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Procedural techniques

lacé d’asperge verte
ert et blanc

A The sum of length, width, and diagonal is 1 and 5 is the area.

Multiply length, width, and diagonal times length, width, and
diagonal.

Multiply the area by 2.

Subtract the products and multiply what is left by one-half.

By what should the sum of length, width, and diagonal be
muitiplied to obtain this product?

The diagonal is the factor.

ax®>+bx+c=0

. —b+ Vb2 —4ac
o 2a

Grand Livre de Cuisine, Alain Ducasse
Ancient Babylonian Algorithms, Donald Knuth



20 century: computation models

Emergence of various equivalent computation models:
» Recursive functions
» Turing Machines
» A-calculus
> ...
With various notions of resources:
> Time
» Space
> ..
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Complexity Zoo

P/poly

ALL




Symmetries in computations

cé d’asperge verte
The sum of length, width, and diagonal is 1 and 5 is the area.
i Multiply length, width, and diagonal times length, width, and
diagonal.
Multiply the area by 2.
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muitiplied to obtain this product?
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Descriptive Complexity

» Machine-free models of computation over
structures: logics

» Capture results
» Example: Fagin theorem NP = SO3
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Descriptive Complexity

» Machine-free models of computation over
structures: logics

» Capture results
» Example: Fagin theorem NP = SO3
» Logic for P ?

Descriptive Complexity, Neil Immerman
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The Immerman-Vardi theorem

Over ordered structures, FO + Ifp = P.
» Allows recursion.

> 1fp: least fixed point. Given p(X,X),
(px z0)(2) = @™ (™(-.. 9™ (0)...))
—_———
until fixpoint reached

> With <, arithmetic and definition of encoding ~~ simulation of poly-time TM.



The Immerman-Vardi theorem

Over ordered structures, FO + Ifp = P.
» Allows recursion.

> 1fp: least fixed point. Given p(X,X),
(px z0)(2) = @™ (™(-.. 9™ (0)...))
—_———
until fixpoint reached

> With <, arithmetic and definition of encoding ~» simulation of poly-time TM.



Back and forth

» Over unordered structures, FP does not express EVEN.
» Counting extension of FP: FPC.
» Formulas evaluated over A + ({0, 1, ..., |A]}, <)
> Add counting terms : (#x.¢(x)) > (#y.¥(y))
» All P-arithmetic operations are definable (Immerman-Vardi theorem).

» Cai-Firer-Immerman (CFI): FPC < P.



Back and forth

» [Daw08]: The CFI query reduces to the satisfiability of systems of equations over a field.
~» FP +rk : extend FP with a linear-algebraic operator.

> If om(X, ¥, A) defines a matrix M over 2L

A :_,
M~ = 2A ) -

(rkzyom-p) () = rankg,(M).



Back and forth

» [Daw08]: The CFI query reduces to the satisfiability of systems of equations over a field.
~» FP +rk : extend FP with a linear-algebraic operator.

> If om(X, ¥, A) defines a matrix M over 2L

M2 .= Q(( ") -

(rkg,yom.p)(A) = ranka(M).
» Lichter '21: FP + rk < P using a generalization of the CFl-construction.



Link to Graph Isomorphism and Canonisation

GRAPH ISOMORPHISM (Gl)

Input: &, $H two graphs
Question: Whether & ~

» CFl structures are hard instances of Graph Isomorphism: [Tor04]
» Over restricted classes of unordered structures:

» FP 4 C = P for bounded tree-width [GM99]
» FP + C = P when excluded minor [Grol7].
» Canonisation : if £ > FP canonizes C, L captures P on C.

Definition
A canonisation function: f(®) ~ & and if & ~ §, (&) = ().
In a logic: an interpretation Z : C — C< s.t. Z(2A)(w.o. <) ~ 2.



A bit of (permutation) group theory

» Group axioms: binary operation,

» associative
» neutral
» inverses

» Sym(D) := {f : D — D bijections } with composition.

» (Finite) Permutation group: G < Sym(D) for some (finite) D.

» Cayley theorem: any group is isomorphic to a permutation group.
» For S C G, (S) < G smallest subgroup of G containing S.



The role of permutation groups in Graph Isomorphism

GRAPH AUTOMORPHISM PROBLEM (GA¢)

Input: gecC
Output: S C Sym(Vg) s.t. (S) = Aut(G) := {0 € Sym(Vg) | E§ = Eg}

» If C union-closed, Gle <p GA¢
» Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM PErRM. GROUP ORDER PROBLEM

<
Input: S C Sym(D) and o € Sym(D) -t Input: S C Sym(D)
Question: Does o € (5) ? Output:  [(S)]

Both are in P: Schreier-Sims algorithm.
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“Laplace theorem”: Any group G < Sym(D) || (GA¢)

———— has a generating set S of poly-size (in |D]).
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The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1

For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
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~ Sequential reduction of (c € G ?) to (o € H; 7).

~~ Any o € G admits a unique decomposition tj ..., tx with t; € T;.
|Gl =|To| - |Ta|. | Tkl

$

~ If K < G has polynomial index and decidable membership, can compute g.s. for K.

