour-class size), while no
sentence of the logic at hand can express isomorphism over .

Recently, Lichter introduced another class of CFI-structures K over finite rings Z;,
such that CPT captures P over K, while FP + rk does not. The class of structures
defined by Lichter is in line with the general evolution of CFI constructions, in that it
involves more general algebraic structures in the construction — namely rings instead
of fields. However, the colouring on those structures are no longer bounded, and for
two reasons: first, the class of base graphs G no longer has bounded degree; and also
because the CFI structures under consideration are built on arbitrarily large rings.
That is, for some suitable family of base graphs G, Lichter considers |Lic23, Definition
5.19]

K :={CFlz,(G.d) | G€G,ieN,d: Vg — 2} (4.1)
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that is, the class of structures contains all CFI constructions over G, for each ring of
the form Z,:. Lichter shows that the CFI-query (i.e. to identify the graphs CFlz_, (G, d)
in K such that >~ ., d(v) = 0) is not definable in FP + rk [Lic23, Theorem 10.4].
The proof of this difficult result is outside of the scope of this thesis, and so are the
combinatorial properties on the class of base graphs G needed to obtain such a result.

On the other hand, we will now show how this result actually separates FP +rk, not
only from P, but also from CPT, another candidate logic for P. Before delving into this,
we point out that our presentation of the CFI-construction differs from the one used
in Lichter’s article, which does not use both inner and outer gadgets. However, this
is merely a presentation difference, and it is easily shown that there are FO-definable
interpretations between both definitions of the CFI-construction.

Abelian colour-class graphs

The pertinence of the CFI construction relies on the fact that the resulting structures
can be distinguished in polynomial time (and in the case of Lichter’s result, also in
Choiceless polynomial time), which in turn implies that the CFI query can be decided
in polynomial time.

We have just mentioned that, for all the CFI-constructions, the CFI-query is
polynomial-time computable because it reduces to the solvability of systems of equa-
tions over some finite abelian group: Z, in the case of the original CFI-construction
from [CF192], Z, for some prime p in the case of its generalisation in [GP19], and finally
Zsi in |Lic23|. Unlike the original proof of Cai-Fiirer-Immerman, which revolved around
bounded colour-class graphs, this way to prove the polynomial-time computability of
the CFI-query seems only remotely connected to the group-theoretic framework to
Graph Isomorphism.

To show that the CFI-query as considered by Lichter is definable in CPT, a dif-
ferent notion has been used: abelian colours. This notion was introduced and studied
in [Pak15|, to define a general class of structures containing all the queries known to
separate FPC from P. In this work, Pakusa shows that CPT canonises structures with
abelian colours. In [Lic23|, Lichter demonstrated that the class of structures K used to
separate FP + rk from P has abelian colours, and thus K separates FP + rk from CPT.
The original definition of structures with abelian colours was tailored for CPT, so we
now provide an adaptation of this definition in the context of fixed-point logics:

Definition 4.1 (adaptation of [Pakl5, Definition 6.1]). A X-structure with Abelian
colours is a YU {=<?) & }-structure A, where type(®) = number®element?, such that:

e < is a total pre-order on A. From now on, let m be the number of equivalence
classes of < ; and A; be the i-th equivalence class.

e for any i < m, j < |A4;|, ® (A,14,7) is the graph of a permutation over A;;

e for any i < m, I'; :== {o,3,® (A,i,v) = graph(o)} is an abelian, transitive
permutation group over A;.
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That is, 2 has abelian colours if it is equipped with a total pre-order < and a
relation ® that explicitly enumerates a family of abelian transitive groups acting on
each of the colour-classes defined by <. Even more so, the type of ® implies that each of
those groups is linearly ordered. This ordering of the groups acting on each colour-class
is crucial to the canonisation of those structures in FP + ord. Given a X-structure A,
we call such a couple of relations (<%, ®%) an abelian colouring of 2. Before studying
how this notion relates to CFl-structures, let us make a few remarks on this definition.

First, notice that for each i, we expect j — ®(2, 7, j) to enumerate the whole group
I';. Because j can only take |A| values, this requires that |I';] < |A|. This always holds
for abelian transitive permutation groups. Indeed, we have shown in Proposition 1.59

that in such a case I'; is regular, and the following lemma shows that this implies
Ti| = [Ail.

Lemma 4.2. Let I" be an abelian group acting faithfully and transitively on some set
X. Then, there is a bijection between I' and X.

Proof. Fix z € X, and let ¢ : I' — X be the function that maps 7 to y(x). Let us show
that ¢ is bijective. The surjectivity of ¢ is a direct consequence of the transitivity of
the action of I' on X. Now, suppose that for some 7,7, v(z) = +'(x). We have shown
in Proposition 1.59 that the action of G on X is regular, which implies that v =~'. [

Let us also remark that the connection between the group theoretic framework to
graph isomorphism and the notion of abelian colours seems quite tenuous, compared to
the case of bounded colour-class graphs. In particular, notice that Definition 4.1 does
not explicitely require any relationship between the group I'; acting on A; defined by
®, and the automorphism group of the induced substructure of 2 on A;. Recall that, in
the case of BCGI, the fact that each colour-class was bounded allowed the definition of
a group G (Eq. (1.3)), containing Aut(2() as a subgroup, and with sufficiently restricted
structure to allow the definition of a chain of subgroups witnessing the accessibility of
Aut() from G (Eq. (1.4)). We will see in the following sections that abelian colours
enable the same procedure, with the following difference: while in the case of bounded
colour-class graphs, this group was defined as the direct product of the automorphism
groups of the substructures induced by each colour-class, here, we will use the group

=" T

Lemma 4.3. Let 2 be a structure with abelian colours, and let (I';) be the family of
permutation groups defined by the abelian colouring on A. Then, Aut(2) <[, T;.

Proof. Let T € Aut(2(). Because 7 must preserve the colouring ¢ defined by <, it must
stabilise setwise each colour-class. Therefore, we must only show that, for any ¢, the
restriction o of 7 to the i-th colour-class is in I';. Let x € ¢ !(i). By transitivity of
[';, there is an element g € I'; such that g(z) = o(z). We now show that ¢ = g, or,
equivalently, that o= . ¢ = Id.
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Let y € ¢7(i). By transitivity of T';, there is an element h € T'; such that h(y) = z.
Because T'; is ordered, h must be fixed by conjugation by any automorphism of 2A:
indeed, there is some j such that h = perm(® (2,4,7)), and for all s,¢ € ¢”!(i) and
¢ € Aut(),

h(s) =t AE=D (i,4,s,t)

A =P (£(i),£(5),€(5),£(2))
™A =P (i,5,£(s), (1))
h-&(s) = &(t)

— hi(s) =t

—
<~
<~
—

In particular, h° ' = h. Because I'; is abelian, we also have h¢ = h. Thus = = h(y) =
he'9) which yields:

z=h7"(y)
— 2 =g 'ocha 'g(y)
= 0~ 'g(x) = ho"g(y)
= 2= ho 'g(y)
= y=0'g(y)

Therefore, 0~1g = Id, which concludes the proof. O

Actually, we have shown something stronger than Lemma 4.3:

Lemma 4.4. Let 2 be a structure with abelian colours, m be the number of colours
of A, and for i < m, let A; be the i-th colour class of A, ; the substructure induced
by A on A;, and T'; be the permutation group defined by ® on A;. For any i < m,
Aut(2(;) <.

We will see in Lemma 4.20 that, in FPC, we can actually expect I'; and Aut(2;) to
be equal.

In other words, in the case of BCG, the colouring implicitly defined a group con-
taining Aut(2() sufficiently restricted to apply group-theoretic arguments, while in the
case of abelian colours, the definition of such a group is “deferred” to the definition of

.

Definition 4.5. Let K be a class of X-structures. £ > FPC defines abelian colours on
KC if there are L[X] formulae <, pg such that for any 2A € IC, (A, p<(A), po(2A)) is a
d-structure with abelian colours.

Pakusa showed in his PhD dissertation [Pak15] that CPT canonises structures with
abelian colours. This has the immediate implication that CPT canonises all structures
on which it can define abelian colours:
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Lemma 4.6. Let L > FPC be a logic that canonises structures with abelian colours.
Let IC be a class of X-structures, and suppose that L defines abelian colours on K.
Then, L canonises structures in IC and thus captures P over K.

Proof. Consider Z, the L£-definable interpretation that witnesses the canonisability (in
the sense of Definition 1.43) of ¥-structures with abelian colours, replace each occurence
of < and ® by formulae ¢~ and @g respectively, where ¢ and g are the L-formulae
witnessing the £-definability on abelian colours on . [

Let IC be the class of structures separating FP + rk from P introduced above. The
facts that CPT defines abelian colours on K [Lic23, Theorem 10.4], and that CPT
canonises structures with abelian colours [Pak15|, imply that CPT captures P over K,
which concludes the proof that CPT £ FP 4 rk. We aim to translate this proof in the
context of FP 4 ord, thus proving, together with Theorem 3.22, that FP+rk < FP 4 ord.
In the rest of this section, we show that FPC defines abelian colourings on all CFI-
structures, the remaining sections of this chapter being devoted to the proof that
FP + ord canonises structures with abelian colours.

4.2 FPC defines abelian colours on CFI-structures

Recall that, according to Lemma 4.3, an abelian colouring provides a family of abelian
groups, each acting transitively on a subset of the domain of the structure, such that
the product of those groups contains the automorphism group of the structure. The
existence of such a family of groups (and thus of an abelian colouring) heavily re-
stricts the automorphism group of the structure. Let us thus start by studying the
automorphims of CFl-structures.

In the following, we fix a base graph G = (V,<,F) and d : V — Z;. First,
remark that there are actually two ways to induce a colouring® on CFlz, (G, d) from
the ordering of G: first, there is the pre-order provided in CFly, (G, d), where z < y
iff z € Gadget(v),y € Gadget(w) and v < w, i.e. each gadget constitutes a colour-
class. A finer colouring can be obtained by using different colours for all subgadgets,
by additionally setting v < (v, w) ) w ' < (w,v)F" and (v, w)F' < (v,w")" for
all suitable v, w,w’ € Vg with v < w < w’. We refer to those respectively as the
coarse and fine colouring of CFly, (G,d) (for any d : V' — Z4). Note that the finer
colouring is easily definable in FPC on any structure CFlz, (G, d). This implies that any
automorphism of CFlz, (G, d) must stabilise the fine colouring. Moreover, any outer
gadget (v, w)CF'Zk has an abelian, transitive group of automorphisms:

Lemma 4.7. Consider Cy, the directed cyclic graph with k vertices. Aut(Cy) is iso-

morphic to Zy, and thus abelian, and acts transitively on the vertices of Cy.

Proof. Let xg, ... x,_1 be the vertices of Cy, indexed in such a way that (x;, x;11) € E¢,
for all i < k and (zg_1,20) € E¢,. It is easy to see that o := (zg x; ... Tp_1)

'Recall that, in the logical context, a colouring is given by a pre-order.
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is an automorphism of Cf, and it suffices to show that Aut(Cy) = (o). Consider
7 € Aut(Cy), and let A be such that 7(x¢) = z,. Because z; is the unique vertex at
distance i from x(, we must have 7(2;) = Tx4s mod k, and thus, 7 = o O

A final key property of CFl gadgets is that the action of an automorphism on an
inner sub-gadget is entirely determined by the action of that automorphism on the
related outer sub-gadgets:

Lemma 4.8. Let (0,,) be a family of permutations such that, for all w € E(v), o, €
Aut((v,w) ). There is at most one automorphism p of Gadget(v) such that, for all

W, Pr(v,w)F = Oy-

Proof. Consider such a family of permutations (o). Then, for any z € v“F', there is a
unique tuple (2,,) € [[,cp0) (v, w)" such that, for all w € E(v), « and z,, are adjacent
in CFlz, (G,d). Therefore, any p € Aut(CFlz, (G,d)) such that py ., = 0, must be
such that, for all z € v“F', p maps z to the unique y (if such a y exists) adjacent to all
Ow(Tw). O

Together, those two lemmas imply that Aut(CFlz, (G,d)) is abelian. We can actu-
ally consider a family of abelian transitive groups acting on each subgadget. Denote
Aut_, (Gadget(v)) the group of all automorphisms of Gadget(v) which stabilise each
subgadget, i.e.

Aut_, (Gadget(v)) := Stabaut(Gadget(v)) (UCFI, ((v, w)CF')weE(v))

Lemma 4.9. For any v, Aut., (Gadget(v)) is isomorphic to a subgroup of Zzegg(v),

and is therefore abelian. Moreover, for any subgadget X of Gadget(v) (i.e. X = v<F!
or X € {(v,w),w e E(v)}), Aut<,(Gadget(v)) acts transitively on X.

Proof. Let Gy, be the projection on (v, w)“ of Aut. (Gadget(v)).

TOuter(v) * AUt<f(Gadget<v)) N H G’v,w

is a well-defined group morphism, since Aut., (Gadget(v)) stabilises each subgadget.
Moreover, Lemma 4.8 implies that mouter(v) is injective. Therefore (by the first isomor-
phism theorem), Aut<,(Gadget(v)) is isomorphic to a subgroup of I, cp(,) Gow- By
Lemma 4.7, each G, ,, is isomorphic to Zj, which yields the first part of the lemma.

Concerning the second part of the lemma, note that we have already proved this
in Lemma 4.7 for any X € {(v,w)" | w € E(v)}. Therefore, it remains to prove it
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in the case where X = vl Let z,y € v“F'. For each w € E(v), let o, be the unique

)CFI )CFI

which maps the unique vertex in (v, w adjacent to x to

CFI

automorphism of (v, w
the unique vertex in (v,w)~" adjacent to y. We claim that o := [],cp(,) 0w lies in
the image of Aut., (Gadget(v)), which indeed yields the transitivity of the action of

Aut_, (Gadget(v)) on v<F'.

We now show how to extend o to v“F'. For w € E(v), let A\, € Zj, be the image of
0, along the isomorphism depicted in Lemma 4.7. Note that, with those definitions,
if z = (v, f) where f : E(v) — Zj (as in the definition of CFl-structures), y = (v, f’)
where f'(w) = f(w) + Ay, and thus, >°  p,)Aw = 0. From this, it follows that

for any y = (v, g), there is a unique z such that the image under [J, . B Ow of the
neighbourhood of y is the neighbourhood of z, namely z := (v,¢'), where ¢'(w) =
g(w) + Ay O

This yields the desired abelian colouring: ¢~ will define the fine pre-ordering of
CFlz, (G, d), and e will define:

e On (v,w)“"" the automorphism group of the substructure induced by (v, w)<"

e On v, the projection of Aut., (Gadget(v)) on v“F', ie. the group of all au-

tomorphisms of the substructure induced by v“F', which can be extended to an
automorphism of the substructure induced by Gadget(v).

Before we formally prove the FPC-definability of this abelian colouring, notice that this
also provides an intuition as to why the definition of abelian colours does not simply
require — as was the case for BCG — the groups of automorphisms of the substructures
induced by each colour class to be restricted: if we consider the fine colouring, v*F' is
an independant set and constitutes a colour-class, hence Aut(v®M') is not abelian. In
the same way with the coarse colouring, the action of Aut(Gadget(v)) on v“"' is once
again not abelian. One way to circumvent this is to only consider automorphisms that
stabilise the partition of Gadget(v) into subgadgets, however the resulting action is not

transitive.

We now show that FPC can define an abelian colouring on CFl-structures:

Theorem 4.10. Let K be the class of structures defined in Eq. (4.1). FPC defines
abelian colours on K.

Proof. To ease the presentation, we fix a structure 2 = (A, F,<) € K (where E is the
edge relation of the CFl-structure, and < the strict pre-order that induces the colouring
of CFI(G,d) into gadgets i.e. the coarse pre-order). First ¢ must define the fine
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colouring:

)
—rdy

-y <z

()0<(LU, y) =xd Yy \% (/\ onuter(y)

(vEsoinnercc)
L [ Pouter () A T2y, E(z, ') N E(y, y') Ao’ <y
where @i defines the set of inner vertices:
Gimner () :=Vz, E(z,2) = (- <42z A -z<1),
and pouter the set of outer vertices:

Douter (LL’) ‘= TPinner (.CL’) :

From now on, we write x < y for p<(z,y), and x ~ y for -z < y A =y < z. We
now turn to the definition of ¢g. Recall from Definition 4.1 that ® should be of type
number®element? and thus for all i g (A, i) should enumerate an ordered group on the 4-
th equivalence class w.r.t. <. We have already defined in the previous lemma the group
['; that we aim to define through ¢4, but it remains to describe the linear-order on I';.
We treat the cases where the i-th colour-class corresponds to an inner subgadget or an

CFl

outer subgadget separately. In the case of an outer subgadget (v, w)~"", we have already

described a canonical isomorphism between Aut((v,w)“") and Z; in Lemma 4.7, and
7y, can easily be ordered, thus it is only left to translate this isomorphism in FPC:

vx € Ai7 onuter(x)
gog“ter(i,)\,s,t) =0\ <k

se A; Nt € Ay Ndista,(s,t) = A
where (s € A;) states that s belongs to the i-th colour-class w.r.t. the colouring induced
by <. This is a relation of type (element - number) which is definable as follows:
',u: OAYy,~y <x
R(y,v)
(S S A1> = ipr,I,ll'@ nw=v-+ 1 (87 Z)

dy, v,
T <Yy

Vz,m(z <z Az =<y)

\

and dist 4, (s,t) = j states that there is a path of length j from s to ¢ within A;. This
is a relation of type (element? - number?) definable as follows:

p=0ANz =y
pw=v+1
Y 3z, v, R(x, 2,v) A E(z,y)
reEANYyeEA Nz E A

(dist(s,t)a, = A) == | ifpg, (s,t,i,\)
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It is now left to define the ordering on I'; when ¢ is the index of the colour-class

corresponding to an inner subgadget v“f'. Denote N (i) the set of indices of all <-

colour-classes adjacent to A; (i.e. the set of indices of all classes (v, w)F, for w a

neighbour of v in the base graph over which 2l is constructed). N (i) is FPC-definable:
(j eN®G)) :=Tx € A, Ty € Aj, inmer(T) A E(,y)

We have seen in Lemma 4.9 that I'; is isomorphic to {@ € Ziwi) | > ien @ = 0},
and we have already implicitly defined this isomorphism in the proof of Lemma 4.8.

