The Role of Permutation Groups in the Search for a Logic for

Polynomial Time.
Public Defense

Anatole Dahan

IMJ-PRG
Université Paris-Cité

Supervisors: Arnaud Durand & Luc Segoufin

July 1, 2025

Procedural techniques

lacé d’asperge verte
ert et blanc

A The sum of length, width, and diagonal is 1 and 5 is the area.

Multiply length, width, and diagonal times length, width, and
diagonal.

Multiply the area by 2.

Subtract the products and multiply what is left by one-half.

By what should the sum of length, width, and diagonal be
muitiplied to obtain this product?

The diagonal is the factor.

ax®>+bx+c=0

. —b+ Vb2 —4ac
o 2a

Grand Livre de Cuisine, Alain Ducasse
Ancient Babylonian Algorithms, Donald Knuth

20 century: computation models

Emergence of various equivalent computation models:
» Recursive functions
» Turing Machines
» A-calculus
> ...
With various notions of resources:
> Time
» Space
> ..

20 century: computation models

Emergence of various equivalent computation models:

» Recursive functions
» Turing Machines
» A-calculus
> ...
With various notions of resources:
> Time
» Space
> ...

Complexity Zoo

P/poly

ALL

Symmetries in computations

cé d’asperge verte
The sum of length, width, and diagonal is 1 and 5 is the area.
i Multiply length, width, and diagonal times length, width, and
diagonal.
Multiply the area by 2.
Subtract the products and multiply what is left by one-half.
By what should the sum of length, width, and diagonal be
muitiplied to obtain this product?
The diagonal is the factor.

ax®>+bx+c=0

= —b+ /b2 —4ac

2a

Grand Livre de Cuisine, Alain Ducasse
Ancient Babylonian Algorithms, Donald Knuth

Descriptive Complexity

» Machine-free models of computation over
structures: logics

» Capture results
» Example: Fagin theorem NP = SO3

Descriptive Complexity

» Machine-free models of computation over
structures: logics

» Capture results
» Example: Fagin theorem NP = SO3

Descriptive Complexity, Neil Immerman

core Arithmetic Hierarchy

complete co-r.e.

FovNy Recursive

FOMN) r.e.

re.
complete

FOHN)

Primitive Recursive

sop") EXPTIME SOLIP)

Fo"] som®”) PSPACE FO(PFP)

SO(TC)

o-NP Polynomial-Time Hierarchy

co-NP
S0V

\wmpku SO NP

NP
complete

EGE]

NP 01 co-NP

‘ o ,f"“ \x\
Fo[n ™) .~ "truly feasible"

P
S

FO(LFP)

O-Hom

" Fol(log m @'} NC

NC?

log(CFL)

/FO(TC) Nondeterministic Logspace

SO-

Krom

FO(DTC) Logspace

" Regular

NC!

! AC® Logarithric-Time Higrarchy

FO

Descriptive Complexity

» Machine-free models of computation over
structures: logics

» Capture results
» Example: Fagin theorem NP = SO3
» Logic for P ?

Descriptive Complexity, Neil Immerman

core Arithmetic Hierarchy re.
complete co-T.e. FOMN) r.e. complete
OV (N) . FO 1
FovNy Recursive Foam)

Primitive Recursive

sop") EXPTIME SOLIP)
o1 som®" PSPACE FO(PFP) SO(TC)
o-NP Polynomial-Time Hierarchy NP
| co-NP 50 NP complete
sov NP 0 coNP s0H
Fono®) - p FOLFP)
- "truly feasible” . SO-Hom
" Foldogm ©) NC
NC?
/ log(CFL)
/Fo(rc) Nondeterministic Logspace SO-Krom
FO(DTC) Logspace
; Reguar ™, NC!
/ AC® Logarithric-Time Higrarchy FO

The Immerman-Vardi theorem

Over ordered structures, FO + Ifp = P.
» Allows recursion.

