
Group Order Logic

Anatole Dahan

University of Cambridge
Université Paris-Cité
ENS Paris, Inria

Logic in Computer Science 2025

Motivation

Introduce ord, a permutation group operator.

▶ Quest of a logic for P (see [Gur88])

▶ Immerman-Vardi theorem: FP over ordered structures

▶ Over arbitrary structures:
FP < FP + C < FP + rk < P

▶ More general algebraic operator

▶ Over restricted classes of unordered structures:
▶ FP + C = P for bounded tree-width [GM99]
▶ FP + C = P when excluded minor [Gro17].
▶ Canonisation : if L ≥ FP canonizes C, L captures P on C.

The role of permutation groups in Graph Isomorphism

Graph Automorphism problem (GAC)

Input: G ∈ C
Output: S ⊆ Sym(VG) s.t. ⟨S⟩ = Aut(G)

▶ If C union-closed, GIC ≤P GAC

▶ Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

Perm. Group Membership Problem

Input: S ⊆ Sym(D) and σ ∈ Sym(D)
Question: Does σ ∈ ⟨S⟩ ?

≤T
L

Perm. Group Order Problem

Input: S ⊆ Sym(D)
Output: |⟨S⟩|

Both are in P: Schreier-Sims algorithm.

Plan

Definition of the operator

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk

The ord operator

Definition
φ(s⃗, t⃗) (with type(s⃗) = type(t⃗) = T) defines σ ∈ Sym(AT) if

∀b⃗, c⃗ ∈ AT , σ(b⃗) = c⃗ ⇐⇒ (A, b⃗, c⃗) |= φ

▶ graph(σ) = φ(A)

▶ σ = perm(φ(A))

Definition
A formula φ(p⃗, s⃗, t⃗) defines S ⊆ Sym(AT) binding p⃗ if

{perm(φ(A, a⃗)) | a⃗ ∈ Ap⃗} = S .

(ordp⃗.⃗s .⃗t φ) is a numerical predicate (of arity 2 · |T |) encoding |⟨S⟩|.

Plan

Definition of the operator

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk

Outline of the proof

▶ If φM(x⃗ , y⃗ , λ) defines a matrix,

(rkx⃗,y⃗φM .p) = dimFp (ImFp (M))

= logp |ImFp (M)|

where ImFp (M) ≤ FAy⃗

p additive group.

▶ logp is definable (Immerman-Vardi theorem)

▶ New goals:

1. permutation representation of FAy⃗

p

2. define a generating set for ImFp (M).

Subgoal 1: Permutation representation of FAy⃗

p .

▶ For p ∈ N∗,

reprp : Fp → Sp

k 7→ (i 7→ i + k mod p)

is FPC-definable.

▶ For T1,T2,

ιT1,T2 : Sym(AT2)A
T1 → Sym(AT1 × AT2)

(ga⃗)a⃗∈AT1 7→ ((a⃗, b⃗) 7→ (a⃗, (ga⃗(b⃗))))

is FPC-definable.

▶ Conclusion: ιy⃗ ,µ : FAy⃗

p ≃ Sym(Ay⃗ × A<) is FPC-definable.

Subgoal 2: Generating set for ImFp
(M)

▶ ((Fp)
Ax⃗

,+) generated by {λ · êa⃗ | a⃗ ∈ Ax⃗ , λ < p}.
⇝ ImFp (M) is generated by {M · (λ · êa⃗) | a⃗ ∈ Ax⃗ , λ < p}.
▶ Given φM ,

(a⃗, λ) 7→ ιy⃗ ,µ(M · (λ · êa⃗))

FPC-definable.

Remark
Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.

Plan

Definition of the operator

FP + rk ≤ FP + ord

FP + ord ≰ FP + rk

Preliminaries

▶ Lichter ’21: FP + rk < P

▶ Last remark: decision problem separation

▶ The separating query is defined on a class of structures with Abelian Colours.

▶ We show FP+ ord canonises (and thus captures P on) structures with Abelian Colours, ⇝
FP + rk < FP + ord.

