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Université Paris-Cité
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20th century: computation models

Emergence of various equivalent computation models:

▶ Recursive functions

▶ Turing Machines

▶ λ-calculus
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With various notions of resources:

▶ Time
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Descriptive Complexity

▶ Machine-free models of computation over
structures: logics

▶ Capture results

▶ Example: Fagin theorem NP = SO∃

▶ Logic for P ?
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The Immerman-Vardi theorem

Over ordered structures, FO + lfp = P.

▶ Allows recursion.

▶ lfp: least fixed point. Given φ(X , x⃗),

(lfpX ,x⃗φ)(A) = φA(φA(. . . φA︸ ︷︷ ︸
until fixpoint reached

(∅) . . . ))

▶ With ≤, arithmetic and definition of encoding ⇝ simulation of poly-time TM.
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Back and forth

▶ Over unordered structures, FP does not express Even.

▶ Counting extension of FP: FPC.
▶ Formulas evaluated over A+ ({0, 1, . . . , |A|},≤)
▶ Add counting terms : (#x .φ(x)) > (#y .ψ(y))
▶ All P-arithmetic operations are definable (Immerman-Vardi theorem).

▶ Cai-Fürer-Immerman (CFI): FPC < P.



Back and forth

▶ [Daw08]: The CFI query reduces to the satisfiability of systems of equations over a field.

⇝ FP + rk : extend FP with a linear-algebraic operator.

▶ If φM(x⃗ , y⃗ , λ) defines a matrix M over A:

MA :=



b⃗

φA
M(a⃗, b⃗) a⃗


(rkx⃗,y⃗φM .p)(A) = rankFp (M).

▶ Lichter ’21: FP + rk < P using a generalization of the CFI-construction.
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Link to Graph Isomorphism and Canonisation

Graph Isomorphism (GI)

Input: G,H two graphs
Question: Whether G ≃ H

▶ CFI structures are hard instances of Graph Isomorphism: [Tor04]

▶ Over restricted classes of unordered structures:
▶ FP + C = P for bounded tree-width [GM99]
▶ FP + C = P when excluded minor [Gro17].
▶ Canonisation : if L ≥ FP canonizes C, L captures P on C.

Definition
A canonisation function: f (G) ≃ G and if G ≃ H, f (G) = f (H).
In a logic: an interpretation I : C → C< s.t. I(A)(w.o. ≤) ≃ A.



A bit of (permutation) group theory

▶ Group axioms: binary operation,
▶ associative
▶ neutral
▶ inverses

▶ Sym(D) := {f : D → D bijections } with composition.

▶ (Finite) Permutation group: G ≤ Sym(D) for some (finite) D.

▶ Cayley theorem: any group is isomorphic to a permutation group.

▶ For S ⊆ G , ⟨S⟩ ≤ G smallest subgroup of G containing S .



The role of permutation groups in Graph Isomorphism

Graph Automorphism problem (GAC)

Input: G ∈ C

Output: S ⊆ Sym(VG) s.t. ⟨S⟩ = Aut(G) := {σ ∈ Sym(VG) | Eσ
G = EG}

▶ If C union-closed, GIC ≤P GAC

▶ Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

Perm. Group Membership Problem

Input: S ⊆ Sym(D) and σ ∈ Sym(D)
Question: Does σ ∈ ⟨S⟩ ?

≤T
L

Perm. Group Order Problem

Input: S ⊆ Sym(D)
Output: |⟨S⟩|

Both are in P: Schreier-Sims algorithm.
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The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups

G = H0 ≥ H1 ≥ · · · ≥ Hk = 1

For each i < k, build a transversal Ti of Hi+1 in Hi . (Ti ) is a Strong Generating Set.
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A transversal of H in G is a set of coset representaives.
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▶ For poly-time, we need k < p(|D|), and ∀i , |Hi : Hi+1| < p(|D|).
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Contributions

▶ Study representations of permutation groups in extensions of FO.
▶ Unordered sets of generators
▶ Ordered sets of generators
▶ Abelian groups