> 1fp: least fixed point. Given p(X,X),
(px z0)(2) = @™ (™(-.. 9™ (0)...))
—_———
until fixpoint reached

> With <, arithmetic and definition of encoding ~~ simulation of poly-time TM.

The Immerman-Vardi theorem

Over ordered structures, FO + Ifp = P.
» Allows recursion.

> 1fp: least fixed point. Given p(X,X),
(px z0)(2) = @™ (™(-.. 9™ (0)...))
—_———
until fixpoint reached

> With <, arithmetic and definition of encoding ~» simulation of poly-time TM.

Back and forth

» Over unordered structures, FP does not express EVEN.
» Counting extension of FP: FPC.
» Formulas evaluated over A + ({0, 1, ..., |A]}, <)
> Add counting terms : (#x.¢(x)) > (#y.¥(y))
» All P-arithmetic operations are definable (Immerman-Vardi theorem).

» Cai-Firer-Immerman (CFI): FPC < P.

Back and forth

» [Daw08]: The CFI query reduces to the satisfiability of systems of equations over a field.
~» FP +rk : extend FP with a linear-algebraic operator.

> If om(X, ¥, A) defines a matrix M over 2L

A :_,
M~ = 2A) -

(rkzyom-p) () = rankg,(M).

Back and forth

» [Daw08]: The CFI query reduces to the satisfiability of systems of equations over a field.
~» FP +rk : extend FP with a linear-algebraic operator.

> If om(X, ¥, A) defines a matrix M over 2L

M2 .= Q((") -

(rkg,yom.p)(A) = ranka(M).
» Lichter '21: FP + rk < P using a generalization of the CFl-construction.

Link to Graph Isomorphism and Canonisation

GRAPH ISOMORPHISM (Gl)

Input: &, $H two graphs
Question: Whether & ~

» CFl structures are hard instances of Graph Isomorphism: [Tor04]
» Over restricted classes of unordered structures:

» FP 4 C = P for bounded tree-width [GM99]
» FP + C = P when excluded minor [Grol7].
» Canonisation : if £ > FP canonizes C, L captures P on C.

Definition
A canonisation function: f(®) ~ & and if & ~ §, (&) = ().
In a logic: an interpretation Z : C — C< s.t. Z(2A)(w.o. <) ~ 2.

A bit of (permutation) group theory

» Group axioms: binary operation,

» associative
» neutral
» inverses

» Sym(D) := {f : D — D bijections } with composition.

» (Finite) Permutation group: G < Sym(D) for some (finite) D.

» Cayley theorem: any group is isomorphic to a permutation group.
» For S C G, (S) < G smallest subgroup of G containing S.

The role of permutation groups in Graph Isomorphism

GRAPH AUTOMORPHISM PROBLEM (GA¢)

Input: gecC
Output: S C Sym(Vg) s.t. (S) = Aut(G) := {0 € Sym(Vg) | E§ = Eg}

» If C union-closed, Gle <p GA¢
» Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM PErRM. GROUP ORDER PROBLEM

<
Input: S C Sym(D) and o € Sym(D) -t Input: S C Sym(D)
Question: Does o € (5) ? Output: [(S)]

Both are in P: Schreier-Sims algorithm.

The role of permutation groups in Graph Isomorphism

“Laplace theorem”: Any group G < Sym(D) || (GA¢)

———— has a generating set S of poly-size (in |D]).
Input: gex

Output: S T Sym(Vg) s.t. (S) = Aut(G) := {0 € Sym(Vg) | E§ = Eg}

» If C union-closed, Gle <p GA¢
» Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM

PERM. GROUP ORDER PROBLEM

<
Input: S C Sym(D) and o € Sym(D) -t Input: S C Sym(D)
Question: Does o € (S5) ? Output: [(S)]

Both are in P: Schreier-Sims algorithm.