Structures with Abelian Colours

▶ Structure A ordered partition
A1 ⪯ A2 ⪯ · · · ⪯ Am

▶ For each i ≤ m, abelian group Γi acting transitively on Ai (⇝ |Γi | = |Ai |)
▶ For each i , A equipped with an enumeration (γ ij)j<|Ai | of Γi

∀a ∈ Ai , (mapia)
−1 := j 7→ γ ij (a) bijection

⇝ a 7→ mapia linear family of definable orderings of Ai .

▶ O(Ai) := {mapia, a ∈ Ai}, O(A) :=
∏m

i=1O(Ai).

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A,E ,≺,Φ) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

1 C := O(A);
2 for (i , j) ∈ [m]2 do
3 find E<

i,j , the smallest lexicographical encoding of E ∩ (Ai × Aj) compatible with C, i.e.
∃σ ∈ C, enc(E , σ)↾Ai×Aj = E<

i,j ;

4 C ← {σ ∈ C, enc(E , σ)↾Ai×Aj = E<
i,j};

5 return E< :=
⋃

i,j E
<
i,j

(same algorithm as [Pak15, chapter 6])

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : A = (A,E ,≺,Φ) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E

1 C := O(A);
2 for (i , j) ∈ [m]2 do
3 find E<

i,j , the smallest lexicographical encoding of E ∩ (Ai × Aj) compatible with C, i.e.
∃σ ∈ C, enc(E , σ)↾Ai×Aj = E<

i,j ;

4 C ← {σ ∈ C, enc(E , σ)↾Ai×Aj = E<
i,j};

5 return E< :=
⋃

i,j E
<
i,j

(same algorithm as [Pak15, chapter 6])

Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group

Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group

Morphism-definability

Definition
R a relation symbol of arity 2k.
φm(R, x⃗ , y⃗) defines a morphism m : G → Sym(A|x⃗|) on A, where G ≤ Sym(Ak) if, for all
σ ∈ G ,

φm(A,R ← graph(σ)) = graph(m(σ))

H ⊴ G ≤ Sym(AT) is morphism-definable from G in A if:

▶ There is a definable generating set for G in A

▶ there is a L-formula φm which defines a morphism m : G → Sym(AT ′
) on A such that

ker(m) = H.

Properties of morphism-definability

▶ If H is morphism-definable from G in A, then FP + ord defines |H| and membership to H.

▶ Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

⇝ solves the coset representation issue

▶ If H1 and H2 are morphism-definable from G in A, then so is H1 ∩ H2.

⇝ solves the subgroup computation issue

Properties of morphism-definability

▶ If H is morphism-definable from G in A, then FP + ord defines |H| and membership to H.

▶ Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

⇝ solves the coset representation issue

▶ If H1 and H2 are morphism-definable from G in A, then so is H1 ∩ H2.

⇝ solves the subgroup computation issue

Properties of morphism-definability

▶ If H is morphism-definable from G in A, then FP + ord defines |H| and membership to H.

▶ Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

⇝ solves the coset representation issue

▶ If H1 and H2 are morphism-definable from G in A, then so is H1 ∩ H2.

⇝ solves the subgroup computation issue

Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group

Representing labeling cosets: three challenges

▶ The usual representation (C = σH) of cosets is not isomorphism-invariant.

▶ Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When A ̸= A<, labeling cosets are not group cosets (i.e. C ⊈ Sym(A)).

Fix: Labeling group

Labeling group

▶ Algorithmic perspective:
▶ encoding of A ≈ one fixed σ : A → A<.
▶ Represent labeling ℓ : A → A< by the unique τ ∈ Sym(A) s.t. ℓ = στ .
▶ Extends to cosets: ℓG = στG , and τG ⊆ Sym(A).
▶ Choice of σ not isomorphism-invariant.

▶ Unordered setting with Abelian colouring:
▶ families O(Ai) of labelings of Ai indexed by Ai (a 7→ mapia)
▶ Represent labeling ℓ : A → A< by (τa)a∈A s.t.

∀i ,∀a ∈ Ai ,mapiaτa = ℓ↾Ai

⇝ τa = (mapia)
−1ℓ.

▶ Yields φ : C∗ → Sym(A)A. Thus, ι ◦ φ : C∗ → Sym(A× A). (ι := ιA,A) Definition of ι

Labeling group

▶ Algorithmic perspective:
▶ encoding of A ≈ one fixed σ : A → A<.
▶ Represent labeling ℓ : A → A< by the unique τ ∈ Sym(A) s.t. ℓ = στ .
▶ Extends to cosets: ℓG = στG , and τG ⊆ Sym(A).
▶ Choice of σ not isomorphism-invariant.

