Group Order Logic

Anatole Dahan

University of Cambridge Université Paris-Cité ENS Paris, Inria

Logic in Computer Science 2025

Motivation

Introduce ord, a permutation group operator.

- Quest of a logic for P (see [Gur88])
- ▶ Immerman-Vardi theorem: FP over *ordered structures*
- Over arbitrary structures:

$$FP < FP + C < FP + rk < P$$

- More general algebraic operator
- Over restricted classes of unordered structures:
 - ightharpoonup FP + C = P for bounded tree-width [GM99]
 - ▶ FP + C = P when excluded minor [Gro17].
 - **Canonisation**: if $\mathcal{L} \geq \mathsf{FP}$ canonizes \mathcal{C} , \mathcal{L} captures P on \mathcal{C} .

The role of permutation groups in Graph Isomorphism

Graph Automorphism problem (GA_C)

Input: $\mathcal{G} \in \mathcal{C}$

Output: $S \subseteq \text{Sym}(V_G)$ s.t. $\langle S \rangle = \text{Aut}(G)$

- ▶ If \mathcal{C} union-closed, $GI_{\mathcal{C}} \leq_{P} GA_{\mathcal{C}}$
- Many results for Graph Iso and/or Canonisation on restricted classes of graphs [Bab79, Luk82, BL83, Bab16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM	
Input:	$S \subseteq \operatorname{Sym}(D)$ and $\sigma \in \operatorname{Sym}(D)$
Question:	Does $\sigma \in \langle S \rangle$?

 \leq^T_L

PERM. GROUP ORDER PROBLEM

Input: $S \subseteq \text{Sym}(D)$ Output: $|\langle S \rangle|$

Both are in P: Schreier-Sims algorithm.

Plan

Definition of the operator

$$FP + rk \le FP + orc$$

$$\mathsf{FP} + \mathsf{ord} \not \leq \mathsf{FP} + \mathsf{rl}$$

The ord operator

Definition

$$\varphi(\vec{s}, \vec{t})$$
 (with type(\vec{s}) = type(\vec{t}) = T) defines $\sigma \in \text{Sym}(A^T)$ if

$$\forall \vec{b}, \vec{c} \in A^T, \sigma(\vec{b}) = \vec{c} \iff (\mathfrak{A}, \vec{b}, \vec{c}) \models \varphi$$

Definition

A formula $\varphi(\vec{p}, \vec{s}, \vec{t})$ defines $S \subseteq \operatorname{Sym}(A^T)$ binding \vec{p} if

$$\{\operatorname{perm}(\varphi(\mathfrak{A},\vec{a}))\mid \vec{a}\in A^{\vec{p}}\}=S.$$

 $(\operatorname{ord}_{\vec{p},\vec{s},\vec{t}} \varphi)$ is a *numerical predicate* (of arity $2 \cdot |T|$) encoding $|\langle S \rangle|$.

Plan

Definition of the operator

$$\mathsf{FP} + \mathsf{rk} \leq \mathsf{FP} + \mathsf{ord}$$

$$\mathsf{FP} + \mathsf{ord} \not \leq \mathsf{FP} + \mathsf{rk}$$

Outline of the proof

▶ If $\varphi_M(\vec{x}, \vec{y}, \lambda)$ defines a matrix,

$$egin{aligned} (\mathsf{rk}_{ec{\mathsf{x}},ec{\mathsf{y}}}arphi_M.p) &= \dim_{\mathbb{F}_p}(\mathrm{Im}_{\mathbb{F}_p}(M)) \ &= \log_p |\mathrm{Im}_{\mathbb{F}_p}(M)| \end{aligned}$$

where $\operatorname{Im}_{\mathbb{F}_p}(M) \leq \mathbb{F}_p^{A^{\vec{y}}}$ additive group.