▶ Study of the expressive power of the operation ord : S 7→ |⟨S⟩| as an extension of FP.
▶ FP + ord > FP + rk



Outline

First approach: definable generating sets

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk

Definable ordered sets of permutations
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Definable sets of permutations

Definition
φ(s⃗, t⃗) (with type(s⃗) = type(t⃗) = T ) defines σ ∈ Sym(AT ) if

∀b⃗, c⃗ ∈ AT , σ(b⃗) = c⃗ ⇐⇒ (A, b⃗, c⃗) |= φ

▶ graph(σ) = φ(A)

▶ σ = perm(φ(A))

Definition
A formula φ(p⃗, s⃗, t⃗) defines S ⊆ Sym(AT ) binding p⃗ if

{perm(φ(A, a⃗)) | a⃗ ∈ Ap⃗} = S .



Low-hanging fruits

▶ FO + tc defines orbits.

▶ If G and H are L-definable, with L ≥ FO, ⟨G ∪ H⟩ is L-definable.

▶ Corollary: Membership ≤T
FO Group Order.

▶ Turing FO reduction: Add an operator ord

Definition
(ordp⃗.⃗s .⃗t φ) is a numerical predicate (of arity 2 · |s⃗|) encoding |⟨S⟩|.
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Outline of the proof

▶ If φM(x⃗ , y⃗ , λ) defines a matrix,

M : FAx⃗

p → FAy⃗

p

(rkx⃗,y⃗φM .p) = dim(Im(M))

= logp |Im(M)|

where Im(M) ≤ FAy⃗

p additive group.

▶ logp is definable (Immerman-Vardi theorem)

▶ New goals:

1. permutation representation of FAy⃗

p

2. define a generating set for Im(M) ≤ FAy⃗

p .



Subgoal 1: Permutation representation of FAy⃗

p .

▶ For p ∈ N∗,

reprp : Fp → Sp

k 7→ (i 7→ i + k mod p)

is FPC-definable.

▶ For T1,T2,

ιT1,T2 : Sym(AT2)A
T1 → Sym(AT1 × AT2)

(ga⃗)a⃗∈AT1 7→ ((a⃗, b⃗) 7→ (a⃗, (ga⃗(b⃗))))

is FPC-definable.

▶ Conclusion: ιy⃗ ,µ ◦ (reprA
y⃗

p ) : FAy⃗

p ↪→ Sym(Ay⃗ × A<) is FPC-definable.

Spoiler



Subgoal 2: Generating set for ImFp
(M)

▶ ((Fp)
Ax⃗

,+) generated by the set B all scalar products of unit vectors.

⇝ ImFp (M) is generated by {M · b | b ∈ B}.
▶ Given φM ,

Ax⃗ × Fp → Sym(Ay⃗ × A<)

(a⃗, λ) 7→ ιy⃗ ,µ ◦ (reprA
y⃗

p )(M · (λ · êa⃗))

FPC-definable.

Remark
Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.
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Preliminaries

▶ Lichter ’21: FP + rk < P

▶ Last remark: decision problem separation

▶ The separating query is defined on a class of structures with Abelian Colours.

▶ We show FP+ ord canonises (and thus captures P on) structures with Abelian Colours, ⇝
FP + rk < FP + ord.



Structures with Abelian Colours

▶ Structure A ordered partition
A1 ⪯ A2 ⪯ · · · ⪯ Am

▶ For each i ≤ m, abelian group Γi acting transitively on Ai

⇝ |Γi | = |Ai |: for all a ∈ Ai , γ 7→ γ(a) bijection.

▶ For each i , A equipped with an enumeration (γ ij )j<|Ai | of Γi .

⇝ O(Ai ) (unordered) family of |Ai | definable orderings of Ai .