▶ Unordered setting with Abelian colouring:
▶ families O(Ai) of labelings of Ai indexed by Ai (a 7→ mapia)
▶ Represent labeling ℓ : A → A< by (τa)a∈A s.t.

∀i ,∀a ∈ Ai ,mapiaτa = ℓ↾Ai

⇝ τa = (mapia)
−1ℓ.

▶ Yields φ : C∗ → Sym(A)A. Thus, ι ◦ φ : C∗ → Sym(A× A). (ι := ιA,A) Definition of ι

Labeling group

▶ ∃G ≤ Sym(A× A) with definable generating set, s.t. (ι ◦ φ)(O(A)) ⊆ G Definition of G

▶ (ι ◦ φ)(O(A)) is a coset of a morphism-definable subgroup Γ∗ ≤ G. Definition of Γ∗

▶ Given an encoding of E ∩ (Ai ∩ Aj), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(Ei,j)

∗ of Γ∗ Definition of Aut(Ei,j)
∗

Requires Γi abelian for all i .

Labeling group

▶ ∃G ≤ Sym(A× A) with definable generating set, s.t. (ι ◦ φ)(O(A)) ⊆ G Definition of G

▶ (ι ◦ φ)(O(A)) is a coset of a morphism-definable subgroup Γ∗ ≤ G. Definition of Γ∗

▶ Given an encoding of E ∩ (Ai ∩ Aj), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(Ei,j)

∗ of Γ∗ Definition of Aut(Ei,j)
∗

Requires Γi abelian for all i .

Conclusion

▶ How far goes the canonisation power of FP + ord?

▶ FO + ord?

▶ CPT + ord?

▶ Inexpressibility results?

Technical definitions: G

O(A) elements out of reach. But, any π ∈ O(A) is a product of elements of O(Ai) which are
definable.

G := ⟨
⋃
i

ι ◦ φi (O(Ai))⟩

where φi (σ)a :=

{
φ(σ)a if a ∈ Ai

1 otherwise

Technical definitions: Γ∗, Aut(Ei ,j)
∗

Let Γ :=
∏

i Γi
▶ φ : O(A)→ Sym(A)A is compatible with

ψ : Γ→ Sym(A)A

γ 7→ (γ↾Ai(a)
)a∈A

(in the sense that φ(πγ) = φ(π)ψ(γ)).

▶ O(A) = πΓ for some (any) π ∈ O(A).
⇝ φ(O(A)) = φ(π)ψ(Γ).

Γ∗ := ψ(Γ)

Aut(Ei,j) := {σ ∈ ΓiΓj | ∀a ∈ Ai , b ∈ Aj ,E (a, b) ⇐⇒ E (σ(a), σb)}
Aut(Ei,j)

∗ := ψ(Aut(Ei,j))

References I

László Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de
Montréal Technical Report, DMS (1979), no. 79-10.

, Graph Isomorphism in Quasipolynomial Time, January 2016.

László Babai and Eugene M. Luks, Canonical labeling of graphs, Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing - STOC ’83, ACM Press,
1983, pp. 171–183.

Martin Grohe and Julian Mariño, Definability and Descriptive Complexity on Databases of
Bounded Tree-Width, Database Theory — ICDT’99 (Gerhard Goos, Juris Hartmanis, Jan
Van Leeuwen, Catriel Beeri, and Peter Buneman, eds.), vol. 1540, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999, pp. 70–82.

Martin Grohe, Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory, 1 ed., Cambridge University Press, August 2017.

Yuri Gurevich, Logic and the Challenge of Computer Science, Current Trends in
Theoretical Computer Science ed. Egon Boerger (1988).

References II

Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time, Journal of Computer and System Sciences 25 (1982), no. 1, 42–65.

Wied Pakusa, Linear equation systems and the search for a logical characterisation of
polynomial time, Ph.D. thesis, RWTH Aachen University, 2015.

	Definition of the operator
	FP + rk FP + ord
	FP + ord FP + rk