- ▶ log_n is definable (Immerman-Vardi theorem)
- ► New goals:
 - 1. permutation representation of $\mathbb{F}_p^{A^{\vec{y}}}$
 - 2. define a generating set for $Im_{\mathbb{F}_p}(M)$.

Subgoal 1: Permutation representation of $\mathbb{F}_p^{A^{\vec{y}}}$.

▶ For $p \in \mathbb{N}^*$,

$$\operatorname{\mathsf{repr}}_p : \mathbb{F}_p \to S_p$$
$$k \mapsto (i \mapsto i + k \mod p)$$

is FPC-definable.

ightharpoonup For T_1, T_2 ,

$$\iota_{T_1,T_2}: \operatorname{Sym}(A^{T_2})^{A^{T_1}} \to \operatorname{Sym}(A^{T_1} \times A^{T_2})$$
$$(g_{\vec{a}})_{\vec{a} \in A^{T_1}} \mapsto ((\vec{a}, \vec{b}) \mapsto (\vec{a}, (g_{\vec{a}}(\vec{b}))))$$

is FPC-definable.

▶ Conclusion: $\iota_{\vec{v},\mu} : \mathbb{F}_p^{A^{\vec{v}}} \simeq \operatorname{Sym}(A^{\vec{v}} \times A^{<})$ is FPC-definable.

Subgoal 2: Generating set for $\operatorname{Im}_{\mathbb{F}_p}(M)$

- $lackbox{(}(\mathbb{F}_p)^{A^{\vec{x}}},+)$ generated by $\{\lambda\cdot\hat{e}_{\vec{a}}\mid \vec{a}\in A^{\vec{x}},\lambda< p\}.$
- $\longrightarrow \operatorname{Im}_{\mathbb{F}_p}(M)$ is generated by $\{M \cdot (\lambda \cdot \hat{e}_{\vec{a}}) \mid \vec{a} \in A^{\vec{x}}, \lambda < p\}.$
- Given φ_M ,

$$(\vec{a},\lambda)\mapsto \iota_{\vec{y},\mu}(M\cdot(\lambda\cdot\hat{e}_{\vec{a}}))$$

FPC-definable.

Remark

 $\label{eq:proof_proof_proof} Proof_{\mbox{\footnotesize generalizes: }} FP + \mbox{\footnotesize ord solves arbitrary systems of linear equations over any abelian group.}$

Plan

Definition of the operator

$$FP + rk \leq FP + ord$$

$$\mathsf{FP} + \mathsf{ord} \nleq \mathsf{FP} + \mathsf{rk}$$

Preliminaries

- ► Lichter '21: FP + rk < P
- Last remark: decision problem separation
- ▶ The separating query is defined on a class of structures with Abelian Colours.
- ▶ We show FP + ord canonises (and thus captures P on) structures with Abelian Colours, \rightsquigarrow FP + rk < FP + ord.

Structures with Abelian Colours

► Structure 𝔄 ordered partition

$$A_1 \leq A_2 \leq \cdots \leq A_m$$

- ▶ For each $i \leq m$, abelian group Γ_i acting transitively on A_i ($\rightsquigarrow |\Gamma_i| = |A_i|$)
- ▶ For each i, \mathfrak{A} equipped with an enumeration $(\gamma_i^i)_{i < |A_i|}$ of Γ_i

$$orall a \in \mathcal{A}_i, (\mathsf{map}_a^i)^{-1} := j \mapsto \gamma_i^i(a)$$
 bijection

- \rightarrow $a \mapsto \text{map}_a^i$ linear family of definable orderings of A_i .
- $ightharpoonup \mathcal{O}(A_i) := \{ \operatorname{\mathsf{map}}_a^i, a \in A_i \}, \ \mathcal{O}(A) := \prod_{i=1}^m \mathcal{O}(A_i).$

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : $\mathfrak{A} = (A, E, \prec, \Phi)$ a structure with Abelian colours

