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Motivation

Introduce ord, a permutation group operator.

▶ Quest of a logic for P (see [Gur88])

▶ Immerman-Vardi theorem: FP over ordered structures

▶ Over arbitrary structures:
FP < FP + C < FP + rk < P

▶ More general algebraic operator

▶ Over restricted classes of unordered structures:
▶ FP + C = P for bounded tree-width [GM99]
▶ FP + C = P when excluded minor [Gro17].
▶ Canonisation : if L ≥ FP canonizes C, L captures P on C.



The role of permutation groups in Graph Isomorphism

Graph Automorphism problem (GAC)

Input: G ∈ C
Output: S ⊆ Sym(VG) s.t. ⟨S⟩ = Aut(G)

▶ If C union-closed, GIC ≤P GAC

▶ Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

Perm. Group Membership Problem

Input: S ⊆ Sym(D) and σ ∈ Sym(D)
Question: Does σ ∈ ⟨S⟩ ?

≤T
L

Perm. Group Order Problem

Input: S ⊆ Sym(D)
Output: |⟨S⟩|

Both are in P: Schreier-Sims algorithm.



Plan

Definition of the operator

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk



The ord operator

Definition
φ(s⃗, t⃗) (with type(s⃗) = type(t⃗) = T ) defines σ ∈ Sym(AT ) if

∀b⃗, c⃗ ∈ AT , σ(b⃗) = c⃗ ⇐⇒ (A, b⃗, c⃗) |= φ

▶ graph(σ) = φ(A)

▶ σ = perm(φ(A))

Definition
A formula φ(p⃗, s⃗, t⃗) defines S ⊆ Sym(AT ) binding p⃗ if

{perm(φ(A, a⃗)) | a⃗ ∈ Ap⃗} = S .

(ordp⃗.⃗s .⃗t φ) is a numerical predicate (of arity 2 · |T |) encoding |⟨S⟩|.
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Outline of the proof

▶ If φM(x⃗ , y⃗ , λ) defines a matrix,

(rkx⃗,y⃗φM .p) = dimFp (ImFp (M))

= logp |ImFp (M)|

where ImFp (M) ≤ FAy⃗

p additive group.

▶ logp is definable (Immerman-Vardi theorem)

▶ New goals:

1. permutation representation of FAy⃗

p

2. define a generating set for ImFp (M).



Subgoal 1: Permutation representation of FAy⃗

p .

▶ For p ∈ N∗,

reprp : Fp → Sp

k 7→ (i 7→ i + k mod p)

is FPC-definable.

▶ For T1,T2,

ιT1,T2 : Sym(AT2)A
T1 → Sym(AT1 × AT2)

(ga⃗)a⃗∈AT1 7→ ((a⃗, b⃗) 7→ (a⃗, (ga⃗(b⃗))))

is FPC-definable.

▶ Conclusion: ιy⃗ ,µ : FAy⃗

p ≃ Sym(Ay⃗ × A<) is FPC-definable.



Subgoal 2: Generating set for ImFp
(M)

▶ ((Fp)
Ax⃗

,+) generated by {λ · êa⃗ | a⃗ ∈ Ax⃗ , λ < p}.
⇝ ImFp (M) is generated by {M · (λ · êa⃗) | a⃗ ∈ Ax⃗ , λ < p}.
▶ Given φM ,

(a⃗, λ) 7→ ιy⃗ ,µ(M · (λ · êa⃗))

FPC-definable.

Remark
Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.
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Preliminaries

▶ Lichter ’21: FP + rk < P

▶ Last remark: decision problem separation

▶ The separating query is defined on a class of structures with Abelian Colours.

▶ We show FP+ ord canonises (and thus captures P on) structures with Abelian Colours, ⇝
FP + rk < FP + ord.



Structures with Abelian Colours

▶ Structure A ordered partition
A1 ⪯ A2 ⪯ · · · ⪯ Am

▶ For each i ≤ m, abelian group Γi acting transitively on Ai (⇝ |Γi | = |Ai |)
▶ For each i , A equipped with an enumeration (γ ij )j<|Ai | of Γi

∀a ∈ Ai , (mapia)
−1 := j 7→ γ ij (a) bijection

⇝ a 7→ mapia linear family of definable orderings of Ai .