▶ O(A) :=
∏m

i=1O(Ai ).
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Archetypal abelian colours structures: CFI

va

b

c

Gadget(v)

vf

vg

vCFI

a0

a1

a2

a3a4

a5

a6

(v, a)CFI

b0

b1

b2

b3b4

b5

b6

(v, b)CFI

c0

c1

c2

c3c4

c5

c6

(v, c)CFI

Gadget(a)

v0

v1

v2

v3v4

v5

v6

(a, v)CFI
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The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A,E ,≺,Φ) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

C := O(A);
for (i , j) ∈ [m]2 do

find E<
i,j , the smallest lexicographical encoding of E on Ai ∪ Aj compatible with C;

C ← {σ ∈ C, enc(E , σ)↾Ai×Aj = E<
i,j};

return E< :=
⋃

i,j E
<
i,j

(same algorithm as [Pak15, chapter 6])
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Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of accessible subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group
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Aparté : Definable generating sets are limited

An := Kn,n and Gn := Aut(An)

Worse, we can find a (sequence of) structure A s.t.:

▶ A group G(A) is (FP-)definable from A

▶ A subgroup H(A) is accessible from G(A)

▶ FP defines a witness of the accessibility of H(A) in G(A).

▶ Any symmetric generating set of H(A) has exponential size.
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Morphism-definability

Definition
R a relation symbol of arity 2k.

φm(R, x⃗ , y⃗) defines a morphism m : G → Sym(A|x⃗|) on A, where G ≤ Sym(Ak) if, for all
σ ∈ G ,

φm(A,R ← graph(σ)) = graph(m(σ))

H ⊴ G ≤ Sym(AT ) is morphism-definable from G in A if:

▶ There is a definable generating set for G in A

▶ there is a L-formula φm which defines a morphism m : G → Sym(AT ′
) on A such that

ker(m) = H.
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Properties of morphism-definability

▶ If H is morphism-definable from G in A, then FP + ord defines |H| and membership to H.

▶ Moreover, the morphism m defining H in G defines a bijection between cosets of H in G

and Im(m).

⇝ solves the coset representation issue

▶ If H1 and H2 are morphism-definable from G in A, then so is H1 ∩ H2.

⇝ solves the subgroup computation issue
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Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of accessible subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group
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Labeling group

▶ Algorithmic perspective:
▶ encoding of A ≈ one fixed σ : A → A<.
▶ Represent labeling ℓ : A → A< by the unique τ ∈ Sym(A) s.t. ℓ = στ .
▶ Extends to cosets: ℓG = στG , and τG ⊆ Sym(A).
▶ Choice of σ not isomorphism-invariant.

▶ Unordered setting with Abelian colouring:
▶ families O(Ai ) of labelings of Ai indexed by Ai (a 7→ mapia)
▶ Represent labeling ℓ : A → A< by (τa)a∈A s.t.

∀i ,∀a ∈ Ai ,mapiaτa = ℓ↾Ai

⇝ τa = (mapia)
−1ℓ.

▶ Yields φ : C∗ → Sym(A)A. Thus, ι ◦ φ : C∗ → Sym(A× A). (ι := ιA,A) Definition of ι
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Labeling group

▶ ∃G ≤ Sym(A× A) with definable generating set, s.t. (ι ◦ φ)(O(A)) ⊆ G
▶ (ι ◦ φ)(O(A)) is a coset of a morphism-definable subgroup Γ∗ ≤ G.
▶ Given an encoding of E ∩ (Ai ∩ Aj), the corresponding labelings in O(A) form a coset of a

morphism-definable subgroup Aut(Ei,j)
∗ of Γ∗

Requires Γi abelian for all i .

Skip technical details
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Technical definitions: G

O(A) elements out of reach. But, any π ∈ O(A) is a product of elements of O(Ai ) which are
definable.

G :=

〈⋃
i

ι ◦ φi (O(Ai ))

〉

where φi (σ)a :=

{
φ(σ)a if a ∈ Ai

1 otherwise

Obviously, φ(σ) =
∏
φi (σ↾Ai ).



Technical definitions: Γ∗, Aut(Ei ,j)
∗

Let Γ :=
∏

i Γi
▶ φ : O(A)→ Sym(A)A is compatible with

ψ : Γ→ Sym(A)A

γ 7→ (γ↾Ai(a)
)a∈A

(in the sense that φ(πγ) = φ(π)ψ(γ)).