Since Zj, and N (i) are ordered, we can define, for any index 7 of an inner colour-class,
a bijection between [kW®I] and ZY:

j € N(i)
Spenum(ia A?j? /’L) = 3”7 V= (#j/ < j7 j/ E 'N‘<Z))
= L/%»J mod k

For j the index of a colour-class adjacent to A;, let v; be the index of j in N (7) (i.e.
vii=[{j"<j | €N()}). enum(i; A, j, 1) holds if:

e There is a vector @ € ZQ/(i) such that A =3 K9 ajr.

[ a] = ILL
Given such a \, we can easily verify that it encodes a tuple @ such that Zje./\f(i) a; = 0:

@correct(@ /\) = E'Ii, KA = Z Qpenum(ia A)])
JEN(i)

where Yenum (4, A, j) denotes the unique p such that @enum (i, A, 7, 1) holds. While this
notation is abusive, this sum is obviously FPC definable. We are now ready to present
the FPC-definition of the ordering of I';:

(s € ANt E A A Qinner(S)
r €A NY €A N Pouter(T)
Peorrect (i, A)
Penum (7, A, J, 1)

Outer

<Pq> (j?l’bwray)
L E(t,y)

ommer (i N, s, t) i= VY, B(s,2) = 3j,y, 1, \, ¢

pimmer(j X\ s, t) holds if X encodes (through Yenum) a tuple @ € Z/kv(i) such that:

* Zje/\/(i) a; =0

- 93 —



CHAPTER 4

e for each j € N(i), the (unique) neighbour z of s in A; is mapped to y, the
(unique) neighbour of ¢ in A; by +/ , where ’yl{ is the p-th element of the group
defined by Q""" on A;.

Finally,
—s€ A, Ns=1
o (i, A, 5, t) == @mer(j X\ s t)
(pguter(i, )\’ S,t)

]

It is now left to show that FP + ord canonises graphs with abelian colours. Before
doing so, let us note that this implies that FP 4 ord canonises arbitrary structures with
abelian colours. In the context of CPT, obtaining such a result bore the additional
complexity of dealing with unbounded relations. In the context of FPC, this is a direct
adaptation of the traditional result that “Everything is a graph”, a proof of which can
be found in Hodges [Hod93, Theorem 5.5.1]

Lemma 4.11. For any fized relational signature o, there is an FPC definable bi-
interpretation between o-structures with abelian colours and graphs with abelian colours.

Therefore, in what follows, we only study the canonisation of graphs with abelian
colours, which implies the canonisation of structures with abelian colours over any
(fixed) signature.

4.3 Canonisation of structures with Abelian colours

Now that we have circumscribed the problem that we need to tackle, let us review
its definition. As we recall the definition of graphs with abelian colours, we introduce
some additional notations. A graph with abelian colours is a {E, <, ®}-structure 2,
such that:

e <% is a total pre-order on A. Let m be the number of equivalence classes of <*
(or colours), and denote A;, i € [m] the i-th colour-class.

e For each i < m, and for all v < |A;|, ® (A, 4, v) is the graph of a permutation of
A;.

e For cach i < m, I'; := {0 € Sym(4;),Iv < |A4;|,graph(c) =P (A,4,v)} is an
abelian, transitive group.?

2Recall that, under the assumption that I'; is abelian transitive, |I;| = |A4;|. As such, it is
reasonable for ® to have type number? - element?
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We now show how to canonise graphs with abelian colours. In the logical context,
this entails to build a relation EF< over an ordered set — here, the numeric domain,
that we denote A< — isomorphic to E*. From now on, we identify linear-orders on A
with bijective functions f: A — A=<,

The group-theoretic framework to graph canonisation

Fundamentally, our technique is an adaptation of Babai & Luks canonisation algo-
rithm [BL83| which we summarise quite tersely here: in the algorithmic context, a
graph X over n vertices is given as a string w over {0,1}, of length n? (that is,
w: [n? — 1] — {0,1}), where w(n - i + j) = 1 if there is an edge between the i-th and
the j-th vertices. S,, acts on those strings, mapping w to

w” : [n® — 1] — {0,1}
n-i+jrwhn-o @) +o ()

Two graphs are isomorphic iff their string encodings belong to the same orbit w.r.t.
this action of S,. For G < S,, denote w® := {w’, 0 € G}. Canonising graphs
amounts to find a polynomial-time computable function which maps any w € {0, 1}"2
to w € {0,1}" (for any n), and such that, for any w € {0,1}", it maps all string in
w®" to the same 1w € w¥". To obtain such a function, the algorithm defined in [BL83]
upkeeps and gradually restricts canonically® a coset o H C S, of permutations, until
w? = w” for each 7 € oH, at which point H < Aut(X) and @ := w? is a canonical
encoding of the graph encoded by w.

Two recursion mechanisms allow us such a restriction of the coset o H (those were
already introduced in the context of graph isomorphism in [Luk82]):

e if H acts intransitively on [n?—1], we can treat each orbit iteratively: if O; ... O,
are the orbits of the action of H on [n? — 1], we first find a canonical coset o1 H;
canonising the substring of w induced on O, to then find a subcoset of o1 H;
which canonises w over O; U Os, yielding a canonical coset g9 Hy canonising Os.
Iterating this process on all orbits yields a coset canonising the whole string, and
thus of X.

e if H acts transitively and imprimitively on [n? — 1], we can find a minimal block
system, and treat each permutation of this block system as a subcase (for each
permutation of the block-system, we recursively compute a canonisation of the
graph, then choose the lexicographical leader in this family of encodings).

When H is transitive primitive, we use brute-force and pick the set 7K C oH of
permutations which yield the smallest encoding.

Computing the orbits or a minimal block system of a group action are polynomial-
time computable functions. Since each recursive call incurs a division of the size of the
instance, the whole procedure runs in polynomial time as long as : in the imprimitive

3Tn this context, this should be read as in an isomorphism-invariant manner
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case, the size of the group acting on the block system is polynomially-bounded ; and
in the brute-force case, the size of the group is polynomially bounded.

We now discuss the initial value of the coset. Starting with ¢H := §,, correctly
yields a canonical copy of X. However, none of the two recursion mechanisms apply
(as the action of S,, on [n? — 1] described above is both transitive and primitive on the
orbit [n? — 1]\ {n-i+4,i < n}), and the brute force search of the smallest encoding
of X (w.r.t. the lexicographical order) incurs an exponential timing of the algorithm.

This is where a combinatorial study of the class of structures at hand comes into
play. If X belongs to a restricted class of graphs C, we can look for a polynomial-time
computable invariant of X, that is, a function f : C — D where D is any class of finite
structures, such that X ~Y = f(X) ~ f(Y); and therefore restrict our search to
the set of reorderings that minimize the encoding of f(X).

To illustrate this, consider a coloured graph. The colouring is an invariant of the
graph that should be maintained, and instead of starting the procedure with cH = §,,,
we can set

H = H Sym({n-z+y |,y € c'(i)}) (4.2)

=1

in which case, choosing a coset of H amounts to choose, for each colour i, the set
7z, € (IC‘?(i)I) of placements of all vertices of colour 7. One natural (and canonical) such

choice being to map the colour 1 to the indices [0, |c™'(1)] — 1], the colour 2 to the
indices [|c™1(1)],|c7*(2)| — 1], and so on; that is, to pick o H for any o that is monotone
w.r.t. the pre-ordering

v=w <= c(v) <c(w)

When each colour has bounded size, the structure of this group ensures that the re-
cursive procedure yields a result in polynomial time. More specifically, this group has
bounded composition width. Note that this also applies when the colouring is not given
explicitly, but only definable. For instance, we know that, for any k, we can order the
k-tuples of a structure according to their L*-types in FP [AV95], and to their C*-types
in FPC [Ott17], where L* and C* are the k variables fragments of infinitary logic and
counting infinitary logic respectively (while those logics do not have recursive syntax,
they play an important role in the study of FP and FPC, for their formal definition,
see [Ott17]). This yield a canonical pre-ordering, i.e. a colouring which is trivially
isomorphism-invariant.

With this general view of the algorithm in mind, we can delve into its translation
to the logical context.

From the algorithmic to the logical context

As we have stated at the beginning of this section, given an unordered graph 2l = (V, E),
we aim to build an ordered structure A< = (A<, £<) isomorphic to 2. This underlines
a subtle change in our objective: we are not looking for a canonical set of permutations
of the structure, but of orderings of the structure. Indeed, while £'<, being a numerical
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relation, merely differs from a string in its presentation, this is not true of £ which is
not ordered.

As such, in the unordered setting, our recursion variable, the coset oH, is not
technically a coset: we usually expect a coset of H to lie within a larger group G. To
avoid any misunderstanding, we adopt the terminology of [SW19]:

Definition 4.12. A labelling coset over A is any set of the form fH for some f: A —
A< and H < Sym(A).

With a labelling coset fH, f is not a permutation, and it is quite unclear what
such a group G > fH should be. There are two obstacles to a logical (or choiceless)
translation of Babai & Luks algorithm.

First, as we mentioned in the discussion of Lemma 2.13, finding a maximal block of
an imprimitive action seems — to our knowledge — out of reach of FP + ord or CPT.
Fortunately, in the case of abelian colours® , this issue is bypassed: in the presence
of such a colouring, we can use a labelling coset of the natural action of the group
I' = T[I2, T as the initial coset, and the intransitivity recursion scheme alone then
reduces the size of the labelling cosets to a point where brute-force is sufficient. More
specifically, each orbit (for the action of the group at hand over A x A) corresponds to
a couple of colour-classes A; x A;, and the ordering on the colour-classes < induces a
linear-order on those orbits. Because the action of the underlying group of our labelling
coset is a subgroup of I';I';, its size is bounded by |A4;||A4;|, and a sub-labelling coset
which minimizes the encoding of £ N (A4; x A;) can be found in polynomial-time by
going through all elements of the current labelling coset. Factoring this simplification,
we obtain Algorithm 3.

Algorithme 3 : canonisation procedure

Input : A= (A, E, <,®) a structure with Abelian colours
Output : A numerical relation £< isomorphic to £

1 Find, for each i < m, a canonical set O(A4;) of orderings of A;;

2 C:=[[", 0(4);

3 for (i,7) € [m]* do

4 find £, the smallest lexicographical encoding of £'N (A; x A;) compatible
with C, i.e. 30 € C,enc(E,0)14,xa, = B ;

5 | C+{oeCenc(E,0)ia,xa, = E5};

[

return £< =, ; B

An ordering of A; is a function f : A; — AT, A being the set of numerical
values associated with A; in any ordering of A compatible with <, that is, the interval
[a+1,b], where a = Z;;ll |A;| and b = a+|A;|; and for any 0 : A — A<, enc(E,0) :=
{(o(a),o(0)) | (a,b) € E}.

4The same argument holds for bounded colour-class graphs in general. In that case, the second
obstacle does not admit such an overcoming as will be described in the remainder of this chapter
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The for-loop on line 3 implements precisely the iteration of the intransitivity-case
recursion mechanism of Babai & Luks framework described above. Within this for-
loop, we only use brute-force (on Line 4) to obtain a labelling coset canonising E; ;.
Note that this incurs a cost of O(|A4;| x |A;|) steps of computation, as |I';| = |4;| and
I';| = |A;| as was proved in Lemma 4.2.

While presented a bit differently, Algorithm 3 is precisely the canonisation procedure
in [Pakl15, Figure 6.2]. Seeing E< as a binary adjacency matrix, entering the for-loop
with (7, j) entails to determine the value of E< on a rectangle of dimensions (|4;|, |4;]),
encoding the edges from A; to A;, while restricting the labelling coset C' to those
orderings that yield this encoding of EN A; x A;.

We depart from [Pakl15] in how we deal with the second obstacle, which is the rep-
resentation of labelling cosets. Consider a group G < Sym(A). As we have hinted at
below Definition 4.12, in the algorithmic context, cosets and labelling cosets are objects
of the same nature, and a labelling coset fG can be represented by one such function
f, together with a generating set for G' (enabling the whole group-theoretic framework
introduced in Section 1.2). In the logical context, we cannot expect to choose such a
function f to represent the whole coset, as such a choice would break the symmetry of
the structure (we would have in effect chosen a linear order f: A — A<). In [Pakl5],
labelling cosets are encoded as systems of equations over some finite ring. Here, we
will encode labelling cosets as the preimage, for definable morphisms from a definable
base group G to an ordered group {2, of a point in €.

We will now delve into the definition of Algorithm 3 in FP + ord. To make our
discourse clearer, we give names to the different levels of locality we are dealing with.
Indeed, Algorithm 3 handles encodings, orderings, and labelling cosets at three different
scales.

First, there is the local scale, where we are only interested with one colour-class and
its inner edges. This scale is used on Line 1 when we construct local labelling cosets.
In the next section, we will show how these sets, and thus the initial labelling coset of
the structure, can be defined in FP + ord.

Then, there is the semi-local scale, where we look at up to two colour-classes simul-
taneously, and at the edges between them. We will see in Section 4.5 that for each i, 7,
given a suitable encoding of a labelling coset over A; U A;, we can find its smallest lex-
icographical encoding of £'N (A; x A;), enabling Line 4 of the canonisation procedure.
Moreover, we will show that it is possible to define a group morphism m;; whose do-
main contains O(A;) x O(A;) such that m; j(o) determines the value of enc(E, 0);4,x 4,
This is the main building block of our encoding of labelling cosets, where we make use
of the morphism framework defined in Section 3.3 to specify semi-local labelling cosets
inside FP + ord.

Finally, at the global scale of the whole domain A, we need to define a general
encoding of labelling cosets that enable Line 5 of the canonisation procedure. Building
on the morphisms m; ;, we do so in Section 4.6, concluding our proof.

— 98 —



FP 4+ rk < FP 4+ ord

4.4 The local scale

With regards to canonisation, the unordered setting is a double-edged sword. The
separation between the unordered and ordered domain — the former being the domain
of the input structure, and the latter of the output structure — ensures that any such
construction is, by design, canonical; but as we have already stated, it also makes the
group-theoretic framework quite hard to use, and it is not quite clear how to even start,
and define any useful set of orderings. In this section, we will see how, at the local
scale, the abelian, ordered group defined by ® (2, 7) acting transitively on A; allows us
to define a linear-sized set of local orderings. These sets O(A;) enable the translation
in FPC of Line 2 of Algorithm 3. We defer the encoding of C on line 2, the initial global
labelling coset, to Section 4.6.

Note that this set of local orderings is canonical w.r.t. 2, but depends on ®, and in
particular, on the ordering of the abelian groups. This means that, if we were to equip
the coloured graph underlying 2 with a different family of ordered abelian groups, we
may end up with a different output. While this is a limitation of our algorithm, it does
not affect the fact that it allows a canonisation of Lichter’s construction, as in that
case, the ordered abelian groups can be (canonically) defined within FPC, as we have
seen in Theorem 4.10.

In the first subsection of this section, we introduce our representation of linear
orderings over subsets of A, together with a generalised quantifier that, given such a
representation of a linear ordering and a relation on A, produces the corresponding
relation on A<. In a second time, we provide a FPC-definition of O(A4;). Finally, we
show how this enables the canonisation of the abelian colours, i.e. to define relations
<< and @< such that (A, <, ) ~ (A<, <<, 0<).

Partial orderings and partial encodings

Let us summarise the notations we will use in this section, and in the remainder of
this chapter. We assume we are given a graph 20 with m Abelian colours. As we are
working with a fixed structure, we will omit the superscript 2 when referring to F, <
or ®, unless necessary to disambiguate between the actual relation £* and the symbol
E of the signature of graphs with Abelian colours.

The domain of 2 is A, and we denote A; the set of vertices of colour ¢, that is:
Vi,j <m,Va € A;,Vbe Aj,a=b << i<
Moreover, let A< :={\ € N, X < |A|}. A partition of A< into AT, ..., A5, was provided
during the presentation of Algorithm 3. As another definition of this partition, it is

the image of the partition (Aj, ..., A,,) through any monotone function f : (4, <*) —
(A<, <n).

Finally, let 4% be the j-th permutation of A; defined by ®, i.e.
graph(v;) =® (2,4, )
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and I'; be the transitive abelian group acting on A; defined by & (2A,1):
L= {7}, 7 < |Al}
We denote I' the direct product of those groups.