Output: A numerical relation $E^{<}$ isomorphic to E

- 1 $\mathcal{C} := \mathcal{O}(A)$;
- 2 **for** $(i,j) \in [m]^2$ **do**
- find $E_{i,j}^{<}$, the smallest lexicographical encoding of $E \cap (A_i \times A_j)$ compatible with C, i.e.

$$\exists \sigma \in \mathcal{C}, \operatorname{enc}(E, \sigma)_{\uparrow A_i \times A_j} = E_{i,j}^{<};$$

4
$$\mathcal{C} \leftarrow \{ \sigma \in \mathcal{C}, \operatorname{enc}(E, \sigma)_{\uparrow A_i \times A_j} = E_{i,i}^{\leq} \};$$

5 return
$$E^{<} := \bigcup_{i,j} E_{i,j}^{<}$$

(same algorithm as [Pak15, chapter 6])

The canonisation algorithm

Algorithm 1: Canonisation procedure

```
Input : \mathfrak{A} = (A, E, \prec, \Phi) a structure with Abelian colours
```

Output: A numerical relation $E^{<}$ isomorphic to E

- $1 \ \mathcal{C} := \mathcal{O}(A);$
- 2 **for** $(i,j) \in [m]^2$ **do**
- find $E_{i,j}^{<}$, the smallest lexicographical encoding of $E \cap (A_i \times A_j)$ compatible with C, i.e.

$$\exists \sigma \in \mathcal{C}, \operatorname{enc}(E, \sigma)_{\uparrow A_i \times A_j} = E_{i,j}^{<};$$

4
$$\mathcal{C} \leftarrow \{ \sigma \in \mathcal{C}, \operatorname{enc}(E, \sigma)_{|A_i \times A_j} = E_{i,j}^{\leq} \};$$

5 return
$$E^{<} := \bigcup_{i,j} E_{i,j}^{<}$$

(same algorithm as [Pak15, chapter 6])

Representing labeling cosets: three challenges

- ▶ The usual representation ($C = \sigma H$) of cosets is not isomorphism-invariant.
- Computation of subgroups is not isomorphism-invariant.
- ▶ When $A \neq A^{<}$, labeling cosets are not group cosets (i.e. $C \nsubseteq Sym(A)$).

Representing labeling cosets: three challenges

- ▶ The usual representation ($C = \sigma H$) of cosets is not isomorphism-invariant.
- Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When $A \neq A^{<}$, labeling cosets are not group cosets (i.e. $\mathcal{C} \nsubseteq \operatorname{Sym}(A)$).

Morphism-definability

Definition

R a relation symbol of arity 2k.

 $\varphi_m(R, \vec{x}, \vec{y})$ defines a morphism $m: G \to \operatorname{Sym}(A^{|\vec{x}|})$ on \mathfrak{A} , where $G \leq \operatorname{Sym}(A^k)$ if, for all $\sigma \in G$,

$$\varphi_m(\mathfrak{A}, R \leftarrow \operatorname{graph}(\sigma)) = \operatorname{graph}(m(\sigma))$$

 $H \subseteq G \subseteq \operatorname{Sym}(A^T)$ is morphism-definable from G in $\mathfrak A$ if:

- ightharpoonup There is a definable generating set for G in $\mathfrak A$
- ▶ there is a \mathcal{L} -formula φ_m which defines a morphism $m: G \to \operatorname{Sym}(A^{T'})$ on \mathfrak{A} such that $\ker(m) = H$.

Properties of morphism-definability

- ▶ If H is morphism-definable from G in \mathfrak{A} , then $\mathsf{FP} + \mathsf{ord}$ defines |H| and membership to H.
- Moreover, the morphism m defining H in G defines a bijection between cosets of H in G and Im(m).
- ▶ If H_1 and H_2 are morphism-definable from G in \mathfrak{A} , then so is $H_1 \cap H_2$.