The role of permutation groups in Graph Isomorphism

GRAPH AUTOMORPHISM PROBLEM (GA¢)

Input: gecC
Output: S C Sym(Vg) s.t. (S) = Aut(G) := {0 € Sym(Vg) | E§ = Eg}

» If C union-closed, Gle <p GA¢
» Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM PErRM. GROUP ORDER PROBLEM

<
Input: S C Sym(D) and o € Sym(D) -t Input: S C Sym(D)
Question: Does o € (5) ? Output: [(S)]

Both are in P: Schreier-Sims algorithm.

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1

For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.

The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups

G=Hy>H > >H =1

For each i < k, build a transversal _T; of Hii1 in H;. (T;) is a Strong Generating Set.

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1

For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
~ Sequential reduction of (c € G ?) to (o € H; 7).

~~ Any o € G admits a unique decomposition tj ..., tx with t; € T;.
|Gl =|To| - |Ta|. | Tkl

$

~ If K < G has polynomial index and decidable membership, can compute g.s. for K.

G>K>HiNnK>HiNK>--->HNnK=1

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups
G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.

~ Sequential reduction of (c € G ?) to (o € H; 7).

~ Any o € G admits a unique dec{|(; K| =|G|/|K| = |{gK | g € G}U
|G| =1|To| - |Ta|. .| Tk=1]-

$

~ If K < G has polynomial index ~and decidable membership, can compute g.s. for K.

G>K>HiNnK>HiNK>--->HNnK=1

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
~ Sequential reduction of (c € G ?) to (o € H; 7).

~~ Any o € G admits a unique decomposition tj ..., tx with t; € T;.
|Gl =|To| - |Ta|. | Tkl

$

~ If K < G has polynomial index and decidable membership, can compute g.s. for K.

G>K>HiNnK>HiNK>--->HNnK=1

The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
~ Sequential reduction of (c € G ?) to (o € H; 7).

~~ Any o € G admits a unique decomposition tj ..., tx with t; € T;.
|Gl =|To| - |Ta|. | Tkl

$

~ If K < G has polynomial index and decidable membership, can compute g.s. for K.
G>K>HiNK>HNK>--->HnNnK=1

» Notion of accessibility

The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups
G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
> For poly-time, we need k < p(|D|), and Vi, |H; : Hi11] < p(|D|).
» If D={a,...,an},

H,' = Stab(ah‘__,a/,)(G)
» Without an ordering of D 7

The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups
G=Hy>H >--->Hc=1
For each i < k, build a transversal T; of Hii1 in H;. (T;) is a Strong Generating Set.
» For poly-time, we need k < p(|D
» If D=1{a,...,an},

H,' = Stab(ah”"ai)(G)
» Without an ordering of D 7

The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups
G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
> For poly-time, we need k < p(|D|), and Vi, |H; : Hi11] < p(|D|).
» If D={a,...,an},

H,' = Stab(ah‘__,a/,)(G)
» Without an ordering of D 7

Contributions

» Study representations of permutation groups in extensions of FO.
» Unordered sets of generators
» Ordered sets of generators
> Abelian groups
» Study of the expressive power of the operation ord : S — [(S)| as an extension of FP.
> FP +ord > FP + rk

Outline

First approach: definable generating sets

FP + rk < FP + ord

FP + ord &« FP + rk

Definable ordered sets of permutations

Plan

First approach: definable generating sets

Definable sets of permutations

Definition
©(3, t) (with type(5) = type(t) = T) defines o € Sym(AT) if

—.

Vb,ee AT, o(b)=¢ < (A,b,0) = ¢
> graph(o) = ()
> o = perm(p(2A))

Definition
A formula ¢(p, 3, t) defines S C Sym(AT) binding p if

{perm(p(2, 3)) | 7€ AP} = S.

Low-hanging fruits

» FO + tc defines orbits.
> If G and H are L-definable, with £ > FO, (G U H) is L-definable.

Low-hanging fruits

» FO + tc defines orbits.
> If G and H are L-definable, with £ > FO, (G U H) is L-definable.
» Corollary: Membership <[5 Group Order.

Low-hanging fruits

» FO + tc defines orbits.