Our aim in this subsection is to detail how a (partial) ordering yields a (partial)
encoding of the relations in our structure, and how this encoding is definable within
FPC. But first, we need to express how we expect such (partial) orderings to be
accessible in extensions of first-order logic with counting:

Definition 4.13. A formula ¢ defines an ordering f: A — A< in 2 if

p(A) = {(a, f(a)),a € A}

This definition is coherent with Definition 2.15: a function is definable if its graph
is. A partial ordering is a bijective function g : B — B<, where B = [J,.¢ A; and

B< = U,cg A5, for some S C [m]. As we will detail later, when |S| = 1 we say that g

is a local ordering, when |S| = 2, that g is a semi-local ordering, and when S = [m],
that it is a global ordering. We use the same definition as above:

Definition 4.14. A formula ¢ defines a partial ordering g : B — B< over B in 2 if
p(A) ={(a, 9(a)),a € B}
Note that a partial ordering f is always the restriction of some global ordering to
the set of colours on which f is defined.

Given an ordering f : A — A<, and any relation R on 2, we can define the encoding
of R relative to f:

R' = {(f(a), f(az),..., f(ax)) | d € R*}

where

a ifae A<

_ { fla) ifacA
If ¢ is a partial ordering over B, the partial encoding of R relative to g is

R? = {(G(a1),...g(ax)) | @ € R* n BYreR)}

where, Beement — B and B™WmPer — A< (so that numerical values exceeding |B| can
still be assigned through partial encodings).

Now that all this terminology is defined, we prove a small lemma that will be useful
throughout the chapter:

Lemma 4.15. Let ¢(p, ) be a formula defining, for each valuation b of p, some relation
Ry over . Let 1(q,y,v) be a formula defining, for any valuation a of ¢, a partial
ordering gz over B, a union of colour-classes of 2.

There is a FPC-definable quantifier (encz., ,¢; ¢)(p, ¢, X) that defines d, b (o(A, g))ga.
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Proof. We first define, for any type ¢ € {element, number}*, a formula ¥*(q, &, X) which
defines, for each valuation @ of ¢ the graph of the map:
gL : At — (A<)H
(ur, - u) = (Ga(ur), - ga(uy))
where g, is defined as in Eq. (4.3). In ¢!(7, @, X), @ has type ¢ and X has type number!:

It It

V(GaX) = N @a A N\ a=N
tz‘Zglzrlnent tiIIZ‘liélber

This allows us to define the quantifier in FPC:
(enczy, 3 ) (7.4, X) = 32,00 (3, 2, X) A ¢(5, 2) O

To improve readability, and when the variables bound by the enc quantifier can
easily be deduced, we denote enci the relation defined by (enc ¢; ).

A canonical set of orderings...

In this subsection, we show that there is an FPC-definable map from A; to the set of
orderings of A;. This construction harnesses the linear-orderings on I'; provided by .
Lemma 4.16 corresponds to Lemma 6.9 in [Pak15].

Lemma 4.16. There is an FPC-formula map(\, z,y, u) such that, for all i < m and
a € A;, map(2,i,a) defines a local ordering of A;.

Proof. First, we remind the reader that, under our assumptions, the action of I'; on A;
is regular, as was shown in Proposition 1.59. This implies that, for any fixed a € A;,

Yi(a) <95(a) <+ <ay(a) (4.4)

defines a linear ordering on A;. This ordering corresponds to the following FPC defin-
able bijection between A; and [A;]:

\Ij(Aaw7yau) = (A’M’x’y)

(A,4,a,b,k) = U iff b is the k-th element in the ordering of A; defined by Eq. (4.4). In

order to build a bijection whose image is A}~ instead of [4;], we add an adequate offset:

map(\, z, y, 1) := 34, (u =i+ |AV|> AP (N1, z,y)
<A
The definability of those arithmetic operations in FPC is straight-forward. We have
successfully built a formula map such that, for all ¢ < m and a € A;, map(2,i,a) is
the graph of a bijection between A; and AS, and thus defines a partial ordering over

A;. [l
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To ease reading, outside of formulae, we denote map! the ordering defined by
map(2,¢,a). By definition of map, with the notations introduced at the beginning
of this section, we have, for any a,b € A; and p € A7,

mapfl-b:u<z>7i-a:b. (4.5)

We follow Pakusa’s notation and denote O(A;) the set of all map., for a € A;. We
now show that for all i < m, the set O(A;) is a labelling coset over A;:

Lemma 4.17. For any i <m and a € A;, O(4;) = map.T;.

Proof. Let a € A;, and 7} € I';. Then, for any b € A;,

mapff}/;b:ﬂ = »-Y;a:fyjlb byEq (45)
= () ") -a=0
— 7; . ((7;',)—1 ca)=1b since I'; is abelian
— map@;)_l.a b=p

Therefore, O(A4;) is closed by multiplication on the right (i.e. precomposition) by
elements of T;, or, said differently, map’T’; C O(A;). The transitivity of T'; yields the
other inclusion: for a,b € Aj;, let 4} be the element® such that v} -b = a. Then,
map},y} = map’@)_l.a = map;. O

This lemma has the following corollary that will become important when studying
the global scale:

Corollary 4.18. For any 7 € [[]*, O(4;), we have -, O(A;) = nT.

...that canonises the Abelian groups

As we have expressed at the beginning of this section, we are not really canonising a
graph, but rather a graph with the additional structure of abelian colours. As such,
we should also provide a copy I's of the ordered groups I'; (that acts on the unordered
domain) acting on the ordered domain.

We will now show that this is exactly what we have built so far: for each i, O(A;)
canonises ¢ (2(,4), in the sense that all the orderings in O(A4;) yield the same encoding
of & (2,1).

Lemma 4.19. For any a,b € A;, the encodings of ® (2,1) relative to map!, and map;
are equal.

5Recall that I'; is regular, and thus this element is unique
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Proof. Fix i <m,j < [A;],a € A;. Then, the following holds:

d mapfl(i,j) = {(map’, - b, mapiﬁ; -b),be A}
= {(a, map;j(map,) ™ - a),a € A7}

In words, encoding T'; relative to map’ entails to enumerate the elements of T'; con-
jugated by map’. It happens that the conjugation actions of map’ and map} on T
coincide:

(y5)mePe = map. ! (map},) "
= map},y;(map,,) ' mapj(map;)~
Since T'; is abelian, = map),(map,,) ' mapjy!(map})~"
= mapj,y;(map;) !

— (e

1

Note that we have used the fact that (map’)~*map} € T';, which is a direct consequence
of Lemma 4.17. O]

From now on, we denote I'; the ordered group F?apz for any a € A;. Looking at
our proof of Lemma 4.19, we have actually shown something stronger: for any a € A;,
7;- — mapfﬂji-(mapfl)*1 defines an isomorphism from I'; to IS, and those isomorphisms
coincide for any a,b € A;.

A last consequence of the existence and definability of the labellings map’, is that

we can assume E; := E'N (A4; x A;) to be canonised by O(A4;):

Lemma 4.20. There are FPC-formulae (<, (o such that, if A is a graph with abelian
colours,

o B := (A E* (L), Ca(N)) is a graph with abelian colours,
o (.() is a refinement of <*,

o For any i,b,b' such that b, V' belong to B;, the i-th colour class of B, map(*B,i,b)
and map(B,1i,b') define two orderings o, T of B; such that (E N (B; x B;))? =

Note that, on any such structure 8, the formula

v, € A; A € A;
Jda,s,t € A,, E(s,t) Amap(u,a, s, vs) A map(u,a,t, )

locE (vs, 1) == EI,LL,(A%

defines a binary numerical relation isomorphic to (J,.,, Ei.
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Proof. We show how to refine <, and redefine ® on a single colour-class A;. The
resulting procedure can then be iterated using a fixed-point computation over all colour-
classes. Consider

x €A

X<(z,y) =@y € A; _

encgjp; <lex encgjpy

Suppose Y~ defines a non-trivial refinement of < on A;, and denote By,..., By the
X <-equivalence classes of A;. We show how to define an ordered abelian group of
permutations acting transitively on each Bj;. More precisely, we aim to show that

A; = Aut(2;) < I is such a permutation group for each B;. In that prospect, we
must first show that A; fixes each B, setwise. Let b € B; and § € A;. For any p, v,

(1,v) € B0 = E(L(50)),74(5(0))) by Eq. (4.5)
> Ei(67,,(b),67,(b)) since I'; is abelian
(7;(6) ‘(b )) since § € Aut(2L;)

= (uv) € B

That is, the encodings of E; relative to map} and mapf;(b) are equal, and thus b and
d(b) are x<(A)-equivalent. Let us now show that this action of A; on B, is transitive.
Consider b,V € B;. Because map; and mapj, yield the same encoding of F;, we know
that 0 := (map},) *mapi € A; = Aut(2;) (the fact that it stabilises ® # is a consequence
of Lemma 4.19). Moreover, map; (b) = A, where \ is the unique index such that v} = Id.
Thus, (map;,)~'(\) =¥/, i.e. §(b) =V, which yields the transitivity of A; on B;. Now
we provide the FPC-definition of ye. We assume that the predicate x € B; is FPC-
definable.

Vr € B;,x € A;,

Aut(ig, jo)

J = (F#A.(A < jo A Aut(ig, A)))
®(io, jo, 5, 1)

XCI’(i?j) S, t) = EliOija

where Aut(ig, jo) states that 710 stabilises F;, and can be defined in FPC as follows:

®(ig, jo, x, ')
Aut(io, ]0) = Vx, Y, El.fE,, y/7 (I)(i(]?j()a Y, y,)
E(z,y) < E(,y)

If x< is trivial on 4; (i.e. x< defines the empty relation on A4;), then for any
a,d € A;, E™P = 0

7 (]
and no further refinement is needed. Therefore, the desired relations <, ®" over 2 are

, and the class already satisfies the conditions of the lemma,
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the fix-point of the following sequence:

<o == Py := ¥
<k+1 = X_<(A, E, <, (bk:) (I)k-H = XCP(A7 E, <y, (I)k)

Such an iteration procedure requires the use of the simultaneous fixed-point operator.
Note however that the function iterated in this fixed-point computation is not infla-
tionary. Yet, because each iteration strictly refines < on A, a fixed-point of this process
is reached in at most |A| steps. As such, the trace argument presented in the proof of
Theorem 1.31 enables the definition of the fixpoint of this sequence in FPC. An addi-
tional fix-point definition is then needed to treat every colour-class, as the treatment
of each colour-class induces a reindexing (into potentially many more colours) of the
colour-classes of the structure. While the combination of simulatenous fixed-point and
this trace argument does not present any difficulty, it is quite tedious to write, so we
do not present the full formulae (<, (s.

]

4.5 The semi-local scale

At this point, we have defined bijections between A; and O(A4;), a local labelling coset,
for each i. Together, those yield a bijection between tuples @ € [[;~, A; and the initial
labelling coset C := [[;"; O(A4;), mapping a to [];"; map} . We have already mentioned
that the representation with FPC of global labelling cosets is the major challenge of
the canonisation of structures with abelian colours. Yet, at first sight, this bijection =
between [, A; and []}", O(A;) seems to enable the representation of the successive
values of C along Algorithm 3 by subsets of [[", A;, more precisely by their inverse
image through =: the initial value of C is the image of [["; A; after Line 2 ; and at each
iteration of the for-loop, if the current value of C (before Lines 4 and 5) is represented
by C, consider C; ; the projection on A; x A; of the set C, that is

Cij={(r,y) € Aix A; | Jd € C,a; =z Na; =y}.
For each (a;,a;) € C;;, encgap(i’ai)vmap(j’%) is an encoding of EN (A; x A4;), and we can
pick the minimal lexicographical such encoding. Let D;; C C;; be the set of couples
(a;,a;) that yield this minimal encoding. To complete the passage in the for-loop, it

only remains to update C' to only contain the tuples that are coherent with D; ;, that
is

C «+ {6 € C, 7TA¢><AJ‘ (C_i) € Dl,j}

Those observations imply that the representation of labelling cosets reduces to the
representation of subsets of [[;"; A;, however we are not able to encode arbitrary
clements, let alone subsets of [[;, A; in FP + ord: there are, in the worst case (when

m = y/n and |A;| = y/n for each i <m) O <2\/ﬁﬁ) such subsets, which prohibits any
general encoding scheme of P(J]~, A4;).
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Nevertheless, what precedes serves as a quite accurate sketch of the remainder of
this proof: we need such a representation scheme for global labelling cosets, which
enables

e the projection of these cosets to any pair of colour-classes (C' — C; ; above)

e the restriction of such a global coset to one which agrees with a semi-local one
(C— C Nyl 4. (Dij) above)
i XA

Rather than a combinatorial approach, we will use the algebraic structure of global
labelling cosets extensively to encode them. In the last section, we initiated this ap-
proach at the local scale, proving that for each colour i, the canonical set of local or-
derings O(A;) forms a local labelling coset of the input abelian group I'; (Lemma 4.17),
and that we can assume those labelling cosets to canonise the local edges (Lemma 4.20).

In this section, we aim to extend this work to the semi-local scale, taking the edge
relation into account. For ¢ < j < m, we denote 2, ; the substructure induced by
A;UA; on A, and F; ; the edge relation of 2, ;.

While we need to define a way to restrict a set of semi-local orderings X C O(A4;) x
O(A;) to those that yield the minimal encoding of E;; — which corresponds to the
computation, given C; ;, of D; ; in our scheme above — it is crucial that this restriction
respect the algebraic structure of O(A;) that we have exhibited in the last section.
Indeed, this algebraic structure will enable the ord operator to define an encoding of
global labelling cosets in the next section, which is necessary to implement Algorithm 3.

To do so, we will exhibit, for any ¢ < j, a definable morphism m,; : IN\I'; —
Sym(€; ;), where €, ; is an ordered set, such that the kernel of m; ; is equal to I;I'; N
Aut(%, ;), that is, the set of elements of I';['; that preserve the edge relation between
the two colour-classes. For the remainder of this section, we fix (i, j) a couple of colours
with i < 7.

Let A;; = I\l nAut(2,;). As A;; < I,I'; and by assumption, I'; and I'; are
abelian, we obtain A; ; <I';I';. As such, A, ; is the kernel of the morphism

Y= YA

which satisfies the requirements we have set above. However, it is not clear how to
represent I';I; /Ai,j as a permutation group with FPC. Computationally, we could rep-
resent each coset of A;; in I';I'; by some representative, and represent the quotient
group by its action on the set of cosets in this way®. However, choosing such a repre-
sentative of each coset is usually out of reach for FPC.

In this instance, because the groups I'; are ordered, for each vA; ;, we can actually
use the lexicographically minimal element of I';I'; that belongs to 7A, ; as a represen-

6This procedure can be carried out in polynomial-time because ;T : A; ;| is polynomially-
bounded by |A]

- 106 —



FP 4+ rk < FP 4+ ord

tative of this coset. Denoting (2, ; this set of representatives, we obtain a morphism
my ;- F'LF] — Sym(Qw)

To summarise, for v € I';I'; and w € €; ;, m; j(7)(w) is the unique w’ € Q; ; such that
YwlA;j = w'A;;, 1.e. w' is the unique element of ; ; such that w1y 'w’ € Aut(2, ;).
The rest of this section is devoted to the proof that this morphism is definable in FPC.

Theorem 4.21. For each t < j < m, there is a FPC definable ordered set €; ;, and a
FPC definable morphism
m; ;I — Sym(€; ;)

such that ker(m; ;) = A;; = [T N Aut(2, ).

Before proving Theorem 4.21, we introduce two small lemmas. First, we show that
the membership to A; ; is definable in FPC:

Lemma 4.22. There is a FPC formula aut(i, j, u,v) such that A = aut(i, j, o, B) iff
e N
’Ya’yﬁ 2V

Proof. -

1, [, Gy, )

® (4,
aut(i, j, p, v) := Va; € A;,a; € Aj,3b;, bj, ©® (j,v,a;,b;) L

(E(ai,a;) <= E(b;,b;))
This in turn enables us to check if two elements of I';I'; belong to the same coset
of Ai7jl
Lemma 4.23. There is a FPC formula coset(i, j, p, v, p', V') such that

A k= coset(i, j, o, B, 0/, ) <= YAy = Vb A

Proof. For a, 3,0/, 3, %ﬁ = yé,vé,Aivj iff x := (vg,vﬁ/) 17&7% € A; ;. Because I';
and I'; act on disjoint sets, they commute, thus y € I';I'; and there is a couple o, 5"
such that y = fyé,,’yé,,. Because x € I;I';, x € A, is equivalent to x € Aut(; ;), which
yields the following formula:

Vi = ()"
coset(i, j, p, v, p', V') := 3", V", @0, = (7))
aUt(L ja Mﬂv VH)
To ease reading, we have included two clauses of the form ¢ = 77!p which are not FPC

formulae per se. However, when the graphs of o, 7 and p are defined by R,, R, and
R,, respectively, this equality can be defined in FPC as in Lemma 2.11. O

We are now ready to prove Theorem 4.21:
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Proof of Theorem 4.21. We can choose as a representative of the coset ¢/, ; the lex-
icographically smallest couple (o, 3) such that ’yfl’yé € oA, ;. The following formula
holds for (i, j, v, B) iff (v, ) is such a couple for some coset:

witness (i, j, i, v) := V', vV, (V' <iew pv) = —coset(i, j, u, v, i1, V')
This shows that €; ; := witness(2, 4, j) is definable in FPC.