Properties of morphism-definability

- ▶ If H is morphism-definable from G in \mathfrak{A} , then $\mathsf{FP} + \mathsf{ord}$ defines |H| and membership to H.
- Moreover, the morphism m defining H in G defines a bijection between cosets of H in G and Im(m).
- → solves the coset representation issue
- ▶ If H_1 and H_2 are morphism-definable from G in \mathfrak{A} , then so is $H_1 \cap H_2$.

Properties of morphism-definability

- ▶ If H is morphism-definable from G in \mathfrak{A} , then $\mathsf{FP} + \mathsf{ord}$ defines |H| and membership to H.
- Moreover, the morphism m defining H in G defines a bijection between cosets of H in G and Im(m).
- → solves the coset representation issue
- ▶ If H_1 and H_2 are morphism-definable from G in \mathfrak{A} , then so is $H_1 \cap H_2$.
- → solves the subgroup computation issue

Representing labeling cosets: three challenges

- ▶ The usual representation ($C = \sigma H$) of cosets is not isomorphism-invariant.
- Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When $A \neq A^{<}$, labeling cosets are not group cosets (i.e. $\mathcal{C} \nsubseteq \operatorname{Sym}(A)$).

Representing labeling cosets: three challenges

- ▶ The usual representation ($C = \sigma H$) of cosets is not isomorphism-invariant.
- Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability

▶ When $A \neq A^{<}$, labeling cosets are not group cosets (i.e. $\mathcal{C} \nsubseteq \operatorname{Sym}(A)$).

Fix: Labeling group

- ► Algorithmic perspective:
 - encoding of $\mathfrak{A} \approx$ one fixed $\sigma : A \rightarrow A^{<}$.
 - ▶ Represent labeling $\ell: A \to A^{<}$ by the unique $\tau \in \operatorname{Sym}(A)$ s.t. $\ell = \sigma \tau$.
 - **Extends** to cosets: $\ell G = \sigma \tau G$, and $\tau G \subseteq \text{Sym}(A)$.
 - Choice of σ not isomorphism-invariant.

- ► Algorithmic perspective:
 - encoding of $\mathfrak{A} \approx$ one fixed $\sigma : A \to A^{<}$.
 - ▶ Represent labeling $\ell: A \to A^{<}$ by the unique $\tau \in \text{Sym}(A)$ s.t. $\ell = \sigma \tau$.
 - ▶ Extends to cosets: $\ell G = \sigma \tau G$, and $\tau G \subseteq \text{Sym}(A)$.
 - ightharpoonup Choice of σ not isomorphism-invariant.
- Unordered setting with Abelian colouring:
 - ▶ families $\mathcal{O}(A_i)$ of labelings of A_i indexed by A_i ($a \mapsto \mathsf{map}_a^i$)
 - ▶ Represent labeling $\ell: A \to A^{<}$ by $(\tau_a)_{a \in A}$ s.t.

$$\forall i, \forall a \in A_i, \mathsf{map}_a^i \tau_a = \ell_{\restriction A_i}$$

$$\leadsto \tau_a = (\mathsf{map}_a^i)^{-1} \ell.$$

ightharpoonup Yields $\varphi: \mathcal{C}^* \to \operatorname{Sym}(A)^A$. Thus, $\iota \circ \varphi: \mathcal{C}^* \to \operatorname{Sym}(A \times A)$. $(\iota := \iota_{A,A})$

 \blacktriangleleft Definition of ι

- ▶ $\exists \mathcal{G} \leq \operatorname{Sym}(A \times A)$ with definable generating set, s.t. $(\iota \circ \varphi)(\mathcal{O}(A)) \subseteq \mathcal{G}$
- \blacktriangleright $(\iota \circ \varphi)(\mathcal{O}(A))$ is a coset of a morphism-definable subgroup $\Gamma^* \leq \mathcal{G}$.
- ▶ Given an encoding of $E \cap (A_i \cap A_j)$, the corresponding labelings in $\mathcal{O}(A)$ form a coset of a morphism-definable subgroup $\operatorname{Aut}(E_{i,j})^*$ of Γ^* ▶ Definition of $\operatorname{Aut}(E_{i,j})^*$