> If G and H are L-definable, with £ > FO, (G U H) is L-definable.
» Corollary: Membership </, Group Order.

» Turing FO reduction: Add an operator ord

Low-hanging fruits

» FO + tc defines orbits.
> If G and H are L-definable, with £ > FO, (G U H) is L-definable.
» Corollary: Membership </, Group Order.
» Turing FO reduction: Add an operator ord
Definition
(ordzz7 ¢) is a numerical predicate (of arity 2 - |3]) encoding |(S)|.

Plan

FP + rk < FP + ord

Outline of the proof

> If om(X, ¥,) defines a matrix,
AT A
M FA — FA
(ke gspnr.p) = dim(Tm(M))
= log,, |Im(M)|

where Im(M) <]F;‘V additive group.
> log, is definable (Immerman-Vardi theorem)
» New goals:

1. permutation representation of Fﬁy

2. define a generating set for Im(M) < Ff,‘y.

Subgoal 1: Permutation representation of F;‘y.

» For p € N*,

repr, : Fp = Sp
k— (i—i+k modp)

is FPC-definable.
» For Tl, T2,

LT, s Sym(AT)A" = Sym(ATH x AT?)

(82)scan = ((3,b) = (3, (g2(D))))

is FPC-definable.
> Conclusion: 15, o (repry) :]Fﬁy < Sym(A” x A<) is FPC-definable.

Subgoal 2: Generating set for Imp, (M)

> ((FP)A;, +) generated by the set B all scalar products of unit vectors.
~ Img,(M) is generated by {M - b | b € B}.

> Given pp,
AX X T, — Sym(A” x A%)
(3A) = 1, 0 (repr) (M- (A - &))
FPC-definable. O
Remark

Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.

Plan

FP + ord &« FP + rk

Preliminaries

» Lichter '21: FP+rk < P
» Last remark: decision problem separation
» The separating query is defined on a class of structures with Abelian Colours.

» We show FP + ord canonises (and thus captures P on) structures with Abelian Colours, ~»
FP + rk < FP + ord.

Structures with Abelian Colours

» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;

~ |Ij] = |Ail: for all a € A;, v — ~(a) bijection.
» For each i, 2 equipped with an enumeration (7})j<|A,-| of I';.

Structures with Abelian Colours

» Structure 2 ordered partition

AL =2 A

» For each i < m, abelian group I'; acting tra

~ |[i| = |A;l|: for all a € A;, v = v(a) bijection.

» For each /, 2 equipped with an enumeration (7})j<|A,.| of [';.

Structures with Abelian Colours

» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;

~ |Ij] = |Ail: for all a € A;, v — ~(a) bijection.
» For each i, 2 equipped with an enumeration (7})j<|A,-| of I';.

Archetypal abelian colours structures: CFl

01010/0/0.0/0
0/0/0/0.010)®
OOQLXTIO)

()T O O
NOOOOO
OedQ OO0
QOO0

Structures with Abelian Colours

» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;
~ |Ij] = |Ail: for all a € A;, v — ~(a) bijection.

» For each i, 2 equipped with an enumeration (’Yf)j<|A,-| of I';.
~+ O(A;) (unordered) family of |A;| definable orderings of A;.
> O(A) = [, O(A).

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A, E, <, ®) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

C:=O(A);

for (i,j) € [m]? do
find Eij, the smallest lexicographical encoding of E on A; U A; compatible with C;
C {0 €C,enc(E,0)axa = ES}:

return E< =, ; £

(same algorithm as [Pak15, chapter 6])

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A, E, <, ®) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

C :=0O(A);

for (i,j) € [m]? do
find Eij, the smallest lexicographical encoding of E on A; U A; compatible with C;
C+{o €Cenc(E,0)axa = ES}

return E< =, ; £

(same algorithm as [Pak15, chapter 6])

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.

» Computation of accessible subgroups is not isomorphism-invariant.

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.

» Computation of accessible subgroups is not isomorphism-invariant.