We aim to define m;;(7)(a, 3) as the unique (o/,3") € ;; such that 77};7% €
(V7B ) A, that is, such that (v/,7%) 77475 € Aiy. Note that, rather than keeping
m; ; undefined on (A<)%\ Q;;, we simply set it to act trivially. This indeed defines a
morphism, as the action of m; ;(7) on €, ; is, by construction, isomorphic to the action
of 7 on the set of cosets of A;; in I';I'; by left multiplication. For the same reason,
ker(m; ;) = A; ;.

—witness(i, J, fis, Vs) A s = iy A\ Vs = 1y

o witness(i, , s, Vs) A witness(z, j, fig, V4)
S|M0rph<l,j, R’y7 HsVs, ,U'tyt) = i g i ad N\=Lami A
3. Q%yu’/yz/ = (’7“{714) /7/7“'71,

aUt<i7j7 /1/7 y/)

This corresponds exactly to our definition of a definable morphism, in the sense that
for any v € I';I';,
sMorph(%A, 7, j, graph(7)) = graph(m; ;(7))

Note that, while we usually prefer to keep second order variables on the left-most side,
we did not do so this time to underline the fact that sIMorph actually defines a family
of morphisms, one for each couple of colours.

Finally, let us justify our use of permutations equalities in the definition of sIMorph.
As the graph R, of v is a parameter of sIMorph, and for all 7, ;1, the graph of 72 is given
by @ (i,p), the subformula +/,7), = (v,,7J,)~" is in FPC, following the same idea as

in Lemma 2.11. O

Theorem 4.21 is an important step in our reasoning, as it implies that the auto-
morphism group of 2 is morphism-definable in FP 4 ord. Indeed, the morphisms m; ;
can easily be combined into a morphism

m*: T — [ [ Sym(€:,)
1<j
V= H my,j (r)/FAiUAj)

i<j

Interestingly, ker(m*) = Aut(2). To see this, remark that m* is equal to the ®-product
(as defined in Definition 3.16) of the morphisms m; ;, each extended to the whole of
[ in the trivial way (that is, by setting, for v € T', mj;(v) = m;;(714,04;), and
m* = @),;.;m;i ;). In particular, m* induces a bijection between cosets of Aut(2) and

- 108 —



FP 4+ rk < FP 4+ ord

elements of []; . Sym(€2;;). Our objective in the following section is to transfer this
correspondance to the context of labelling cosets.

Indeed, as we aim to canonise structures, we need to handle labelling cosets, which,
as argued before, in the logical context, are not group cosets of Aut(2(). In the next
section, we show that we can build a larger group in which labelling cosets are actual
cosets. In this context, it is the morphism-definability of A;; which will enable the
representation of those labelling cosets.

4.6 The global scale

As we have mentioned earlier, labelling cosets are not cosets per se, as they do not lie
in some larger (permutation) group. It happens, however, that our initial (and thus
largest) global labelling coset [ [, O(A;) can be embedded into a permutation group G.
In this section, we show that the labelling cosets at hand in Algorithm 3 are all cosets
of morphism-definable subgroups of G, i.e. we aim to construct an injective function
¢ mapping orderings of A to elements of G and, for any labelling coset C' computed
during the run of Algorithm 3, a morphism m¢ : G — Sym(A7T) (for some type T') and
a value vo € Sym(AT) such that

C={¢"9) | g€ G,mc(g) =vc}

We first exhibit our representation ¢ of orderings” f : A — A< into a subgroup
G of Sym(A?). However, this introduces an issue: G — which is actually the closure
of ¢ ([[, O(A;)) under composition of permutations — contains extraneous elements
which do not correspond to any ordering of A.

In the second subsection, we show that ¢ ([, O(A;)) is a coset of a morphism-
definable subgroup of G. That is, we introduce a morphism m,; : G — Sym(A3) and
a value vy € Sym(A3) such that

H O(A) = o7 (M (Vinit)) -

Finally, we show how to transfer the morphism-definability of A;; to the space of
labeling cosets: building on m; ;, we define morphisms ;; (for all 7,7) such that
Vi i(p(0)) = U, ;(¢(7)) iff 0 and 7 encode E;; in the same way. This enables the
restriction of a global coset to one which agrees with a semi-local one, as described in
the introduction of Section 4.5.

Orderings as permutations

Fix some 7 € [[, O(A;), and let m; := m4,. Recall that, by Corollary 4.18, 7I" =

[1; O(A).

" Actually, ¢ does not enable the representation of all orderings of A, but only of those which are
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Let us first give an intuition of our construction: suppose we were given a “base”
ordering f : A — A<. Then, there is a bijection mapping any g : A — A< to the
permutation of A that maps f to g through composition, that is, f~'g. Here, while we
obviously do not have access to such a fixed single ordering, for each colour class A;,
we have a canonical family m;T; of |A;| “base” orderings®, and therefore any o € ;[
can be mapped injectively to I';4:

(ori 7TZ-F1- — FA
N P (map))~'o ifbe A
1d otherwise

This encoding is compatible with the morphism
;[ = T4
v <b ~ {Fd ftieivﬁée)
in the sense that Yo € mI';,v € Ty, pi(0y) = wi(0);(y). Note that this implies that,

for any o, 7 € m;1;,

pi(0) " pi(r) = ti(o7'T) (4.6)

For any o € m;I'; and v € T';, ;(0) and 1;(y) are families of elements of I indexed
by A, and given a € A, we denote the a-component of ¢;(c) (resp. (7)) by ¢i(0),
(resp. ¥i(7)s). Note that, while we have defined ; and 1; to range over I'4, their
image is actually quite restricted: first, for any a € A, ¢;(0), and ¥;(v), are in T';.
Moreover, all the non-trivial values of ¢;(c), and 1;(7), are reached for a € A;. That
is, morally, ¢; and 1; take values in I';4. However, providing a uniform codomain to
all those functions is convenient, as it allows us to combine them easily into a global
representation of 7T’ within I'4:

¢ is compatible with ¢, which implies that o(7I') = ¢(m)¥(T") is a coset of (I).
Moreover, as was the case for ¢; and ¥;:

p(o) (1) = ¥(0™'7) (4.7)

One can also easily check that ¢;,1); are injective for all + < m, and thus so are ¢ and
.

8Recall that Lemma 4.17 implies that m,I'; = O(4;)
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As a side note, I'4 is not ezactly a permutation group, and as is, its definition is
not compatible with the use of the ord operator. However, since I' < Sym(A), we can
identify ' with a subgroup of Sym(A x A) through the injective group morphism

v: Sym(A)* — Sym(A x A)
(0a)aca = ((a,b) = (a,04(b)))
More precisely, ¢ is an isomorphism between Sym(A)# and the group of all permutations
of Sym(Ax A) which act trivially on their first component. As such, we will usually keep
the presence of ¢ implicit, and discuss the underlying groups, cosets, morphisms and

elements of Sym(A)“, until we actually exhibit fixed-point definitions of said objects,
where we rely on .

o(ml') is a coset of ¥(I'), and with + we can expect to represent their elements
within fixed-point logic, using the tools developped in Chapters 2 and 3. Precisely, we
will show that ¢ (I") is morphism-definable, which will enable the representation of its
coset p(ml') by defining, in FPC:

e A generating set for a group G that contains both ¢(#T") and ¢(I") (as subsets)

e A morphism my,; : G — Sym(§2) such that ker(m,;) = ¥(I)

e A value v;,;; € Sym(Q) such that m; > (vinir) = @(7T).

In this subsection, we deal with the first item on this list, and define such a group G.
Because (o) = [[1~, vi(014,), and for each o € 7T, 0,4, € I';, we have

p(nl") C H%‘(mrz‘) < <U pi(mil';))

Therefore, G := (J.", ¢:i(mI;)) satisfies the requirement above. Note in particular that
G contains ¥;(T';), as ;(T;) is a coset of this group, and G is closed under composition.
We now show that a generating set for G can be defined in FPC:

Lemma 4.24. There is a FPC formula genG which defines a generating set for G.

Proof. We remind the reader that we actually define a generating set for the group
1(G). By definition of G, it is enough to build a formula genG such that, for any i, a,

genG (A, 4, a) = graph(u(¢;(map}))).

Consider the following formula:

i(rs) =p1 Ay = (mapﬁi)_lmapﬁ (z4)

geng(p1p27 bsxsa btxt) = (bs - bt) A .
Z(xs) 7é b1 Nxs =1y

In this formula, p;, ps are the enumeration parameters of this generating set; and we
denote i(x) the unique j such that x € A;. Note that p; is numerical (and ranges over
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the indices of the colour classes), while ps is a domain variable. b,xs and bx; are the
two pairs of permutation variables used to represent a permutation in Sym(A x A) as
in the definition of the ord operator.

For any i,a € A< x A, A |= genG(i,a,5,1) if s; = t; and t, = (map’, ) ™! - map’(ss),
i.e., if £ = t(p;(map’))(5), which yields the desired result. O

Representation of the initial labelling coset

Now, we show that ¢(7T") is morphism-definable from G in FPC. Indeed, G contains
many permutations which are not elements of ¢(7I"). First, there are the elements of
@i(m;T';), but also the composition of elements in ¢(o(7T")): for any two such elements
o,Tenl,

(e(0)e(r)), = (map})~o(mapj) ~'7

while for any p and b € A;, ¢(p)y is of the form (map})~'v, for some fixed v € T'; (that
does not depend on b), which implies that ¢(o)@(T) & p(nl).

This section is devoted to the proof of the following:

Theorem 4.25. There is an FPC-definable morphism min; : G — T'4*4 and an FPC
definable value vy € T4, such that p(al) = p(m)(T) = {\ € G, Mini(N) = Vinat }-

That is, we prove that ¢(I") is morphism-definable from G in FPC (by the morphism
Minit), and provide a FPC-definable value (v;y,;;) which represent its coset ¢(7[") (w.r.t.
the morphism m;).

Proof. We give the definitions of m;,; and v;,; right away:

ANyt if Fi, {a, b} C A,

Id otherwise

Minit(N)ap = {

(Vinit)ap = (map,)~'map; if 3i,{a,b} C A
wnit)a,b - —
Id otherwise

The following Lemmas 4.26 to 4.28 show, respectively, that m,,;; is indeed a morphism,
that m; %, (Vinit) = @(7T), and that m;,; and v, are FPC-definable, which altogether
proves the theorem. O

Lemma 4.26. m;,; : G — I'A*4 is a morphism

Proof. Consider \,\' € G. For any i # j, a € A; and b € Aj, mypi(AN )y = Id =
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(minit()\)a,b) (minit()\,)a,b)- FOY a, b € Ai7
Minit (AN )ap = (AN)a(AN);!
= AN TN
Since I; is abelian, = A A, 'ALA "

- minit()\)a,b : minit()\/)a,b

Lemma 4.27. o(7l") = {\ € G, mni(A) = Vinit}

Proof. For o € wl" and a,b € A;, we have:
Minit(9(0))ap = ©(0)ap(0);
= (map;) ™"

— (Uinit)a,b

oo~ 'map;

We now show the other inclusion. Let A € G such that mn; () = vini. Fix, for all 4,
some a; € A;, and let o; := map}, A,,. Then, for any b € A;,

mapz)\b = mapé)\b)\;l)‘ai
= map;Minit(A)b,a; A,
= mapé(mapé)ilmapzi)‘ai

Thus, for any b, \, = (mapZ(b))

ooy ...0m). O

Yo,y = i) (Tim))p, Which in turn implies that A =

Finally, we show that m;,; is definable in FPC. Recall that the domain of 1, is I'4,
which, in the context of fixed-point logic, is represented as a subgroup of Sym(A x A)
through ¢. A similar shift of representation is needed for the codomain I'**4 of My,
which can be embedded in Sym(A x A x A) through

Ly : Sym(A)P4 = Sym(A x A x A)

(O-(a7b))(a,b)€A><A = ((CL, ba C) = ((l, b7 O-(a,b) (C)))

Lemma 4.28.

e There is a formula initMorph(R, as, bs, x5, as, by, x;), such that, for any A € G,
initMorph (2L, graph(¢())) = graph(ca(minit(A))).

o There is a formula initValue(as, bs, x5, a, by, ) that defines in 2 the graph of

(%) (Uim't> .
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Proof.

.
g = Q¢

initMorph(R, as, b, T, as, by, x) := © b, = b,
\Ely, R(bs, ¢, bs,y) N\ R(as, xs, as,y)

(
g = Q¢

initValue(as, bs, Ts, ag, by, 4) := @by = b,

| i, 11, map(i, as, ¢, ) A map(i, b, T, 1)

Extending the semi-local morphisms

In the previous section, we have introduced morphisms m;; : I' — Sym(€; ;) such
that ker(m;;) = I' N Aut(2(; ;). We motivated the introduction of those morphisms
by the need to upkeep the algebraic structure of a labelling coset together with the
canonical encoding of the graph at hand. However, managing labelling cosets through
morphism-definability prompted a shift of representation of those labelling cosets. Now
that we have defined our FPC-definable representation of labelling cosets — as cosets
of morphism-definable subgroups of G — and building upon the morphisms m, ;, we
define morphisms from G to 2, ; that will allow us to enforce an encoding of £; ;, while
maintaining the algebraic structure of the underlying labelling coset.

Precisely, we aim to construct a morphism ¥, ; on G and a value v; ;(a,b) € Im(¥; ;)
for each colours ¢ < j and (a,b) € A; x A; such that, for all (a,b) € A; x Aj,

ﬁ;jl(vi,j(a,b)) N (nT") is exactly the set of orderings that yield the same encoding

of E;; as mapimap].
Theorem 4.29. For each i < j < m, there is a FPC definable morphism
7,92'7]' : g — Sym(A X A X QZ,])

and o FPC definable function v;; : A; x A; — Sym(A x A x §; ;) such that, for any
(a,b) € A; x A; and 0 € 7T,

E{ﬂ?pémapi
/L?]

Jij(p(0)) = vij(a,b) <= Ej; =

(where R’ is the encoding of R relative to f, as defined below Definition 4.14)

Proof. We provide the definition of ¥; ; and v; ;. For readability purposes, we present
¥;.;(c) and v; ;(a, b) as elements of Sym(Q; ;)4*4 rather than Sym(A x A x (), ;), relying
on the injective morphism

130 Sym(£2; ;)4 — Sym(A x A x Q)

(O(ap)) (@p)caxa — ((a,b,w) = (a,b, 0@ (w)))
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as in the previous subsection.

: G — Sym(Q; )AXA
s <<a ) s {mi,j(AaAb) ifaeAbe Aj)

Id otherwise

For (a;,a;) € A; x A, let v; j(a;,a;) € Sym(; ;)4 be defined, for any (a,b) € A x A,
as '
vij(a, a;)(a,b) = mi,j((mapflmapi)_lmapzimap{lj) ifaed;bed,
Id otherwise

In Lemmas 4.30, 4.31 and 4.33, we show, respectively, that ¥J; ; is a morphism, that it
behaves as expected regarding to the encoding of F; ;, and that both ¥J; ; and v, ; are
FPC-definable, which altogether yield the theorem. n

Lemma 4.30. For allt < j < m, 9;; is a morphism.

Proof. Consider A\, \ € G and (a,b) € A x A. We aim to show that
(191',]' (/\)192'73'()‘ ))(a b) 19%]()‘>‘ ) (a,b)
If (a,b) € A; x A;, both sides of this equation evaluate to Id. Otherwise,

(i, (MPii (A)) (@) = mij(Aads) i (AL AL)
= m”()\ A ALAL) since m; ; is a morphism
= m; ;(Aa XA AL) since I';T'; is abelian
= 9, () ) O

Lemma 4.31. For any i < j, (a;,a;) € A; x A;, and o € 7,

mapy, mapa

192',]'(()0(0'» = vi’j(ai,aj) < EU = E
Proof. First, notice that, for any i < j and a; € A;,a; € A;, v (a;,a;) = 9;,(p(0)),
where ¢ is any element of 7T’ such that 4,04, = mapfzimapflj.

It is thus only left to prove that, for two labellings o, 7 € 7I", 9; ;(¢(0)) = ¥, j(p(T))
iff 0 and 7 yield the same encoding of E; ;. Equation (4.7) implies that

0ii(p(0)) = Vi(p(7)) = Vi((07'7)) =1
so that it is only left to show that, ¢(v) € ker(¢; ;) <= v € Aut(2;;). And indeed:
Uij($(7)) =1 <= Va € Ai,b e Aj,mi;((7)at0 (7)) = 1

< Va € A, b€ Aj,mij(vaa) =1 by definition of 1)
== Vaua, € ker(m ;)
<= Yaua, € Aut(m, ;) by definition of m; ;

]
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Note that, in particular, this implies the following:

Corollary 4.32. For any two couples (a,b), (a’, V') € A; x Aj,

Emap;map{) . Emap;,mapb,

i, i = Ui (a, b) = Ui’j(CL/, b/>

This fact will become of particular importance in the following section. Recall
that, at each iteration of the for-loop, we must find the smallest encoding E< of £ ;
which is coherent with previous iterations of the for-loop (and thus with all E v i Where

(¢,5") <iex (i,7)). To do so, we will pick a couple (a,b) € A; x A; compatlble with

mapamapb mapamapb To

the current labelling coset such that £, is minimal and set E< to B,
ensure, in further iterations of the for- loop, that all couples con51dered are compatible

with this semi-local encoding E7;, the current value of the labelling coset C must be

updated, which entails to store the constraint
Vo € C,V,;;(¢(0)) = v;;(a,b)

i.e. the couple (¥;;,v; (a,b)) must be added to a relation within a fixed-point com-
putation. However, the couple (a,b) was picked arbitrary amongst all couples (da’,b’)
compatible with C yielding the minimal encoding of F; ;. For this storage of the couple
(¥ 4,vi;(a,b)) to be definable, it must be the case that the value of v; ;(a,b) does not
depend on this choice, which is exactly what Corollary 4.32 proves.

