Group Order Logic

Anatole Dahan

University of Cambridge
Université Paris-Cité
ENS Paris, Inria

Logic in Computer Science 2025

Motivation

Introduce ord, a permutation group operator.
> Quest of a logic for P (see [Gur88])
» Immerman-Vardi theorem: FP over ordered structures
» Over arbitrary structures:
FP<FP+C<FP+rk<P
» More general algebraic operator

» Over restricted classes of unordered structures:

» FP + C = P for bounded tree-width [GM99]
» FP 4 C = P when excluded minor [Grol7].
» Canonisation : if £ > FP canonizes C, £ captures P on C.

The role of permutation groups in Graph Isomorphism

GRAPH AUTOMORPHISM PROBLEM (GA¢)

Input: gecC
Output: S C Sym(Vg) s.t. (S) = Aut(G)

» If C union-closed, Gl <p GA¢
» Many results for Graph Iso and/or Canonisation on restricted classes of
graphs [Bab79, Luk82, BL83, Babl16]. Primitive operations:

PERM. GROUP MEMBERSHIP PROBLEM PERM. GROUP ORDER PROBLEM

T
Input: S C Sym(D) and o € Sym(D) —t Input: S C Sym(D)
Question: Does o € (S) ? Output: [(S)]

Both are in P: Schreier-Sims algorithm.

Plan

Definition of the operator

The ord operator

Definition
©(8,t) (with type(3) = type(t) = T) defines o € Sym(AT) if

Vb, ée AT, o(b)=¢ < (A,b,0) = ¢
> graph(c) = ()
> o = perm(p(2))

Definition
A formula o(p, 3, t) defines S C Sym(AT") binding p if

{perm(p(%,3)) | 7€ AP} = S.

(ord; 57) is a numerical predicate (of arity 2 - |T|) encoding |(S)].

Plan

FP + rk < FP + ord

Outline of the proof

> If opm(X, ¥,) defines a matrix,

(rk;,ygoM.p) = dim]pp (ImFP(M))
= log,, [Img, (M)

where Imgp, (M) <]F’:,‘F additive group.
> log, is definable (Immerman-Vardi theorem)
> New goals:

1. permutation representation of F§7
2. define a generating set for Img,(M).

Subgoal 1: Permutation representation of F;‘y.

» For p € N*,

repr, : Fp — S
k— (i—i+k modp)

is FPC-definable.
> FOI’ Tl, T2,

LTy, Ty Sym(ATZ)AT1 — Sym(A™ x AT?)
(83)seans = (3, b) = (3 (g5(b))))
is FPC-definable.
> Conclusion: 17, : Fy ~ Sym(AY x A<) is FPC-definable.

Subgoal 2: Generating set for Imp, (M)

> ((F,)*",+) generated by {\- &5 | 7€ A%, \ < p}.
~~ Img, (M) is generated by {M - (\- &) | € A¥,\ < p}.
> Given @,
(3N~ t7u(M- (A &)
FPC-definable. O

Remark
Proof generalizes: FP + ord solves arbitrary systems of linear equations over any abelian group.

Plan

FP + ord £ FP + rk

Preliminaries

» Lichter '21: FP+rk < P
» Last remark: decision problem separation
» The separating query is defined on a class of structures with Abelian Colours.

» We show FP + ord canonises (and thus captures P on) structures with Abelian Colours, ~»
FP + rk < FP + ord.

Structures with Abelian Colours

» Structure 2(ordered partition
AL 2 A =X 2 A

» For each i < m, abelian group I'; acting transitively on A; (~ |I;| = |Ai])

» For each i, 2 equipped with an enumeration (fyj)j<|A,.| of I;
Vac A;,(map)) ™t i=j 'yj(a) bijection

~ a+ mapl linear family of definable orderings of A;.
> O(A) :={mapi,ac A}, O(A) :=TI", O(A).

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : 2 = (A E,<,®) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E
1 C:=O(A);
for (i,j) € [m]* do
3 find Eifj, the smallest lexicographical encoding of E N (A; x A;) compatible with C, i.e.
Jo € C,enc(E,0)axa = E5
4 | C«{oeCenc(E,0)axa = ES)

5 return £< =, E5

N

(same algorithm as [Pak15, chapter 6])

The canonisation algorithm

Algorithm 1: Canonisation procedure

Input : 2 = (A E,<,®) a structure with Abelian colours
Output: A numerical relation E< isomorphic to E
1 C:=O(A);
for (i,j) € [m]* do
3 find Eifj, the smallest lexicographical encoding of E N (A; x A;) compatible with C, i.e.
Jo € C,enc(E,0)jaxa = E5
4 | C«{oecCenc(E,0)axa = ES}

5 return £< =, E5

N

(same algorithm as [Pak15, chapter 6])

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.

» Computation of subgroups is not isomorphism-invariant.

» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability
» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).

Morphism-definability

Definition
R a relation symbol of arity 2k.
om(R, X,) defines a morphism m: G — Sym(AX) on 2A, where G < Sym(A¥) if, for all

oea@G,
©m(2, R + graph(c)) = graph(m(o))
H < G < Sym(AT) is morphism-definable from G in 2 if:
» There is a definable generating set for G in 2
> there is a L-formula @, which defines a morphism m : G — Sym(AT") on 2 such that
ker(m) = H.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

~~ solves the coset representation issue

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

Properties of morphism-definability

» If H is morphism-definable from G in 2, then FP + ord defines |H| and membership to H.

» Moreover, the morphism m defining H in G defines a bijection between cosets of H in G
and Im(m).

~~ solves the coset representation issue

» If H; and H, are morphism-definable from G in 2, then so is H; N H,.

~> solves the subgroup computation issue

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of subgroups is not isomorphism-invariant.

Fix: Morphism-definability
» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).

Representing labeling cosets: three challenges

» The usual representation (C = o H) of cosets is not isomorphism-invariant.
» Computation of subgroups is not isomorphism-invariant.
Fix: Morphism-definability
» When A # A<, labeling cosets are not group cosets (i.e. C € Sym(A)).
Fix: Labeling group

Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.

Labeling group

» Algorithmic perspective:
> encoding of 2 ~ one fixed o : A — A<.

> Represent labeling £ : A — A< by the unique 7 € Sym(A) s.t. £ =oT.
> Extends to cosets: /G = o7G, and 7G C Sym(A).
» Choice of o not isomorphism-invariant.

» Unordered setting with Abelian colouring:

> families O(A;) of labelings of A; indexed by A; (a — map’)
> Represent labeling £: A — A< by (73)aca s.t.

Vi,Va € Aj,map.r, = {14,
~ 7, = (map}) 'L

> Yields ¢ : C* — Sym(A)*. Thus, Lo :C* — Sym(A x A). (¢:=ta.4)

Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to ¢)(O(A)) C G
> (Lop)(O(A)) is a coset of a morphism-definable subgroup ' < g.

> Given an encoding of E N (Aj N A;j), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of I'*

Labeling group

> 3G < Sym(A x A) with definable generating set, s.t. (to¢)(O(A)) C G

» (L0 p)(O(A)) is a coset of a morphism-definable subgroup ' < G.
> Given an encoding of E N (A; N Aj), the corresponding labelings in O(A) form a coset of a
morphism-definable subgroup Aut(E;;)* of '*

Requires I'; abelian for all /.

Conclusion

» How far goes the canonisation power of FP 4 ord?
» FO + ord?
» CPT + ord?

» Inexpressibility results?

Technical definitions: G

O(A) elements out of reach. But, any m € O(A) is a product of elements of O(A;) which are
definable.

G = (JrowiO(A))

(p(O’)a if ae A;
1 otherwise

where p;(0), = {

Technical definitions: *, Aut(E;;)*

Let [:= H’- I;
> : O(A) — Sym(A)* is compatible with
Y : T — Sym(A)
s ('YfAi(a))aEA
(in the sense that p(7y) = (7)Y (7))
» O(A) = «T for some (any) m € O(A).
~ p(O(A)) = @(m)u(T).
=)
Aut(E,-J) = {O’ S F,-I'j | Vaec Ai,be Aj7 E(a, b) — E(a(a)7ab)}
Aut(E,-,j)* = w(Aut(E,-J))

References |

[

B
B

L3szI6 Babai, Monte-Carlo algorithms in graph isomorphism testing, Université de
Montréal Technical Report, DMS (1979), no. 79-10.

, Graph Isomorphism in Quasipolynomial Time, January 2016.

Laszl6 Babai and Eugene M. Luks, Canonical labeling of graphs, Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing - STOC '83, ACM Press,
1983, pp. 171-183.

Martin Grohe and Julian Marifio, Definability and Descriptive Complexity on Databases of
Bounded Tree-Width, Database Theory — ICDT'99 (Gerhard Goos, Juris Hartmanis, Jan
Van Leeuwen, Catriel Beeri, and Peter Buneman, eds.), vol. 1540, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999, pp. 70-82.

Martin Grohe, Descriptive Complexity, Canonisation, and Definable Graph Structure
Theory, 1 ed., Cambridge University Press, August 2017.

Yuri Gurevich, Logic and the Challenge of Computer Science, Current Trends in
Theoretical Computer Science ed. Egon Boerger (1988).

References |l

@ Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time, Journal of Computer and System Sciences 25 (1982), no. 1, 42-65.

@ Wied Pakusa, Linear equation systems and the search for a logical characterisation of
polynomial time, Ph.D. thesis, RWTH Aachen University, 2015.

	Definition of the operator
	FP + rk FP + ord
	FP + ord FP + rk