Aparté : Definable generating sets are limited

Ap = K,n and G, := Aut(,)

Aparté : Definable generating sets are limited

Ap = K,n and G, := Aut(,)
Worse, we can find a (sequence of) structure 2 s.t.:
> A group G(2l) is (FP-)definable from 2/
> A subgroup H(2) is accessible from G(2)
> FP defines a witness of the accessibility of H(2() in G(2l).

» Any symmetric generating set of H(2() has exponential size.

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of accessible subgroups is not isomorphism-invariant.

Fix: Morphism-definability

Morphism-definability

Definition
R a relation symbol of arity 2k.
©m(R, X,) defines a morphism m: G — Sym(AX!) on 2, where G < Sym(A¥) if, for all
oe G,
©m(2l, R < graph(c)) = graph(m(o))

H < G < Sym(AT) is morphism-definable from G in 2 if:

» There is a definable generating set for G in

» there is a L-formula ¢, which defines a morphism m: G — Sym(AT/) on 2 such that

ker(m) = H.

Morphism-definability

Definition (m: G — H.m(gigz) = m(g1) m(g:)]
R a relation symbol of arity 2k.
©m(R, X,) defines a morphism “m : G — Sym(AX!) on 2, where G < Sym(A¥) if, for all

oe G,

©m(2l, R < graph(c)) = graph(m(o))
H < G < Sym(AT) is morphism-definable from G in 2 if:
» There is a definable generating set for G in

» there is a L-formula ¢, which defines a morphism m: G — Sym(AT/) on 2 such that
ker(m) = H.

Morphism-definability

Definition
R a relation symbol of arity 2k.
©m(R, X,) defines a morphism m: G — Sym(AX!) on 2, where G < Sym(A¥) if, for all
oe G,
©m(2l, R < graph(c)) = graph(m(o))

H < G < Sym(AT) is morphism-definable from G in 2 if:

» There is a definable generating set for G in

» there is a L-formula ¢, which defines a morphism m: G — Sym(AT/) on 2 such that

ker(m) = H.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.
» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

defines |H| and membership to H.
» Moreover, the mor

and Im(m).

m defining H in G defines a bijection between cosets of H in G

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.
» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

~> solves the coset representation issue

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

~> solves the coset representation issue

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

~~ solves the subgroup computation issue

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of accessible subgroups is not isomorphism-invariant.
Fix: Morphism-definability

» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of accessible subgroups is not isomorphism-invariant.
Fix: Morphism-definability
» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).
Fix: Labeling group

Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.

Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.

» Unordered setting with Abelian colouring:

> families O(A;) of labelings of A; indexed by A; (a — map’)
> Represent labeling £: A — A< by (73)aca s.t.

Vi,Va € Aj,map.r, = {14,
~ 7, = (map}) 'L

> Yields ¢ : C* — Sym(A)*. Thus, Lo :C* — Sym(A x A). (¢:=ta.4)

Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to ¢)(O(A)) C G
> (Lop)(O(A)) is a coset of a morphism-definable subgroup ' < G.

> Given an encoding of E N (A; N A;j), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of I'*

Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to ¢)(O(A)) C G
» (Lo)(O(A)) is a coset of a morphism-definable subgroup ' < G.

> Given an encoding of E N (A; N A;j), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of I'*

Requires I'; abelian for all i.

Technical definitions: G

O(A) elements out of reach. But, any m € O(A) is a product of elements of O(A;) which are
definable.

G = <U Lo <p,-((’)(A,-))>

i€ A
where ©;(0), = p(0), ifae _
1 otherwise

Obviously, ¢(o) = [T ¢i(o1a,)-

Technical definitions: *, Aut(E;;)*

Let [:= H’- I;
> : O(A) — Sym(A)* is compatible with
Y : T — Sym(A)
s ('YfAi(a))aEA
(in the sense that p(7y) = (7)Y (7))
» O(A) = «T for some (any) m € O(A).
~ p(O(A)) = @(m)u(T).
=)
Aut(E,-J) = {O’ S F,-I'j | Vaec Ai,be Aj7 E(a, b) — E(a(a)7ab)}
Aut(E,-,j)* = w(Aut(E,-J))

Plan

Definable ordered sets of permutations

Motivation

» Abelian colours: abelian and ordered groups.
» T; ordered ~~ unordered orderings O(A;)

» Hence the need to leverage structural properties of I'; (commutativity).