To prove Theorem 4.29, it is only left to show that ¥, ; and v; ; are FPC-definable.

Lemma 4.33. There is a FPC formula 9(u,v, R, 5,t) with type(5) = type(t) =
element’number? such that, for any o € @(xT) and i # j < m,

02,4, j, graph(e(a))) = graph(es(di;(0)))-

There is a FPC formula v(p,v,z,y,5,t) with type(3) = type(tf) = element*number”
such that, for any i # 7 < m,

v(2,14,7,a,b) = graph(es(v; ;(a,b))).

Proof. Let us first define v; ; as a formula v(p, v, 2, v, §, f) The variables u, v track the
pair of colour-classes we are currently handling and z,y track the component of v; ;
we are defining, i.e. we aim to obtain v(2,1,j, a;,a;) = graph(v; j(a;,a;)). Note that
v;j(a;, a;) is represented as acting on A x A x €, ;. Thus, the tuples of variables 5 and ¢
are meant to represent individual elements of this set, and for readability purposes, we
name those variables in accordance with our definition of v; ; above: § = (as, bs, s, Vs)

9The precise FP + ord definition of this compatibility relation will be defined in the following
section
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and t = (ay, by, iy, v) ; with (us, vs) and (p, 1) representing elements of €2, ;.
(
(x €A NVy g A)N
(as € A,V bs & A))
reA,NyecA,
as € A, Nbs € A,

=1

s
ANG=t
V(g v, 3,0y, 5,1) =G

g = A¢ N bs = bt
sll\/lorph(,u, v, Rga HsVs, MtVt)[Rg(aa ﬁ)/g(oQ 6)]

where

£, B) acA,NBe A, NIXN map(p, z, o, A) Amap(u, as, 3, )
a, 3) =
ac A, NGB e A, NI\ map(v,y,a, A) A (map(v, bs, 5,\))

Recall that map defines the local-labellings map! as shown in Lemma 4.16, that sIMorph
is the formula defining the morphisms m; ;, as shown in Lemma 4.23 and that F|G/H|
denotes the formula F' where each occurence of the subformula G is substituted by the
subformula H. Thus, for any suitable @ = (1, j, a;, aj,a,b), an assignment of the free
variables (u, v, z,y, as, bs) of &, £(2A, @) defines the graph of (mapimap{;)*lmapzimap{;j €
I;I';. As such, the last clause in the definition of v correctly defines the graph (on the
variables Vs, pvy) of mm((mapgmapi)_lmapzimapgj).

We now turn to the definition of the morphisms ¢;;. We provide a formula
Ip, v, R, §,ﬂ, where once again, (u,v) tracks the couple of colour-classes at hand,
and now, R should be the graph of an element g € ¢(G).

As in the definition of v, § and ¢ represent the domain 4 x A x €2; ; of the permu-
tational image of the morphism ¥; ;, and we name each individual variable as, b, 15, Vs
(resp. ay, by, j1g, ;) to improve readability.

g = Q¢
79(#7143753{)3: bs = by
siMorph (u, v, Ry, pisvs, puve )[Ry (, y) /0(, y)]
where
0(z,y) := Jw, R(as, z,as,w) A R(bs, w, b, y)

One should be careful not to confuse R,, which is the second-order variable in sIMorph
that should take as value the graph of a permutation in I';I';, and R, which is used in
¥ as a place-holder for the graph of a permutation in G, so that ¥(u, v, R, S, f) defines
a morphism as explained in Definition 3.10. O

4.7 Conclusion of the proof

We can now present formally our representation of labelling cosets. Any such C C 7T’
is represented by a couple (me,ve), where me : G — Sym(Q2) and ve € Sym(2) for
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some set €2, such that
C={p(9),9 € G,me(g) = vc} (4.8)

where G and ¢ are the group and function presented in the last subsection. We now
show how this enables every step of Algorithm 3.

Initialisation of the labelling coset (Line Line 3 of Algorithm 3) Recall that,
at this stage C = 7' = [JO(A;). Our objective is thus to present a representation
of this labelling coset. According to Eq. (4.8), we aim to find a couple (m,v) such
that o(7T") = {g € G,m(g) = v}. But we have already shown in Lemma 4.27 that
(Minit, Vini¢) Vverifies exactly that equality, and thus represent 7I". Note that this is a
prerequisite for the application of ¢! to be well-defined in Eq. (4.8) (as ¢(#T) is a
strict subset of G). In this case, Q = A3,

We are now entering the for-loop, fixing i < 7. Assume that C is represented by
(me,v.) as in Eq. (4.8). Two operations still must be implemented :

e Finding the lexicographically minimal encoding of E;; coherent with C (Line 4
of Algorithm 3).

e Updating our coset C, and thus its representation (me,ve) according to this
encoding of F; ; (Line 5 of Algorithm 3).

Finding the smallest coherent encoding of £;; By definition, for an encoding of
FE; ; to be coherent with C, it needs to be the encoding of F; ; relative to some labelling
o €C. As C C I, any such labelling ¢ must fulfill the equality

% )
O14;uA; = Map,map,

for some (a,b) € A; x A;. Moreover, given such a couple (a,b) € A; x A;, we can define

i ; : j,a)Vmap(i,b
the corresponding encoding of E; ; using encpePt®"map(:0)

» as shown in Lemma 4.15. It
is also quite straight-forward, given (a,b), (a’,0') € A; x A; two such couples, to check
whether the encoding generated by ma p’map; is lexicographically smaller than the one

generated by map!,mapj,.

Therefore, it is only left to define in FPC a compatibility relation Comp, C A; x A;,
such that

(a,b) € Comp, <= o € C, 014,04, = Map.mapj,

Then, we can order Comp, according to the lexicographical order on the encodings
generated by any two couples (a,b), (a/,b"). Therefore, setting

map(é,a0)Vmap(j,bo)

<o encp: is minimal
Ei,j<'u’ V) = H(CLO’ bo) S COIHpC, méé(i,ao)Vmap(j,bo) JEF
enCEimj (ILL’ V)

is a FP + ord-definition of the minimal encoding of F; ; coherent with C.
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Let us now show how the representation of labelling cosets given in Eq. (4.8) enables
the definition of Comp,. For any (a,b) € A; x A;, Theorem 4.29 ensures that

(a,b) € Comp, < 19;]-1(1)1-,)-(@, b)) Np(C) # 0
— ﬁgj-l(vi,j(a, b)) N mgl(vc) # ()

Using the morphism constructions we have defined in Section 3.3 (in particular, in Def-
inition 3.16)

(a,b) € Comp, <= (¥;; @ me) ™ (vij(a,b) ®ve) # 0
< (vij(a,b) ®ve) € Im(¥;; ® me)

By induction hypothesis, m¢ and ve are FP + ord definable, and we showed in The-
orem 4.29 that v, ; and v; j(a,b) are FPC definable. We have showed in Lemma 3.18
that under those assumptions, ¥; ; ® m¢ is definable and therefore, by Lemma 3.14, a
generating set for Im(v; ; ® m¢) is definable. According to Lemma 3.19, (v; j(a, b) & vc)
is also definable, and as permutation group membership is decidable in FP + ord,'°, we
can construct in FP + ord a formula that holds iff (a,b) € Comp,, which concludes our
implementation of line 4 of Algorithm 3.

Updating the labelling coset representation At this point, we have successfully
used our new representation of labelling cosets to obtain a canonical encoding Efj
of the edge-relation between two colour-classes A;, A; coherent with a given labelling
coset C. We must now enforce our induction hypothesis, and show that we can define
an encoding of the resulting, further restricted labelling coset

C:={ocC|E},=E5}

Most of the work was already done in the last paragraph: setting me := me ®9; ; and
ver i= ve B v; 4(ao, by) for any (ag, bp) minimal in Comp, yields the desired result. Note
that Corollary 4.32 ensures that the value of ver does not depends on which couple
(ap, by) we use.

This concludes our informal presentation of our encoding of labelling cosets in
FP + ord. However, before we introduce the formulae implementing this idea, there are
a few things left unclear about the recursive construction of a complex morphism in
FP + ord. In particular, notice, in the last step we have depicted, that the use of the ®
operator induces an increase of the base set 2 on which ver and elements in Im(mg/)
act. However, this growth is quite tame, and we will see how we can actually define
this sequence of morphisms in FP + ord.

A shift in the representation of morphisms

Defining a sequence of morphisms with growing codomains raises the problem of the
fixed arity of relations in fixed-point logic. However, we have already defined, in the

10Note that this is the only use of the ord operator so far
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previous section, the building blocks for the morphisms m¢ to be considered all along
the run of Algorithm 3, and we will now see how this enables us to avoid such a growth
of the arity of the formulae defining the relevant morphisms, through a small shift of
representation.

Let W C [m)? be the set of pairs of colours that have already been processed in the
for-loop of Algorithm 3. Then, it is easy to see that (up to reordering of its components)
me is equal to

®W = ® 19 i,j & Minit

(1,7)EW

W defines a “window”, a set of indices on which the values of the ¥, ; are currently
relevant. Let W(i,j) = {(i',j") | (?',7") <iex (i,7)} so that Oy ;) is exactly the
morphism m¢ encoding the value of C when starting to treat the couple (7, 7). After
one iteration of the for-loop, the morphism me would be me = Ow; jyugi,j)y- We will
now show that the family of morphisms (Ow)wep(mp2) (or rather, a somehow nicer
encoding of those morphisms, as we will see below) are directly definable within FPC.
In this context, only the permutation ve € Im(@w (ij)) and the encoding of the edge
relation associated with the labelling coset @W(”)( ve) € 7" will need to be carried
along the fixed-point computation.

Note that, at this stage, the codomain growth problem we have mentioned subsists:
when W C W, the permutations in ©y-(G) act on a larger set than those in Oy (G).
This can now be easily circumvented by building a morphism equivalent to Oy, whose
codomain is a constant permutation group (which should be codomain of ©j,;2), for
all values of W. The following morphisms satisfy those requirements:

(4,9)€[m]?

where

d Id  otherwise

Note that, for any values of W,i,j and g € G, 19W( ) € SyIn(A2 x (A<)?). As such,
for any W, Lemma 3.17 enables the representation of ® " as a morphism ®@9" :

G — Sym((A%)% x A% x (A<)?), and thus, the ®-product of ®Q with my,; yields:
Ew(g) € Sym((A%)? x A% x (A%)?) x Sym(A x A x A)

Recall that we can identify Sym(X) x Sym(Y) with a subgroup of Sym(X x Y). Let
us now show that Zy, is definable in FPC. We start by defining the morphisms ¥:

Ry (p,v) AO(p, v, R, 5, 1)
“Rw () NS = t

Q(RWnua I/7R 3 6%
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where, for all ¢ < j, 9(2(,14, j) defines the morphism ¥, ;, as was showed in Lemma 4.33.
In the same way, for any W,i,j, ¥(A, W,1,7) defines ﬁlm; Building on ¢, we can
construct the inner ®-product of morphisms in the definition of Zyy:

Ms = Ht N Vs = 1y

compound¥( Ry, R, psvsS, pvt) =
Poundf (R B s ) C%Q(RW,JS,R,@E)

The definition of compound® is a direct application of Lemma 3.18. It remains to build
the ®-product of this morphism with m;,;:

Hs = ple N Vs = vy N by = by
Z(Rw, R, j1,vsbs55 , pruvibitt’) := @ [ by = 0 A compoundd(Ryy, R, p1svs5, puvit)
b, = 1 AinitMorph(R, &, ')

where initMorph is the FPC-formula shown in Lemma 4.28 to define m,;;.

Defining the corresponding FP + ord formulae

We are now ready to delve into the formal definition of the formula that canonises
graphs with abelian colours in FP + ord. We aim to build formulae ¢z, ¢,, such that,
given two relations Rp, R,, encoding respectively the values of E< = Efj and the
permutation ve resulting from the iteration of the for-loop pertaining to the couple
(i,7) in Algorithm 3, ¢p(2, Rg, R,.) and ¢, (A, Rg, R,,) encode the values E'< and
ver obtained after one additional iteration, that is, after treating the couple (i, + 1)
(or (i +1,i+2) if 7 = m). Once such a couple of formulae is defined, the result of the
algorithm is easily definable using a simultaneous fixed-point, which can be simulated

in FPC.

Theorem 4.34. There is a FP + ord formula ¢r< that canonises graphs with abelian
colours.

Proof. Let us summarise how the relations Rg and R,, are meant to encode the state
of the computation. The following invariants will be maintained along the fixed-point
computation:

e Rp is a ternary, numerical relation, such that, for any pu,v < |A| and A € {0, 1},
Rg(p, v, ) holds iff E< contains the bit A at position (u,v).!!

e IR, is a relation of type (number? - element? - number?®)?, which is the graph of a
permutation in (A<)% x A% x (A<)2

The initial values of those two relations are easily definable:
Rinier(p, v, A) == L
Rinitv(‘iﬂ = (g‘: E}

11'We use this encoding rather than a binary numerical relation in order to allow (and detect) the
presence of undefined positions in E<.
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Under the conditions outlined above, we can check, given a couple 7, j, if it has been
already treated:

p<v

treated(Rp, i, V) :=
Ve € As,y € AS, 3NN < 1, Re(x,y,\) A Re(y,z, \)

And therefore, we can find the next couple to be treated:

p<v

new(Rpg, p,v) ;:(%

V' <m, v < m,treated(Rg, i/, V') <= (W'V' <iex )

Now, suppose that we have in context a couple of variables (i, ) denoting the couple
of colours (i,j) to treat. We can define the permutation v @ v, where v is the
permutation defined by R,:

by = 0 A R,(5,1)

v 7
bs = 1 AinitValue(§',t')

[1

g%@?@ﬁy:@:@A%

where initValue is the formula presented in Lemma 4.28 that defines the morphism v;,;;.

To ease reading, we introduce a formula letv(R,, y1, v, x,y) such that, if (z,7) € [m]?

and (a,b) € A; x A;, letv(A, Ry, 1, j,z,y) defines the family of permutations

Vi s . R (Z, j/) s /Ui,j(az,b) lf 7:/ = 7:7.]'/ :]
(e mapimaey 7 v(i',j")  otherwise

that is, letv changes the value of v on the (7, j) component, and set it to v; j(a, b) (which
is the value defined in Theorem 4.29), leaving all other components of v unchanged.

Ms = fg N Vs = 1y
Ietv(Rv,,u, v,Z,y, ,Usysga ,utVttj = B= s NV = Vs A\ v(,u, v,x,Y, §’£>
(;L 7é Hs Vv 7é VS) A Rv(lusysgv ,Utl/tﬂ

Recall that v is the formula defining v; ; given in Lemma 4.33. Combining this with
v=, we obtain

letvs (Ry, 1, v, &, 1, bs55, bytt') := v=(Ry, by, 55", bitt )[R, (10, T) /letv(R,, p, v, i, T))

We can now define a formula comp(R,, i, v, x,y) that holds on i, j, a, b iff the encoding
of F;; through mapgmapz is compatible with C. That is, comp defines the relation
Comp, that we introduced at the beginning of Section 4.7. Recall that (a,b) € Comp,
is equivalent to

vij(a,b) € V;,;(0(C))
and by induction hypothesis, ¢ (C) is encoded by the morphism Zireated(a, 7). Therefore,
comp(Rg, Ry, i, v, x,y) should express the fact that

Uz‘,j<a7 b) S E'treated(Ql,RE)U{i,j} (g)
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Comp<RE7 RU’ WV, X, y) = (letUE(Rvﬂ w, v, x,Y, §7 F) € <ImE(M7 v, x, yvﬁ ga 5>)ﬁ§{
where, (F' € (G));57 is the FP + ord-definable membership test quantifier introduced
in Definition 3.4, and, according to the definition of = and Lemma 3.14,

Ry (a, B)/Union(Rg, p, v, cx, B)

Im= Y, 8,1) == Z(Rw, R, 5,1 5
mE(, v, x,y, 5, 1) (Rw, R, 5.1) R(5',1)/genG(p, 5, 1)

where Union defines the new window W U {(4, j)} as follows:
Union(Rg, u, v, a, ) := treated(Rg, o, B) V (u = a A v = [3)

and genG is the formula defining a generating set for G defined in Lemma 4.24.