▶ O(A) = πΓ for some (any) π ∈ O(A).
⇝ φ(O(A)) = φ(π)ψ(Γ).

Γ∗ := ψ(Γ)

Aut(Ei,j) := {σ ∈ ΓiΓj | ∀a ∈ Ai , b ∈ Aj ,E (a, b) ⇐⇒ E (σ(a), σb)}
Aut(Ei,j)

∗ := ψ(Aut(Ei,j))



Plan

First approach: definable generating sets

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk

Definable ordered sets of permutations



Motivation

▶ Abelian colours: abelian and ordered groups.

▶ Γi ordered ⇝ unordered orderings O(Ai )

▶ Hence the need to leverage structural properties of Γi (commutativity).

⇝ If we have ordered generators but no structural property ?
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Results

▶ If FP + ord defines an ordered generating set of permutations for G on A, and H ≤ G is
FP + ord-definably accessible in G , then FP + ord defines a generating set for H.

▶ if G is abelian, FPC suffices.

▶ FPC defines the automorphism groups of the structures (with abelian colours) which
separate FP + rk from P.



How

Partial simulation of the Schreier-Sims:

G = H0 ≥ H1 ≥ · · · ≥ Hk = H ≥ Stab(a1)(H) ≥ Stab(a1,a2)(H) · · · ≥ Stab(a1,...,an)(H) = 1

Algorithm 2: Sifting procedure

Input: (Ti )i<k+n, σ ∈ Sym(D)
Output: Does σ ∈ G ?
for i = 0 to k + n do

if ∀τ ∈ Ti , τ
−1σ ̸∈ Hi then

return (σ, i);

else
σ ← τ−1σ;

return ⊤;

Algorithm 3: Construction procedure

Input: S ⊆ Sym(D) s.t. ⟨S⟩ = G
Output: (Ti )i<k+n a S.G.S. for G
ℓ := S ;
Ti := ∅ for all i < k + n ;
for σ ∈ ℓ do

if sift(σ) = (τ, i) then
Ti .add(τ)
ℓ.add(τ · ρ, ρ · τ) for ρ ∈

⋃
j Tj ;



How
Partial simulation of the Schreier-Sims:

G = H0 ≥ H1 ≥ · · · ≥ Hk = H ≥ Stab(a1)(H) ≥ Stab(a1,a2)(H) · · · ≥ Stab(a1,...,an)(H) = 1

Algorithm 2: Sifting procedure

Input: (Ti )i<k , R,σ
Output: Does σ ∈ G ?
for i = 0 to k do

if ∀τ ∈ Ti , τ
−1σ ̸∈ Hi then

return (σ, i);

else
σ ← τ−1σ;

return Whether σ ∈ ⟨R⟩;

Algorithm 3: Construction procedure

Input: S ⊆ Sym(D) s.t. ⟨S⟩ = G
Output: (Ti )i<k and R
ℓ := S ;
R := ∅ and Ti := ∅ for all i < k;
for σ ∈ ℓ do

if sift(σ) = (τ, i) then
if i = k then

R.add(τ);

else
Ti .add(τ);

ℓ.add(τ · ρ, ρ · τ) for ρ ∈
⋃

j Tj ∪ R;

If S is ordered, these procedures are FP + ord definable
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▶ If FP + ord defines an ordered generating set of permutations for G on A, and H ≤ G is
FP + ord-definably accessible in G , then FP + ord defines a generating set for H.
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Results

▶ If FP + ord defines an ordered generating set of permutations for G on A, and H ≤ G is
FP + ord-definably accessible in G , then FP + ord defines a generating set for H.

▶ if G is abelian, FPC suffices.

▶ FPC defines the automorphism groups of the structures (with abelian colours) which
separate FP + rk from P.



Conclusion

▶ Leverage more general structural properties of groups.

▶ How far goes the canonisation power of FP + ord?

▶ FO + ord?

▶ CPT + ord?

▶ Inexpressibility results?
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László Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de
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