G>K>HiNnK>HiNK>--->HNnK=1
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The Schreier-Sims algorithm

Idea: break a group into a tower of subgroups

G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
~ Sequential reduction of (c € G ?) to (o € H; 7).

~~ Any o € G admits a unique decomposition tj ..., tx with t; € T;.
|Gl =|To| - |Ta|. | Tkl

$

~ If K < G has polynomial index and decidable membership, can compute g.s. for K.
G>K>HiNK>HNK>--->HnNnK=1

» Notion of accessibility



The Schreier-Sims algorithm
Idea: break a group into a tower of subgroups
G=Hy>H > --->H=1
For each i < k, build a transversal T; of Hix1 in H;. (T;) is a Strong Generating Set.
> For poly-time, we need k < p(|D|), and Vi, |H; : Hi11] < p(|D|).
» If D={a,...,an},

H,' = Stab(ah‘__,a/,)(G)
» Without an ordering of D 7
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Contributions

» Study representations of permutation groups in extensions of FO.
» Unordered sets of generators
» Ordered sets of generators
> Abelian groups
» Study of the expressive power of the operation ord : S — [(S)| as an extension of FP.
> FP +ord > FP + rk



Outline

First approach: definable generating sets

FP + rk < FP + ord

FP + ord &« FP + rk

Definable ordered sets of permutations



Plan

First approach: definable generating sets



Definable sets of permutations

Definition
©(3, t) (with type(5) = type(t) = T) defines o € Sym(AT) if

—.

Vb,ee AT, o(b)=¢ < (A,b,0) = ¢
> graph(o) = ()
> o = perm(p(2A))

Definition
A formula ¢(p, 3, t) defines S C Sym(AT) binding p if

{perm(p(2, 3)) | 7€ AP} = S.



Low-hanging fruits

» FO + tc defines orbits.
> If G and H are L-definable, with £ > FO, (G U H) is L-definable.
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Low-hanging fruits

» FO + tc defines orbits.
> If G and H are L-definable, with £ > FO, (G U H) is L-definable.
» Corollary: Membership </, Group Order.
» Turing FO reduction: Add an operator ord
Definition
(ordzz7 ¢) is a numerical predicate (of arity 2 - |3]) encoding |(S)|.



Plan

FP + rk < FP + ord



Outline of the proof

> If om(X, ¥, ) defines a matrix,
AT A
M FA — FA
(ke gspnr.p) = dim(Tm(M))
= log,, |Im(M)|

where Im(M) < ]F;‘V additive group.
> log, is definable (Immerman-Vardi theorem)
» New goals:

1. permutation representation of Fﬁy

2. define a generating set for Im(M) < Ff,‘y.



Subgoal 1: Permutation representation of F;‘y.

» For p € N*,

repr, : Fp = Sp
k— (i—i+k modp)

is FPC-definable.
» For Tl, T2,

LT, s Sym(AT)A" = Sym(ATH x AT?)

(82)scan = ((3,b) = (3, (g2(D))))

is FPC-definable.
> Conclusion: 15, o (repry ) : ]Fﬁy < Sym(A” x A<) is FPC-definable.



Subgoal 2: Generating set for Imp, (M)

> ((FP)A;, +) generated by the set B all scalar products of unit vectors.
~ Img,(M) is generated by {M - b | b € B}.

> Given pp,
AX X T, — Sym(A” x A%)
(3A) = 1, 0 (repr ) (M- (A - &))
FPC-definable. O
Remark

Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.



Plan

FP + ord &« FP + rk



Preliminaries

» Lichter '21: FP+rk < P
» Last remark: decision problem separation
» The separating query is defined on a class of structures with Abelian Colours.

» We show FP + ord canonises (and thus captures P on) structures with Abelian Colours, ~»
FP + rk < FP + ord.



Structures with Abelian Colours

» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;

~ |Ij] = |Ail: for all a € A;, v — ~(a) bijection.
» For each i, 2 equipped with an enumeration (7})j<|A,-| of I';.
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» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;
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Archetypal abelian colours structures: CFl

01010/0/0.0/0
0/0/0/0.010)®
OOQLXTIO)

()T O O
NOOOOO
OedQ OO0
QOO0




Structures with Abelian Colours

» Structure 2A ordered partition
Al A XA,

» For each i < m, abelian group ['; acting transitively on A;
~ |Ij] = |Ail: for all a € A;, v — ~(a) bijection.

» For each i, 2 equipped with an enumeration (’Yf)j<|A,-| of I';.
~+ O(A;) (unordered) family of |A;| definable orderings of A;.
> O(A) = [, O(A).



The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A, E, <, ®) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

C:=O(A);

for (i,j) € [m]? do
find Eij, the smallest lexicographical encoding of E on A; U A; compatible with C;
C {0 €C,enc(E,0)axa = ES}:

return E< =, ; £

(same algorithm as [Pak15, chapter 6])
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» The usual representation (C = o H) of cosets is not isomorphism-invariant.