This use of the membership test quantifier constitutes our sole use of the ord opera-
tor in this proof. Following the path we set at the beginning of this section, we need to
order comp(2, Rg, R,,1,j) according to the lexicographical ordering of the encodings
of E; ; the couples (a,b) € A; x A; induce. We do so in the following formula, although
we do not restrict ourselves to couples within comp(2, Rg, R,, %, 7). Let us first define
a general formula for the comparison of two numerical relations of the same arity:

Vi, Ri(fi) <= Ra(fi)
str<(Ry, Ry) :==V A R1(ji) N =Ry (ji)
U\ <ew i1, Ri(P) = Ry(7)
map(u,z,z,k)Vmap(v,y,z,k

. . . mapma J
Using Lemma 4.15, ency ) defines the numerical relation E;; PammaPy.

for any coherent valuation (i, j,a,b) of (u,v,z,y), and as such

) / (encgap(u,x,z,ﬁ)Vma p(v,y,2,Kk) ) ()_\’>

enC<(,u, V,x,y,x/,y/) = Stl’<(R1,R2) m z’ z,k)Vmap(v,y',z,K
< - Ry(X)/ (enc? 0t =1 Ymep o=y ()

i map? mapi ,map?,

holds on (i,j,a,b, CL/, b/) iff E;T\japa Py <lew Ei’japa apy,
The following formula holds on Rg, R, a,biff (a, b) is an adequate choice of elements
to define the encoding of the edge-relation on the first untreated couple of colours (i, j),

that is, if (a, b) € Comp, and amongst couples in Comp,, it yields the minimal encoding
of EZ‘J‘I

new(Rpg, i, )
comp(Rg, Ry, jt, v, 2,y)
V! ’%ﬁcomp(RE’Rm%y’x/’y,)

enCS (:ua v,x,y, [L'/7 y/)

base(Rg, Ry, z,y) := 3u, v,
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We are now able to define the encoding of the edge relation over this new pair of
colour-classes:

[ Ris(y1,v, %)
(neW(RE,/L, V)A€ AT AN A € A
base(Rg, R, z,y)
du, v,y @ map(u, z, s, A1)
ds,t,®map(v,y,t, \2)
¢2(Rg, Ry, X) =@ \ (As =1AE(s,1)) V(A3 = 0A =E(s, 1))
(new(Rp, 11,v) A\ € AS ANy € AS
base(Rg, Ry, z,Y)
Ju, v, x,y, @ map(u, x,t, A1)
ds,t,®map(v,y, s, A2)
(A3 =1AE(s,t)) V(A3 =0A-E(s,t))

3 \
Note that the two large similar clauses of the disjunction treat edges going in both
directions between the two colour-classes. It is only left to update the permutation ve.
Recall that we should provide its value for the new element (4, j) of the window:

(new(RE,p, V)

( (1 # ps Vv # vs) N Ry (115055, NtVtB
1= s

«© By, V=U,
base(Rg, R, z,y)
letv(Ry, 1, v, T, Y, f1sVs5, et

¢v(RE; Rw /LSng, ,utljtﬂ = El,“? v,Q

\ \
This concludes the definition of ¢g, ¢,. Throughout this proof, we have shown that,
if Sg, S, are two relations on 2 that properly encode the values, when entering the
for-loop of Algorithm 3, of E= = Uy 1., ) iy and ve (according to Eq. (4.8))—
respectively, the relations

TE = ¢E(Ql7 SE'7 Sv)

TU = ¢U(917 SE7 S’U)
encode in the same way the values of E< and C after Line 5 of Algorithm 3. Therefore,
the sequence (Rg ,, Ryn)nen of pairs of relations on 2 defined by

RE,O = RinitE<Q[> Rv,O = Rinitv(m)
RE,z‘+1 = ¢E(Ql, RE,u Rv,i) Rv,i+1 = ¢v(917 RE,i, Rv,z‘)

precisely depicts the iteration of the for-loop over all pairs of colours, and it reaches a
fixed-point exactly when all pairs of colours have been treated, and the resulting value
of Rp defines a graph over the ordered domain which is isomorphic to (A, E).
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As a last remark on the correctness of those formulae, recall that Corollary 4.32
ensures that our last application of letv is correct, as all couples (a, b) € base(A, Tg, T},)
yield the same permutation v(2, i, j,a,b) (where i and j are the colours of a and b

resp.).

It is only left to use a simultaneous fix-point operator to define the last value of
the sequence (Rgpn, R,,) depicted above. While this sequence is neither monotone
nor inflationary, the trace trick, presented in the proof of Theorem 1.31 allows the

simulation of this iteration for m?

steps. Because each iteration treats a new pair of
colour-classes, and there are less than m? < |A|? such pairs, applying this technique
for |A|? iterations yields the desired fix-point of the sequence, and thus the canonical

copy of (A, E).

While the combination of simultaneous fixed-point and the trace trick do not present
any difficulty, the resulting formulae are quite tedious to present, so we omit them here.

Finally, note that the preorder <* can trivially be defined on A<, and we have
already defined, within FPC, the canonical copies I'S of the ordered groups I'; in
Lemma 4.19. This concludes the canonisation within FP + ord of graphs with abelian
colours. O

As we have argued at the beginning of this chapter, this result has important
implications on the expressive power of FP + ord:

Theorem 4.35. FP + ord captures P on any class of structures with abelian colours.

Proof. This is a direct consequence of Lemma 4.11, in conjunction with Theorem 4.34.

]

Corollary 4.36. FP 4 ord > FP + rk.

Proof. As mentioned in Section 4.1, it was shown by Lichter |Lic23| that there is a
P-decidable query over a class of structures with abelian colours that is not FP + rk
definable. Yet, Theorem 4.35 implies that this query is definable in FP 4 ord and
therefore FP+ord # FP+rk. We have shown in the last chapter that FP+rk < FP+ord,
which concludes the proof. O
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Subgroup Computation

In the previous chapter, we have shown that FP 4 ord is strictly more expressive than
FP + rk, by showing that it can canonise structures with Abelian colours, that FP +
rk cannot distinguish. We have done so by using the group-theoretic framework to
graph (or structure) canonisation, as defined in Section 4.3. In turn, applying this
framework required to define generating sets for accessible subgroups of groups for
which a generating set was already defined. While this constitutes one of the three
operations enabled by the Schreier-Sims algorithm (Proposition 1.69), we have shown
this operation not to be definable within FP +ord in general (Theorem 3.9). Yet, in the
presence of Abelian colours, the assumption that each colour class’s group is abelian
enabled the use of the morphism framework, as defined in Section 3.3.

At the end of Section 2.3, amidst the definition of our representation of permutation
groups as relational structures, we remarked that this setting introduced a middle-
ground in the ordering of structures: we can consider ordered sets of permutations, over
an unordered domain. Structures with Abelian colours lie in that middle-ground, as by
definition, such structures come equipped with a linear-ordering over the groups acting
on each individual colour-class; and this ordering was vital (together with transitivity)
to construct a first labelling coset (in Lemma 4.16).

In this chapter, we aim to show that, under the sole assumption that the provided
generating set of permutations is ordered — that is, in a more general setting than
in the previous chapter — we can carry out the third operation of the Schreier-Sims
framework — a weaker operation than the canonisation of structures. Said differently,
while we have shown in Section 3.2 that the order-invariance condition on generating
sets is too restrictive to define generating sets for accessible subgroups in general,
when an ordering on our base group is provided (hence undermining the isomorphism-
invariance restriction), the whole of the Schreier-Sims framework is definable.

In the first section, we define the problem formally. In the second section, we solve
it, by defining a simulation of the Schreier-Sims algorithm within FP + ord. Finally, we
apply this result to a somehow artificial class, denoted PBCG<, that we will introduce
in the third and final section, and show that FP +ord can define a generating set for the
automorphism groups of structures within PBCG<. PBCG* is a class of structures that
generalises the notion of structure with abelian colours. As such, in this last section,
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we show a weaker result (computation of a generating set for the automorphism group
vs. canonisation) that applies to a wider range of structures.

5.1 Ordered permutation groups

In the statement of Theorem 3.9, we have already stated the problem we aim to solve,
although in the unordered setting. Let us restate this definition, while introducing the
ordered setting:

Definition 5.1. Let ¥ be a signature, X C STRUC[Y], and suppose that H is a
function, mapping any structure 2 € K to a group H(2A) < Sym(A7T) for some fixed
type T'.

A logic L witnesses the k-accessibility of H in IC (uniformly) if there are L[X]
formulae g (7, 5,t) and @ (fi, X) where type(5) = type(t) = T, type(ji) = number”,
and X is a second-order relation variable of type T2, such that for any 2 € K with
n = |Al:

e We can inductively define a decreasing chain of groups (G;(2))?, as follows:

= Go(A) = (pa) ;2N
— G111 () :={o € G;(A) | A, 4, graph(o) = pc}, where i is seen as a k-tuple
of numerical values (assigned to [i)

o G, () = H)

e For all i < n” |G;(): Giyr ()] < 0¥

We say that £ witnesses the k-accessibility of H in IC in the ordered setting if, in the
formula ¢g above, p'is a tuple consisting only of numerical variables.

Using this formalism, we aim to show that, in the ordered setting, FP 4+ ord can
define a generating set for any group H for which ¢q, e witness the k-accessibility.
Remark that there is a short-coming of this definition: it requires a formula ¢ taking
as input a second-order variable X (ranging over graphs of permutations). As such, we
cannot expect to represent all the instances of the problem at hand as one unified class
of structures over some fixed signature, but rather, we must rely on the definability of
such a formula @c.

5.2 The Schreier-Sims algorithm within FP + ord

This section is devoted to the proof of the following theorem:
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Theorem 5.2. Let ¥ be a signature, K C STRUC[X] and suppose that H is a function,
mapping any structure A € K to a group H(A) < Sym(AT) for some fized type T.

If FP 4 ord witnesses the k-accessibility of H in K in the ordered setting, there is a
formula o € (FP + ord)[X] defining a generating set for H(2L) for any A € K.

This result should be contrasted with the unordered setting, where, as shown in
Theorem 3.9, such a formula ¢y does not exist.

This result relies on a partial simulation of the Schreier-Sims framework within
FP+ord, which was already given in Algorithms 1 and 2. For convenience, we reproduce
those algorithms here.

Algorithme 1 : Sifting Procedure

Input : (0;,), a SGS for G along (H;)¥_,, a subgroup chain with conditional
membership tests (P;)¥_, ; and 7 € Sym(Q)
Result : Does 7€ G 7
1 Function sift(g, \) is

// Invariant : g€ Hy <— 7€
2 if A =k then
if g =1d then
4 L return true
5 else
6 L return false outputting (g, \)
else
8 if 315 s.t. P)\H(o;’} - g) then
9 L return sift (o) ;- g), A+ 1)
10 else
11 L return false outputting (g, \)

12 return sift(7,0)

Recall moreover that, when (H;)%_ is adequate, those algorithms run in polynomial
time. Proposition 1.69 enables the use of Algorithms 1 and 2 to obtain a generating
set for an accessible subgroup H < Sym(X). Suppose that the accessibility of H is
witnessed by the decreasing chain of subgroups (G;),. Then, we evaluate Algorithms 1
and 2 on the subgroup chain

G()ZGl Z Gm:HZStabH([Lj) Z EStabH(:cl,...,x|X|) =1

X]| . . . .
where (m,)izll is an ordered enumeration of X. Indeed, in such a case, after the termi-

nation of Algorithm 2, {0, ;,7 > m} constitutes a generating set for H.

In our current case however, where H(2() < Sym(A”), such an ordered enumera-
tion of the domain of the group is not achievable and as such, we cannot expect to
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Algorithme 2 : Constructing a SGS

Input : S, a generating set for G, (H;);<k, an adequate subgroup chain for G,
with conditional membership tests (P;)%_,.
Output : (0, )<k, a SGS for (H;)
1 Initialize an array (o; ;) with empty cells, except ;¢ :=Id for all ¢ < k
2 (=5
3 while ¢ # () do
Let 7 be the first element of ¢ and remove it from ¢
if sift(7,0) rejects on (o, ;), outputting (g,i) then
J =min{\, o;\ = 0}
Oij =49
C:={g 0up,a <i,00p 0} B{00p-g,a>10,0.p#0} DY

w N o ok

return (o, ;)

©

simulate those algorithms fully. This constitutes the main obstacle to the definition of
a generating set for H in FP + ord.

To overcome this issue, we will use the ord operator to bypass the need for this
chain of point-wise stabilisers. That is, our method to prove Theorem 5.2 will be to
construct iteratively a partial strong generating set, collecting a coset transversal only
for the naturally ordered part of the adequate chain of subgroups.

Go() > -+ > Ge(A)

while we keep an unstructured set of generators for G,,x(2). Therefore, this partially
strong generating set structure will be made of two parts: a structured array of m
rows and n* columns, defining coset representatives for G, ;(2) in G;(2), and an
unstructured list of permutations in H(2() Moreover, the sifting procedure should be
adapted according to this new notion of partially strong generating sets.

We structure the proof as follows: in the first subsection, we formalise this notion
of partially strong generating sets, and show how it can be represented in extensions
of FPC. Then, we will provide an implementation in FP + ord of the sifting procedure
in this new setting, and conclude with the translation of the construction procedure,
and the resulting formula defining a generating set for H(2l).

Partially strong generating sets

We now show how to adapt the structure of SGS to defer the handling of the stabiliser
chain to the ord operator.

Definition 5.3. Given an k-adequate tower of subgroups (G;), for G < Sym(X),
and d < m a d-partially strong generating set for G is a couple (R,S), where:

e R is a list of d lists of permutations, such that, for each ¢ < d, the i-th inner list,
R(i) = {R(i,\), A < |X|?} is a transversal of G, in G
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e S C Sym(X) is a generating set for Gj.

In the setting of Theorem 5.2, we aim to represent a n*-partially strong generating
set for the chain:

GQ(Q[) Z cee Z Gnk (Ql) = H(QL) Z StabH(g[)(al) 2 s Z StabH(g{)(al, e ,(Zn)

Since both the index of G;(2() in G, 41 (%) and the length of this sequence are bounded
by |AJ¥, we can index the permutations in R with two tuples of & variables. When
defining the construction procedure, we will see how we can bound the size of S by
| A|?I"1. This yields the following representation of SGS in FP + ord:

Definition 5.4. Fix k an integer. Let (K;)™, be functions mapping a S-structure
2 with |A| = n to groups over AT for some fixed type T', such that (K;(2))", is k-
adequate. A representation of a nF-partially strong generating set (R,S) for (K;(21))
is a couple of relations R, S over 2 such that:

e type(R) = number®™ - 72, and for each ji,7 € (AS)F, R¥ji,7) = {(5,1) €
ATT (i, 7,3, f) € R™} is either empty or the graph of a permutation.

e For any fixed ji, the set of all permutations o € Sym(A”) such that graph(o) =
R*(ji, V) for some 7 is equal to {R (i, j),j < |A|*}, where i is the integer encoded
by fi.

e type(S?) = number?”! - T - T and for any X € (A<)271, S%(X) is either empty or
the graph of a permutation.

e The set of all permutations o € Sym(A7T) such that graph(c) = S*(X) for some
X is equal to S.

e For each /i, the set of ¥ such that R¥(fi,7) # () form an intial segment of (A<)*
(for the natural encoding). The same holds for S* w.r.t. .

This last condition mainly plays a role as an invariant in the iterative definitions
to come.

For brevity, we refer to those structures of partially strong generating sets as PSGS.
If (R,S) is such a PSGS, we refer to R as the transversal table and S as the residual list
of the PSGS. In what follows, we often identify a PSGS (R, S) with its representation
(R™ S™).

With those definitions in mind, notice that, if we manage to build a n*-PSGS for
(G())™,, its residual list will be a generating set for H(2), which is exactly the aim
of Theorem 5.2.

Remark that we require the rows and columns of both R* and S* to be indexed over
the ordered domain. As a counterpart, we need to show how to order those indexing
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sets. While this will effectively be done in the following subsections, we provide an
intuition for this right now.

Since FP + ord witnesses the k-accessibility of H in I in the ordered setting,
¢c(p,5,t) provides an ordered enumeration X = (gi,...,g,») of a generating set
for the largest group G(2) in the sequence. To construct a n*-partially strong gener-
ating set for G(2() through the sequence (G;(2()), we will insert the elements of X' one
by one into an initially trivial n*-PSGS (i.e. where S and each list in R contain only
the identity permutation), so as to obtain, after A such insertions, a n*-PSGS for the
chain of subgroups:

(9155 90) NGo(R) > (g1, -, 90) NG1(RA) > ... (g1, -, 90) N Ge(A) (5.1)

The astute reader will remember that, in Algorithm 2, a saturation step (given on line
8) was needed to ensure that the SGS did in fact represent a group (in particular, that
the membership test defined by the sifting procedure was closed by composition). In a
similar way, to obtain an actual PSGS for the chain of subgroups of Eq. (5.1), we need
to apply a saturation procedure to the PSGS, that will be duly defined.

Since elements are added iteratively, in an order entirely dependent on the ordering
of X, we can order cosets of G;1(2) in G;(2() depending on the order in which elements
belonging to those cosets were found. In the same way, we can order the indexing of S
depending on the order in which those generators of H(2() were found. Using this fact
as an induction hypothesis, it is then clear that the saturation procedure can also be
conducted in an iterative, canonically ordered fashion.

Having defined the central data structure of our proof, we are now ready to delve
into the definition in FP + ord of the partial simulation of the Schreier-Sims framework.
Let us fix, for the rest of this chapter, the type T of tuples on which the groups defined
by G and H act.