Motivation

» Abelian colours: abelian and ordered groups.
» T; ordered ~~ unordered orderings O(A;)
» Hence the need to leverage structural properties of I'; (commutativity).

~~ If we have ordered generators but no structural property ?

Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.

How

Partial simulation of the Schreier-Sims:

G=Hy>H,>--->Hc=H> Stab(al)(H) > Stab(al,az)(H) R Stab(ah“_,an)(H) =1

Algorithm 2: Sifting procedure Algorithm 3: Construction procedure
Input: (T;)i<ktn, 0 € Sym(D) Input: S C Sym(D) s.t. (S)=G
Output: Does o € G 7 Output: (T;)i<k+n a S.G.S. for G
for i=0 to k+ ndo (:=S;
if V7 € T;,77 10 ¢ H; then Ti=0forali<k+n;
| return (o, /); for o € (do
else if sift(o) = (7, /) then
L o« 1l L T;.add(7)
tadd(r-p,p-7)forpeU; Tj;

return T;

How

Partial simulation of the Schreier-Sims:

G=Hy>H;>--->H =H?> Stab(al)(H) > Stab(ahaz)(H) R Stab(al """" a,,)(H) =

Algorithm 2: Sifting procedure

Input: (T,'),'<k, R,o
Output: Doeso € G 7
for i=0to k do
if V7 € T;,7'0 ¢ H; then
| return (o, /);
else
L o 7710;

return Whether o € (R);

Algorithm 3: Construction procedure

Input: S C Sym(D) s.t. (S)=G
Output: (T;)i<x and R

{:=8S;
R:=0and T;:=0 for all i < k;
for o € ¢ do
if sift(o) = (7, /) then
if i = k then
| R.add(7);
else
| Ti.add(r);
tadd(r-p,p-7)forpel; T;UR;

If S is ordered, these procedures are FP + ord definable

Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.

Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.

» FPC defines the automorphism groups of the structures (with abelian colours) which
separate FP + rk from P.

Conclusion

> Leverage more general structural properties of groups.
» How far goes the canonisation power of FP 4 ord?

> FO + ord?

» CPT + ord?

>

Inexpressibility results?

References |

[

B
B

L3szI6 Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de
Montréal Technical Report, DMS (1979), no. 79-10.

, Graph Isomorphism in Quasipolynomial Time, January 2016.

Laszl6 Babai and Eugene M. Luks, Canonical labeling of graphs, Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing - STOC '83, ACM Press,
1983, pp. 171-183.

Anuj Dawar, On the Descriptive Complexity of Linear Algebra, Logic, Language,
Information and Computation (Wilfrid Hodges and Ruy De Queiroz, eds.), vol. 5110,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 17-25.

Martin Grohe and Julian Marifio, Definability and Descriptive Complexity on Databases of
Bounded Tree-Width, Database Theory — ICDT'99 (Gerhard Goos, Juris Hartmanis, Jan
Van Leeuwen, Catriel Beeri, and Peter Buneman, eds.), vol. 1540, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999, pp. 70-82.

Martin Grohe, Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory, 1 ed., Cambridge University Press, August 2017.

References |l

@ Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time, Journal of Computer and System Sciences 25 (1982), no. 1, 42-65.

@ Wied Pakusa, Linear equation systems and the search for a logical characterisation of
polynomial time, Ph.D. thesis, RWTH Aachen University, 2015.

@ Jacobo Tordn, On the Hardness of Graph Isomorphism, SIAM Journal on Computing 33
(2004), no. 5, 1093-1108.

	First approach: definable generating sets
	FP + rk FP + ord
	FP + ord FP + rk
	Definable ordered sets of permutations