- ▶ $\exists \mathcal{G} \leq \operatorname{Sym}(A \times A)$ with definable generating set, s.t. $(\iota \circ \varphi)(\mathcal{O}(A)) \subseteq \mathcal{G}$
- Definition of g

- $(\iota \circ \varphi)(\mathcal{O}(A))$ is a coset of a morphism-definable subgroup $\Gamma^* \leq \mathcal{G}$.
- ▶ Given an encoding of $E \cap (A_i \cap A_j)$, the corresponding labelings in $\mathcal{O}(A)$ form a coset of a morphism-definable subgroup $\operatorname{Aut}(E_{i,j})^*$ of Γ^* ▶ Definition of $\operatorname{Aut}(E_{i,j})^*$

Requires Γ_i abelian for all i.

Conclusion

- ▶ How far goes the canonisation power of FP + ord?
- ► FO + ord?
- ightharpoonup CPT + ord?
- ► Inexpressibility results?

Technical definitions: \mathcal{G}

 $\mathcal{O}(A)$ elements out of reach. But, any $\pi \in \mathcal{O}(A)$ is a product of elements of $\mathcal{O}(A_i)$ which are definable.

$$\mathcal{G} := \langle igcup_i \iota \circ arphi_i (\mathcal{O}(A_i))
angle$$
 where $arphi_i (\sigma)_a := egin{cases} arphi(\sigma)_a & ext{if } a \in A_i \ 1 & ext{otherwise} \end{cases}$

Technical definitions: Γ^* , $\operatorname{Aut}(E_{i,j})^*$

Let
$$\Gamma := \prod_i \Gamma_i$$

 $\triangleright \varphi : \mathcal{O}(A) \to \operatorname{Sym}(A)^A$ is compatible with

$$\psi: \Gamma \to \operatorname{Sym}(A)^A$$
$$\gamma \mapsto (\gamma_{\upharpoonright A_{i(a)}})_{a \in A}$$

(in the sense that $\varphi(\pi\gamma) = \varphi(\pi)\psi(\gamma)$).

$$\rightsquigarrow \varphi(\mathcal{O}(A)) = \varphi(\pi)\psi(\Gamma).$$

$$\Gamma^* := \psi(\Gamma)$$

$$\operatorname{Aut}(E_{i,j}) := \{ \sigma \in \Gamma_i \Gamma_j \mid \forall a \in A_i, b \in A_j, E(a,b) \iff E(\sigma(a), \sigma b) \}$$

$$\operatorname{Aut}(E_{i,j})^* := \psi(\operatorname{Aut}(E_{i,j}))$$

References I

- László Babai, *Monte-Carlo algorithms in graph isomorphism testing*, Université de Montréal Technical Report, DMS (1979), no. 79-10.
- Graph Isomorphism in Quasipolynomial Time, January 2016.
- László Babai and Eugene M. Luks, *Canonical labeling of graphs*, Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing STOC '83, ACM Press, 1983, pp. 171–183.
- Martin Grohe and Julian Mariño, *Definability and Descriptive Complexity on Databases of Bounded Tree-Width*, Database Theory ICDT'99 (Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Catriel Beeri, and Peter Buneman, eds.), vol. 1540, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 70–82.
- Martin Grohe, Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, 1 ed., Cambridge University Press, August 2017.
- Yuri Gurevich, Logic and the Challenge of Computer Science, Current Trends in Theoretical Computer Science ed. Egon Boerger (1988).

References II

- Eugene M. Luks, *Isomorphism of graphs of bounded valence can be tested in polynomial time*, Journal of Computer and System Sciences **25** (1982), no. 1, 42–65.
- Wied Pakusa, Linear equation systems and the search for a logical characterisation of polynomial time, Ph.D. thesis, RWTH Aachen University, 2015.