The sifting procedure

Since the construction procedure make calls to the sifting procedure, it seems sensible
to start by defining the latter. In what follows, suppose that R and S are second-order
variables representing the current value of our n*-PSGS. We now define X LI { R}-FPC
formulae sift,es(Iy, 8, 1), Siftievel(I's, /7)) Which specify the result of the first n* steps of
the sifting procedure on the chain of subgroups represented by (R*, S*) on input o,
for any suitable structure 2.

Lemma 5.5. There are FPC-formulae sift,es(R, L', 3, f} and siftievel (R, Ty, [1) such that,
given a structure A € K, a transversal table R* over 2, and a permutation o €

Sym(AT):

e (2, R* graph(o),d) = siftieva iff @ encodes the integer i which is the row of the
SGS defined by R* reached during the computation of sift(c,0) as defined in
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Algorithm 1.1

o sift (A, R* graph(c)) is the graph of the permutation which is the value of the
input to the last recursive call to sift before the n*-th, on initial input (c,0).2

Proof. We first show that we can build a formula siftey. (R, R, fi, S, f) that defines the
trace of the value of the input permutation to the various recursives calls to sift in
the computation of sift(o,0). Precisely, if i is the integer encoded by @ and sift(7, ) is
called at some point in the computation of sift(c,0), siftev (A, R¥, o,@) = graph(r).

ji=0 Ao
Sittova(R. ) = 00,156 [(pe (7, X)IX(7,9)/(7. ) 5.2

where

and where by i — 1, we mean the tuple encoding the predecessor of the integer encoded
by /i (which is obviously definable in FPC). Recall that R is our given transversal table
and ¢ the conditional membership formula from Definition 5.1, that takes as input a
numerical tuple, and a relation encoding a permutation.

Let us explain this definition. We claim that this inflationary fixed-point definition
is such that, after k iterations, the relation to which © evaluates to the trace of k
recursive calls (starting from sift(o,0)) to the sift function as defined in Algorithm 1.
Recall that, by definition of the ifp operator, © initially evaluates to the empty relation,
and as such, after one iteration, it is easy to see that O evaluates to {0} x graph(o).
This models the fact that, before any recursive call to sift, the only call to sift in the
trace is (o, 0).

Let us now show the correctness of the recursive part of this fix-point definition,
starting with the definition of x. Notice that, if R(,i —1,j) = graph(7) and (2,7 —
1) = graph(p) — that is, if the transversal table contains the permutation 7 at position
(1—1,7) and, by induction hypothesis, the permutation resulting of i — 1 steps of sifting
is p — then, x(2(, R,0,1,7) = graph(p~'7). That is, x is precisely the composition
of the permutation defined by ©(ii — 1) with the inverse of the permutation defined
by R(ii — 1,7), as constructed in Lemma 2.11. Equation (5.2) effectively assigns the
permutation defined by y to ©(i), for the value of 7/ which encodes the unique j (if

1Said differently, 7 is equal to the minimum between n* and the number of recursive calls during
the evaluation of sift(c,0)

2That is, either the permutation output of Algorithm 1 if it rejects before the chain of pointwise
stabilisers, or the unique 7 such that sift(r,n*) is called during the evaluation of sift(c, 0)
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such a j exists) such that R(i —1,7) and ©(i — 1) belong to the same coset of G;(2() in
G;_1(20) (as checked using ¢c) which is precisely the operation conducted within the
else-clause on line 7 of Algorithm 1.

Now, if at the i-th recursive call ©(i — 1) does not belong to any coset defined by
R(2,i — 1), none of the two disjuncts in Eq. (5.2) hold, and ©(7) = ) holds for any
number of iterations of the formula within the ifp operator, and for any 7/ encoding an
integer j > 1.

From this stems the definition of siftieye:

E|§,{Slfteva1 R, R,, i, S, 3
V3, t, =sifteva (R, Ry, ji + 1, 5, 1)

Siftlevel(Ra Roa ﬁ) = Q%

From there, sift,qs is also easily definable, as sift,(2, R, graph(c)) should evaluate to
Sifteval (A, R, graph(c), i), where 7 is the minimum between n* and the number of itera-
tions after which the sift procedure halts, i.e., the unique integer in siftje.e (A, R, graph(o)):

Siftres(R, 0, 5, 1) := 3, siftiever (R, 0, fi) A sifteva (R, 0, 1, 5, 1) O

Now, suppose that (R,S) represent a d-PSGS (R,S), and ¢ € Sym(X). Going
through the first d recursive calls of sift(c,0) on R (notice that during the first d
recursive calls, Algorithm 1 only involves the first d rows of R), two outcomes can be
reached:

e cither at some recursive call (7;,7) with ¢ < d, there is no coset of G, ;1 in G; to
which 7; belongs, which implies that 7; ¢ GG, and thus o € G
e or we reach the d-th recursive call. Let us denote 7 the unique permutation such

that sift(7,d) is called. Then, 0 € G <= 7€ G4 < 7 € (9).

Using sift,es and siftive; together with the ord operator, it is therefore easy to build a
formula siftyeo (R, S, o) which holds on a n*-PSGS representation (R, S) of G iff o € G:

Sifthool (R, S, 0) := Siftieyel (0, 7" — 1) A (siftres(0, 5,1) € (S(5,8)))5 o

where we have used the membership quantifier introduced in Definition 3.4. We are
now ready to delve into the construction of the PSGS representation.

Construction of a PSGS

To ease the presentation, we divide the construction procedure into smaller parts. We
first show how to add a single permutation to a PSGS structure. In a second time,
we deal with saturation, and finally, we provide a formula for the whole construction,
which iterates the insertion formulae over the generating set of G(2) provided by ¢gq,
and then apply the saturation formulae.
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From sifting to insertion Before we define the insertion formulae, we direct the
reader’s attention to the fact that what motivates the existence of a saturation mecha-
nism is that, after a single insertion of a permutation ¢ in a (partial) strong generating
set, the resulting structure is not necessarily a SGS anymore. As such, a definition is
necessary to state precisely the post-conditions of our insertion procedure.

Definition 5.6. (Assumptions of Definition 5.3) A d-PSGS prototype for G < Sym(X)
through (G;)", is a couple (R,S) such that:

e R is a list of length d of lists of permutations. Each of those inner list contain at
most | X |¥ permutations.

e S is a list of permutations.
e The set of permutations contained in (R, S) generates G.

e For each i < d, the set of permutations in R(7) is a subset of G;, and each of
those permutation belong to a different coset of GG;11 in G;. S is a subset of G.

That is, PSGS prototypes differ from PSGS in that we only expect R(i) to be a
subset of a transversal of the cosets of G;,; in G;. In this context, the additional
condition that | JRUS generates G is necessary to maintain a correspondence between
PSGS prototypes and the groups they define.

We are now ready to introduce the insertion formulae ins, which assume (R¥, S%)
to be a PSGS prototype, and evaluate to a larger PSGS prototype:

Lemma 5.7. There is a FPC-formula insiape( R, Ry, fi, U, 5’,5 and a FP + ord-formula
insjigt (R, S, Ry, N, §,1) such that, given a Y-structure A, a subgroup K(A) < G(), a
permutation o € G() and a PSGS prototype (R*, S™) for K() through

K(2) > K@) NG () > - > K(A) N G (2A)

The relations R’ = insgpe (™A, R¥, graph(o)) and S’ = insj (A, R*, S¥, graph(o)) form
a PSGS prototype for (K(2A),0) through the chain of subgroup

(K®@),0) = (K(®2),0) N G1(2A) > -+ = (K(A), 0) N G (A)

Proof. We first depict the expected behaviour of ins. Consider 7 the result of the
partial sifting of o, that is 7 := perm(sift,es(2A, R*, graph(c))) and i the unique index
of R* such that (A, R*, graph(c),i) & siftieyel.

e If i = nF — 1, then 7 should be added to S. To make sure that S always contains
less than n?/7| elements, we only add o to S if 7 & (S(),5,%));(24) (this can be
tested using the ord operator).
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e Otherwise, 7 is not represented in the partial transversal R(i 4+ 1). Therefore, 7
must be added to R(i+1, j), where j is the minimal value for which R(2,i+1, j) =
0.

We now give the definitions of insipe and insjs, where the index ¢ is encoded by the
tuple /i, and j by the tuple :

)
R(ﬂ? ﬁ? t§»7 E}
(Siftievel(R, 0, fi) A i # nF — 1
o, )

instable(R7 o, W, l/,S,{) = -

(VX < X,38,7,S(N, 5, 7)
(S(X,s,t)

Vs 1, =S\, s, 1)
© | siftievel (R, 0, nF — 1)
T(s) =t
L LT € (9)5er

where 7 and p~'7 are the permutations defined by

inslist<R7 57 g, X? §7 E) =0

R.(5,1) := sift,es(T, 0, 5, 1)

The last clause of insys ensures that the group (S”) is strictly larger than (S), there-
fore by a multiplicative factor. As such, since [H(2)| < |AT|!, only |AT|log(|AT|) in-
sertions into S can effectively take place throughout the construction procedure (which
ensures that tuples of arity 2|T'| are large enough to represent indices of any S). [

Remark that the ordering of the cosets has been used here to choose an indexing
for the potential new element to insert within K.

Iterating insertions over the whole generating set defined by ¢g, we obtain:

Corollary 5.8. There is a couple of FP + ord formulae proto,,.,.(R, S, fi, U, §,f) and

k

protoy. (R, S, ji, 7, 5,t) which define a PSGS prototype for G(2) through (G;(20))™,.

Proof. Suppose that we have already added a subset X of the permutations defined by
©g, and suppose additionally that I* is a numerical second-order relation containing
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exactly those indices ¢ for which we have already inserted perm(pg(2,7)). In this
context, the index of the next permutation to be inserted can be defined in FPC, and
the updated value of I too:

step; (R, S, 1,p) :=Vq < p,1(q)

With step,,, defined, we can easily define formulae to update (R, S) accordingly:
(R'(ji,7,5,1)
v, 8 R (i, 7, 1)

5 _'](ﬁ) N Stepznd(R/ S/ _j

Ds
\ lnstable(R S R0'7 ,ua 1?)
(S'(X,5,1)
Ve 7, S\, 7,7
I5. _'](]7) /\Stepind(Rlﬂsla]?@
D; -
insj (R, S, Ry, A, 5, 1)

Steptable(R/7 S/J Ia /_ja ﬁ, g, 7?) =

Steplist(R/7 Sla ]7 X, g, 75) =

\

where the formula ins?,, . (resp. insj,) is the formula insgpe (resp. insyg) where each
occurrence of R, (¥, %) has been substitued by pg(p, &, y). Those step formulae merely
iterate the insertion formulae defined in the last lemma over all permutations defined
by pg. It is only left to consider the simultaneous fixed-point of those three formulae,
however, we must ensure that the initial values of the fixed-point second-order variables
are correctly set:

—

prOtotable(R7 S’ ﬂ7 ﬁ7 S, ﬂ = (S_ifpgﬁ*{R/;)_\’gﬁsl;ﬁ‘]Step;able; Step;ist; Stepind)
prOtolist(R7 S7 /\7 §7 E} = (S_ipr§{S’;ﬁﬁ§fR’;ﬁIStep;ist; Step:ﬁable; Stepind)
Indeed, by definition of the s-ifp operator, all second-order variables are intiated to the
empty relations, while we expect the iteration of the step-formulae to apply initially

on the relations R, S given as input to the formulae proto,,;,., proto;,. This motivates
the following definition of the formulae step’:

vp, ~1(p) A R(fi, 7, 5,1)
Stepmble(R, S’ I ﬁv 17’ §" {)

vp, =1 (p) A S(ji, 7, 5,¢)
stepl; (R, S', I, ji, 7,5, 1)

stepiupe (R, S, R, S', I, ji, 7,5, 1) := (%

stepl; (R, S, R, S, I, i, 7, 5,1) := (%
[

Saturating a PSGS We have now defined almost all the parts of the construction
procedure. We now show how to turn a PSGS prototype for some group K(2l) into
a PSGS for 2. Remark that, the only difference between the two notions is that if
(R, S) is a PSGS for some chain of subgroups (K;(2l)), the i-th row of R constitutes a
transversal of K; 1 (%) in K;(2() (see Definitions 5.3 and 5.6).
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Lemma 5.9. There is a couple of (FP + ord)[X] formulae satiape(R, S, i, §,f§ and
satyg (R, S, \, 5, 1) such that, given a structure 2 and a PSGS prototype (R*,S%) for
some group K(), R := satgpe(A) and S = satj(A) form a PSGS for the same

group.

Proof. Following Algorithm 2, we consider all products of the form o7 with o,7 €
UR US, and insert them (as defined by the ins formulae) into the PSGS prototype
defined by (R, S), until saturation (and thus a fixed-point) is reached.

It is vital not to insert simultaneously two such products, as inserting two different
permutations at the same index would break the very structure of PSGS prototypes®.
This is where the ordering on the indexings of R and S show most important, as they
enable the definition of an ordered enumeration of products of couples of elements
appearing in (R,S), and we first exhibit this enumeration. In the remainder of this

proof, we use tuples of the form 77 = (b, fis, Vn, \) to represent the variables indexing
the following enumeration:

enum(R, S, m, 7, 5,t) == 3, ¢

C\%bn =0A R(Hnaﬁmﬁaa
( (

Using the same method as in Corollary 5.8, we can use this enumeration to keep track
of all pairs of elements whose product has already been inserted in (R, .S) in a second-
order relation I. After one step, here is how I should be updated:

Bij(X)[X(Z, §)/enum(R, S, m, 7, T, )]
step (R, S, I,m, 1) = I(m/, 7
Pinal )= Qv < i, T )
—Bij(enum(R, S, m’, 7’))

where Bij(X) is a formula which holds iff X is a 2k-ary relation which is the graph
of a bijection. With this upkeeping of the set of indices defined, an iteration of the
saturation process can be defined as follows:

Stepzsf(aJZle(Ra Sa I? ﬁ; 77, §, E} =
ind

3 72 —I(m, ) A stepy (R, S, I, m, 1)
n?
insrable(Ra RU’ /j’ ﬁ? §: f)

3This would lead inserting the union of the graphs of the two permutations, which is not the graph
of a permutation
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step™ (R, S, 1, X, 5,1) :=
%ﬁ( ,77) A stept (R, S, 1,1, i)

IHSTlSt(R, 57 R07 /'_[7 ﬁ) §7 E)

where, here, insf,; . (resp. insj) is the formula insipe (resp. inspg), where each
occurence of R, (Z,7) is substituted by enum(R, S, m, 7). Notice that only one permu-
tation is added per iteration of

(R, S, I) > (step;gpe (2, R, S, I),step; (R, S, I),step,,4(R, S, 1))

To obtain a completely saturated couple (R, .S), it is only left to consider the least
fix-point of this iteration. This is once again an application of the simultaneous fixed-
point operator, where special care is taken with regards to initial values:

. : . sat sat sat
Sattable(12,.5) 1= (81D ;a7 5575.m 7.1 5TEPIabie s StEPTist; StePing)
P 3 sat
satjis (R, S) := (S‘lfpigfs;ﬁﬁﬂz, stepllst, step;ay,.; stepiay)

Once again, in those expressions, the formulae step;3;,. and step;?, should be substituted
by formulae taking into account the case where I = () (to detect the initial situtation),
where they should evaluate respectively to the values of R and S given as input to
satiaple and satyg. This is done exactly as in the proof of Corollary 5.8. Note that,
to avoid the variable capture of R and .S, those variables should be substituted in the
definition of the step*®* formulae, so that the s-ifp operator does not bind them.

It is only left to show that, if (R, S) is a PSGS prototype,
(R, S") := (satane(2A, R, S), satyst (A, R, S))

constitutes a PSGS for the same group. That is, for any i < n*, we must show that
R'(i) defines a transversal of the cosets of G;1(21) in G; ().

The following argument is a direct adaptation of [FHL80, Theorem 1]. Notice that
(R',S") is a PSGS if any element g € K(2() can be written as a product mrg...7%_s
with 7; € R'(i) and s € S’. Indeed, in such a case, if ¢ € G; and g & G4, it must hold
that 1y =7y = .-+ = r;_; = Id (as those are the initially set unique representatives in
R’ of the coset IdG ;1 in G,), and thus, r; is a representative of the coset ¢gG; 1.

Now, consider g € K(2), and let us show that g can be written as such a product.
Because K(2() = (UR' U S’), let s;...s, be a decomposition of g in elements of
UR US’. Define the index of such an element =z € JR U S’, denoted i(z), as
the unique i such that * € R/(i) if such an i exists, or i(z) = n* if x € §'. Let
y be an element of minimal index whose predecessor = in the sequence sq,...,s,, is
such that i(x) > i(y). Because x and y both belong to |J R U S’, their product has
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been inserted in the table, and therefore their product admit a decomposition of the
form riry...r,_ys with r; € R'(i) and s € S’. Moreover, since zy € G, for all
j <i(y), r; = Id. Therefore, rewriting xy as riy)41...7pk_1 in 81.. ., sy, yields another
decomposition of g. This process can be iterated until no such y can be found, at which
point the sequence is such that, for any p < v, i(s,) < i(s,), i.e. we have found an
adequate decomposition of g. O

Conclusion

We now conclude our proof that H(2() admits an FP + ord definable generating set:

Proof of Theorem 5.2. The proto formulae already define a PSGS prototype for G(2l)
through (Gl(Ql))f:ko Applying the sat formulae then yields an actual PSGS for this
chain of subgroup, and the residual list constitutes a generating set for H():

H (X, 5, f) := satyge (R, S)[R/protog, e, S/ protoy] O

While our proof is now complete, there is a final remark to be made: we have used
the ord operator very scarcely. Indeed, the ord operator has only been used in insj to
ensure that we are not adding “superfluous” elements to S. This ensured that the size
of S could not reach log,(Sym(AT)) < |A|IT|log(|A|IT]) < |A[HT!.