▶ O(Ai ) := {mapia, a ∈ Ai}, O(A) :=
∏m

i=1O(Ai ).



The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A,E ,≺,Φ) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

1 C := O(A);
2 for (i , j) ∈ [m]2 do
3 find E<

i,j , the smallest lexicographical encoding of E ∩ (Ai × Aj) compatible with C, i.e.
∃σ ∈ C, enc(E , σ)↾Ai×Aj = E<

i,j ;

4 C ← {σ ∈ C, enc(E , σ)↾Ai×Aj = E<
i,j};

5 return E< :=
⋃

i,j E
<
i,j

(same algorithm as [Pak15, chapter 6])
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Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group
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Morphism-definability

Definition
R a relation symbol of arity 2k.
φm(R, x⃗ , y⃗) defines a morphism m : G → Sym(A|x⃗|) on A, where G ≤ Sym(Ak) if, for all
σ ∈ G ,

φm(A,R ← graph(σ)) = graph(m(σ))

H ⊴ G ≤ Sym(AT ) is morphism-definable from G in A if:

▶ There is a definable generating set for G in A

▶ there is a L-formula φm which defines a morphism m : G → Sym(AT ′
) on A such that

ker(m) = H.



Properties of morphism-definability

▶ If H is morphism-definable from G in A, then FP + ord defines |H| and membership to H.

▶ Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

⇝ solves the coset representation issue

▶ If H1 and H2 are morphism-definable from G in A, then so is H1 ∩ H2.

⇝ solves the subgroup computation issue
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Labeling group

▶ Algorithmic perspective:
▶ encoding of A ≈ one fixed σ : A → A<.
▶ Represent labeling ℓ : A → A< by the unique τ ∈ Sym(A) s.t. ℓ = στ .
▶ Extends to cosets: ℓG = στG , and τG ⊆ Sym(A).
▶ Choice of σ not isomorphism-invariant.

▶ Unordered setting with Abelian colouring:
▶ families O(Ai ) of labelings of Ai indexed by Ai (a 7→ mapia)
▶ Represent labeling ℓ : A → A< by (τa)a∈A s.t.

∀i ,∀a ∈ Ai ,mapiaτa = ℓ↾Ai

⇝ τa = (mapia)
−1ℓ.

▶ Yields φ : C∗ → Sym(A)A. Thus, ι ◦ φ : C∗ → Sym(A× A). (ι := ιA,A) Definition of ι
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Labeling group

▶ ∃G ≤ Sym(A× A) with definable generating set, s.t. (ι ◦ φ)(O(A)) ⊆ G Definition of G

▶ (ι ◦ φ)(O(A)) is a coset of a morphism-definable subgroup Γ∗ ≤ G. Definition of Γ∗

▶ Given an encoding of E ∩ (Ai ∩ Aj), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(Ei,j)

∗ of Γ∗ Definition of Aut(Ei,j )
∗

Requires Γi abelian for all i .
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Conclusion

▶ How far goes the canonisation power of FP + ord?

▶ FO + ord?

▶ CPT + ord?

▶ Inexpressibility results?



Technical definitions: G

O(A) elements out of reach. But, any π ∈ O(A) is a product of elements of O(Ai ) which are
definable.

G := ⟨
⋃
i

ι ◦ φi (O(Ai ))⟩

where φi (σ)a :=

{
φ(σ)a if a ∈ Ai

1 otherwise



Technical definitions: Γ∗, Aut(Ei ,j)
∗

Let Γ :=
∏

i Γi
▶ φ : O(A)→ Sym(A)A is compatible with

ψ : Γ→ Sym(A)A

γ 7→ (γ↾Ai(a)
)a∈A

(in the sense that φ(πγ) = φ(π)ψ(γ)).

▶ O(A) = πΓ for some (any) π ∈ O(A).
⇝ φ(O(A)) = φ(π)ψ(Γ).

Γ∗ := ψ(Γ)

Aut(Ei,j) := {σ ∈ ΓiΓj | ∀a ∈ Ai , b ∈ Aj ,E (a, b) ⇐⇒ E (σ(a), σb)}
Aut(Ei,j)

∗ := ψ(Aut(Ei,j))
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