» Computation of accessible subgroups is not isomorphism-invariant.
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Aparté : Definable generating sets are limited

Ap = K,n and G, := Aut(,)
Worse, we can find a (sequence of) structure 2 s.t.:
> A group G(2l) is (FP-)definable from 2/
> A subgroup H(2) is accessible from G(2)
> FP defines a witness of the accessibility of H(2() in G(2l).

» Any symmetric generating set of H(2() has exponential size.



Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of accessible subgroups is not isomorphism-invariant.

Fix: Morphism-definability



Morphism-definability

Definition
R a relation symbol of arity 2k.
©m(R, X, ) defines a morphism m: G — Sym(AX!) on 2, where G < Sym(A¥) if, for all
oe G,
©m(2l, R < graph(c)) = graph(m(o))

H < G < Sym(AT) is morphism-definable from G in 2 if:

» There is a definable generating set for G in

» there is a L-formula ¢, which defines a morphism m: G — Sym(AT/) on 2 such that

ker(m) = H.
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Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.
» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.
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Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

~> solves the coset representation issue

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

~~ solves the subgroup computation issue
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Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.



Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.

» Unordered setting with Abelian colouring:

> families O(A;) of labelings of A; indexed by A; (a — map’)
> Represent labeling £: A — A< by (73)aca s.t.

Vi,Va € Aj,map.r, = {14,
~ 7, = (map}) 'L

> Yields ¢ : C* — Sym(A)*. Thus, Lo :C* — Sym(A x A). (¢:=ta.4)



Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to ¢)(O(A)) C G
> (Lop)(O(A)) is a coset of a morphism-definable subgroup ' < G.

> Given an encoding of E N (A; N A;j), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of I'*



Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to ¢)(O(A)) C G
» (Lo)(O(A)) is a coset of a morphism-definable subgroup ' < G.

> Given an encoding of E N (A; N A;j), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of I'*

Requires I'; abelian for all i.



Technical definitions: G

O(A) elements out of reach. But, any m € O(A) is a product of elements of O(A;) which are
definable.

G = <U Lo <p,-((’)(A,-))>

i€ A
where ©;(0), = p(0), ifae _
1 otherwise

Obviously, ¢(o) = [T ¢i(o1a,)-



Technical definitions: *, Aut(E;;)*

Let [ := H’- I;
> : O(A) — Sym(A)* is compatible with
Y : T — Sym(A)
s ('YfAi(a))aEA
(in the sense that p(7y) = (7)Y (7))
» O(A) = «T for some (any) m € O(A).
~ p(O(A)) = @(m)u(T).
=)
Aut(E,-J) = {O’ S F,-I'j | Vaec Ai,be Aj7 E(a, b) — E(a(a)7ab)}
Aut(E,-,j)* = w(Aut(E,-J))



Plan

Definable ordered sets of permutations



Motivation

» Abelian colours: abelian and ordered groups.
» T; ordered ~~ unordered orderings O(A;)

» Hence the need to leverage structural properties of I'; (commutativity).



Motivation

» Abelian colours: abelian and ordered groups.
» T; ordered ~~ unordered orderings O(A;)
» Hence the need to leverage structural properties of I'; (commutativity).

~~ If we have ordered generators but no structural property ?



Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.



How

Partial simulation of the Schreier-Sims:

G=Hy>H,>--->Hc=H> Stab(al)(H) > Stab(al,az)(H) R Stab(ah“_,an)(H) =1

Algorithm 2: Sifting procedure Algorithm 3: Construction procedure
Input: (T;)i<ktn, 0 € Sym(D) Input: S C Sym(D) s.t. (S)=G
Output: Does o € G 7 Output: (T;)i<k+n a S.G.S. for G
for i=0 to k+ ndo (:=S;
if V7 € T;,77 10 ¢ H; then Ti=0forali<k+n;
| return (o, /); for o € ( do
else if sift(o) = (7, /) then
L o« 1l L T;.add(7)
tadd(r-p,p-7)forpeU; Tj;

return T;




How

Partial simulation of the Schreier-Sims:

G=Hy>H;>--->H =H?> Stab(al)(H) > Stab(ahaz)(H) R Stab(al """" a,,)(H) =

Algorithm 2: Sifting procedure

Input: (T,'),'<k, R,o
Output: Doeso € G 7
for i=0to k do
if V7 € T;,7'0 ¢ H; then
| return (o, /);
else
L o 7710;

return Whether o € (R);

Algorithm 3: Construction procedure

Input: S C Sym(D) s.t. (S)=G
Output: (T;)i<x and R

{:=8S;
R:=0and T;:=0 for all i < k;
for o € ¢ do
if sift(o) = (7, /) then
if i = k then
| R.add(7);
else
| Ti.add(r);
tadd(r-p,p-7)forpel; T;UR;

If S is ordered, these procedures are FP + ord definable



Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.



Results

» If FP + ord defines an ordered generating set of permutations for G on 2, and H < G is
FP + ord-definably accessible in G, then FP + ord defines a generating set for H.

» if G is abelian, FPC suffices.

» FPC defines the automorphism groups of the structures (with abelian colours) which
separate FP + rk from P.



Conclusion

> Leverage more general structural properties of groups.
» How far goes the canonisation power of FP 4 ord?

> FO + ord?

» CPT + ord?

>

Inexpressibility results?
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