We will now show that, when Gy is abelian, we can enforce a polynomial bound on
the size of S in another way, without using the ord operator at all.

Corollary 5.10. Let ¥ be a signature, K C STRUCIX] and suppose that H is a
function, mapping any structure A € K to a group H(A) < Sym(AT) for some fized
type T'.

If FPC witnesses the k-accessibility of H in IC in the ordered setting, and for any
A € IC, the largest group G(2L) in the chain of subgroups witnessing the accessibility of
H(2) is abelian, there is a formula pu € FPC[X] defining a generating set for H(2L)
for any A € K.

Sketch of proof. The fact that all the groups in the chain are abelian has a radical
implication on the saturation procedure: we do not need to consider products of per-
mutations of the form o7 where either o or 7 belong to S.

To illustrate this, consider a PSGS prototype for a chain of abelian subgroups
Gy > -+ > G, two integers i@ < 7 < m, and let us review the argument used in
Lemma 5.9 to show that (R, S’") was a PSGS. Here, given g € GG1, we can once again
write g as s; ..., where s; € R'US’ but here, the commutativity of the groups enable
us to directly sort this sequence into an index-increasing one, i.e. a sequence s} ...s,

such that for all A < p, i(s)) < i(s),) (where i(x) is the index of z, as defined in the
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proof of Lemma 5.9). As such, it is only needed, in order to turn &) ... s/ into a strictly
index-increasing decomposition of g, to sift all products of pairs of elements z, y which
belong to the same row R(i), for each i.

This implies that, in the sat procedure, we can actually reduce the indexing tuples
to be of the form m = (i, V) (that is, to track positions within R) and change the
enumeration accordingly. This in turn implies that the total number of insertions into
(R,S) is bounded by the size of our generating set for G(2) — which is bounded by
| APl — and the number of products of elements from the transversal table — which
is bounded by |A[2IA+I7) = | 4|4,

In this context, no further filtering of the permutations added to S is necessary
to enforce a polynomial bound on S. As such, in the restricted setting where G(2l)
is abelian, we can change the size of X used in the relation variable S from 2|T| to
4k, and simply remove the clause of insj; used to ensure that we only insert elements
which actually increase the group generated by S. All other formulae in the proof
of Theorem 5.2 must be changed accordingly to reflect the changed length of A, but
otherwise remain the same, and yield the desired result. O]

5.3 Coloured Graph Automorphisms

In Chapter 4, we have shown that FP 4 ord is able to canonise structures with Abelian
colours. Such structures have recently played an important role in the quest of a logic
for P, as the class of structures shown to separate FP + rk from CPT (and P) in |Lic23]
are known to have Abelian colours.

Recall that a structure 2 has abelian colours if it is equipped with a total pre-order
<% and relation ®* such that, for each i, ®(2l,4) defines some transitive, abelian (and
ordered) group I'; acting on the i-th colour class of 20 (where the colour classes are
defined by <*). Recall also that we have shown in Lemma 4.20 that in such a case,
FPC can refine < and redefine ® accordingly so that, for each 7, I'; = Aut(;).

We will now see that, under this condition that for each ¢, I'; = Aut(;), we can re-
lax most of the group-theoretic assumptions on the groups defined by ®(2, ), and still
define the automorphism group of 2 within FP 4 ord. Precisely, we will show that, if for
all 7, |Aut(2(;)| < |A|* for some fixed k, and ®(2,4) generates Aut(2;), FP+ord defines
the automorphism group of 2. Note that we no longer require the groups to be abelian,
transitive, or even fully enumerated by ®, but merely that ® provides an ordered gen-
erating set for those groups (and that their sizes remain polynomially bounded by | A|).
Even more so, when the groups Aut(2;) are abelian, Corollary 5.10 applies, and we
can define a generating set for Aut(2() in FPC. This should be contrasted with the fact
that the class of structures considered contains the CFl-structures from [Lic23|, which
separate FP + rk from P: in this specific context, a strong distinction seems to exist
between the Automorphism problem (which we will thus show to be FPC definable),
and the Canonisation problem (which cannot be defined in FP + rk, by [Lic23]).
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This is due, at least in part, to the fact that the ordering of the groups Aut(2l;) pro-
vided by ® imply that the classes of structures under consideration are not union-closed,
which implies that we cannot easily obtain an isomorphism test from the definability
of the automorphism groups of the structure through Proposition 1.73. Whether the
Isomorphism problem for such structures is definable in FP + ord in the general case
remains, to our knowledge, open.

A generalisation of bounded colour-classes

In order to introduce our generalisation, we review the group-theoretic framework to the
automorphism of coloured graphs, introduced in [Bab79]. We have already presented
this idea in Section 1.2.

Let 2 be a graph over a set A with n vertices equipped with a total pre-order <*
defining a colouring ¢ : A — [m], we denote 2l; the subgraph of 2 induced by ¢~!(i)
for any i € ¢(A). Aut.(2) is the group of colour preserving automorphisms of 2. Let
7 = ([7;]), and fix a linear-ordering of Z. We denote s, the A-th element of [ with
regards to this ordering. For any s = {i,j} € Z, we denote 2 the subgraph of

induced by ¢71(i) Uc7'(j). We can define the following tower of subgroups:
Gy:=(o€ H Aut(R,)|Ve < A, 014, € Aut (Us,) (5.3)

By definition, for A\,x < (’;), if A < k then G, < G). We aim to delimit under
which hypothesis this chain of subgroups witnesses the accessibility of Aut,.(2(). Notice

that Gymy = Aut.(), and that conditional membership for G i1 in G, is clearly
P-decidable. Thus, we are left with two conditions to fulfil:

(1) A generating set for Gy = [] Aut(2(;) can be computed in polynomial time.

1€[m]

(2) There is a constant ¢ such that VA < (7), |Gy : Gay| < 0

Fulfilling those conditions depends on the restrictions we set on the colour-classes.

We now introduce a quite general class of coloured graphs that fulfils (2): Poly-
nomially bounded colour-class graphs. We say that 2 is a k-Polynomially Bounded
Colour-class graph (denoted 21 € PBCGy,) if 2 is a graph equipped with a colouring
such that, for every colour i of 2, [Aut(21;)| < nk.

Lemma 5.11. If A € PBCGy, then for all X < ('), |Gy : Gyy1| < n?*.

Proof. For all A, let 4, j such that ¢ < j and {7, j} = sx. mA(0) := (014,,014,) defines a

morphism 7y : Go — Aut(2;) X Aut(2;). For A < () and 0,7 € G, if ma(0) = mA(7),

then 0Gy1 = 7Gy41. Indeed, we then have :
(o7 '7) 4, = 1€ Aut (s, )

— 142 —



Subgroup Computation

Therefore,

|G s Gona| < [Im(my)|
< [Aut(2;)] - [Aut(2;)]

< nbopk = p2k ]

In order to fulfil (1), we additionally require a generating set for Aut(2(;) to be
explicitly given, for each i. However, as was the case for structures with Abelian
colours, we require this enumeration to be indexed on the numerical domain. We
obtain the following definition:

Definition 5.12. An instance of PBCGj is a coloured graph A = (A, B* <% &%)
such that (4, E*, <¥) € PBCGy, and ® is a relation of type number®* ! - element? such
that for every i, Aut(2(;) = (®)zA, ).

Remark that we have assumed the generating set for Aut(2l;) to be given by a
k + 3-ary relation. In the context where |[Aut(2l;)| < n*, and ® is indexed over the
numerical domain, this can be enforced by a simple trick:

Remark 5.13. For k; < ky, consider PBCGy, ;, be the class of coloured graphs
2A = (A, E* =¥ d¥) such that (A, E¥, <%) € PBCGy,, and ® is a relation of type
number®> ™ element® such that for every i, Aut(2;) = (®)5(A,4). There is an FPC-
interpretation from PBCGy, ;, to PBCG,.

Proof. We first define a formula that holds on 4, 7 if (i, ¥) is the graph of a permutation
distinct from all permutations defined by ®(i,¥), for ¢ < 7

new(u, p) == V7 < P, 3s,t, ®(p, P, 5, ) A =P (1, G, 5, 1)

We are now able to define a reindexing ®’ of ®, which is indexed over tuples of k; + 1
numerical variables instead of ks + 1, that contains each permutation at most once:

new(z, p)
(1, T, 5,) = I, O (#, (¢ < P Anew(p, 7)) = &
O(p, 7, s, 1)
Because |(®);(2,4)| < n*' for all 4, and the permutations enumerated by ®' are pairwise

distinct, all permutations defined by ® must occur in ®'. (Note that if ® contained
v < n® permutations, ®'(A, v + ¢) is empty for all c.) ]

Theorem 5.14. FP + ord defines the automorphism group of PBCGy structures.
Proof. This is a direct application of Theorem 5.2, and it is only left to provide def-

initions for pg, where G() = []
subgroups defined in Eq. (5.3).

Aut(2(;); and ¢ according to the chain of

1€[m]
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Suppose that (S;)icm is a family of sets of permutation sets such that S; generates
Aut(2;) for all ¢ € [m]. Then, [[;c; Aut(2;) = (Uicp Si)- As such, under the
hypothesis of PBCGj;, we can define pg(u, p, s,t) := ®(u, D, s,t), and it is easy to see
that (pa),s(%A) = G(2).

We now provide a definition for ¢¢ in accordance with Eq. (5.3). First, we set a
fixed linear-ordering of Z which is definable in FP, with Z encoded over (A<)%:

1 < v A g < v

((/,Ll,V1> < (M27V2)> = 1 < g
p1 = p2 AN vy < 1y

We are now ready to give the definition of p:

R(z,2") N R(y,y')

oe(p, v, R) ==Vr,y,(r € A, Ny € A) = 32’y
“l ) ( ' ) E(z,y) < E(.y)

If R™ is the graph of a permutation o € G, and sy = {4, j} where i < j, (4,5, R*) =
e iff o respects the edge relation on 2, ;. Assuch, o € Aut (2, ;), which is the expected
condition. This concludes the proof as we can now apply Theorem 5.2 on the chain of
subgroups defined by (¢q, ¢e), which yields a generating set for H(2() = Aut.(A). O

Interestingly, if we were to reinstate the commutativity condition, and assume all
the Aut(2l;) to be abelian groups, we can use Corollary 5.10 instead of Theorem 5.2:

Corollary 5.15. FPC can define a generating set for the automorphism group of all
structures in PBCGy such that each colour class has an abelian group of automor-
phisms.

This last result should be contrasted with Lichter’s breakthrough [Lic23| FP +rk <
P. Indeed, the structures shown by Lichter to be indistinguishable in FP + rk (which
is strictly more expressive than FPC) are coloured in such a way that each colour class
has a polynomially bounded, abelian, ordered automorphism group. As such, while
FP + rk cannot distinguish those structures, Corollary 5.15 applies, and FPC can define
their automorphism groups.

While there is generally a polynomial-time reduction from the Graph Isomorphism
problem over C to the Graph Automorphism problem over C, this requires the class
of graphs C at hand to be union-closed. In the current context, this is not the case.
Indeed, proving that the class of “Abelian” PBCG,< is union-closed would entail, given
two such structures 2, 8, to build, within the logic at hand, an ordered enumeration of
the automorphisms of the subgraph induced by A; U B;, for each i. It is a corollary of
Lichter’s result and Corollary 5.15 that this cannot be done in neither FPC nor FP +-rk.
As a final digression, note that this type of arguments — where fixed-point logics are
unable to handle all potential swaps between two colour-classes — is already present
in Section 3.2, where we showed that FP + ord is unable to define some accessible
subgroups in the unordered context.
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In this PhD dissertation, we have introduced ord, an operator which enables the defi-
nition of the order of a group generated by a definable set of permutations. We showed
that this operator is a generalisation of rk, the rank operator (Section 3.4) and that
FP + ord is strictly more expressive than FP + rk (Chapter 4). More precisely, we have
shown FP + ord to capture polynomial-time computation over the class of structures
which was shown to separate FP + rk from P. As such, FP + ord constitutes a new
candidate logic for P.

This capture result relies on the definition within FP + ord of the canonisation al-
gorithm defined by Babai and Luks in [BL83]. The definition of the ord operator was
motivated precisely by algorithms of this kind, which pervasively represent permuta-
tion groups by generating sets of permutations, harnessing the polynomial-time oper-
ations enabled by the Schreier-Sims algorithm. However, actually implementing such
an algorithm in an isomorphism-invariant context has led us to consider different rep-
resentations, as isomorphism-invariance hinders the definability of certain subgroups,
as showcased in Section 3.2. More precisely, we have shown in this section that the
definition of a generating set for an accessible subgroup H of a group G provided by
a generating set — another fundamental application of the Schreier-Sims algorithm —
is in general incompatible with isomorphism-invariance.

This led us to study restricted cases in which this issue can be circumvented. First,
we have considered the situation where H is a morphism-definable subgroup of G and
a morphism can be defined on GG which cancels itself exactly on elements on H. In
such a case, we have shown in Section 3.3 that, together with the generating set of G,
this morphism itself constitutes a satisfying representation of H, in the sense that the
primitive operations on groups enabled by the ord operator (as studied in Section 3.1)
can be transferred to this new representation in FP + ord. This result is central to the
canonisation of structures with abelian colours presented in Chapter 4. In Chapter 5,
we considered another restricted case: when the generating set for G is ordered. We
showed that in such circumstances, a generating set for any accessible subgroup of H
is definable. We did so by defining a partial simulation of the Schreier-Sims algorithm.

Interestingly, the results of both Chapters 4 and 5 shared a common feature: the
additional assumptions at hand enabled the representation of cosets. Handling cosets
is quite important in the group-theoretic algorithms for Graph Isomorphism, and even
more so in the context of Graph Canonisation. Yet, the representation of cosets used
in such an algorithmic context is not isomorphism-invariant.
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Ultimately, our results spotlight the deep connection between the quest of a logic
for P and the computational study of permutation groups. First, Corollary 4.36 implies
that FP + rk is unable to define the order of a group provided by a generating set of
permutations. Moreover, the inability to represent certain groups by generating sets
of permutations showcased in Section 3.2 could be a first step towards actual inex-
pressibility results in CPT or FP + ord. Finally, our results show that the expressivity
of isomorphism-invariant models of computation can benefit from additional group-
theoretic primitives.

This last assertion is the original motivation for our work. In order to confirm this
work hypothesis, we set out to consider a minimal set of group-theoretic operations
which would effectively increase the expressive power of fixed-point logic. As such,
many other group primitives have yet to be studied in a logical context. In particular,
one way to circumvent the limitations exhibited in Section 3.2 would be to introduce
a group sort, not unlike the numerical sort which was needed to define FPC. In such
a case, strong restrictions on the quantification of group variables would have to be
enforced to maintain polynomial-time model-checking for the resulting logic. Finding
such syntactic restrictions which also provide sufficient expressive power to capture a
robust set of group-theoretic operations could constitute a challenge in and of itself.

Another further direction of research would be to extend the study of FP+ord. First,
one could wonder whether FP + ord captures P. While we do not believe this to be
the case, obtaining a separation result will necessarily rely on the introduction of new
techniques. Indeed, we have shown in Chapter 4 that FP+ord captures all structures on
which abelian colours can be defined, which encompasses all known generalisations of
the CFI-construction, over ordered graphs. Although we have not shown this precisely,
it is to be expected that, over unordered graphs, FP + ord expresses the generalised
CFI-query. Indeed, this query has been shown to encode the satisfiability of a system
of equations over rings, and as noted in Remark 3.23, this problem is definable in
FP + ord. Hence, it seems that CFI-structures might not be the right framework to
obtain inexpressibility results for FP + ord. Instead, it might be interesting to try to
obtain generalisations of multipedes [GS96|. Like CFI-structures, this class of structures
have been shown to separate FPC from P. Additionally, multipedes are rigids, i.e., they
have no non-trivial automorphisms. Having shown that FP 4 ord is able to leverage
the automorphisms of the structure at hand, the rigidity of multipedes might reduce
its utility.

Finally, in the face of the unfitness of the representation of groups by generating
sets of permutations (in the isomorphism-invariance context), we have already argued
that finding new isomorphism-invariant representations of permutations groups is an
interesting problem to tackle, as it may provide capture results for FP + ord on addi-
tional classes of structures. To make this assertion precise, recall that our canonisation
result in Chapter 4 relies on the simulation of the canonisation procedure from [BL83|
(see Algorithm 3). In the same article, the authors also introduced a notion of composi-
tion width of a group. This is a metric of the structural complexity of the group which
parameterizes the time-complexity of the canonisation algorithm mentionned. That
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is, if one can produce a labeling coset of a group of bounded-composition width on
which to initiate the canonisation procedure, this procedure runs in polynomial-time.
Still in [BL83|, it is shown how this fact enables the polynomial-time canonisation of
graphs of bounded colour-class size, and also of graphs of bounded degree. Finding
satisfactory representations of groups of bounded composition-width in FP + ord thus
constitutes a first step towards capture results over those important classes of graphs.
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